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ABSTRACT

A time-frequency representation can highlight non-stationarities innalsig/e propose to extract subsets from the
Time-Frequency Representation (TFR) for classification or recognition purposes. Wapddvielo approaches. The
first one is developed for TFRs obtained from the Short Time Fourier Transfaime gtiding Minimum Variance
method. The extraction of compact subsets is viewed as a segmentation of thevhiéiR,s performed by
morphological filtering and Watershed segmentation. The second approach is deveha@pethe TFR has been
obtained using parametric estimators. We consider a hybrid estimator, the ARCHAd naetd use a Kalman filter
trajectory tracker to extract spectral lines. The proposed methods usteaibd by examples on natural signals

dolphin whistle acoustical signals, cavitation signals and seismic signals produced by snow avalanches.

Now with Schneider Electric S.A., Corporate R&D, Algorithms & Signal Proegd3ept., A2 Research Center, 4, rue
Volta, 38050 Grenoble, FraneeBenoit_Leprettre@mail.schneider.fr

Keywords: Non stationary signal interpretation, Time-frequency represemtaiiatershed segmentation, Kalman

filter, Trajectory tracking, Capon filter, Minimum variance estimator, Autoregresnodel, Spectral analysis.






Résumé

Une représentation temps-fréquence peut mettre en évidence les non-statiprésgétes dans un signal. Nous
proposons d’extraire des sous-ensembles ou motifs d’une représentation temps-fréquence (RTF), ceci pour des
objectifsde classification ou d’interprétation. Nous avons développé deux approches. La premiére s’applique sur des

RTF obtenus soit par une transformée de Fourier a court terme, soit par la ndétihtidenum de variance glissante.
L’extraction de motifs est vue comme une segmentation de la RTF, segmentation réalisée par des filtres
morphologiques et par la méthode de la ligne de partage des eaux. La deuxiéme approche geiedsweligs TFR
obtenus a partir d’estimateurs spectraux paramétriques. Nous avons considéré un estimateur hybride, la méthode
ARCAP, et développé des filtres de Kalman pour réaliser un suivi de tragsctizins le plan temps-fréquence afin
d’extraire les lignes spectrales au cours du temps. Les deux méthodes proposées sont illustrées a 1’aide d’applications

sur des signaux réels : signaux acoustiques de sifflements de dauphins, signaux de cavitation et sigpesxcséstn

par des avalanches de neige.



1. Introduction

Time-frequency (TF) analysis is of great interest when one needs togeomssorded signal in order to make a
decision by detecting specific features. Time-Frequency RepresentatioRs) (T&Bn highlight differences
between several types of non-stationary signals and help greatly in thead#iesifor decision task. As a TFR is
highly redundant, taking into account a limited number of relevant subsets can inipeogeality of the
decision. In this paper, we present two approaches for extracting subsets from pdtif The first one, in
section 2, is developed for TFRs represented as a full [time, frequency, pawergy] matrix. The second one,
in section 3, is developed for TFRs in which only some points are associaqubteer or energy value. The

proposed feature extraction methods are illustrated with examples on natural signals.

As the purpose of this paper is not to review the different existing TRFs,stvimglicate the methods we have
used. In the first proposed approach, we use the Gliding Minimum Variance (or Capetiieyl assuming a
local stationarity [Martin 95], [Durnerin 00]. The structure of the TiERimilar to that of a spectrogram, in the
sense that a power value is assigned to each point of the defined TF plareelRgyan example of such TFR
and will be described in section 2.2. However, the achieved TF resolution is highdreavariance of the
estimator is lower. The obtained TFR is a MIXN; matrix P, where elemen®[n,f] is the power of the signal at
discrete timen and at frequencl N,, (resp.Ny) is the number of points in time (resp. frequency). The aim here is

the extraction of compact TF patterns. This first method is well suited to process narrow arzhbdbsignals.

In the second approach, we use the gliding ARCAP estimator [Martin 95], [Pade&kdLeprettre 98]. This
hybrid method estimates the signal frequencies from an AR modeling of the sign#ies® estimated
frequencies, the power values are estimated by Capon’s estimator. Unlike the Minimum Variance TFR or the
spectrogram, the obtained ARCAP TFR\&N; matrix P too, is not of full-matrix type. It is a "cloud of points"-
type TFR. With a model of ord@&iar, only Nf = Mar/2 frequency points with corresponding powers are identified

at each timen instead of a complete spectrum. By juxtaposing this set of points on a 3D dioetficy-power



coordinates system, separated, coherent spectral lines appear. Figure 4-a is an examplgkR and will be
described in section 3.2. Mg was set correctly, these spectral lines represent the somehow organized TF
components of the signal. We call TtFRajectories those relevant spectral lines that we aim to extract. As it
highlights spectral lines, the ARCAP TF estimator is suited to process naaravsmnals or signals made of

several pure frequencies.

2. Extraction of Subsets from the Matrix-Type TFRs

As the obtained TFR is a,XN; matrix, the extraction of a subset can be seen as an image segmentation problem.
Several techniques have been developed in the fields of Image Processing and PatternoRettmméver, a

TFR is a very patrticular type of image. The generation process of the isnkgewn: it consists of successive
estimated spectra juxtaposed along the time axis. The method and the parameters (e.g.ewgtdpaverlap)

used for the analysis are known. A priori knowledge is available: the chattézgesisthe analyzed signal may
allow selecting the areas of interest inside which patterns should be sought for. As HRigdtropic: the
dimensions along the axes of the image are physically different (time, frequency,.povia3 a relevant
amplitude structure: in some cases, one needs to extract patterns that are not iso-étatgets corresponding

to transient, evanescent signals produced by sources of varying power (e.g. animals saynds} be
completely extracted with an iso-energetic method. In that case, nonlinearctibebg an interesting alternative.

We propose to apply morphological operators.

2.1. Extracting features from the TFR using Mathematical Morphology

We propose to use methods based on Mathematical Morphology to takeribe knowledge into account and
extract the pertinent subsets [Pierson 97]. Two steps corresponding to Beucher's segnpansatigm [Beucher

90] can be considered in the proposed approach.

Step 1: Modeling the a priori knowledge by transforming the TFR



Let P=P[n,f] be the considered TFR matrix obtained using Minimum Variance estimation. The peoisethg
following: 1) Define criteria that allow distinguishing between the noise lanéhteresting patterns, e.g. the peak
power of a pattern and / or the contrast between a peak of the TFR and the surrbaokiingund noise. 2)
According to the selected criteria, define and calculate a transform of the hBERIghlights the frontiers
between the patterns of interest and the background noise. This transform changgm#ielBR intoP'[n,f]
that will eventually be segmented. If the criterion is the contrast, the pongiag transform can for example be
the modulus of the morphological gradient defined in [Serra 82]. 3) Use thisofutetmark inP'[n,f] the areas
of interest (patterns to extract) and these corresponding to the noise. The mankées obtained by simply
thresholding P'[n,f] or using more elaborate morphological transforms (e.g. a combination of Top-Hat
Transforms, erosions, dilations, etc.), depending on the characteristics of the TBR thedcomplexity of the
recognition problem. This part of the procedure, sometimes called the "imtglljggat, involves all the user's

knowledge in order to try understanding the TFR.
Step 2: Extracting subsets automatically using the Watershed method

The second step of the procedure is automatic and is aiming to really extract the relevant gshsetsiodified
function P"[n,f] is reconstructed by eroding the noise markers. Then, the Watershed method [Beucher
90][Vincent 91] is used oR"[n,f] in order to obtain closed contours following the local maximB"{h,f], i.e.

the ridgelines of the TFR. The interesting point is that this method iparametric and the obtained subsets are
not necessarily iso-energetic. The Watershed method thus allows to extract canitounsn homogenous

power, or to extract interesting patterns of different power levels from a TFR.

2.2. Application on real data

The signal on figure 1 is a dolphin communication whistle recorded using a 32 kHz sampling frequency. Capon’s
RTF (figure 1a) shows that the interesting features are successivertrangnals modulated in both amplitude
and frequency. Energetic patterns above 13 kHz are eliminated due to anti-aligsing.fA highly-energetic,

colored noise is present. A priori knowledge on that signal allows the definititwo criterions. The first one is
6



based on the amplitude. The high amplitude peaks [31.5 dB, 50.5 dB] are the intsigetitgres. Few of them
arise from the background noise [20 dB, 31.5 dB]. The second criterion charactbezesan frequency
bandwidth of the peaks and is obtained after several adapted Top-Hat transformsveigipleedertical linear
structuring element [Pierson 97]. It is in fact a size criterion. For that sigaabtain a mean bandwitdh of 1570
Hz. Signal and noise markers are calculated from this knowledge (figures létai)s Df the procedure are in
[Pierson 97]. After this first step, which must be adapted to each cohextatershed method is applied. Figure
1d shows that only the features of interest are extracted. Classical isetienggmentation (figure 1e) extracts
many noise contours in addition to the interesting features. The counter-part of foodanece of our approach
is that it cannot be applied without a priori knowledge of the signal. Byelids significant results for both
frequency and amplitude modulated signals in colored noise. Another difficult exangaleitaion signal, is
presented in figure 2. The watershed segmentation yields results closer torgiretatien of human experts (the

"golden ears”).

2.3. Interpreting the T-F 2D contours

The original TFR has just been reduced to a limited number of closed contours defining its most pelgeént su
Several parameters can directly be derived from these contours, for exampien ftasie and frequency) of the
center of gravity of the subset, duration (i.e. extension along the time axis), dn¢iva. extension along the
frequency axis), average power of the time-frequency points inside the rcasrientation with respect to the
axes, etc. A review of several classical methods for describing contours can benf¢htadinovic 85] and
several applications in [Granlund 72], [Chassery 91]. The description parametanguanbie used as the input
of a decision system based e.g. on expert reasoning or statistical analysis, dependmggher an exhaustive
training set of signals is available or not. Interpration of TFR’s after a morphological non linear filtering can be

found in [Pierson 97].



Figurel

Dolphin Communication whistlesin a submarine acoustic

a- Capon TFR, Nf=256, M=20, L=127 (4 ms), 6L=64 (2 ms), Fe= 32 KHz
b. Signal markers

c. Noise markers

d. Result of the watershed

e. Result of isolevel segmentation at 31.5 dB from the minimal power
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(b) Result of the Watershed algorithm
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2.4. Limits of the gradient method for segmenting TFRs

Lots of segmentation technics are based on a gradient function. It may be of sopst totestudy not the

influence of the noise, which is known to be significant, but the influenteedfignal spectral bandwidth on the
gradient function. Without any loss of generality, let us consider theagstjin(v)=|X(v)* of the periodogram
of a stochastic signak(t)=s(t)+b(t) where X(v) is its Fourier Transforms(t) a deterministic signal with

spectrumy(v) andb(t) a gaussian white noise with variangé.

7{v) is a noncentral chi-square random variable whose mearE{ig(v)}=c?+y<(v) and variance

07,(v)
ov

Var{py (v)}=c* + 205%y4(v). Therefore, the gradient function in the frequency directi)= is a

random variable whose mean is the derivative &f{7,(v)} and second order moment is

. o°T
E{G(v)z}: —[ . 7; EU)J with T, (7)=E{p,(v)?, (v —7n)}. From these relations, we can deduce the variance of
n=0

G(v):

67]2

Var{é(v)}: (}/S(V) + 02)[— M] 1)

Let us considers(t) as a gaussian envelope(t)= Ae-** 2v"t with amplitude A and spectral widthv .

SettingA= 2V Av for having A independent of\v , we get y4(v)= e“’z/ZA"2 . Inserting into (1), we obtain

2 2 A 2 2 2 2 2 2
E{G(v)}z A|L‘/|2e‘v /2 and Var{G(v)}z A‘l/z einy +§er fanv (1+ AVVZJ. )

The mean maximum is reached fer=+Av. At this frequency, the mean and the variance of the gradient

function are
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E{G(A v)}z EWSE and Var{é(A v)}z E{G(A v)}2 (1+20%"). ©)

Av

As a major result, when the spectral bandwidth increases, the mean maximum varies vijthv and so is
rapidly lowering. Furthermore, the standard deviation, square root of the vaitagoeater than the mean even
for high signal to noise ratio. Figure 3-a shows results for four valuas @fithout additive noise whereas figure

3-b shows the fast increase of the variance even for a signal to noise ratio of only 30 dB.
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Figure3 Spectrum of a Gaussian envelope and its discrete derivative for 2 different widths
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The variation of the gradient wittiAv creates a too strong dependence of this function with the spectral

bandwidth of the signal even for high signal to noise ratios. So, the gradient function faildightirgg wide

band patterns. This property considerably limits the use of this type of segmentationdigmnaal

3. Extraction of Subsets from TFRs of Cloud-of-points Type

In this paragraph we consider the particular case of an ARCAP TFR, but a similar methodology caadeutarri

with TFRs obtained by e.g. extracting peak values from a matrix-type TFR.

3.1. Extracting features from the TFR using Kalman Filtering

If the signal is made of one or several narrow-band components, some of the pdmsA&QAP TFR are
structured so that they form coherent lines (so-called time-frequencgcttnags") representing the main TF
components of the signal: pure or modulated frequencies. However, in the context of ghdamgetric
estimation, the link between the estimated parameters at successive dates is logtalariatysis process. What
we propose to do is to link the points corresponding to the same frequenmynaarhtogether in order to extract

and interpret the identified time-frequency trajectories.

If the SNR is high and the simultaneous frequencies are not too close totleagha simple thresholding of the
ARCAP TFR followed by a nearest neighbor assignment procedure can be used he loknts together and

identify the coherent lines [Leprettre 96] [Leprettre 98].
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M odulation M odel Particularities
Linear Ballistic model of order 1
. =q. : — v v(t) =o constant speed
Vi (t) a-t+ Vo Yi (t + At) Y (t) + V(t)'At + g(t) null acceleration
v(t + At) = v(t)
Parabolic Ballistic model of order 2 v(t) = 20u.(t-tg)
y (t) —u (t t )2 Y v(t) = 20 constant acceleration
SRt S 0
Hyperbolic 7/('[) After second-order Mac Lauri
© Vo v (t+At) = v (t) + v(t). At + 5 At? + g(t) | development :
vilt) = -
1+a.t _ v(t) = avo.(2atd)
v(t+ At) = v(t) +p(t).At A0 = ot
y(t+At) = y(t)
Sinusoidal After second-order Mac Laur
Vi(t) _ b.Sir‘(a)t+g0)+ vy development :
v(t) = bw(cosp - ®.sing.t)
¥(t) = -bow.sing
Table 1 Freguency modulations and related ballistic models

If the SNR of the signal is small, the choice of the parameters for findingeitpebor is difficult and thus a more
elaborate procedure is needed. We propose to model the frequency modulation law of hieel $egectories.
The problem is thus connected to that of following up the trajectory of a lgatilsjiéct, which can be solved

using Kalman filtering. Table 1 shows four types of frequency modulations with correspondinglmadidéls.
We propose to use two separate Kalman filters in order to take bothethesricy variations and the power

changes into account. So, the state vector is defineg(b);&[tm,\(rﬁ,g(n)]T with v(n) the first derivative (or

speed) angj(n) the second derivative (or accelerationugf), which represents either the estimated frequencies

or the estimated powers. Thus, from a Taylor expandingmfthe state model of order 2 writes as

11 1/2 1/6
X(n+)={0 1 1 [ X(n)+|1/2].&(n)
00 1 1

(5)
ym=[ 0 0] X(n)+en)
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The errorse(n) with varianceQ ande(n)with varianceR are uncorrelated white noises representing the errors on
the model and on the observatior{s) respectively. Let beX ¢ (n) the state vector of the first filter where the
first component is one of the estimated frequencies atrtimén) = f(n), then letR and Q; be the error variances.
Likewise, Ietlp(n) be the state vector of the second filter whei(@) = P[n,f], the amplitude of the TERnd

soR- andQr. This parallel modeling of frequencies and amplitudes is possible due to the falote thatiabled

andP are independent. The algorithms are initialized with one observed point of the ARCAP TFR with null speed

and acceleration. For each filter, the vecin+U/n), prediction of X(n+1) given X(n), is gained from the
observation at time given af(n+Jjn):f and Gp(n+1/n)=P . Then, in the time-frequency space, at timel, an
observed point is searched for within a given interval defined with the vari&qeeVéariancef)) for the
frequency andR- + VarianceP[n,f])) for the power. Several possible points may be candidates. The nearest
point (n+1, f,, P[n+1,f.]) is assigned to the component according to the minimum of Mahalanobis distance d
[Chui 87] defined by:

g - (fn=0)7  (Fn+1f,]-P)?

M _Var(fm - f) Var(P[n+:L f.]- |:3) (6)

This matched point becomes the observation at time n+1 from which estin)_%(ﬁvnl/n+1) is set for each

filter and according to the variance paramet®sR;, Qp and R.. This providesu; (n+1/n+1) = f and

Xo(N+1/n+1) = P. If no point is found in the given interval, the current trajectory dies and arntfestory is

initiated using a point of the TFR not already assigned to a trajectory.

When this procedure is carried out on the whole TFR, what we get is a set difr@msional time-frequency
components (the so-called spectral lines). Two types of data are availabletdinea a matched trajectory

containing only points from the original ARCAP TFR and formed witi{ralli,, P.[n,fy]) points and a modeled
trajectory formed with the output of Kalman filters, the f,P) points. If the confidence in the model (defined

14



by Q; andQp) is much higher than the confidence in the observed values (definedaloygl R-), the modeled
trajectory is smoother than the matched trajectory. Shorter lines whichohigva few points, the number of
which must be set according to the characteristics of the signal, are consglemseaand eliminated. Kalman
filtering of order 1 is often satisfactory. Orders higher than 2 could adeelbnsidered [Davy 98]. But, even if
the signal is highly modulated, &"@rder is sufficient. Recursive implementations of Kalman filtering can be
found in the literature [Chui 87]. See [Roguet 96] and [Cottereau 00] foffispstadies concerning the tracking

of ARCAP time-frequency trajectories.

3.2. Application on a real signal

ARCAP trajectory tracking has been applied to the recognition of seiggniglsiproduced by snow avalanches
and provided by Meteo-France [Leprettre 96][Leprettre 98]. First-order Kalmarsfillentified four spectral
lines. These are shown superimposed with the ARCAP analysis on figure 4-a arldted moe-dimensional
full-scale curves on figure 4-b. For each extracted time-frequency trajectory a cbpptameters are estimated:

extreme frequencies, mean and standard deviation.

15
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a. Superimposed ARCAP analysis and Kalman trajectory tracking
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3.3. Interpreting the 1D spectral lines

The original ARCAP time-frequency representation is reduced tmitetl number of matched and/or modeled
spectral lines representing only the most pertinent information ofritieal TFR. As the extracted components
are one-dimensional curves, they are easier to handle than the whole TFR. Smasnatgys with physical
significance can be derived from each component: onset moment, duration, mean freqdepower values,
etc. Global trends can be evaluated using e.g. interpolation and lowpass filtering. Ringtdeea component
can be detected using e.g. wavelet analysis or prediction models if needed. Theigajeatvalso be compared
to various models (polynomials, spline functions, etc.) derived from physical consideratito a library of
typical features of interest. The parameters derived from the extracted Isligetraum up the time-frequency
characteristics of the signal in a convenient way. They can be used as theetputof a decision system for
classification purposes. An illustration of this can be found in [Leprettre 98jdaavalanche signal recognition

of the previous section.

4. Conclusion

Two methods for extracting pertinent information from TFRs have been pres€htdirst one is based on
morphological segmentation and is suitable to matrix-type TFRs like. The secondpememts a trajectory
tracking Kalman filter and is suitable to TFRs of cloud-of-points type mddaafter a modeling process such as
ARCAP analysis, or after peak extraction from a matrix-type TFR. Examples aigeals have been presented
and commented. Morphological segmentation can produce interesting extractiomaec® even on complex
signals (low signal to noise ratio, colored noise, severe non stationaritiesimrtim frequency). As a priori
knowledge is necessary, it is difficult to propose a global strategy fosicigothe required parameters. Every
application must be well controlled. The tracking of time-frequency taajest only suitable for narrow-band

signals, provides a good performance with a low complexity.
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Time-frequency decision is currently fast growing. [Martin 98] reflects staee of the art in the French
community. In order to improve the first presented method, we would like tanetierthe drawback produced by
the gradient function. A work is in progress with a completehetbfit approach, whose preliminary results are
in [Hory 00], [Hory 01].
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