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ABSTRACT 

A time-frequency representation can highlight non-stationarities in a signal. We propose to extract subsets from the 

Time-Frequency Representation (TFR) for classification or recognition purposes. We developed two approaches. The 

first one is developed for TFRs obtained from the Short Time Fourier Transform or the gliding Minimum Variance 

method. The extraction of compact subsets is viewed as a segmentation of the TFR, which is performed by 

morphological filtering and Watershed segmentation. The second approach is developed when the TFR has been 

obtained using parametric estimators. We consider a hybrid estimator, the ARCAP method, and use a Kalman filter 

trajectory tracker to extract spectral lines. The proposed methods are illustrated by examples on natural signals : 

dolphin whistle acoustical signals, cavitation signals and seismic signals produced by snow avalanches. 
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Résumé 

 

Une représentation temps-fréquence peut mettre en évidence les non-stationarités présentes dans un signal. Nous 

proposons d’extraire des sous-ensembles ou motifs d’une représentation temps-fréquence (RTF), ceci pour des 

objectifs de classification ou d’interprétation. Nous avons développé deux approches. La première s’applique sur des 

RTF obtenus soit par une transformée de Fourier à court terme, soit par la méthode de Minimum de variance glissante. 

L’extraction de motifs est vue comme une segmentation de la RTF, segmentation réalisée par des filtres 

morphologiques et par la méthode de la ligne de partage des eaux. La deuxième approche est développée sur des TFR 

obtenus à partir d’estimateurs spectraux paramétriques. Nous avons considéré un estimateur hybride, la méthode 

ARCAP, et développé des filtres de Kalman pour réaliser un suivi de trajectoires dans le plan temps-fréquence afin 

d’extraire les lignes spectrales au cours du temps. Les deux méthodes proposées sont illustrées à l’aide d’applications 

sur des signaux réels : signaux acoustiques de sifflements de dauphins, signaux de cavitation et signaux sismiques créés 

par des avalanches de neige. 
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1. Introduction 

Time-frequency (TF) analysis is of great interest when one needs to process a recorded signal in order to make a 

decision by detecting specific features. Time-Frequency Representations (TFRs) can highlight differences 

between several types of non-stationary signals and help greatly in the classification or decision task. As a TFR is 

highly redundant, taking into account a limited number of relevant subsets can improve the quality of the 

decision. In this paper, we present two approaches for extracting subsets from specific TFRs. The first one, in 

section 2, is developed for TFRs represented as a full [time, frequency, power or energy] matrix. The second one, 

in section 3, is developed for TFRs in which only some points are associated to a power or energy value. The 

proposed feature extraction methods are illustrated with examples on natural signals. 

As the purpose of this paper is not to review the different existing TRFs, we just indicate the methods we have 

used. In the first proposed approach, we use the Gliding Minimum Variance (or Capon's) method assuming a 

local stationarity [Martin 95], [Durnerin 00]. The structure of the TFR is similar to that of a spectrogram, in the 

sense that a power value is assigned to each point of the defined TF plane. Figure 1 is an example of such TFR 

and will be described in section 2.2. However, the achieved TF resolution is higher and the variance of the 

estimator is lower. The obtained TFR is a full NwxNf matrix P, where element P[n,f]  is the power of the signal at 

discrete time n and at frequency f. Nw (resp. Nf) is the number of points in time (resp. frequency). The aim here is 

the extraction of compact TF patterns. This first method is well suited to process narrow and broad band signals. 

In the second approach, we use the gliding ARCAP estimator [Martin 95], [Padovèse 96], [Leprettre 98]. This 

hybrid method estimates the signal frequencies from an AR modeling of the signal. At these estimated 

frequencies, the power values are estimated by Capon’s estimator. Unlike the Minimum Variance TFR or the 

spectrogram, the obtained ARCAP TFR, a NwxNf matrix P too, is not of full-matrix type. It is a "cloud of points"-

type TFR. With a model of order MAR, only Nf = MAR/2 frequency points with corresponding powers are identified 

at each time n instead of a complete spectrum. By juxtaposing this set of points on a 3D time-frequency-power 
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coordinates system, separated, coherent spectral lines appear. Figure 4-a is an example of such TFR and will be 

described in section 3.2. If MAR was set correctly, these spectral lines represent the somehow organized TF 

components of the signal. We call TF trajectories those relevant spectral lines that we aim to extract. As it 

highlights spectral lines, the ARCAP TF estimator is suited to process narrow-band signals or signals made of 

several pure frequencies. 

2. Extraction of Subsets from the Matrix-Type TFRs 

As the obtained TFR is a NwxNf matrix, the extraction of a subset can be seen as an image segmentation problem. 

Several techniques have been developed in the fields of Image Processing and Pattern Recognition. However, a 

TFR is a very particular type of image. The generation process of the image is known: it consists of successive 

estimated spectra juxtaposed along the time axis. The method and the parameters (e.g. window length, overlap) 

used for the analysis are known. A priori knowledge is available: the characteristics of the analyzed signal may 

allow selecting the areas of interest inside which patterns should be sought for. A TFR is anisotropic: the 

dimensions along the axes of the image are physically different (time, frequency, power). It has a relevant 

amplitude structure: in some cases, one needs to extract patterns that are not iso-energetic. Patterns corresponding 

to transient, evanescent signals produced by sources of varying power (e.g. animals sounds) may not be 

completely extracted with an iso-energetic method. In that case, nonlinear filters can be an interesting alternative. 

We propose to apply morphological operators. 

2.1. Extracting features from the TFR using Mathematical Morphology 

We propose to use methods based on Mathematical Morphology to take the a priori knowledge into account and 

extract the pertinent subsets [Pierson 97]. Two steps corresponding to Beucher's segmentation paradigm [Beucher 

90] can be considered in the proposed approach. 

Step 1: Modeling the a priori knowledge by transforming the TFR 
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Let P=P[n,f]  be the considered TFR matrix obtained using Minimum Variance estimation. The procedure is the 

following: 1) Define criteria that allow distinguishing between the noise and the interesting patterns, e.g. the peak 

power of a pattern and / or the contrast between a peak of the TFR and the surrounding background noise. 2) 

According to the selected criteria, define and calculate a transform of the TFR that highlights the frontiers 

between the patterns of interest and the background noise. This transform changes the original TFR into P'[n,f]  

that will eventually be segmented. If the criterion is the contrast, the corresponding transform can for example be 

the modulus of the morphological gradient defined in [Serra 82]. 3) Use this function to mark in P'[n,f]  the areas 

of interest (patterns to extract) and these corresponding to the noise. The markers can be obtained by simply 

thresholding P'[n,f]  or using more elaborate morphological transforms (e.g. a combination of Top-Hat 

Transforms, erosions, dilations, etc.), depending on the characteristics of the TFR and on the complexity of the 

recognition problem. This part of the procedure, sometimes called the "intelligent" part, involves all the user's 

knowledge in order to try understanding the TFR. 

Step 2: Extracting subsets automatically using the Watershed method 

The second step of the procedure is automatic and is aiming to really extract the relevant subsets. First, a modified 

function P''[n,f]  is reconstructed by eroding the noise markers. Then, the Watershed method [Beucher 

90][Vincent 91] is used on P''[n,f]  in order to obtain closed contours following the local maxima of P''[n,f], i.e. 

the ridgelines of the TFR. The interesting point is that this method is non parametric and the obtained subsets are 

not necessarily iso-energetic. The Watershed method thus allows to extract contours with non homogenous 

power, or to extract interesting patterns of different power levels from a TFR. 

2.2. Application on real data 

The signal on figure 1 is a dolphin communication whistle recorded using a 32 kHz sampling frequency. Capon’s 

RTF (figure 1a) shows that the interesting features are successive transient signals modulated in both amplitude 

and frequency. Energetic patterns above 13 kHz are eliminated due to anti-aliasing filtering. A highly-energetic, 

colored noise is present. A priori knowledge on that signal allows the definition of two criterions. The first one is 
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based on the amplitude. The high amplitude peaks [31.5 dB, 50.5 dB] are the interesting signatures. Few of them 

arise from the background noise [20 dB, 31.5 dB]. The second criterion characterizes the mean frequency 

bandwidth of the peaks and is obtained after several adapted Top-Hat transforms applied with a vertical linear 

structuring element [Pierson 97]. It is in fact a size criterion. For that signal, we obtain a mean bandwitdh of 1570 

Hz. Signal and noise markers are calculated from this knowledge (figures 1b-c). Details of the procedure are in 

[Pierson 97]. After this first step, which must be adapted to each context, the watershed method is applied. Figure 

1d shows that only the features of interest are extracted. Classical iso-energetic segmentation (figure 1e) extracts 

many noise contours in addition to the interesting features. The counter-part of good performance of our approach 

is that it cannot be applied without a priori knowledge of the signal. But it yields significant results for both 

frequency and amplitude modulated signals in colored noise. Another difficult example, a cavitation signal, is 

presented in figure 2. The watershed segmentation yields results closer to the interpretation of human experts (the 

"golden ears”). 

2.3. Interpreting the T-F 2D contours 

The original TFR has just been reduced to a limited number of closed contours defining its most pertinent subsets. 

Several parameters can directly be derived from these contours, for example: position (time and frequency) of the 

center of gravity of the subset, duration (i.e. extension along the time axis), bandwidth (i.e. extension along the 

frequency axis), average power of the time-frequency points inside the contour, orientation with respect to the 

axes, etc. A review of several classical methods for describing contours can be found in [Marinovic 85] and 

several applications in [Granlund 72], [Chassery 91]. The description parameters can in turn be used as the input 

of a decision system based e.g. on expert reasoning or statistical analysis, depending on whether an exhaustive 

training set of signals is available or not. Interpration of TFR’s after a morphological non linear filtering can be 

found in [Pierson 97]. 
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Figure 1 Dolphin Communication whistles in a submarine acoustic 
a- Capon TFR, Nf=256, M=20, L=127 (4 ms), L=64 (2 ms), Fe = 32 KHz 
b. Signal markers 
c. Noise markers 
d. Result of the watershed 
e. Result of isolevel segmentation at 31.5 dB from the minimal power 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

(d) 

(e) 



 
 
 
 

9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Cavitation signal 
  a. Capon TFR, Nf = 256, M=30, L= 127 (4 ms), L = 64 (2 ms), Fe= 32 KHz 
  b. Result of the watershed 
  c. Result of isolevel segmentation at -10 dB from the maximal power 

(a) 

(b) 

(c) 
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2.4. Limits of the gradient method for segmenting TFRs 

Lots of segmentation technics are based on a gradient function. It may be of some interest to study not the 

influence of the noise, which is known to be significant, but the influence of the signal spectral bandwidth on the 

gradient function. Without any loss of generality, let us consider the estimate     2ˆ  Xx   of the periodogram 

of a stochastic signal      tbtstx   where  X  is its Fourier Transform,  ts  a deterministic signal with 

spectrum   s  and  tb  a gaussian white noise with variance 2 . 

  xˆ  is a noncentral chi-square random variable whose mean is      sxE  2ˆ  and variance 

     sxVar 24 2ˆ  . Therefore, the gradient function in the frequency direction    

 

 xG
ˆˆ  is a 

random variable whose mean is the derivative of    xE ˆ  and second order moment is 

    
0

2

2
2ˆ













GE with         xxE ˆˆ . From these relations, we can deduce the variance of 

 Ĝ : 

       
0

2

2
2ˆ











 s

sGVar         (1) 

Let us consider )(ts  as a gaussian envelope, 
2224_.)( teAts   with amplitude A and spectral width . 

Setting   2A  for having A  independent of  , we get   22
2   es . Inserting into (1), we obtain 

   22 2
2

ˆ 

 
 eGE  and    




 
2

2
2

2

2

2
1

1ˆ 2222







  eeGVar .  (2) 

The mean maximum is reached for   . At this frequency, the mean and the variance of the gradient 

function are 
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   211ˆ  eGE    and        2122
21ˆˆ eGEGVar   .    (3) 

As a major result, when the spectral bandwidth   increases, the mean maximum varies with 1  and so is 

rapidly lowering. Furthermore, the standard deviation, square root of the variance, is greater than the mean even 

for high signal to noise ratio. Figure 3-a shows results for four values of  without additive noise whereas figure 

3-b shows the fast increase of the variance even for a signal to noise ratio of only 30 dB. 

 
a. without noise 

 
 

 
 

b. with additive noise 
 

Figure 3 Spectrum of a Gaussian envelope and its discrete derivative for 2 different widths 
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The variation of the gradient with 1  creates a too strong dependence of this function with the spectral 

bandwidth of the signal even for high signal to noise ratios. So, the gradient function fails in highlighting wide 

band patterns. This property considerably limits the use of this type of segmentation for real signals. 

3. Extraction of Subsets from TFRs of Cloud-of-points Type 

In this paragraph we consider the particular case of an ARCAP TFR, but a similar methodology can be carried out 

with TFRs obtained by e.g. extracting peak values from a matrix-type TFR. 

3.1. Extracting features from the TFR using Kalman Filtering 

If the signal is made of one or several narrow-band components, some of the points of the ARCAP TFR are 

structured so that they form coherent lines (so-called time-frequency "trajectories") representing the main TF 

components of the signal: pure or modulated frequencies. However, in the context of gliding parametric 

estimation, the link between the estimated parameters at successive dates is lost during the analysis process. What 

we propose to do is to link the points corresponding to the same frequency component together in order to extract 

and interpret the identified time-frequency trajectories. 

If the SNR is high and the simultaneous frequencies are not too close to each other, a simple thresholding of the 

ARCAP TFR followed by a nearest neighbor assignment procedure can be used to link the points together and 

identify the coherent lines [Leprettre 96] [Leprettre 98]. 
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Modulation Model Particularities 
Linear    i t t . 0  

Ballistic model of order 1        
   

  i it t t t t t

t t t

   
 


 


v

v v

.
 

 
v(t) =    constant speed 
null acceleration 

Parabolic 

     i t t t  . 0

2

0  

Ballistic model of order 2 
 

v(t) = 2.(t-t0) (t) = 2 constant acceleration 

Hyperbolic 

  
i t

a t
  0

1 .
 

         
     
   

   


 
i it t t t t

t
t t

t t t t

t t t

    
 
 








  
 


v

v v + t .  

. .
2

2

 

After second-order Mac Laurin 
development : 

v(t) = a0.(2at-1) (t) = 20.a
2   

Sinusoidal       i t b t  .sin 0  

 After second-order Mac Laurin 
development : 

v(t) = b(cos - .sin.t) (t) = -b.sin 

 
 

Table 1  Frequency modulations and related ballistic models 
 
 

If the SNR of the signal is small, the choice of the parameters for finding the neighbor is difficult and thus a more 

elaborate procedure is needed. We propose to model the frequency modulation law of the searched trajectories. 

The problem is thus connected to that of following up the trajectory of a ballistic object, which can be solved 

using Kalman filtering. Table 1 shows four types of frequency modulations with corresponding ballistic models. 

We propose to use two separate Kalman filters in order to take both the frequency variations and the power 

changes into account. So, the state vector is defined by    TngnvnunX )(),(),(  with v(n) the first derivative (or 

speed) and g(n) the second derivative (or acceleration) of u(n), which represents either the estimated frequencies 

or the estimated powers. Thus, from a Taylor expanding of u(n), the state model of order 2 writes as 

 

   

   
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
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2/111
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nenXny

nnXnX 
        (5) 
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The errors (n) with variance Q and e(n) with variance R are uncorrelated white noises representing the errors on 

the model and on the observations y(n) respectively. Let be  nX f  the state vector of the first filter where the 

first component is one of the estimated frequencies at time n: uf(n) = f(n), then let Rf and Qf be the error variances. 

Likewise, let  nX P  be the state vector of the second filter where uP(n) = P[n,f] , the amplitude of the TFR, and 

so RP and QP. This parallel modeling of frequencies and amplitudes is possible due to the fact that the variables f 

and P are independent. The algorithms are initialized with one observed point of the ARCAP TFR with null speed 

and acceleration. For each filter, the vector  nnX /1ˆ  , prediction of  1nX  given  nX , is gained from the 

observation at time n given fnnu f
ˆ)/1(ˆ   and PnnuP

ˆ)/1(ˆ  . Then, in the time-frequency space, at time n+1, an 

observed point is searched for within a given interval defined with the variance (Rf+ Variance(f)) for the 

frequency and (RP + Variance(P[n,f] )) for the power. Several possible points may be candidates. The nearest 

point (n+1, fm, P[n+1,fm])  is assigned to the component according to the minimum of Mahalanobis distance dM 

[Chui 87] defined by: 

   PfnPVar

PfnP

ffVar

ff
d

m

m

m

m
M ˆ],1[

])ˆ],1[(
ˆ

)ˆ( 22




         (6) 

This matched point becomes the observation at time n+1 from which estimation  1/1ˆ  nnX  is set for each 

filter and according to the variance parameters Qf, Rf, QP and RP. This provides fnnu f
ˆ̂

)1/1(ˆ   and 

PnnxP
ˆ̂

)1/1(ˆ  . If no point is found in the given interval, the current trajectory dies and another trajectory is 

initiated using a point of the TFR not already assigned to a trajectory. 

When this procedure is carried out on the whole TFR, what we get is a set of one-dimensional time-frequency 

components (the so-called spectral lines). Two types of data are available for each line: a matched trajectory 

containing only points from the original ARCAP TFR and formed with all (n, fm, Pm[n,fm])  points and a modeled 

trajectory formed with the output of Kalman filters, the )
ˆ̂

,
ˆ̂

,( Pfn  points. If the confidence in the model (defined 
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by Qf and QP) is much higher than the confidence in the observed values (defined by Rf and RP), the modeled 

trajectory is smoother than the matched trajectory. Shorter lines which have only a few points, the number of 

which must be set according to the characteristics of the signal, are considered as noise and eliminated. Kalman 

filtering of order 1 is often satisfactory. Orders higher than 2 could as well be considered [Davy 98]. But, even if 

the signal is highly modulated, a 2nd order is sufficient. Recursive implementations of Kalman filtering can be 

found in the literature [Chui 87]. See [Roguet 96] and [Cottereau 00] for specific studies concerning the tracking 

of ARCAP time-frequency trajectories. 

3.2. Application on a real signal 

ARCAP trajectory tracking has been applied to the recognition of seismic signals produced by snow avalanches 

and provided by Meteo-France [Leprettre 96][Leprettre 98]. First-order Kalman filters identified four spectral 

lines. These are shown superimposed with the ARCAP analysis on figure 4-a and as isolated one-dimensional 

full-scale curves on figure 4-b. For each extracted time-frequency trajectory a couple of parameters are estimated: 

extreme frequencies, mean and standard deviation. 
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Figure 4 Seismic signals produced by snow avalanches  
a. Superimposed ARCAP analysis and Kalman trajectory tracking 
b. Extracted Kalman trajectories: frequency and power 
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3.3. Interpreting the 1D spectral lines 

The original ARCAP time-frequency representation is reduced to a limited number of matched and/or modeled 

spectral lines representing only the most pertinent information of the original TFR. As the extracted components 

are one-dimensional curves, they are easier to handle than the whole TFR. Several parameters with physical 

significance can be derived from each component: onset moment, duration, mean frequency and power values, 

etc. Global trends can be evaluated using e.g. interpolation and lowpass filtering. Ruptures inside a component 

can be detected using e.g. wavelet analysis or prediction models if needed. The trajectories can also be compared 

to various models (polynomials, spline functions, etc.) derived from physical considerations or to a library of 

typical features of interest. The parameters derived from the extracted spectral lines sum up the time-frequency 

characteristics of the signal in a convenient way. They can be used as the input vector of a decision system for 

classification purposes. An illustration of this can be found in [Leprettre 98] for the avalanche signal recognition 

of the previous section. 

4. Conclusion 

Two methods for extracting pertinent information from TFRs have been presented. The first one is based on 

morphological segmentation and is suitable to matrix-type TFRs like. The second one implements a trajectory 

tracking Kalman filter and is suitable to TFRs of cloud-of-points type obtained after a modeling process such as 

ARCAP analysis, or after peak extraction from a matrix-type TFR. Examples on real signals have been presented 

and commented. Morphological segmentation can produce interesting extraction performance even on complex 

signals (low signal to noise ratio, colored noise, severe non stationarities in time or in frequency). As a priori 

knowledge is necessary, it is difficult to propose a global strategy for choosing the required parameters. Every 

application must be well controlled. The tracking of time-frequency trajectories, only suitable for narrow-band 

signals, provides a good performance with a low complexity. 
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Time-frequency decision is currently fast growing. [Martin 98] reflects the state of the art in the French 

community. In order to improve the first presented method, we would like to eliminate the drawback produced by 

the gradient function. A work is in progress with a completely different approach, whose preliminary results are 

in [Hory 00], [Hory 01]. 
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