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Abstract  There is an increasing range of applications for rotors made of 
composite materials and operating at supercritical speeds. Design of such 
structures involves specific features which have to be accounted for in order to 
allow safe operations. A proper modeling of the mechanical characteristics of the 
composite is first needed. But, as far as the structure is rotating, the effect of stress 
stiffening and spin softening may be considered and the effect of internal damping 
has to be studied in order to avoid possible instability.  Internal or rotating 
damping modeling remains an active field of research where both theoretical 
developments and experimental results are needed. 
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1 Introduction 

Damping, coming from different sources, is one of the most difficult issues for 
structural dynamic predictions. Damping effects are mainly modeled using viscous 
and hysteretic damping. The main difference between both types of damping is 
that the energy dissipated per cycle by viscous damping is frequency (spin speed) 
dependent, whereas the energy dissipated by hysteretic damping is not. Damping 
associated to the non-rotating parts of the structure has a usual stabilizing effect 
while damping associated to rotating parts can trigger instability in supercritical 
ranges. Internal viscous damping is well known. Hysteretic damping is often 
substituted by an equivalent viscous damping for harmonic motions. 

First investigations by Newkirk [1] showed that rotors may experience violent 
whirling at speeds above the first critical due to internal damping. Since then, 
many researchers have studied the combined influence of internal (material, dry 
friction) and external damping (bearings...). Classical results were obtained, 
showing that rotor stability is improved by increasing the damping provided by the 
bearings, whereas increasing internal damping may reduce the instability threshold 
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[2-4]. Genta [5] demonstrated that an error is made when considering that 
hysteretic rotating damping is destabilizing at any speed. Until now internal 
rotating damping modeling remains an up to date research area [6,7…]. 

Because of the specific strength and stiffness of high performance fiber 
reinforced materials, attempts are being made to replace metal shafts by composite 
ones in many applications: driveshafts for helicopters and cars, centrifugal 
separators, cylindrical tubes [8-10]. These materials provide advantages in terms 
of weight reduction and give designers the possibility of obtaining predetermined 
behavior by changing the arrangement of the composite layers [11,12]. For a rotor 
made of composite materials, internal damping can be significant [13] due to the 
damping capacity of the matrix. Optimization techniques have been used in order 
to avoid instability, minimize the unbalanced response and maximize the stability 
limit speed. For composite shafts, equivalent modulus beam theory (EMBT) based 
on classical laminate theory, has many limitations [14], and is only valid for 
symmetric stacking. General homogenized beam theory (GHBT) has been 
developed to reduce the previous limitations [15]. The equivalent flexural moduli 
are in this case evaluated using the Young’s modulus, shear modulus and specific 
damping capacity of each layer. The distance to the neutral axis and the thickness 
of each layer are explicitly taken into account. Shear effects are considered by 
evaluating the flexural warping function.  

Beam based models are generally useful but may also be questionable. In the 
case of tubes, multilayered shell models may be needed. Finally, most of the 
published studies remain purely numerical and there is a lack of experimental 
results that may be used for a better understanding of the effect of rotating 
damping as well as for validation purpose [16, 17].  

This paper gives first some brief descriptions of the theoretical background 
concerning internal damping modeling and the equations of motions. Then, 
applications are presented in order to illustrate and discuss specific features. 

2 Equations of motion – Composite rotor 

Most existing rheological models are based on the combination of elastic and 
viscous basic elements such as those of Maxwell, Hook and Kelvin-Voigt [18]. In 
this work, the Kelvin-Voigt model has been chosen. It consists of a spring and a 
damper in parallel and is commonly used for linear viscoelastic systems. The 
associated equations of motion of the rotor [19] are, in the rotating frame: 

[ ]{ } [ ]{ } [ ]{ } { }� � � � �� �� � � � � � � �+ + � + + � =ɺɺ ɺ  (1) 

where [ ]�  represents the mass, [Ci] the internal damping, [C(Ω)] includes an 
antisymmetric gyroscopic matrix (function of Ω speed of rotation) and a 
frequently asymmetric matrix owing to the characteristics of bearings, [K] is the 
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elastic stiffness matrix and [Ki(Ω)] is the stiffness matrix associated to internal 

damping as well as stress stiffening and spin softening effects. { }�ɺɺ , { }�ɺ  and 

{ }�  are respectively nodal accelerations, velocities and displacements. The 
Campbell diagram and instability regions are determined from the solution of the 
eigenvalue problem obtained after reduction by the pseudo modal method [19]. 
The natural frequencies are obtained from the imaginary part and stability 
criterion is defined from the real part of the eigenvalues.  
Considering formulations based on beam theories and dealing with homogeneous 
materials, the stiffness of the structure is a function of the product EI, where E is 
the Young’s modulus and I the inertia of the section. Similarly, dissipation due to 
internal damping is a function of EIη, where η is the loss factor. When 
considering composite rotors, two formulations may be used. The most classical 
one uses equivalent homogenized material approaches and leads to the Equivalent 
Modulus Beam Theory (EMBT). On the other hand, General Homogenized Beam 
Theory (GHBT) is based on a direct homogenization of the products EI and EIη. 
GHBT has the advantage of being valid for any laminate stacking of the rotor 
wall. The homogenized parameters of the rotor are derived from the strain energy 
and are expressed as follows [15]: 
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with: El, Et, υtl, Glt respectively Young’s moduli, Poisson’s ratio and shear 
modulus in the orthotropic axes, c=cos(θ) s=sin(θ), Rk, Rk-1 give the beginning and 
the end of the kth layer from the neural axis, θ is the layer orientation angle and 
Ekηk is the damped Young modulus of layer k along the rotor axis. Damping 
factor η is obtained from the specific damping capacity of layers according to the 
longitudinal, transversal and shear directions respectively. For the effect of 
transverse shear, the homogenized shear modulus GS is obtained from the shear 
strain energy. 

3  Application 

Two different applications are presented and used for illustration. The first one 
concerns a thin wall composite shaft and the second a composite rotor with discs. 
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3.1 Thin walled composite shaft 

The application considered first is a simply supported thin-walled tube with two 
lateral inner discs at both ends. The shaft length is L=1.5 m, its outer diameter is 
D=0.09 m and its wall thickness is e=7.0 10-4 m. The discs lie at a distance of 0.05 
m from both ends of the tube, their thickness is 3.0 10-3 m and their inner radius is 
0.0075 m. The shaft is made of 5 layers of Boron/Epoxy (ρ=1600 kg/m3

,  E1=3.0 

1011 Pa, E2=6.2 109 Pa, G12=G13=G23=4.1 109 Pa and 12ν =0.26). The stacking 

sequence considered is [0°, -30°, +30°, 0°, 90°], given from the inner to the outer 
surface of the cylinder. Mechanical damping is here neglected. 

As shown in Fig. 1, only 1/12th (30°) of the whole structure is meshed using a 
multilayered shell element, constructed from the solid isoparametric element with 
16 nodes, by applying Reissner-Mindlin hypotheses.  The resulting element is 
geometrically characterised by 16 nodes and kinematically by 8 nodes and 5 dof 
per node. A shear correction coefficient equal to 5/6 is considered and reduced 
integration is used to prevent shear locking. 

 

Fig. 1 Cylindrical tube. Only 1/12th of the mesh (dark) is considered by the numerical model 

Table 1. Natural frequencies at rest (Hz) and first critical speeds (rpm). 
 
Freq. at rest 
Rotorinsa 

Freq. at rest 
3D Model 

∆ (%) Critical speed 
Rotorinsa 

Critical speed 
3D Model 

∆ (%) 

  508.4   475.4   6.7   31 820 28 570 11.4 
1749.2 1446.7 18.9 116 625 91 660 27.2 
3305.7 2564.7 24.0    

 
The three first bending frequencies obtained for the structure at rest are reported in 
Table 1. These values are compared with those computed using ROTORINSA 
[19] associated with an EBMT. Differences in results are significant and can be 
explained by the effect of the simplifying assumptions associated with EBMT: a/ 
contribution of each layer independent of its radial position, this hypothesis being 
only valid for thin-walled shafts with symmetrical sequences. b/ longitudinal shear 
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deformations associated with bending not considered. Critical speeds obtained 
with both shell and beam models are also reported. Due to stress stiffening effects, 
accuracy of the beam model decreases when rotation speed increases. 

3.2  Composite rotor with two discs 

In order to emphasize the influence of internal damping in rotordynamic analysis, 
Campbell diagram and instability thresholds are determined for a rotor made of a 
filament wound shaft when considering different configurations of stacking 
sequences. The structure, proposed by Pereira [12], is a composite shaft with two 
rigid steel disks supported by two bearings as shown in Fig. 2. Rotor: L=1.2m, 
D=0.096m, e=0.008m, Disc: Di=0.096m, Do=0.3m, h=0.05 m.  

 

 

Fig. 2. Filament wound shaft with two disks 

Table 2. Material data for the shaft (carbon expoxy) 
 

El (GPa) Et(GPa) Glt(GPa) ��υ

 
ρ(kg/m3) ψl % ψt % ψlt% 

172.7 7.20 3.76 0.3 1446.2 0.45 4.22 7.05 
 

Material properties of each ply made of carbon/epoxy are summarized in Table 2 
and the anisotropic bearing stiffness characteristics are: Kxx=1.107 N/m, 
Kzz=1.108 N/m, Kxz= Kzx=0 (no external damping considered). The first 
configuration consists in 8 plies of 0.001m thickness in a balanced and symmetric 
configuration [±θ°]s. Figure 3 gives the Campbell Diagram obtained using GHBT. 
Frequencies and instabilities thresholds are in this case in very good agreement 
with those obtained by Pereira using EMBT. As there is no external damping, 
instability occurs just after the critical speed. 
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The same structure with different symmetrical and asymmetrical stacking 
sequences is then considered. When examining Table 3, the influence of stacking 
on the first frequency as well as on the instability threshold appears clearly.  
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Fig. 3. Campbell diagram and instability regions for a laminate θ=75° with anisotropic bearings 
(red = unstable) 

Table 3. Mechanical characteristics of the shaft 
 
 Stacking sequence Freq (Hz) Instability threshold (rpm) 
1 [902,45,0]S 39.87             5864 
2 [90,0,90,45,90,45,0,90] 40.08             5913 
3 [90,45,02]S 50.71           10981 

4 [45,0,45,0,90,0,90,0] 51.36           11395 
 

As shown in Table 4, where both results obtained from GHBT and EMBT are 
compared, the distance to the neutral axis contributes to the calculation of the 
mechanical characteristics of the rotor with GHBT but not accurately with EMBT. 
When using EMBT, an error up to 16% on instability threshold and 7% on the first 
frequencies is observed. The Campbell Diagram associated with the second 
configuration considered above is presented in Fig. 4.  
Differences between configurations is up to 21 % for frequencies at rest and about 
47% for instability thresholds, and for different cases, not presented here, the rotor 
may exceed the third critical speed without generating instability. The greater the 
number of fibers oriented close to the longitudinal direction of the tube, the more 
they contribute to shaft rigidity and, consequently, the higher frequencies are. 
Similarly, the lower the orientation angle, the lower the internal damping due to 
composite materials is and, consequently, the later instability occurs. 
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Table 4. Comparison between GHBT and EMBT. Instability threshold – first frequency. 

 
 GHBM 

(rpm) 
EMBT 
(rpm) 

% GHBM 
(Hz) 

EMBT 
(Hz) 

% 

[902,45,0]S   5864   6956 15.7 39.87 42.76 6.7 
[90,0,90,45,90,45,0,90]   5913   6965 15.1 40.08 42.76 6.3 
[90,45,02]S 10981 12064   9.0 50.71 52.37 3.2 

[45,0,45,0,90,0,90,0] 11395 12064   5.5 51.36 52.37 2.0 
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Fig. 4. Campbell diagram for configuration [90,0,90,45,90,45,0,90] 

4 Experimental analyses 

An experimental set up developed at the LMA of Marseille France, shown in 
Fig. 5 is used for illustration and validation. The set up allows studying the 
stability of shafts made of different materials with various lengths ranging 
between 0.5m and 3m. 
To allow supercritical behavior, passive dissipation is introduced at bearing 
level using viscoelastic supports (damping factor 3.5%). Bearings are classical 
ball bearings. The main characteristics of the tested rotors, made of PVC, are: 
Young modulus 2.2 GPa, density 1350 kg/m3, external radius 0.025 m, internal 
radius 0.0215 m, damping factor 1.25%. Isotropic bearing mass is 2.608 Kg and 
foundation stiffness is 567.103 N/m. 
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Fig. 5. Testing machine for high-speed tubes 
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Fig. 6: PVC Tube: numerical and experimental results. 

Fig. 6 shows the evolution of the computed frequencies and instability thresholds, 
with respect to the rotor length L. Legends are as follows: Fcsi i

th frequency of the 
system; SIi i

th associated instability threshold. The instability zone (grey) of this 
rotor is greater than the instability zone of rotors made of classical materials due to 
the material damping which is more significant for PVC (1.25% here compared to 
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0.2 associated to an aluminium rotor for exemple). Experimental results obtained 
at the LMA are also given. They are symbolized by a circle � for the first 
frequency and by a star � for the instability thresholds. Four experimental tests 
were performed for tubes of lengths 0.6m, 0.8m, 0.9m and 1m. The experimental 
instability was detected at the first critical speed. Tendencies shown by 
experimental results are in good agreement with theoretical results and the first 
frequency identified matches very well. 
Observation points out two instability zones merging at a length L near 0.8m. 
Within this zone the different components of the system are highly coupled. 
Frequencies associated to the rigid rotor with flexible bearings match frequencies 
of the tube supported by rigid bearings. For this particular length of rotor, bearings 
are highly responding and then provide more external damping to the system, 
increasing stability. Such behavior has also been observed by Dutt [20] who 
shows that a proper selection of the value of support parameters can increase 
significantly instability threshold for a system on viscoelastic supports. 

5 Conclusion 

The presented paper deals with the dynamical analysis of internally damped 
rotating composite shafts. Usual rotordynamics modeling is based on beam 
theories. In this case, the General Homogenized Beam Theory is needed to avoid 
the main drawbacks associated with formulations that consider only symmetrical 
and balanced stacking sequences and do not take into account the distance of 
layers from the neutral axis. As already shown, those simplifications may lead to 
significant discrepancies in terms of frequencies and instability thresholds. The 
method also allows accurate characterization of the structure’s internal damping, 
based on the specific damping capacity of each ply of the composite assembly. 
Another limitation illustrated here concerns the case where the rotating structure is 
more a tube than a shaft. In this case classical effects such as stress stiffening and 
spin softening shall be accounted for. Then beam theories are no more valid and 
shall be replaced by multilayered shell theories. 

Finally an experimental set up is described and used for illustration and 
validation. New techniques are under development and major improvements are 
clearly needed to overcome the large limitations of the classical equivalent viscous 
damping model. But the development of those techniques has to be clearly 
associated with much more fine available experimental results (transient 
response…) 
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