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Abstract 
This paper examines the use of the Random Decrement Technique (RDT) for the estimation of building 

modal parameters, in particular the natural frequency and the damping ratio. It focuses on establishing the 

processing parameters one must specify to use the technique to its best advantage. This work is motivated by 

the high influence of these parameters on the RDT quality. Despite the widespread use of the RDT and the 

enormous effort for understanding the choice of its parameters, no work has been done on how to automate 

this selection. From this point, this paper comes out with a proposition of an automatic procedure to guide up 

the choice of these parameters. The results of this paper, on simulated and real-world ambient vibrations, 

indicate that the proposed automatic setting procedure of the different parameters of the RDT has opened the 

way to more reliable results and much credible estimation of the modal parameters. 

 

1 Introduction 
The RDT was introduced by Cole during the late 1960s [1], for the analysis of response measurements 

only. The principle of this technique is to estimate Random Decrement Signatures (RDSs) by averaging time 

segments of the measured structural responses. These segments are selected under certain conditions known 

as triggering conditions. The modal parameters of the structure can be then extracted from the RDSs using 

methods developed to extract these parameters from free decays. 

Since its development, the theory behind this technique has been widely investigated [2, 3, 4, 5], with a 

significant concentration on the parameters contributing to the performance of the RDT. For example, 

studying the filtering effect [6], exploring the difficulties of choosing the triggering levels for a given 

triggering condition [3], and discussing the number of segments needed to yield reliable estimates [7], 

however none of them had addressed a way of setting these parameters automatically. This paper responds to 

this deficiency by proposing an automatic procedure for setting the RDT related parameters. 

The natural starting point is the definition and the estimation of RDS which is shown in section 2. The 

contribution of this work is discussed in section 3. Sections 4 and 5 explore respectively an overview of the 

proposed algorithm and a detailed explanation of its steps. The obtained results are examined in section 6 

over simulated and real-world ambient vibration signals. Section 7 draws the conclusions of this paper.  
 

2 RDS definition and estimation 
The RDSs )(τ

Y
D are defined as the mean value [ ]..E  of a process )(tY given some triggering conditions 

)(tY
T  at an actual time t , 

                                                            [ ]
)(

)()(
tYY

TtYED ττ += ,           (1) 

For a time series, the RDSs can be estimated unbiased as an empirical mean  

                                                            )()(
1

)(ˆ
1

i

N

i
yiY tTty

N
D ∑= += ττ ,          (2) 

where )(ˆ τ
Y

D  is the estimated RDS, )(ty is the measurement and N is the number of the triggering points.  
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The triggering condition presents the basic requirement for the initial condition of the time segments in 

the averaging process at the time lag 0=τ . All the different triggering conditions used can be considered as 

specific formulation of the applied general triggering condition, GA

tY
T

)(
 

                                                        { }2121)( )(,)( btYbatYaT GA
tY >≤>≤=  .         (3) 

where 
1

a ,
12

,ba and 
2

b  are the triggering levels.  

The most frequently used triggering conditions are level crossing, { }atYT L

tY
== )(

)(
,  positive point, 

{ }
21)(

)( atYaT P

tY
>≤= , local extrema, { }0)(,)( 21)( =>≤= tYatYaT E

tY
 , and zero-up crossing, { }0)(,)(

2)(
>== tYatYT Z

tY
 . The number of triggering points controls the estimation time and the accuracy of 

the estimates [4]. 

 

3 The contribution of this work 
When firstly introduced by Cole [1], RDT was intended to extract one vibration mode out of the 

narrow-band filtered response measurement, called the RDS. Accordingly, a filtering process is required as a 

first step in a multi-mode context.  

Since filtering is the first step to condition the data for analysis in the RDT; therefore, it should be 

carried out with high precision. To achieve that and to initialize this process, we propose to set the filter 

parameters from a spectrum of the process )(tY as described in Section 5.  

The second step consists of segmenting the filter output of each mode in order then to average the 

segments and to retrieve an approximated system response with a correct modal parameters. For this step, we 

compare the different triggering conditions proposed in the literature, such as [5]. After averaging, the 

method provides a signature of a single-degree-of-freedom system for each mode. From these signatures, the 

modal parameters of each mode can be estimated. To evaluate the reliability of the estimation, we tested our 

proposed method over real-world and simulated ambient vibration signals.  

This paper has greatly shown that when the first step of the RDT is well done, i.e. the filtering process 

is very well performed; the other parameters, like the segment length and the different types of triggering 

conditions, will have less effect on the RDS estimation and the modal parameter extraction. 

 
4 Overview of the proposed algorithm 

 In the proposed algorithm, the frequency bands of the signal components were detected using 

Welch’s spectral estimator. The data-driven interpretation of the spectrum is carried out over each frequency 

sample to determine whether the frequency corresponds to a mode or noise only. The noise spectrum, which 

has to be estimated as the spectral content corresponding to the additive noise, is extracted using a multi-pass 

filtering method [8] [9]. Based on the result of the noise spectrum estimation, a peak detection method is 

applied with a given false alarm probability to distinguish the spectral content of interest from the noise 

spectrum [10]. In this paper, the spectral peaks are detected by a Neyman-Pearson hypothesis test that 

requires the choice of a false alarm probability and the estimation of the noise spectrum. 

The peak detection method estimates Qq ......1=  peaks that we associate with the modes of the signal. 

For setting the filter bandwidth of each peak we propose to estimate it from the bandwidth of these detected 

peaks. The method is simply based on localizing the minima of the Qq ......1=  peaks, [ qL (left minimum), 

qR  (right minimum)]. 

Followed by a filtering process, the detected peaks and their related minima are connected in sequence 

to form the input of the filter. Accordingly, a filtered signal will be in use to estimate the RDS of each mode, 

which will be in turn used for modal parameters extraction. In this way, the filtering process is automatically 

achieved with paying high attention to its parameters, yielding a good RDS and modal parameter 

estimations.  

 

5 Algorithm details 
In this section, we describe the main steps of the algorithm proposed. Figure 1 shows the entire 

estimation process that can be summed up in 4 steps. Concerning the need to recognize the modal parameters 
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of all components of the signal, the algorithm starts by calculating the spectrum [ ]fS
y

of signal [ ]ty  using a 

Hamming window of tL  points where tL  is chosen as  

res

dBt
f

Fs
bL *3−= .       (4) 

where Fs is the sampling frequency, dBb 3−   and resf  are the -3 dB bandwidth of the main lobe of the 

spectral window ( 3.13 =− dBb  for Hamming) in frequency bins and Hz respectively. Instead of fixing the 

window length, we chose to fix the bandwidth resf , regarded as the frequency resolution of the analysis, 

according to a priori physical knowledge of the signal.  

Each maximum of the spectrum corresponds to two categories, either the noise [ ]te  or the signal of 

interest [ ]ts . As in [9], we use a peak detection method to classify all of the maxima according to the two 

categories of spectral contents. The principle is to build a hypothesis test based on these two hypotheses.  

The algorithm requires the following parameters: Q is the assumed number of the detected peaks; 
t

L  is 

the time window length of the Welch estimator; 
f

L  is the frequency window length of the multipass filter; 

γPFA is the false alarm probability needed for the noise spectrum estimation; P is the number of passes; 

d
PFA  is the false alarm probability. These parameters and steps of the algorithm are detailed in Section 5. 

The great advantage of the proposed algorithm is that the peak detection strategy is adjusted to the data 

and the statistical properties of the spectrum estimator. Therefore, heavy manual configurations are avoided. 

With the noise spectrum [ ]fγ̂  estimated from the local spectrum itself using a multipass filtering method, the 

calculation of the detection threshold depends on the false alarm probability chosen by the user. The spectral 

contents of interest hereby detected are referred to as “peaks”, which are essential to the bandwidth 

estimation, and thus filtering procedure which is an essential step for the RDT. 
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Figure 1: Flow chart of the global algorithm. Given the input signal [ ]ty , the algorithm provides the 

number of peaks Q , the bandwidth and the segment length estimations, using the parameters 
f

L , γPFA , 

d
PFA , 

env
MSE ,

f
MSE , and the filtered signal  [ ]tYq  

 

5.1 Welch spectral estimator method 

The Welch spectral estimator method must firstly be computed. The estimation of the power spectrum 

is carried out by dividing the time signal into successive blocks, calculating the periodogram for each block, 

and averaging the periodograms of the signal blocks. 

 Let my  denotes the thm block of the signal y , and let M ( )Ζ∈∀M  denote the number of blocks. 

Then the PSD estimate, [ ]fS y , is given by 

[ ] { }
m

fm

M

m
mfy wYyDFT

M
fS 2

21

0

)()(
1 ∆−

= =∑=      (5) 

Where the notation { }
m

. is the time averaging across blocks of data indexed by m . 

 

0 2000 4000 6000 8000 10000 12000 14000 16000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Signal

Points

A
m

p
li
tu

d
e

0 20 40 60 80 100
-250

-200

-150

-100

-50

0
Welch spectral estimator

Frequency (Hz)

P
o

w
e

r 
d

is
tr

ib
u

ti
o

n
 (

d
B

)

 
 

Figure 2: A simulated ambient vibration signal of 16000 points, sampled at 200 Hz (left), and its PSD 

estimated by the Welch’s method with a hamming window of 867 points (right) 

  

The PSD estimated by the Welch’s method is illustrated in Figure 2 (right). 

 

On the calculated spectrum, the Neyman-Pearson hypothesis test described in Section 5.1 is applied. 

The analysis based on such a test consists of two major steps. The first step is to estimate the noise spectrum. 

The estimation is done by a multi-pass filtering technique, as described in Section 5.2. The second step is to 

detect the peaks based on the noise spectrum, using a data-driven peak detection method, as described in 

Section 5.3. Both of these steps are based on the Neyman-Pearson hypothesis test as described in 5.1. The 

detected peaks are finally connected by the bandwidth estimation method proposed in section 5.4.  

 

5.2 Hypothesis test for peak detection and removal  

The spectrum of a general noisy observation [ ] [ ]Nyy ,...,1  can be expressed as  [ ] [ ] [ ]fSfSfS
esy

+=        (6) 

 

where [ ]fS
s

and [ ]fS
e

are respectively the local spectrum of the pure signal [ ] [ ]Nss ,...,1  and of the additive 

noise [ ] [ ]Nee ,...,1 , with N  being the length of the signal. We define here two types of spectral contents as two 

hypothesis respectively, 

 [ ] [ ][ ] [ ] [ ]fSfSfSH

fSfSH

esy

ey

+=
=

:

,:

1

0
     (7) 
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When 1H  is not known, as is the case in this paper, we can apply a Neyman-Pearson lemma [11], with 

 

).)((Pr 0HfTobPFA λ>=      (8) 

 

where λ is the test threshold, PFA is the false-alarm probability. The test result is given by 

 

.)(

1

0

λ<
>H

H

fT       (9) 

 

In this test, the threshold λ  is calculated from an a-priori chosen PFA and using the statistical properties of 

the spectrum estimator. For Welch’s method without overlapping between the blocks, the random variable [ ][ ]fS

fS
fT

e

y
2)( = can be regarded as having a 

2

2Mχ distribution [10] ,of degree of liberty 2M if the noise [ ]ne  is 

Gaussian. 

 
2

2)( MfT χ≈        (10) 

 

Combining (8) and (10), the detection threshold λ  can be determined by 

 

.)()( 2
20

)(
dxxpdxxpPFA

M
HfT ∫∫ +∞+∞ ==

λ χλ
     (11) 

 

Then the test hypothesis (8) becomes 

 

[ ].)(
1

0

fS

H

H

fT e×>< λ       (12) 

 

From (12), the test depends on the a-priori choice of the false-alarm probability PFA and the estimation of 

the unknown noise spectrum [ ]fS
e

. 

In the proposed algorithm, the test is used twice: in the noise spectrum estimation and in the peak 

detection. For the noise spectrum estimation described in Section 5.2, it is necessary to remove peaks using 

this hypothesis test with a false-alarm probability referred as γPFA . For the peak detection in Section 5.3, the 

test is applied using another value, referred to 
d

PFA . 

 

5.3 Estimation of the noise spectrum 

We propose to approximate the unknown noise spectrum [ ]fS
e

 as [ ]fγ̂  through an iterative process; 

namely, the multipass filtering that was developed in [8] [9]. The entire procedure of multipass filtering can 

be summarized by Fig. 3. The first pass in a 
f

L -point median filter, 

 

[ ] [ ]{ }'

1̂
fSFILTERf

median
=γ , with 

2

)1(
,...,

2

)1(
'

++−−= ff L
f

L
ff ,   (13) 

 

where [ ]f
1
γ̂ is the estimation result of the first pass. 

f
L is an odd number specifying the length of the  sliding 

filter window. Normally this length is  

 

res

mainf

res

main
f

Fs
bL

f

Fs
b 43 ≤≤      (14) 



6 

 

with mainb  the normalized bandwidth between the two zeros of the main lobe of the chosen window function 

(For Hamming window 4=mainb ). The estimated noise spectrum is refined in the following 1−P passes. 

Each pass has two steps, the peaks corresponding to spectrum [ ]fS
y

 are removed by applying the hypothesis 

test described in the previous section, with a false-alarm probability γPFA  and the previously estimated noise 

spectrum [ ]f
p 1

ˆ −γ . All peaks verifying 
1

H are removed from the local spectrum to yield its peak-free part [ ]fS
p

. The second step smooths the remaining part [ ]fS
p

 by an average filter with a gliding window of 

M points. The estimated noise spectrum is upgraded by the filter output. The final noise spectrum [ ]fγ̂  

estimation is the output after P passes, 

 [ ] [ ] [ ]fffS
Pe

γγ ˆˆ =≈ .     (15) 

 

 
 

Figure 3: Decomposition of the block noise specterum estimation in Figure 1, done by multipass filtering 

with P passes. Based on the local spectrum [ ]fS
y

, the noise spectrum is finally estimated as [ ]fγ̂ using a 

sliding window 
f

L  frequency samples and the false alarm probability γPFA . 

 

5.4 Peak detection 

Based on the estimated noise spectrum, another Neyman-Pearson test is applied to identify the peaks 

verifying
1

H . For each frequency index f , a hypothesis test is carried out using the test statistic as explained 

in section 5.1. 

 

Then the hypothesis of peak detection (9) becomes 
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[ ] [ ].ˆ
1

0

f

H

H

fS y γλ ×><      (16) 

 

An example of the peak detection is shown in Figure 4. The peaks are defined as the vertex of the bell shapes 

above the detection threshold [ ]fγλ ˆ× . Each peak is represented by its frequency 
q

f .  

 

 
 

Figure 4: Peak detection on local spectra of the signal of Figure 2, with 
410−=γPFA  and 

310−=dPFA . (∆ ) 

Detected peaks over the threshold [ ]fγλ ˆ×  calculated with 410−=γPFA . Local maxima below the [ ]fγλ ˆ×  

are treated as noise. 

 

5.5 Bandwidth estimation 

For each detected peak Qq ......1= ,we propose to localize its left and right minima, denoted as 

qL and qR  respectively. Then a symmetry test is carried out for all the peaks of neither lowest nor highest 

frequency ranges. The test consists of accepting the symmetry of either qL  or qR  under a condition that no 

other mode is included in the symmetry range. 

However, for the lowest and the highest frequency ranges peaks, the qR  and qL  will be used 

respectively as the bandwidth range for the filtering process as shown in Table 1. 

 
Freq. range Filter Bandwidth 

Lowest freq. LPF [ ]qR  

Highest freq. HPF [ ]qL  

Neither lowest nor 

highest freq. 
BPF [ ]),min(),,min( qqqqqqqqqq fRLfffRLff −−+−−−  

 

Table 1: Filter bandwidth range of the detected modes with qL and qR  the localized left and right minima 

respectively, and  qf the frequency of the detected peak 

5.6 Modal parameter estimation 

Given that the RDS, )(ˆ τYD , decays as 
τπξ

n
f

e
2−

, estimates of the damping ratios, ξ , are obtained by a 

Least Square Fit (LSF) of the envelope. The method takes care of the smallest error between the envelope 

and the fitted function. The equation for this method is  
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[ ]2
1

2
)(

1 ∑=
−−= N

i

in
f

iY eD
N

LSF
τπξτ      (17) 

 

where iτ are time instants corresponding to the extrema of the RDS. 

However, for the estimates of the modal frequencies, the zero crossing frequency estimation is used. 

This method is widely used because of its simplicity [12], it is based on a zero crossing scheme. The 

frequency of a signal is estimated quite simply as the zero-crossing rate. 

 

( )∑= −−= N

i iiN
f

1 1,0,02

11

ττ       (18) 

 

where i,0τ is the  ith  zero crossing of the RDS. 

 

6 Performance analysis 
To test the relevancy of the RDT over the proposed method, many different simulated and real-world 

ambient vibration signals were used, here we present two simulated and one real-world data.  

In this paper MATLAB programming is used for implementation of proposed algorithm. The 

Butterworth filter has been used to filter the signals under study. It was supplied with the desired passband 

pf , and stopband cutoff frequencies sf , the allowable passband ripple pR , and the minimum stopband 

attenuation sR . Then it provides the filter order and the normalized bandwidth nW  of such a filter.  

 

6.1 Application on simulated signals 

The simulated signals are obtained from a continuous physical modeling of a building defined as an 

equivalent Timoshenko beam with a simple 1D linear lumped mass model. At each level of the building, an 

ambient vibration is generated as the dynamic response of this model, which is excited by a ground 

solicitation assumed to be white and Gaussian [13]. 

Two signals of different configurations were simulated as is shown in Table 2. 

 

Signal 1Sig  2Sig  

eNmod  3 3 

f (Hz) [2, 5, 10] [0.8, 2, 4] 

ξ (%) [2, 3, 4] [0.5, 1, 1.5] 

sF (Hz) 200 200 

lengthsignal (points) 16000 18000 

floorN  25 11 

 

Table 2: Two simulated signals ( 1Sig , 2Sig ), with different configurations of eNmod  being the number of 

modes, f  and ξ  the modal frequencies and the damping ratios of each mode,  sF  the sampling frequency 

and floorN the number of floors of the building at which the signal is simulated. 

 

The spectrum using Welch’s method, the detected peaks and the localized minima of each mode of the 

two signals 1Sig , and 2Sig  are illustrated in figures 5, and 6 respectively. 
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Figure 5: The spectrum using Welch’s method, the detected peaks at 1.95, 5.07 & 9.96 Hz, and the 

localized minima of each mode of 1Sig  

The results of the proposed method over the two simulated signals 1Sig , and 2Sig  are summarized in 

Tables 3, and 4 respectively. 

 

Mode Filter band (Hz) 

GA
tYT )(  Level Crossing Local Extrema Positive Point Zero-Up Crossing 

Period 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 

1st [0-3.90] 
f̂  2.00 2.00 2.00 1.99 1.99 1.99 1.99 1.99 2.00 2.00 2.00 1.99 2.00 2.00 2.00 1.99 

ξ̂  1.68 1.81 1.82 1.85 1.76 1.82 1.83 1.83 1.84 1.84 1.89 1.89 1.63 1.55 1.61 1.68 

2nd [4.10-6.05] 
f̂  5.01 5.01 5.01 5.01 5.00 5.01 5.01 5.01 5.01 5.01 5.02 5.02 5.00 5.00 5.01 5.00 

ξ̂  2.96 3.19 3.14 2.92 2.97 3.28 3.35 3.22 3.14 3.28 3.23 3.03 3.04 3.27 3.26 3.14 

3rd [8.20-11.71] 
f̂  9.89 9.88 9.89 9.89 9.78 9.93 9.94 9.96 9.92 9.90 9.87 9.86 9.86 9.86 9.89 9.91 

ξ̂  4.12 4.13 4.12 3.93 4.45 4.09 4.06 4.19 4.06 4.18 4.37 4.39 4.12 4.34 4.43 4.19 

Table 3: The estimated filter band, natural frequency f̂ , and damping ratio ξ̂ of 1Sig  using all the four 

triggering conditions GA
tYT )(  
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Figure 6: The spectrum using Welch’s method, the detected peaks at 0.78, 1.95, & 4.00 Hz, and the 

localized minima of each mode of 2Sig  
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Mode 
Filter band 

(Hz) 

GA
tYT )(  Level Crossing Local Extrema Positive Point Zero-Up Crossing 

Period 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 

1
st
 [0-0.78] 

f̂  0.79 0.79 0.79 0.79 0.78 0.79 0.79 0.79 0.79 0.80 0.79 0.80 0.78 0.78 0.78 0.79 

ξ̂  0.53 0.52 0.52 0.54 0.48 0.51 0.51 0.49 0.49 0.49 0.50 0.51 0.46 0.47 0.47 0.49 

2
nd

 [0.87-1.17] 
f̂  1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 2.01 2.01 2.01 2.01 1.98 1.99 1.99 1.99 

ξ̂  1.21 1.20 0.99 0.99 1.38 1.33 1.27 1.25 1.25 1.20 1.11 1.20 1.37 1.35 1.35 1.33 

3
rd

 [1.70-2.29] 
f̂  4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 

ξ̂  1.50 1.51 1.51 1.53 1.54 1.53 1.55 1.53 1.55 1.50 1.49 1.49 1.49 1.48 1.49 1.49 

 

Table 4: The estimated filter band, natural frequency f̂ , and damping ratio ξ̂ of 2Sig  using all the four 

triggering conditions GA
tYT )(  

 

For the two simulated signals 1Sig  and 2Sig we assume the number of modes to be three, and the 

estimation yields three modes with a very close position to the simulated frequencies.  This assures the 

capability of the estimated noise spectrum to track the modes of interest as shown in Figures 5, and 6.  

The high frequency range modes can be easily estimated with the proposed algorithm, i.e. the quality of 

the estimation is insensitive to the parameter sets. However, the modes with lowest frequency ranges are less 

precisely estimated because it is easier to be disturbed by the noise and it only can be detected with high 

false-alarm probability. For modes with narrower frequency band, this effect might be trivial. 

From Tables 3, and 4, the performance of the algorithm is relatively robust. Under all the parameter 

settings, like the different types of triggering conditions and the different number of periods, fixed between 4 

and 7 due to the fact that the variance of the RDS increases with the number of cycles [1],  the modal 

parameters were extracted correctly, with values very close to the estimated ones. 

 

6.2 Application on real-world ambient vibration signals 

The signal of this part is a real-world ambient vibration signal, recorded at the top of the 27th floor 

Taipo Tower, the republic of china (Taiwan), Figure 1, using multiple sensors placed on several stories to 

measure simultaneously the vibrations in three directions, longitudinal, transverse and vertical. This signal is 

sampled at 200 Hz. 

For this signals we study the analysis uniquely over the data in the longitudinal direction. Focusing on 

the first three modes represented as, the first longitudinal, the first transverse, and the first torsion mode 

respectively. 
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The spectrum using Welch’s method, the detected peaks and the localized minima of each mode of 

Taipo signal are illustrated in Figure 8. The estimation of the modal parameters by the proposed algorithm is 

shown in Table 5.  
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Figure 8: The spectrum using Welch’s method, the detected peaks at 0.40, 1.13, & 2.02 Hz, and the 

localized minima of each mode of the Taipo signal 

 

Mode Filter band (Hz) 

GA
tYT )(  Level Crossing Local Extrema Positive Point Zero-Up Crossing 

Period 4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7 

1
st
 [0.09-0.71] 

f̂  0.40 0.38 0.38 0.39 0.38 0.38 0.39 0.39 0.40 0.39 0.39 0.40 0.39 0.38 0.38 0.39 

ξ̂  0.96 0.88 0.93 0.95 1.05 0.98 0.94 0.85 0.99 1.06 1.12 0.98 0.98  0.98 1.05 1.06 

2
nd

 [0.72-1.55] 
f̂  1.14 1.14 1.13 1.14 1.13 1.13 1.13 1.14 1.13 1.14 1.14 1.14 1.14 1.14 1.13 1.14 

ξ̂  1.13 0.92 1.08 0.99 1.19 0.98 0.86 0.85 0.92 1.08 1.10 1.07 1.11 1.10 1.07 1.22 

3
rd

 [1.61-2.42] 
f̂  2.04 2.03 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.05 

ξ̂  2.02 1.98 1.84 1.88 1.88 2.14 1.93 1.86 2.02 1.96 1.98 2.05 2.50 2.33 2.13 2.07 

 

Table 5: The estimated filter band, natural frequency f̂ , and damping ratio ξ̂ of the CHB signal using all the 

four triggering conditions GA
tYT )(  

In the real-world ambient vibration signals, the frequency bandwidth of the modes under study is often 

very narrow. Figure 8 shows the result of the proposed method on identifying the three modes of interest, 

based on the a priori physical information about their positions. Despite the frequency closeness of peaks, the 

noise spectrum estimation and the peak detection methods proposed here are able to detect correctly the three 

modes.  

To further show the applicability of the proposed method, Table 5 summarizes the result of modal 

parameters estimations. For all the three modes, regardless of the type of triggering condition and the number 

of period, the fundamental frequencies were extracted correctly as compared to the values of the a priori 

 

Figure 7: The Taipo tower at the city center of Taipei 

(left), and its geographical location (right) 

  

Zoom 
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information from the physicians. On the other hand, the damping ratios were very close in value to each 

other, which indicate a good functionality of the RDT over this signal.  

 

7 Conclusions 
In this paper, we propose an automatic method for setting the RDT processing parameters. The 

proposed method guides up the automatic choice of the parameters for the filtering process, which is the first 

step to condition the applicability of the RDT over multicomponent signals. 

For the filtering process an automatic bandwidth measurements are achieved by first apply the Welch’s 

method to have a spectral representation of the signal. At each local spectrum a peak detection method is 

applied to extract peaks from the noise spectrum, which is first estimated by a multipass filtering. For each 

detected peak, the corresponding minima are localized with a symmetric test. The test consists of accepting 

the symmetry of either the left minimum of the right one of the detected peak with a condition that no other 

mode is included in the symmetry range. 

The automatic filtering of each mode is then followed by segmenting the filter output in order then to 

average the segments and to retrieve an approximate system response with a good modal parameter 

estimation. 

The performance analysis on both the simulated and real-world data show that the proposed method 

works correctly despite the different types of the triggering conditions and the number of periods that is set 

with a low range in order not to increase the variance of the estimated RDS. The modal parameters are then 

estimated with a relative robustness and the modes detected correctly and automatically. This proves that 

when the filtering process is carried out very carefully, the RDT performance is enhanced and thus the modal 

parameter estimations. 

The proposed method is carried out by adding original techniques in many steps of the RDT with much 

better adaptability reserving all the important characteristics of the RDT, like the simplicity and the speed, 

thus allows working on the multi modes of the signal simultaneously with  few manual configurations.  

Possible extension of the present work includes generalizing the current selection method to the cases 

when the excitations are seismic. 
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