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UN CALCUL D'ANNEAUX DE D ÉFORMATIONS

Soit F une extension non ramifiée de Qp incluse dans une clôture algébrique Q p de Qp fixée. Le premier objectif de ce travail est de présenter une méthode purement locale pour calculer les anneaux de déformations potentiellement Barsotti-Tate de type galoisien modéré des représentations irréductibles de dimension 2 de Gal(Q p /F ). Nous appliquons ensuite cette méthode dans le cas particulier où F est de degré 2 sur Qp, ce qui nous conduit, dans ce cas, à la détermination presque exhaustive de ces anneaux de déformations. Notre approche met en évidence un lien, apparemment ténu, entre la structure de ces anneaux de déformations et la géométrie de la variété de Kisin correspondante.

En guise de corollaire, nous vérifions, toujours dans le cas où F est de degré 2 sur Qp et à l'exception de deux cas très particuliers, une conjecture de Kisin qui prédit que les multiplicités galoisiennes intrinsèques valent toutes 0 ou 1.

Introduction

Les anneaux de déformations universelles jouent un rôle central dans le cadre des développements récents autour de la correspondance de Langlands p-adique. En effet, une étude fine de ces anneaux de déformations locales et globales [START_REF] Kisin | The Fontaine-Mazur conjecture for GL 2[END_REF], [START_REF] Kisin | Deformations of Gal(Q p /Q p ) and GL 2 (Q p ) representations[END_REF], [TW], [Wil]) est nécessaire pour démontrer les théorèmes de relèvements modulaires. Si la détermination générale de ces anneaux semble actuellement hors de portée, la conjecture de multiplicités modulaires, dite ), donne des informations précises sur la structure des anneaux de déformations géométriques locales en général. Cette conjecture prédit une formule, en termes de théorie des représentations, pour la multiplicité de Hilbert-Samuel µ gal de la fibre en caractéristique p des anneaux de déformations potentiellement semi-stables d'une représentation galoisienne fixée ρ : G Qp -→ GL 2 (k E ) où k E est un corps fini suffisamment grand de caractéristique p. La multiplicité de ces anneaux de déformations a deux origines : si leur spectre est la réunion de n composantes irréductibles, chacune de multiplicité µ i , 1 i n, alors, la multiplicité de l'anneau entier est i µ i . Par ailleurs, la multiplicité d'une composante est liée à sa géométrie et mesure son degré de nilpotence. D'après la version raffinée de la conjecture , [START_REF] Kisin | The Fontaine-Mazur conjecture for GL 2[END_REF], [EG]), il existerait des entiers naturels m ρ(σ), dits multiplicités intrinsèques, ne dépendant que de la représentation galoisienne ρ et des poids de Serre σ, permettant d'écrire une formule explicite µ gal = σ m v,t (σ)m ρ(σ) où la somme porte sur les poids de Serre et les termes m v,t (σ) s'obtiennent facilement en fonction des contraintes notées (v, t) (voir §1.2) sur les déformations. Cette version raffinée s'étend aux représentations galoisiennes de Gal(Q p /F ) pour F extension finie de Q p de dimension n ( [EG]). Malheureusement, tant la détermination numérique que l'interprétation géométrique des multiplicités intrinsèques sont à ce jour mystérieuses. Elles ne sont connues que pour les représentations de G Qp de dimension 2 ( [START_REF] Breuil | Multiplicités modulaires et représentations de GL 2 (Z p ) et de Gal(Q p /F ) en ℓ = p[END_REF], [START_REF] Kisin | The Fontaine-Mazur conjecture for GL 2[END_REF]). Dans le cas des représentations génériques de dimension 2 sur des extensions F non ramifiées de degré fini de Q p , elles sont déterminées conjecturalement à 0 ou 1 dans [START_REF] Breuil | Multiplicités modulaires raffinées, A paraître dans Bull[END_REF]. Dans le cas des représentations irréductibles, Kisin conjecture que leurs valeurs sont aussi 0 ou 1 (Conj. 2.3.5 [START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF]). F. Sander a exhibé le premier cas de multiplicité 4 pour un anneau de déformations d'une représentation réductible de G Qp ( [San]). Enfin Gee et Kisin déterminent les multiplicités intrinsèques associés à des poids de Serre dits Fontaine-Laffaille réguliers ( [GK]).

L'objet de ce travail est la mise en oeuvre d'une stratégie pour déterminer les multiplicités intrinsèques pour les représentations irréductibles de Gal(Q p /F ) pour F non ramifiée de Q p , en lien avec la géométrie des anneaux de déformations. D'une part, nous programmons sous sage (1) le calcul des multiplicités (m v,t (σ)) σ via la décomposition de Jordan-Hölder de certaines représentations de GL 2 (F p f ) suivants les algorithmes théoriques de [BP], [Dav]. D'autre part, nous calculons explicitement certains anneaux de déformations universelles via la théorie de Hodge p-adique.

Barsotti-Tate considérés et celle de la variété de Kisin GR ρ,ψ,v,t introduite, dans un contexte légèrement différent, dans [START_REF] Kisin | Moduli of finite flat group schemes, and modularity[END_REF] (voir aussi [START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF]).

Théorème 2 (cf Théorème 4.3.1). -Soient F l'extension non ramifiée de degré 2 de Q p et ρ une représentation de dimension 2 continue irréductible de Gal(Q p /F ) à coefficients dans F p , non totalement non générique. Soient v 0 = (0, 2) τ ∈S et t un type galoisien modéré de niveau 2. Nous avons alors la trichotomie suivante :

• soit GR ρ,ψ,v 0 ,t est vide et R ψ (v 0 , t, ρ) = {0} ;

• soit GR ρ,ψ,v 0 ,t est un point et R ψ (v 0 , t, ρ) ≃ O E [[X, Y, T ]]/(XY + p) ; • soit GR ρ,ψ,v 0 ,t est isomorphe à P 1 k E et R ψ (v 0 , t, ρ) ≃ O E [[X, Y, T ]]/(XY + p 2 ).
Nous énonçons en réalité un résultat plus précis dans le corps de l'article (voir Théorème 4.3.1), où nous déterminons entièrement et de façon complètement explicite lequel des trois cas précédents se produit en fonction de ρ, v 0 , t et ψ. Pour une représentation ρ irréductible générique, ces résultats figurent déjà dans [START_REF] Breuil | Multiplicités modulaires raffinées, A paraître dans Bull[END_REF] et le troisième cas du théorème 2 ne se produit pas. Nous renvoyons également à la partie 4 pour des énoncés additionnels dans les situations totalement non génériques.

Plus généralement, la stratégie mise en place est valable pour les représentations réductibles ou irréductibles de Gal(Q p /F ) en tout degré f = [F : Q p ]. Les résultats en degré 2 révèlent une nouvelle forme d'anneaux de déformations qu'il conviendra d'interpréter en termes modulaires. L'étude en tout degré fera l'objet d'un article ultérieur s'appuyant sur les résultats en degré 2.

Le plan de cet article est le suivant. Dans la partie 1, nous donnons un énoncé précis de la conjecture de multiplicités modulaires en rappelant toutes les notations utiles dans ce contexte. La partie 2 est consacrée à des rappels et des compléments généraux de théorie de Hodge p-adique portant principalement sur les modules de Breuil-Kisin et ses applications au calcul d'espaces de déformations galoisiennes. Avec la partie 3 commence l'étude plus détaillée du cas des représentations potentiellement Barsotti-Tate sur un corps p-adique absolument non ramifié. Nous démontrons un théorème de classification des modules de Breuil-Kisin et donnons une méthode générale, basée sur ce théorème, pour déterminer les espaces de déformations qui nous préoccupent. Dans la partie 4, enfin, nous mettons en oeuvre cette méthode dans le cas d'une représentation galoisienne irréductible sur une extension non ramifiée de degré 2 ; ceci nous conduit notamment aux théorèmes 1 et 2 énoncés précédemment.

Les auteurs remercient Christophe Breuil pour de nombreuses discussions lors de la genèse de ce travail et Gabor Wiese pour son accueil à l'université du Luxembourg. Les auteurs ont bénéficié du soutien financier des ANR Cethop et ThéHopaD et du FNR Luxembourg.

1. Motivations : la conjecture de Breuil-Mézard 1.1. Conjecture de multiplicités modulaires. -1.1.1. Notations. -Soit p un nombre premier supérieur ou égal à 5. Pour toute extension finie E de Q p , nous notons O E son anneau des entiers, ̟ E une uniformisante et k E = O E /̟ E son corps résiduel. Nous supposons également que E est plongée dans une clôture algébrique Q p fixée de Q p et nous notons G E = Gal(Q p /E). Ces notations sont valables pour toutes les extensions algébriques (notées E, F, K ou L) de Q p considérées dans cet article.

Soient E une extension finie de Q p et F une extension finie non ramifiée de Q p de degré f . Posons q = p f . Quitte à agrandir E, nous supposons que E contient l'extension quadratique non ramifiée de F , ou de manière équivalente que k E contient l'extension de degré 2 de F q . L'extension maximale non ramifiée de F dans Q p est notée F nr . Soit S l'ensemble des plongements de F dans E (de cardinal f ), qui s'identifie à l'ensemble des plongements de F q dans k E puisque F est non ramifiée. Par abus, nous considérerons les éléments τ ∈ S aussi bien comme des plongements de F dans E que de F q dans k E . Soit F ′ l'unique extension quadratique non ramifiée de F dans Q p . Notons S ′ l'ensemble des plongements de F ′ dans E, identifié à l'ensemble des plongements de F q 2 dans k E . Nous fixons τ 0 un plongement de S et τ ′ 0 dans S ′ un relèvement de τ 0 . Nous notons également ϕ le Frobenius de F q et de F q 2 . Si F × désigne le complété profini de F × , la théorie du corps de classes local fournit un isomorphisme G ab F ∼ -→ F × qui envoie les éléments de Frobenius géométriques sur les uniformisantes et l'image du sous-groupe d'inertie sur O × F . Par cet isomorphisme, nous voyons implicitement tout caractère de G F (resp. de I F = Gal(Q p /F nr )) comme un caractère de F × (resp. de O × F ). De plus, la projection à gauche sur Gal(F [ q-1 √ -p]/F ) et à droite sur les représentants multiplicatifs [F × q ] ∼ = F × q (en envoyant p Z (1 + pO F ) sur 1) induit l'isomorphisme :

ω F : Gal(F [ q-1 √ -p]/F ) ∼ -→ (O F /p) × = F × q g -→ g( q-1 √ -p) q-1 √ -p (1)
par lequel nous voyons tout caractère de F × q comme un caractère de Gal(F [ q-1 √ -p]/F ) et réciproquement. Nous notons ε f le relèvement de Teichmüller de ω f . Pour τ dans S, notons ω τ le caractère fondamental de niveau f , induit sur G F par (1) et le plongement τ | F × q ; notons ε τ son relèvement de Teichmüller. Notons ε : G F → Z × p le caractère cyclotomique p-adique et ω sa réduction modulo p.

Fixons enfin une représentation continue

ρ : Gal(Q p /F ) → GL 2 (k E ) telle que End k E [Gal(Q p /F )] (ρ) = k E .
1.1.2. Déformations et multiplicité galoisiennes. -Fixons v la donnée de f couples d'entiers (w τ , k τ ) τ ∈S avec w τ dans Z, k τ dans Z 2 et t la donnée d'une représentation de noyau ouvert Gal(Q p /F nr ) → GL 2 (E) qui admet un prolongement au groupe de Weil de F . Fixons également un caractère continu ψ : Gal(Q p /F ) → O × E tel que :

ψ| Gal(Q p /F nr ) = (det t) τ ∈S ε 2wτ +kτ -2 τ . (2)
Une représentation linéaire continue de Gal(Q p /F ) sur un E ′ -espace vectoriel de dimension 2 (où E ′ est une extension finie de E) est dite de type (v, t, ψ) si elle est potentiellement semi-stable, si son déterminant est ψε, ses poids de Hodge-Tate (w τ , w τ + k τ -1) τ ∈S et si la représentation de Weil-Deligne qui lui est attachée par [START_REF] Fontaine | Représentations ℓ-adiques potentiellement semi-stables[END_REF] est isomorphe à t en restriction à Gal(Q p /F nr ).

Notons R ψ (v, t, ρ) le quotient réduit de l'anneau local paramétrant les déformations de ρ de type (v, t, ψ) introduits dans [START_REF] Kisin | The Fontaine-Mazur conjecture for GL 2[END_REF]§ 1.4.1]. Plus précisément, si R ψ (ρ) est la O Ealgèbre locale complète noetherienne de corps résiduel k E paramétrant les déformations de ρ sur de telles O E -algèbres de déterminant ψε, alors R ψ (v, t, ρ) est l'image de R ψ (ρ) dans R ψ (ρ)[1/p]/∩p, l'intersection étant prise sur les idéaux maximaux p de R ψ (ρ)[1/p] tels que la représentation : (v, t, ψ). Notons que cette dernière représentation est à coefficients dans une extension finie de E. Les anneaux de déformations que nous venons d'introduire se comportent agréablement lorsque le corps E change : plus précisément, si E ′ est une extension finie de E, les O E ′ -algèbres R ψ (ρ) et R ψ (v, t, ρ) calculées à partir de E ′ s'obtiennent par extension des scalaires de O E à O E ′ à partir de leurs analogues calculés à partir de E (voir lemme 2.2.2.3 de [START_REF] Breuil | Multiplicités modulaires et représentations de GL 2 (Z p ) et de Gal(Q p /F ) en ℓ = p[END_REF]).

Gal(Q p /F ) → GL 2 R ψ (ρ)[1/p] ։ GL 2 R ψ (ρ)[1/p]/p est de type
Remarque 1.1.1. -Nous pouvons également définir R ψ (v, t, ρ) comme le quotient de R ψ (ρ) par l'intersection des idéaux noyaux des morphismes de O E -algèbres f : R ψ (ρ) → Z p pour lesquels la représentation :

Gal(Q p /F ) → GL 2 R ψ (ρ) → GL 2 Z p ) → GL 2 (Q p )
est de type (v, t, ψ).

Soient A un anneau local, d'idéal maximal m A , de dimension d et M un A-module de type fini. Il existe un polynôme P A M (X) de degré au plus d, appelé polynôme de Hilbert-Samuel de M , uniquement déterminé par l'hypothèse P A M (n) = long A M/m n+1 M pour n assez grand (voit [Mat], §14). La multiplicité d'Hilbert-Samuel e(M, A) de M relativement à A est par définition d! fois le coefficient de X d dans le polynôme P A M (X). Lorsque l'anneau A est sous-entendu, par exemple si M = A, nous notons simplement e(M ). Dans la suite, nous posons

µ gal (v, t, ρ) = e(R ψ (v, t, ρ)/̟ E ).
(3) 1.1.3. Poids de Serre et multiplicité automorphe. -Un poids de Serre de F est une représentation lisse absolument irréductible de GL 2 (O F ), ou de manière équivalente de GL 2 (F q ) sur k E . Un poids de Serre est de la forme :

τ ∈S (Sym rτ k 2 E ) τ ⊗ k E τ • det sτ (4)
avec des entiers r τ et s τ dans {0, . . . , p -1} et où GL 2 (F q ) agit sur (Sym rτ k 2 E ) τ par le plongement τ de F q dans k E et l'action sur la base canonique de k 2 E . Avec la condition supplémentaire que tous les s τ ne sont pas égaux à p -1, cette écriture est unique. Si σ est un poids de Serre comme en (4), nous notons σ s = τ ∈S (Sym p-1-rτ k 2 E ) τ ⊗ k E τ • det rτ +sτ le symétrique de σ. Nous identifions le poids de Serre σ avec les f -uplets (r τ , s τ ) τ ∈S qui le définissent. Quand l'action du caractère central est imposée, le f -uplet (s τ ) τ ∈S s'obtient à partir des (r τ ) τ ∈f . Le poids σ est alors identifié au f -uplet (r τ ) τ ∈S .

Un poids de Serre pour lequel aucun r τ n'est égal à p -1 est dit régulier ; il est dit totalement irrégulier si tous les r τ sont égaux à p -1.

Notons D(ρ) l'ensemble des poids de Serre de ρ défini dans [START_REF] Buzzard | On Serre's conjecture for mod ℓ Galois representations over totally real fields[END_REF]§ 3] (voir la partie 1.2.1 pour une définition et des méthodes de calcul de D(ρ)). [Hen], nous pouvons également associer à t une représentation lisse absolument irréductible σ(t) de GL 2 (O F ) sur E (quitte à agrandir E) de caractère central det t. Notons D(v, t) l'ensemble des poids de Serre à multiplicité près qui sont des constituants du semi-simplifié sur k E de σ(v) ⊗ E σ(t) et m v,t (σ) la multiplicité (dans N) avec laquelle un poids de Serre σ (quelconque) apparaît dans ce semi-simplifié.

Nous associons à

v la représentation continue de GL 2 (O F ) sur E : τ ∈S (Sym kτ -2 E 2 ) τ ⊗ E τ • det wτ où GL 2 (O F ) agit sur (Sym kτ -2 E 2 ) τ via τ : O F ֒→ E. Par
1.1.4. Conjecture de multiplicités modulaires. -L'énoncé de la conjecture suivante résume les conjectures de [START_REF] Breuil | Multiplicités modulaires raffinées, A paraître dans Bull[END_REF], [EG], [GK], [START_REF] Kisin | The Fontaine-Mazur conjecture for GL 2[END_REF], [START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF] :

Conjecture 1.1.2. -Soit ρ : Gal(Q p /F ) → GL 2 (k E ) une représentation telle que End k E [Gal(Q p /F )] (ρ) = k E .
Pour tout poids de Serre σ de F , il existe un entier naturel m ρ(σ), dit multiplicité intrinsèque de σ dans ρ, qui ne dépend que de ρ et σ, tel que pour tout v et tout t comme précédemment :

µ gal (v, t, ρ) = σ m ρ (σ)m v,t (σ)
De plus m ρ(σ) est non nul si et seulement si σ est dans D(ρ). [START_REF] Breuil | Sur un problème de compatibilité local-global modulo p pour GL 2 , A paraître dans[END_REF]) est l'ensemble des poids de Serre (la puissance du déterminant fixée est sous-entendue, pour des précisions voir [BP]) :

τ ∈S (Sym rτ k 2 E ) τ avec (r τ ) τ ∈S ∈ {0, . . . , p -1} f pour lesquels il existe S 1 ⊂ S ′ tel que |S 1 | = f , S = {τ ′ |F , τ ′ ∈ S 1 } et χ ′ un caractère de l'inertie qui s'étend à Gal(Q p /F ) tels que ρ |Gal(Q p /F nr ) ∼ =    τ ′ ∈S 1 ω (r τ ′ |F +1) τ ′ 0 0 τ ′ ∈S ′ \S 1 ω (r τ ′ |F +1) τ ′    ⊗ χ ′ .
Explicitons un algorithme pratique pour obtenir D(ρ).

Soit ρ : Gal(Q p /F ) -→ GL 2 (k E ) une représentation continue irréductible telle que ρ |Gal(Q p /F nr ) ∼ = ω f -1 j=0 (r j +1)p j τ ′ 0 ⊕ ω p f f -1 j=0 (r j +1)p j τ ′ 0 ⊗ χ ′
pour un plongement τ ′ 0 ∈ S ′ fixé avec la famille (r j ) 0 j f -1 dans {0, . . . , p -1} × {-1, . . . , p -2} f -1 . L'ensemble des poids de Serre de ρ est l'ensemble des f -uplets (r ′ j ) 0 j f -1 {0, . . . , p -1} f satisfaisant une congruence de la forme

(5)

f -1 j=0 ±(r ′ j + 1)p j ≡ f -1 j=0 (r j + 1)p j mod (p f + 1)
pour un des 2 f choix de signes possibles dans le membre de gauche. Si ρ est générique ( [BP], Définition 11.7), autrement dit si la famille (r j ) 0 j f -1 est dans {1, . . . , p -2} × {0 . . . , p -3} f -1 , nous obtenons ainsi 2 f f -uplets distincts (correspondants aux 2 f choix de signes dans la congruence (5)) qui s'expriment formellement en fonction des (r j ) 0 j f -1 ([BP], Lemma 11.4). Si ρ n'est pas générique, il est possible que les formules donnant les 2 f f -uplets dans le cas générique donnent des f -uplets n'appartenant pas à {0, . . . , p -1} f . Il faut alors revenir à la congruence (5) pour modifier convenablement le f -uplet pour déterminer le poids de Serre, élément de {0, . . . , p -1} f associé à ρ correspondant à ce f -uplet. Dans [Dav], A. David donne une description plus directe de l'ensemble D(ρ) et une formule explicite pour la modification à apporter dans le cas non générique.

Définition 1.2.1. -Soit ρ : G F -→ GL 2 (k E ) une représentation continue irréductible non générique. Les poids de Serre de ρ qui s'obtiennent après modification des formules donnant les poids de Serre dans le cas générique sont dits modifiés.

Pour f = 2, notons ω 4 = ω τ ′ 0 le caractère fondamental de niveau 4. Il y a quatre cas possibles de représentations irréductibles non génériques. Nous indiquons pour chacune ses poids de Serre, en commençant par l'unique poids modifié et continuant par son symétrique (voir [Dav]). Dans tous les cas ci-dessous, s est un entier dans

Z et θ un élément de k × E . (i) ρ ≃ Ind G F G F ′ ω 1+r 0 4 • nr ′ (θ) ⊗ ω s 2 avec 1 r 0 p -2 ; D(ρ) = { (r 0 + 1, p -1) ⊗ det -1 , (p -2 -r 0 , 0) ⊗ det -(p-1-r 0 ) , (p -1 -r 0 , p -2) ⊗ det r 0 , (r 0 -1, p -1) ⊗ 1)} ⊗ det s . (ii) ρ = Ind G F G F ′ (ω 4 • nr ′ (θ)) ⊗ ω s 2 ; D(ρ) = (1, p -1) ⊗ det -1 , (p -2, 0) ⊗ det -(p-1) , (p -1, p -2) ⊗ 1 ⊗ det s . (iii) ρ ≃ Ind G F G F ′ ω p(2+r 1 ) 4 • nr ′ (θ) ⊗ ω s 2 avec 0 r 1 p -3 ; D(ρ) = { (p -1, r 1 + 2) ⊗ det -p , (0, p -3 -r 1 ) ⊗ det p-1+p(1+r 1 ) , (p -2, p -2 -r 1 ) ⊗ det p(1+r 1 ) , (p -1, r 1 ) ⊗ 1} ⊗ det s . (iv) ρ ≃ Ind G F G F ′ (ω p 4 • nr ′ (θ)) ⊗ ω s 2 ; D(ρ) = (p -1, 1) ⊗ det -p , (0, p -2) ⊗ det p-1 , (p -2, p -1) ⊗ 1 ⊗ det s .
Dans les cas (i) et (iii) de la liste ci-dessus, un seul des deux entiers (r 0 , r 1 ) prend une valeur non générique, à savoir 0 ou p -1 pour r 0 et -1 ou p -2 pour r 1 . Dans les cas (ii) et (iv), les entiers r 0 et r 1 sont tous les deux non génériques et nous appelons totalement non génériques les représentations associées.

1.2.2. Poids du type. -Fixons deux caractères distincts modérément ramifiés η, η ′ : Gal(Q p /F nr ) → O × E qui s'étendent à G F et considérons le type galoisien t = η ⊕ η ′ . Les conditions sur η, η ′ impliquent qu'ils se factorisent par Gal(F nr [ q-1 √ -p]/F nr ) = Gal(F [ q-1 √ -p]/F ) ≃ F × q (cf.
(1)) et qu'il y a donc une manière naturelle de les étendre à Gal(Q p /F ) (via la théorie du corps de classes local, cela revient juste à envoyer p ∈ F × vers 1). Notons I(O F ) le sous-groupe d'Iwahori de GL 2 (O F ) des matrices triangulaires supérieures modulo p.

Le type σ(t) associé par [Hen] à t est alors Ind

GL 2 (O F ) I(O F ) (η ′ ⊗η) où η ′ ⊗η : I(O F ) → O × E est le caractère : a b pc d → η ′ (a)η(d) et Ind GL 2 (O F ) I(O F ) (η ′ ⊗ η) est le E-espace vectoriel des fonctions f : GL 2 (O F ) → E telles que : ∀k ∈ I(O F ), k ′ ∈ GL 2 (O F ), f (kk ′ ) = (η ′ ⊗ η)(k)f (k ′
) muni de l'action à gauche de GL 2 (O F ) par translation à droite sur les fonctions. Cette action se factorise par GL 2 (F q ). Notons de même Ind

GL 2 (O F ) I(O F ) (η ′ ⊗ η) le k E -espace vectoriel des fonctions f : GL 2 (O F ) → k E telles que f (kk ′ ) = (η ′ ⊗ η)(k)f (k ′ )
muni de la même action de GL 2 (F q ). C'est la réduction modulo ̟ E du O E -réseau de σ(t) des fonctions à valeurs dans O E . Nous notons D(t) l'ensemble des poids de Serre de F qui sont des constituants irréductibles de Ind

GL 2 (O F ) I(O F ) (η ′ ⊗ η).
Là encore, nous disposons d'une détermination de D(t) dûe à Breuil et Paškunas ([BP] §2 lemme 2.2) et d'un algorithme combinatoire dû à David ([Dav]). Notamment pour f = 2, l'ensemble des poids de Serre qui sont des constituants de Ind

GL 2 (O F ) I(O F ) η ′ ⊗ η avec η = ω c 0 +pc 1 τ 0 η ′ (0 c 0 , c 1
p -1) sont les couples de {0, . . . , p -1} 2 apparaissant dans la liste de couples suivante :

(6) (c 0 , c 1 )⊗η ′ , (p -2 -c 0 , c 1 -1) ⊗ det c 0 +1 η ′ (c 0 -1, p -2 -c 1 ) ⊗ det p(c 1 +1) η ′ , (p-1-c 0 , p-1-c 1 )⊗det c 0 +pc 1 η ′ .
Dans la partie 4, nous considérons des contraintes de déformations (v 0 , t), avec v 0 = ((0, 2)) τ ∈S et t comme ci-dessus. Dans ce cadre, la représentation σ(v 0 ) est triviale. L'ensemble D(v 0 , t) est donc l'ensemble D(t) ; la multiplicité m v 0 ,t (σ) est 1 pour tout σ dans D(t), 0 sinon.

Outils de théorie de Hodge p-adique

Les méthodes que nous allons utiliser par la suite pour déterminer explicitement certains espaces de déformations R ψ (v, t, ρ) sont purement locales. Elles sont basées essentiellement sur la théorie des modules , [START_REF] Kisin | Crystalline representations and F -crystals[END_REF], [START_REF] Kisin | Moduli of finite flat group schemes, and modularity[END_REF], [START_REF] Kisin | Deformations of Gal(Q p /Q p ) and GL 2 (Q p ) representations[END_REF], [START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF]). Cette seconde partie est consacrée à présenter succintement et à compléter sur certains points les résultats principaux de la théorie de Breuil-Kisin que nous serons amenés à utiliser couramment dans la suite.

2.1. Rappels sur la théorie de Breuil-Kisin. -Soit K une extension finie de Q p

( 2) . La théorie de Breuil-Kisin permet d'étudier les représentations semistables de G K . Pour l'exposer, nous avons besoin d'introduire quelques notations supplémentaires :

-K 0 , l'extension maximale non ramifiée de Q p incluse dans K ; -f = [K 0 : Q p ] le degré résiduel de K ; -ϕ, l'endomorphisme de Frobenius agissant sur K 0 ; -W , l'anneau des entiers de K 0 ; -E(u), le polynôme minimal de ̟ K (une uniformisante fixée de K) sur K 0 ; -(π s ) s∈N , un système compatible de racines p s -ièmes de

̟ K dans K ; -K ∞ , l'extension de K engendrée par les π s pour s dans N ; -G ∞ = Gal(K/K ∞ ) ; -les anneaux S = W [[u]] et O E défini comme le complété p-adique de S[1/u], O E = i∈Z a i u i a i ∈ W, lim i→-∞ a i = 0 ;
nous les munissons d'un endomorphisme de Frobenius, que par abus nous notons encore ϕ, défini par :

ϕ a i u i = ϕ(a i )u pi .
2. Plus généralement, le contenu de cette partie §2 s'étend sans modification à un corps complet pour une valuation discrète, de caractéristique mixte et de corps résiduel parfait.

Remarquons que O E contient S et que le Frobenius défini ci-dessus est compatible à cette inclusion. Notons également que O E est un anneau de valuation discrète (pour la valuation p-adique) complet et que son corps résiduel s'identifie canoniquement à k K ((u)).

2.1.1. Classification des représentations de G ∞ . -D'après la théorie du corps des normes de Fontaine et Wintenberger (voir [Win]), le groupe de Galois G ∞ s'identifie au groupe de Galois absolu d'un corps de séries de Laurent en une variable à coefficients dans le corps résiduel k K . Autrement dit, nous avons un isomorphisme (qui peut être rendu canonique) Nous avons le résultat suivant qui est une variante à coefficients d'un théorème classique de Fontaine (voir [Fo2]) :

(7) G ∞ ≃ Gal(k K ((u)) sep /k K ((u))) où k K ((u))
Théorème 2.1.3. -Pour toute Z p -algèbre locale complète noetherienne R, le fonc- teur V → M ⋆ (V ) = (V ⋆ ⊗Zp O E nr ) G∞
réalise une équivalence de catégories entre la catégorie des R-représentations libres de rang fini de G ∞ et celle des ϕ-modules 

M : M → M qui est linéaire par rapport à R et ϕ f -semi-linéaire par rapport O E . Le ϕ f -module M est dit étale si l'image de ϕ (f ) M engendre M comme (R ⊗W O E )- module. Théorème 2.1.6. -Pour toute W -algèbre locale complète noetherienne R, le fonc- teur V → M ⋆ W (V ) = (V ⋆ ⊗W O E nr ) G∞
réalise une équivalence de catégories entre la catégories des R-représentations libres de rang fini de G ∞ et celle des ϕ f -modules (4) étales sur R ⊗W O E .

Si R est une W -algèbre et V est une R-représentation libre de rang fini de G ∞ , nous disposons donc simultanément des deux objets M ⋆ (V ) et M ⋆ W (V ) que nous allons comparer. Comme R est une W -algèbre, nous avons une décomposition canonique de l'anneau R ⊗Zp W :

R ⊗Zp W ≃ f -1 i=0 R y ⊗ x → (ϕ -i (x) • y) 0 i f -1 .
En tensorisant par O E sur W , nous en déduisons un isomorphisme canonique :

(8) R ⊗Zp O E ≃ f -1 i∈0 R ⊗ι•ϕ -i ,W O E . où ι désigne le morphisme structurel de R comme W -algèbre. Concrètement, le i-ième facteur R ⊗ι•ϕ -i ,W O E admet la description explicite suivante : (9) R ⊗ι•ϕ -i ,W O E ≃ j∈Z a j u j a j ∈ R, lim j→-∞ a j = 0
l'identification faisant correspondre le tenseur pur λ ⊗ ( a j u j ) avec la série λ ϕ -i (a j ) u j . Avec ce choix, l'isomorphisme (9) est compatible à la fois à la multiplication par les éléments de W agissant sur le facteur O E et à la multiplication par les éléments de R agissant sur le facteur R.

Soit e i l'idempotent de R ⊗Zp O E correspondant au i-ième facteur de la décomposition (8). Si M est un module sur R ⊗Zp O E , en posant M (i) = e i M , nous avons une décomposition canonique de M :

(10) M = M (0) ⊕ M (1) ⊕ • • • ⊕ M (f -1) .
Examinons à présent le comportement du Frobenius. En revenant aux définitions, nous nous apercevons que l'action de Id ⊗ϕ sur R ⊗Zp O E correspond à l'endomorphisme 4. La structure de ϕ f -module sur (V ⋆ ⊗W OEnr ) G∞ est donnée par l'application Id ⊗ϕ f .

de f -1 i=0 R ⊗W,ι•ϕ -i O E suivant : (s 0 (u), s 1 (u), . . . , s f -1 (u)) → (s f -1 (u p ), s 0 (u p ), s 1 (u p ), . . . , s f -2 (u p ))
où les s i (u) désignent des séries à coefficients dans R, éléments du membre de droite de l'isomorphisme (9). Nous en déduisons que, si M est un ϕ-module sur R ⊗Zp O E , l'endomorphisme ϕ M envoie M (i) sur M (i+1 mod f ) pour i compris entre 0 et f -1. Notons en particulier que la f -ième puissance de ϕ M stabilise chacun des M (i) . La proposition suivante est immédiate.

Proposition 2.1.7. -Soient R une W -algèbre locale complète et V une Rreprésentation libre de rang fini de G ∞ . Alors, avec les notations introduites précédemment, nous avons un isomorphisme canonique de ϕ f -modules sur R ⊗W O E :

M ⋆ W (V ) = M ⋆ (V ) (0) où M ⋆ (V ) (0) est muni d'une structure de ϕ f -module sur R ⊗W O E via l'endomorphisme ϕ M ⋆ (V ) • ϕ M ⋆ (V ) • • • • • ϕ M ⋆ (V ) (f fois).
2.1.2. Modules de Breuil-Kisin. -Lorsque V est une représentation semi-stable de G K à coefficients dans l'anneau des entiers d'une extension finie de Q p , le ϕ-module M ⋆ (V ) associé à la restriction de V à G ∞ par le théorème 2.1.3 a une forme particulière qui rend son étude plus facile. Dans ce paragraphe, nous introduisons la notion de module de Breuil-Kisin qui rend compte de cette forme particulière agréable. (i) le module M n'a pas de u-torsion ;

(ii) l'application ϕ M est linéaire par rapport à R et ϕ-semi-linéaire par rapport à S ;

(iii) le (R ⊗Zp S)-module engendré par l'image de ϕ M contient E(u) r M pour un certain entier r positif ou nul. Le plus petit entier r vérifiant la condition (iii) est appelé la E(u)-hauteur de M.

Remarque 2.1.9. -De même que pour un ϕ-module, il est souvent commode, lorsque M est un module de Breuil-Kisin, de considérer le linéarisé de ϕ M :

Id ⊗ϕ M : (R ⊗Zp S) ⊗ Id ⊗ϕ,R ⊗Zp S M -→ M.
qui est une application (R ⊗Zp S)-linéaire. La condition (iii) de la définition 2.1.8 est alors équivalente au fait que le conoyau de Id ⊗ϕ M est annulé par E(u) r .

Lorsque R est de plus une W -algèbre, la décomposition de (R ⊗Zp S) analogue à (8) induit une décomposition

(11) M = M (0) ⊗ . . . ⊗ M (f -1)
analogue à (10).

Définition 2.1.10. -Soit R une Z p -algèbre locale noetherienne complète et h un entier naturel. Une R-représentation V de G K libre de rang fini est dite de E(u)hauteur inférieure ou égale à h s'il existe un module de Breuil-Kisin M sur R ⊗Zp S de hauteur inférieure ou égale à h tel que nous ayons un isomorphisme de ϕ-modules : 

M ⋆ (V ) ≃ O E ⊗ S M
M ⋆ (V |G∞ ) ≃ O E ⊗ S M 1 ≃ O E ⊗ S M 2 alors le second isomorphisme ci-dessus identifie M 1 à M 2 à l'intérieur de M ⋆ (V |G∞ ).
Démonstration. -En reprenant les notations de [START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF], les hypothèses du théorème assurent que R = R h . La première assertion suit ainsi du corollaire 1.7 de loc. cit. La seconde assertion, quant à elle, suit de la proposition 2.1.12 de [START_REF] Kisin | Crystalline representations and F -crystals[END_REF].

Les représentations cristallines étant en particulier semi-stables, le théorème 2.1.11 vaut a fortiori si les représentations Q p ⊗ R V sont cristallines pour tout morphisme d'anneaux R → Q p . Dans ce cas, la situation est encore meilleure car le théorème de pleine fidélité de Kisin (voir corollaire 2.1.14 de [START_REF] Kisin | Crystalline representations and F -crystals[END_REF]) implique que la représentation V de G K est entièrement caractérisée par sa restriction à G ∞ . Par ailleurs, soulignons qu'il n'est pas vrai, en général, qu'une représentation de E(u)-hauteur finie de G ∞ se prolonge en une représentation cristalline de G K . Toutefois, ceci se produit dans le cas particulier notable des représentations de E(u)-hauteur inférieure ou égale à 1, comme le précise le théorème suivant.

Théorème 2.1.12. -Toute R-représentation libre de rang fini de G ∞ de E(u)hauteur inférieure ou égale à 1 se prolonge de manière canonique à G K . Ce prolongement est fonctoriel et commute aux changements de base.

De plus, si R est l'anneau des entiers d'une extension finie de E, ce prolongement est caractérisé par le fait qu'il soit cristallin.

Démonstration. -L'existence du prolongement et son caractère ≪ canonique ≫ découlent d'une variante à coefficients du lemme 5.1.2 de [BCDT] après une traduction entre le langage des modules de Breuil-Kisin et celui des modules fortement divisibles de Breuil. La caractérisation par le caractère cristallin est, quant à elle, une conséquence du corollaire 2.1.14 de [START_REF] Kisin | Crystalline representations and F -crystals[END_REF].

2.1.3. Données de descente. -Une représentation de G K est dite potentiellement semi-stable si elle devient semi-stable après restriction à un sous-groupe d'indice fini, c'est-à-dire après restriction à un sous-groupe de la forme G L = Gal(K/L), où L est une extension finie de K. Une approche usuelle pour étudier une telle représentation V à l'aide de la théorie de Kisin est de munir le module de Breuil-Kisin de V |G L (qui est semi-stable) d'une donnée supplémentaire, appelée donnée de descente, qui rend compte du prolongement de l'action à G K . À partir de maintenant, nous nous restreignons au cas où L est de la forme L = K( n √ ̟ K ) pour un certain entier n premier à p. Nous supposons de plus que K contient une racine primitive n-ième de l'unité. L'extension L/K est alors galoisienne et son groupe de Galois est canoniquement isomorphe au groupe µ n (K) des racines n-ièmes de l'unité dans K. Notons η n : Gal(L/K) → µ n (K) cet isomorphisme.

Dans la partie 3, nous considérerons notamment la situation suivante : F est l'extension non ramifiée de degré f de Q p ; l'uniformisante ̟ F choisie est -p ; n est p f -1. Le caractère η n est alors le caractère ε f introduit dans la partie 1.1.1.

Nous ajoutons un indice K ou L à toutes les données associées aux corps de base K et L respectivement. Par exemple, nous notons u K et u L les deux versions de la variable que nous notions u jusqu'alors et nous utilisons les notations

S K et S L (resp. O E,K et O E,L ) pour les deux versions de l'anneau S (resp. O E ). En particulier, nous avons S K = W [[u K ]] et S L = W [[u L ]].
Remarquons, qu'étant donné que l'extension L/K est totalement ramifiée, l'anneau W est le même que nous travaillions avec K ou L ; il est donc inutile de le décorer d'un indice supplémentaire.

Nous supposons de plus, à partir de maintenant, que les uniformisantes

π K et π L , ainsi que leurs racines p s -ièmes π s,K et π s,L sont choisies de façon à ce que π n s,L soit π s,K pour tout entier s. Le polynôme minimal E L (u L ) de ̟ L sur K 0 est donc égal à E K (u n L ). Nous identifions S (resp. O E,K ) à un sous-anneau de S L (resp. O E,L ) en envoyant la variable u K sur u n L . Via cette identification, les polynômes E K (u K ) et E L (u L ) se correspondent.
Par ailleurs, l'extension L ∞ (obtenue en ajoutant à L tous les π s,L ) est galoisienne sur K ∞ et son groupe de Galois s'identifie à celui de L/K et donc encore à µ n (K) en suivant l'homomorphisme ω.

Définissons une action de Gal(L/K) ≃ Gal(L ∞ /K ∞ ) sur O E,L en faisant agir un élément g de Gal(L/K) sur la variable u L par multiplication par η n (g) considéré comme un élément de W . Concrètement, nous avons :

g • i∈Z a i u i L = i∈Z η n (g) i a i u i L .
Clairement, cette action stabilise S L . De plus, en utilisant que η n est d'ordre exactement n, il est facile de déterminer les points fixes :

H 0 (Gal(L/K), O E,L ) = O E,K et H 0 (Gal(L/K), S L ) = S K .
Si R est une Z p -algèbre locale noetherienne complète, nous prolongeons l'action de Gal(L/K) au produit tensoriel R ⊗Zp O E,L en convenant que Gal(L/K) agit trivialement sur R. Si R est, de surcroît, une W -algèbre, nous disposons de l'isomorphisme (8) :

R ⊗Zp O E,L ≃ f -1 i∈0 R ⊗ι•ϕ -i ,W O E,L .
Via cette identification, l'action de Gal(L/K) se fait composante par composante et, sur le i-ième facteur vu à travers l'isomorphisme (9), elle est donnée par la formule :

g • j∈Z a j u j L = j∈Z (ϕ -i • η n )(g) j a j u j L .
Si V une R-représentation de G ∞,K qui est libre de rang fini, nous nous apercevons en revenant aux définitions que

M ⋆ (V |G ∞,L ) (qui est un ϕ-module sur O E,L ⊗Zp R) hérite d'une action semi-linéaire de Gal(L/K) et que : (12) M ⋆ (V ) = H 0 (Gal(L/K), M ⋆ (V |G ∞,L )).
Nous en déduisons, en particulier, que le foncteur qui à V comme précédemment associe le ϕ-module M ⋆ (V |G ∞,L ) muni de l'action supplémentaire de Gal(L/K) établit une équivalence de catégorie entre la catégories des R-représentations libres de rang fini de G ∞,K et celle des ϕ-modules sur R ⊗Zp O E,L équipés d'une action semi-linéaire de Gal(L/K).

Examinons maintenant plus attentivement le cas où la représentation

V |G ∞,L est de E L (u L )-hauteur finie. Par définition, il existe alors un module de Breuil-Kisin M L tel que M ⋆ (V |G L ) = O E,L ⊗ S L M L .
Si nous supposons de plus que R est plat sur Z p , ce module est unique d'après l'alinéa (ii) du théorème 2.1.11. Nous en déduisons qu'il hérite par restriction d'une action de Gal(L/K). Toutefois, l'espace des points fixes H 0 (Gal(L/K), M L ) ne jouit généralement pas de bonnes propriétés (5) . Pour conserver la trace de la semi-stabilité de V , il est donc nécessaire de travailler avec des modules de Breuil-Kisin munis de données de descente.

Sur la restriction à G

∞ .
-La théorie de Breuil-Kisin permet de contrôler de manière efficace l'action de G ∞ sur une représentation (potentiellement) semi-stable. Dans sa version la plus simple -telle que nous venons de la présenter -elle ne dit toutefois pas grand chose sur l'action complète du groupe G K . L'objectif de cette partie est d'étudier, dans les situations qui nous intéresserons par la suite, dans quelle mesure nous pouvons nous contenter de travailler uniquement avec l'action du sous-groupe G ∞ .

Fixons une suite compatible (ζ s ) s 0 de racines primitives p s -ièmes de l'unité dans

K, c'est-à-dire, une suite vérifiant ζ 0 = 1, ζ 1 = 1 et ζ p s+1 = ζ s pour tout entier s 0. Ce choix étant fait, pour tout g ∈ G K , il existe un unique élément c(g) de Z p tel que : g(π s ) = ζ c(g)
s π s pour tout s dans N.

Cette association définit une application

c : G K → Z p vérifiant, pour tous g et g ′ dans G K , la relation de cocycle c(gg ′ ) = c(g) + ε(g)c(g ′ ) (où nous rappelons que ε désigne le caractère cyclotomique).
Notons K(ζ ∞ ) l'extension de K engendrée par tous les ζ s ; il s'agit d'une extension galoisienne dont le groupe de Galois, noté Γ, s'identifie à un sous-groupe ouvert de

Z × p via ε. Le groupe de Galois de l'extension K ∞ (ζ ∞ )/K(ζ ∞ ) s'identifie, quant à lui, à Z p via le cocycle c (qui, bien sûr, en restriction à Gal(K/K(ζ ∞ )
) est un morphisme de groupes). Enfin, le lemme 5.1.2 de [Liu] affirme que les extensions K ∞ et K(ζ ∞ ) sont linéairement disjointes au-dessus de K (rappellons que p est choisi différent de 2). Nous en déduisons que le groupe de Galois de l'extension K ∞ (ζ ∞ )/K est isomorphe au produit semi-direct Z p ⋊ Γ, où γ ∈ Γ agit sur Z p par multiplication par ε(γ). Soit τ 5. Typiquement, ce n'est pas en général un module de Breuil-Kisin et, de fait, la représentation V n'a pas de raison d'être de EK (uK)-hauteur finie.

un élément du sous-groupe d'inertie sauvage de G K dont l'image dans Z p ⋊ Γ est (1, 1). En particulier, nous avons ε(τ ) = 1, c(τ ) = 1 et la suite des τ p s converge vers l'identité lorsque s tend vers l'infini. Ce dernier fait permet de définir τ a pour tout élément a dans Z p .

2.2.1. Une suite exacte de type inflation-restriction. -Soit R une Z p -algèbre locale d'idéal maximal m R supposée noetherienne, séparée et complète pour la topologie définie par m R . Soit encore V une R-représentation de G K qui est de type fini comme R-module. Appellons τ V l'automorphisme de V donné par l'action de τ et, pour tout entier n positif ou nul, posons :

[n] τ,V = Id V +τ V + τ 2 V + • • • + τ n-1 V ∈ End(V )
Nous avons la relation :

(13) [a + b] τ,V = [a] τ,V + τ a V • [b] τ,V pour tous entiers a et b. Lemme 2.2.1. -L'application N → End(V ), n → [n] τ,V
s'étend de manière unique en une application continue Z p → End(V ).

Démonstration. -L'unicité du prolongement résulte de la densité de N dans Z p et de la séparation de R.

Montrons à présent l'existence. Considérons un élément a de Z p ainsi qu'une suite (a s ) de nombres entiers positifs ou nuls tels que a s ≡ a (mod p s ). Nous devons démontrer que la suite des [a s ] τ,V converge. Or, en écrivant a s+1 = a s + p s b pour un certain entier b, nous vérifions que nous avons la relation :

(14) [a s+1 ] τ,V = [a s ] τ,V + τ as • Id +τ p s + • • • + τ (b-1)p s • [p s ] τ,V .
Il suffit donc de montrer que la suite des [p s ] τ,V converge vers l'endomorphisme nul de V . Or, par continuité de l'action de G K , il existe un entier n tel que l'endomorphisme [p n ] τ,V soit congru à l'identité modulo m R . Comme le corps résiduel de R est de caractéristique p, nous en déduisons que pour tout s n, l'endomorphisme

f s = Id +[p s ] τ,V + ([p s ] τ,V ) 2 + • • • + ([p s ] τ,V ) p-1 prend ses valeurs dans m R • V . De la relation [p s+1 ] τ,V = [p s ] τ,V • f s , nous déduisons par récurrence sur s que, pour s n, l'image de [p s ] τ,V est incluse dans m s-n R • V . Nous concluons en reportant cette information dans (14).
Remarque 2.2.2. -Si a est un élément de Z p , nous utilisons encore la notation [a] τ,V pour désigner l'image de a par l'unique prolongement promis par le lemme 2.2.1. De plus, avec cette notation, la relation (13) s'étend par continuité à tout couple (a, b) d'éléments de Z p .

Introduisons l'espace V τ défini par :

V τ = x ∈ V g(x) = [ε(g)] τ,V (x), ∀g ∈ G ∞ .
Nous vérifions immédiatement que l'application τ -1 induit par restriction et corestriction un morphisme de H 0 (G ∞ , V ) dans V τ .

Lemme 2.2.3. -Pour tout élément x de V τ , l'application

γ x : G K → V, g → [c(g)] τ,V (x)
est un 1-cocycle.

Démonstration. -Soient g et g ′ deux éléments de G K . Calculons :

γ x (gg ′ ) = [c(gg ′ )] τ,V (x) (15) = [c(g) + ε(g)c(g ′ )] τ,V (x) = [c(g)] τ,V + τ c(g) V • [ε(g)c(g ′ )] τ,V (x) = γ x (g) + τ c(g) V • [ε(g)c(g ′ )] τ,V (x).
Posons

g 0 = τ -c(g) g. Un calcul immédiat donne ε(g 0 ) = ε(g) et c(g 0 ) = 0.
Cette dernière égalité signifie que g 0 est dans le sous-groupe G ∞ . Nous en déduisons la relation de commutation g 0 τ = τ ε(g 0 ) g 0 = τ ε(g) g 0 . Ainsi, en supposant en outre pour commencer que c(g ′ ) et ε(g) sont des entiers positifs ou nuls, nous obtenons :

g 0 • γ x (g ′ ) = c(g ′ )-1 i=0 g 0 τ i x = c(g ′ )-1 i=0 τ iε(g) g 0 x = c(g ′ )-1 i=0 τ iε(g) ε(g)-1 j=0 τ j x = ε(g)c(g ′ )-1 i=0 τ i x = [ε(g)c(g ′ )] τ,V (x),
la troisième égalité résultant de l'appartenance de x à V τ . Par continuité, l'égalité que nous venons d'établir vaut encore lorsque c(g ′ ) et ε(g) sont, plus généralement, des éléments de Z p . En appliquant τ c(g) à cette égalité, nous obtenons :

g • [c(g ′ )] τ,V (x) = τ c(g) V • [ε(g)c(g ′ )] τ,V (x).
En combinant ceci avec (15), nous trouvons finalement γ x (gg

′ ) = γ x (g) + g • γ x (g ′ ),
c'est-à-dire la relation de cocycle que nous devions établir.

Notons δ l'application de

V τ dans H 1 (G K , V ) qui à x associe le 1-cocycle γ x . Nous vérifions immédiatement que δ est R-linéaire. Proposition 2.2.4. -Soit V une représentation de G K à coefficients dans R. La suite de R-modules : 0 -→ H 0 (G K , V ) -→ H 0 (G ∞ , V ) τ -1 -→ V τ δ -→ H 1 (G K , V ) -→ H 1 (G ∞ , V ) est exacte.
Démonstration. -Le fait que la composée de deux flèches successives soit nulle se vérifie immédiatement. Il en va de même de l'injectivité de la flèche

H 0 (G K , V ) → H 0 (G ∞ , V ). L'exactitude en H 0 (G ∞ , V ) ne pose guère plus de difficulté en remarquant que G K est topologiquement engendré par G ∞ et τ .
Vérifions l'exactitude en V τ . Nous considérons pour cela un élément x de V τ tel que le cocycle associé γ x soit trivial en cohomologie. Cela signifie que γ x est un cobord, c'est-à-dire qu'il existe un élément y dans V tel que

γ x (g) = g(y) -y, ∀g ∈ G K .
En particulier, pour g = τ , nous obtenons x = τ (y)y et pour g ∈ G ∞ , nous trouvons g(y) = y. L'élément y appartient donc à H 0 (G ∞ , V ) et s'envoie sur x par l'application τ -1. Ceci est exactement ce qu'il fallait démontrer.

Il ne reste plus qu'à démontrer l'exactitude en

H 1 (G K , V ). Soit γ : G K → V un 1-cocycle dont la restriction à G ∞ est triviale en cohomologie. Quitte à modifier γ par un cobord -ce qui ne change pas son image dans H 1 (G K , V ) -nous pouvons supposer que γ s'annule sur G ∞ . Posons x = γ(τ ).
Nous nous proposons de démontrer que γ = γ x . Une récurrence immédiate sur n montre que :

γ(τ n ) = [n] τ,V (x)
pour tout entier naturel n et, par continuité, l'égalité précédente vaut encore si n est un entier p-adique. Soit g un élement de G K . Posons g 0 = τ -c(g) g. Nous avons ainsi c(g 0 ) = 0, ce qui signifie que g 0 appartient à G ∞ . Nous pouvons ainsi écrire :

γ(g) = γ(τ c(g) g 0 ) = [c(g)] τ,V (x) puisque γ(g 0 ) = 0. Nous en déduisons que γ(g) = γ x (g) comme annoncé. Au final, γ est dans l'image de l'application δ et l'exactitude en H 1 (G K , V ) est démontrée.
Corollaire 2.2.5. -Soit ρ une k E -représentation de G K sur laquelle τ agit trivialement. Alors nous avons une suite exacte :

0 -→ H 0 (G K , V (-1)) -→ H 1 (G K , V ) -→ H 1 (G ∞ , V )
et le premier terme non nul de cette suite s'identifie encore à H 0 (G ∞ , V (-1)).

Démonstration. -En revenant aux définitions, nous déduisons de l'hypothèse, d'une part, que

H 0 (G ∞ , V (-1)) = H 0 (G K , V (-1)) ≃ V τ et, d'autre part, que l'application τ -1 de H 0 (G ∞ , V ) dans V τ est nulle. Le corollaire 2.2.5 en découle.
Remarque 2.2.6. -L'hypothèse du corollaire 2.2.5 est satisfaite pour les représentations irréductibles de G K . En effet, nous savons que le sous-groupe d'inertie sauvage -et donc, en particulier τ -agit trivialement sur une telle représentation. Par extension, l'hypothèse du corollaire est aussi vérifiée si ρ est une représentation semi-simple ou un produit tensoriel de représentations semi-simples.

Application aux anneaux de déformations

. -Soient R 1 et R 2 deux O E -algèbres locales noetheriennes complètes, d'idéaux maximaux respectifs m 1 et m 2 . Pour i = 1, 2,
supposons que le morphisme structurel de R i induit un isomorphisme de k E sur le corps résiduel de R i . Considérons en outre un morphisme de O E -algèbres f de R 1 dans R 2 qui, sur les corps résiduels, induit l'identité de k E .

Notons k E [ε] l'anneau des nombres duaux sur k E (nous avons donc 

ε 2 = 0). Pour i = 1, 2, l'espace tangent Hom O E -alg (R i , k E [ε]) est naturellement isomorphe au dual du k E -espace vectoriel m i ̟ E R i +m 2 i . En particulier, il hérite ainsi d'une structure de k E -espace vectoriel. Notons f * : Hom O E -alg (R 2 , k E [ε]) -→ Hom O E -alg (R 1 , k E [ε]) l'application k E -
m 1 ̟ E R 1 + m 2 1 -→ m 2 ̟ E R 2 + m 2 2
est surjective. Le lemme en résulte par un argument classique.

Supposons donnés à présent une O E -algèbre locale noetherienne R, de corps résiduel k E , ainsi qu'un morphisme de O E -algèbres f de R ψ (v, t, ρ) dans R. La théorie des espaces de déformations permet d'identifier l'espace tangent de R ψ (v, t, ρ) à un sousk E -espace vectoriel de Ext 1 G K (ρ, ρ). Nous pouvons ainsi considérer que l'application tangente f * prend ses valeurs dans Ext 1 G K (ρ, ρ).

Notons f ♯ l'application composée :

f ♯ : Hom O E -alg (R, k E [ε]) f * -→ Ext 1 G K (ρ, ρ) -→ Ext 1 G∞ (ρ, ρ)
, où la deuxième flèche est induite par la restriction à G ∞ sur les représentations.

Remarque 2.2.8. -Nous verrons au paragraphe 3.2.2 qu'au moins dans les cas traités dans cet article, l'espace Ext 1 G∞ (ρ, ρ) et la composée f ♯ se décrivent explicitement en termes de ϕ-modules.

Nous déduisons du lemme 2.2.7 que l'injectivité de f ♯ implique la surjectivité de f et que la réciproque est vraie sous l'hypothèse supplémentaire que l'application naturelle de Ext 1 G K (ρ, ρ) dans Ext 1 G∞ (ρ, ρ) est injective. Le lemme ci-après donne une condition suffisante pour que cette hypothèse soit satisfaite.

Lemme 2.2.9. -Soit ρ une k E -représentation absolument irréductible de G K de dimension d.

1. Si ρ n'est pas isomorphe à ρ(1), alors l'application :

r : Ext 1 G K (ρ, ρ) -→ Ext 1 G∞ (ρ, ρ) est injective.
2. Si ρ est isomorphe à ρ(1), alors p -1 divise de K , où e K désigne l'indice de ramification absolue de K.

Remarque 2.2.10. -En combinant les deux assertions du lemme, nous obtenons l'injectivité de r sous l'hypothèse que p -1 ne divise pas le produit de l'indice de ramification absolue de K et de la dimension de ρ.

Démonstration. -Nous démontrons d'abord la première assertion.

Posons V = ρ * ⊗ρ. L'espace Ext 1 G (ρ, ρ) s'identifie canoniquement à H 1 (G, V ) lorsque G désigne l'un des deux groupes G K ou G ∞ .
Ainsi, d'après le corollaire 2.2.5, le noyau de r s'identifie à H 0 (G K , V (-1)), soit encore à Hom G K (ρ, ρ(-1)). Comme ρ est irréductible et non isomorphe à ρ(-1) d'après l'hypothèse, cet espace s'annule et le morphisme r est injectif.

Pour la deuxième assertion, notons e (resp. f ) l'indice de ramification (resp. le degré résiduel) de l'extension K/Q p . Considérons K d l'unique extension non ramifiée de K de degré d vivant à l'intérieur de Q p . D'après la classification des représentations absolument irréductibles de G K , nous savons que :

ρ ≃ Ind G K G K d (ω h df ⊗ χ nr )
où ω df désigne un caractère fondamental de Serre de niveau df , h est un entier et χ nr est un caractère non ramifié. À partir de là, la condition d'isomorphisme entre ρ et ρ(1) implique l'existence d'un entier n vérifiant la congruence :

p n h ≡ h + e • p d -1 p -1 (mod p d -1).
Il résulte de ceci que p -1 divise e • p d -1 p-1 , ce qui ne peut se produire que si p -1 divise de.

Nous en arrivons au résultat principal de cette partie. Pour l'énoncer, considérons une extension finie E de Q p et une représentation galoisienne ρ de G K de dimension finie d à coefficients dans le corps résiduel k E de E. Nous supposons que ρ n'a pas d'endomorphisme autre que les multiplications par les éléments de k × E . Soient encore v un type de Hodge-Tate, t un type galoisien ainsi que χ : G K → O ⋆ E un caractère relevant le déterminant de ρ. L'anneau R det=χ cr (v, t, ρ) qui paramètre les déformations potentiellement cristallines (6) de ρ de type (v, t) et de déterminant χ a alors un sens.

Proposition 2.2.11. -Nous reprenons les notations ci-dessus. Nous supposons en outre que ρ est absolument irréductible, n'est pas isomorphe à ρ(1) et que le type t se factorise par le groupe de Weil d'une extension modérément ramifiée de K.

Soient R une O E -algèbre locale complète noetherienne de corps résiduel

k E et f un morphisme de R det=χ cr (v, t, ρ) dans R. Soient V la R det=χ cr (v, t, ρ)-représentation universelle de G K et V R = R ⊗ R det=χ cr (v,t,ρ) V . Nous supposons que la restriction de V R à G ∞ est définie sur un sous-O E -algèbre R ′ de R, c'est-à-dire qu'il existe une R ′ - représentation V R ′ de G ∞ qui est libre comme R ′ -module et telle que V R ≃ R ⊗ R ′ V R ′ . Alors, le morphisme f prend ses valeurs dans R ′ .
Remarque 2.2.12. -Par l'équivalence de catégories du théorème 2.1.3, dire que la restriction de

V R à G ∞ est définie sur R ′ revient à dire que le ϕ-module associé M R à V R s'écrit sous la forme (R ⊗Zp O E ) ⊗ R ′ ⊗Zp O E M R ′ pour un certain ϕ-module M R ′ libre sur R ′ ⊗Zp O E .
Démonstration. -Quitte à tordre par une puissance du caractère cyclotomique, nous pouvons supposer que tous les poids de Hodge-Tate qui interviennent dans v sont positifs ou nuls. Notons h le plus grand d'entre eux. Soit L une extension finie modérément 6. La proposition 2.2.11 ci-après vaudrait encore si nous remplacions ≪ cristalline ≫ par ≪ semistable ≫. ramifiée de K par laquelle t se factorise. Pour simplifier l'exposition (7) , nous supposons que L s'obtient à partir de K en ajoutant une racine n-ième π L de π pour un entier n, premier avec p, tel que K contienne une racine primitive n-ième de l'unité. Nous sommes ainsi dans la situation du §2.1.3 (dont nous reprenons les notations) et pouvons décrire les représentations de G K qui deviennent semi-stables en restriction à G L à l'aide de modules de Breuil-Kisin munis de données de descente.

Notons par ailleurs que les représentations paramétrées par R det=χ cr (v, t, ρ) sont cristallines et de E L (u L )-hauteur inférieure ou égale à h en restriction à G ∞,L . Soit ρ ∞ la restriction de ρ à G ∞ . En copiant la démonstration du théorème 3.2 de [Kim], nous construisons une O E -algèbre complète locale noetherienne R det=χ (h, ⋆, ρ ∞ ) qui paramètre les déformations de ρ ∞ qui sont des représentations de déterminant χ dont la restriction à G ∞,L est de E L (u L )-hauteur inférieure ou égale à h. Nous avons un morphisme canonique

g : R det=χ (h, ⋆, ρ ∞ ) -→ R det=χ cr (v, t, ρ).
L'application tangente de g s'identifie à l'application canonique

r : Ext 1 G K (ρ, ρ) -→ Ext 1 G∞ (ρ, ρ) convenable restreinte et corestreinte.
Elle est donc injective d'après le lemme 2.2.9. Nous en déduisons, par le lemme 2.2.7, que g est surjective.

Par ailleurs, comme la restriction de

V R à G ∞,L est de E L (u L )-hauteur inférieure ou égale à h ; il en va de même de V R ′ . Par la propriété universelle définissant l'anneau R det=χ (h, ⋆, ρ ∞ ), la représentation V R ′ correspond à un morphisme d'anneaux f ′ ∞ : R det=χ (h, ⋆, ρ ∞ ) -→ R ′ . En outre, en notant ι l'inclusion canonique de R ′ dans R, nous déduisons du fait que V R ′ redonne V R après extension des scalaires que ι•f ′ ∞ = f •g. Pour conclure, il suffit de construire un morphisme d'anneaux f ′ de R det=χ cr (v, t, ρ) dans R ′ rendant commutatif le diagramme suivant : R det=χ cr (v, t, ρ) f * * U U U U U U U U U U U U U f ′ R det=χ (h, ⋆, ρ ∞ ) f ′ ∞ , , X X X X X X X X X X X X X X X g 3 3 3 3 f f f f f f f f f f f R R ′ 8 Ö ι 4 4 h h h h h h h h h h h h h h h h
Nous construisons f ′ par une chasse au diagramme élémentaire. Soit x un élément de R det=χ cr (v, t, ρ). Par surjectivité de g, il s'écrit sous la forme g(y) pour un certain y dans R det=χ (h, ⋆, ρ ∞ ). En outre, si y ′ est un autre antécédent de x par g, les images de y et

y ′ par ι • f ′ ∞ coïncident dans R par commutativité du diagramme. Comme ι est injectif, cela implique que f ′ ∞ (y) = f ′ ∞ (y ′ ). Nous pouvons ainsi définir f ′ (x) sans ambiguïté en posant f ′ (x) = f ′ ∞ (y).
Nous concluons enfin en vérifiant que f ′ est un morphisme d'anneaux et fait commuter le diagramme.

7. Quitte à agrandir L, dans le cas général, nous pouvons toujours supposer que L s'écrit comme la composée d'une extension non ramifiée et d'une extension du type que nous considérons ici. Pour éténdre la démonstration au cas général, il s'agit de prendre en compte la partie non ramifiée dans la donnée de descente, ce qui est standard et ne pose pas de difficultés particulières.

Remarque 2.2.13. -Dans cet article, nous appliquerons la proposition 2.2.11 uniquement pour des types v correspondant à des poids de Hodge-Tate dans {0, 1}. Or, pour de telles représentations, une autre approche basée sur le théorème 2.1.12 serait possible. L'approche que nous allons suivre, bien que probablement moins directe, nous paraît toutefois plus intéressante car susceptible de s'étendre à des espaces de déformations qui ne sont pas (potentiellement) Barsotti-Tate, mais peuvent avoir des poids de Hodge-Tate plus élevés.

Méthode de calcul des déformations potentiellement Barsotti-Tate

Nous reprenons à présent les notations de la partie 1. Notamment, la lettre F (resp. F ′ ) désigne l'unique extension non ramifiée de Q p de degré f (resp. 2f ), nous posons q = p f et notons L le corps obtenu en adjoignant à F une racine (q -1)-ième de (-p), notée π L . Afin de pouvoir appliquer la théorie de Breuil-Kisin, nous choisissons en outre un système compatible (π L,n ) de racines p n -ièmes de π L et posons π F,n = π q-1 L,n pour tout n. La famille des π F,n forme alors un système compatible de racines p n -ièmes de (-p). Nous notons F ∞ (resp. L ∞ ) l'extension de F (resp. de L) engendrée par tous les π F,n (resp. tous les π L,n ). Enfin, nous posons

G ∞ = Gal(Q p /F ∞ ).
Le but de cette partie est de présenter une méthode pour déterminer les anneaux de déformations R ψ (v 0 , t, ρ) pour des valeurs particulières de v 0 , t et ψ :

• pour tout plongement τ de F dans E, v 0τ = (0, 2) (cas potentiellement Barsotti-Tate) ; • le type galoisien t s'écrit sous la forme (η ⊕ η ′ ) |I F , où η et η ′ sont deux caractères distincts de Gal(L/F ) dans O × E ; • le choix de ψ est compatible avec les t et v 0 ci-dessus (voir relation (2), §1.1.2). Cette méthode est largement inspirée de précédents travaux de Breuil et Mézard ([BM1], [START_REF] Breuil | Multiplicités modulaires raffinées, A paraître dans Bull[END_REF]). Ces deux approches présentent cependant une différence notable : alors que Breuil et Mézard emploient des modules fortement divisibles, nous travaillons avec les modules de Breuil-Kisin, dont la manipulation nous paraît plus aisée et nous permet d'affaiblir les hypothèses.

Remarque 3.1. -Les types galoisiens t considérés ci-dessus étant non scalaires, les déformations potentiellement semi-stables paramétrées par R ψ (v 0 , t, ρ) sont en fait potentiellement cristallines.

Afin de rester plus proche de [START_REF] Breuil | Multiplicités modulaires raffinées, A paraître dans Bull[END_REF], nous allons utiliser dans la suite la version covariante du foncteur de Breuil-Kisin au lieu de sa version contravariante définie au §2. Précisément, si V est une représentation de G ∞ ou de Gal(Q p /L ∞ ), nous posons :

M(V ) = M ⋆ (V ⋆ (1)),
où V ⋆ désigne la représentation duale de V . Le foncteur M ainsi obtenu est alors covariant. À partir de maintenant, lorsque nous parlerons du ϕ-module ou du ϕ fmodule associé à V , ou, réciproquement, de la représentation associée à un ϕ-module, un ϕ f -module ou un module de Breuil-Kisin, ce sera toujours au sens du foncteur covariant M.

Le plan de cette partie est le suivant. Nous classifions au §3.1 les modules de Breuil-Kisin associés à des représentations potentiellement Barsotti-Tate de type galoisien comme ci-dessus. Nous expliquons ensuite au §3.2 comment déduire de cette classification une méthode de calcul des espaces de déformations correspondants. Cela nous amène notamment à déterminer la réduction modulo p des représentations associées à des modules de Breuil-Kisin ( §3.2.1) et à calculer une base explicite de Ext 1 G∞ (ρ, ρ), groupe qui nous permet de contrôler l'espace tangent aux déformations de la représentation ρ ( §3.2.2).

3.1. Un théorème de classification des modules de Breuil-Kisin. -Dans ce paragraphe, nous énonçons et démontrons un raffinement de la proposition 5.2 de [START_REF] Breuil | Sur un problème de compatibilité local-global modulo p pour GL 2 , A paraître dans[END_REF]. Hormis le fait que nous l'exprimons dans le langage des modules de Breuil-Kisin (et non dans celui des modules fortement divisibles), notre résultat se distingue de celui de loc. cit. par deux aspects essentiels : premièrement, nous traitons le cas d'un anneau de coefficients R qui est une O E -algèbre locale noetherienne complète plate quelconque (et non pas uniquement le cas R = O E ) et, deuxièmement, nous affaiblissons l'hypothèse de généricité sur le type galoisien. Ce cadre plus général est indispensable pour une application aux représentations non génériques. • de type de Hodge v 0 si pour tout i dans Z/f Z, l'idéal déterminant du frobenius ϕ de M (i) dans M (i+1) est l'idéal principal engendré par u e + p ; • de type galoisien t si pour tout i dans Z/f Z, il existe une base e

(i) η , e (i) η ′ de M (i) comme R[[u]]-module telle que Gal(L/F ) agit sur e (i) η par η et sur e (i)
η ′ par η ′ ; • de déterminant ψε si le déterminant de la représentation de G ∞ qui lui est associée est (ψε) |G∞ . Il est dit de type (v 0 , t, ψ) s'il satisfait aux trois propriétés ci-dessus.

Remarque 3.1.2. -Dans la définition ci-dessus, nous avons supposé que M est libre en tant que module sur R ⊗Zp S. La raison en est, d'une part, que la définition est plus simple à écrire sous cette hypothèse additionnelle et, d'autre part, que dans le théorème de classification que nous allons énoncer (voir proposition 3.1.9), l'hypothèse de liberté est absolument nécessaire. Il nous est donc paru opportun de restreindre la définition 3.1.1 à cette situation.

Remarque 3.1.3. -Soit M un module de Breuil-Kisin comme dans la définition 3.1.1. Supposons que M soit de type de Hodge v 0 et de type galoisien t. Il existe alors un élément δ de R × ainsi qu'une base w de (det M) (0) telle que

ϕ f (w) = δ • (u e + p) • ϕ(u e + p) • • • ϕ f -1 (u e + p) • w.
De plus, le prolongement canonique de la représentation galoisienne associée à M donné par le théorème 2.1.12 (et après la renormalisation du début de la partie 3) a pour déterminant ηη ′ • nr(δ -1 ) • ε.

La proposition suivante, qui est une conséquence simple des résultats de Kisin, fait le lien entre être de type (v 0 , t, ψ) pour une représentation et pour un module de Breuil-Kisin.

Proposition 3.1.4. -Supposons que R soit l'anneau des entiers d'une extension finie de E. Soit V une représentation de G F de dimension 2, libre sur R. Alors, V est de type (v 0 , t, ψ) si et seulement s'il existe un module de Breuil-Kisin M de type (v 0 , t, ψ) dont la représentation de G F associée via le foncteur M est V .

Remarque 3.1.5. -A priori, la représentation associée à M via le foncteur M n'est qu'une représentation de G ∞ . Toutefois, d'après le théorème 2.1.12, celle-ci se prolonge de façon canonique au groupe G F tout entier. L'énoncé de la proposition 3.1.4 a donc bien un sens.

Remarque 3.1.6. -Si, comme dans la proposition 3.1.4, R est l'anneau des entiers d'une extension finie de E, tout module de Breuil-Kisin sur R ⊗Zp S est automatiquement libre. Il n'y a donc ici aucune subtilité à l'hypothèse de liberté.

Démonstration. -Supposons d'abord l'existence de M. Le fait que la représentation V soit de déterminant ψε est alors immédiat. Elle est de type galoisien t car la représentation de Weil-Deligne associée à V est donnée par l'action de la donnée de descente sur (M/uM)[1/p]. Enfin, en ce qui concerne la condition sur le type de Hodge, remarquons que, d'après le lemme 1.2.2 de [START_REF] Kisin | Crystalline representations and F -crystals[END_REF], les poids de Hodge-Tate de V sont tous positifs ou nuls et, pour tout i ∈ Z/f Z, l'idéal déterminant de ϕ : M (i) → M (i+1) est engendré par (u e + p) h i où h i est la somme des poids de Hodge-Tate pour le plongement τ i . Notre hypothèse s'écrit donc h i = 1. Nous en déduisons que, pour chaque plongement τ , les poids de Hodge-Tate de V sont 0 et 1, ce qui signifie bien que V est de type de Hodge v 0 .

La réciproque se traite de manière similaire.

Par le théorème 2.1.11, le module M de la proposition 3.1.4, s'il existe, est unique à isomorphisme près. Nous obtenons ainsi une bijection canonique entre les représentations V de type (v 0 , t, ψ) et les modules de Breuil-Kisin de type (v 0 , t, ψ) sur R ⊗Zp S.

3.1.2. Genre d'un module de Breuil-Kisin. -Rappelons que S désigne l'ensemble des plongements de F dans Q p et que nous avons fixé un élément privilégié τ 0 dans S. Les autres éléments de S s'obtiennent alors en composant τ 0 par les puissances successives du Frobenius agissant sur F . Nous pouvons écrire : 

η • (η ′ ) -1 = (τ 0 • ε f ) f -1 i=0 c i p i = i∈Z/f Z (τ 0 • ϕ i • ε f ) c i et de même η ′ = (τ 0 • ε f ) f -1 i=0 b i p i = i∈Z/f Z (τ 0 • ϕ i • ε f ) b i
γ i = i-1 j=0 c f -(i-j) p j + f -1 j=i c j-i p j et β i l'équivalent pour les b i . Pour tout i, ces entiers satisfont aux congruences p i γ 0 ≡ γ i (mod p f -1) et p i β 0 ≡ β i (mod p f -1) de sorte que nous avons η ′ = τ 0 • ϕ -i • ε β i f et η = τ 0 • ϕ -i • ε γ i +β i f
. Notons que l'hypothèse η = η ′ assure que tous les entiers γ i sont compris entre 1 et e -1, ou de manière équivalente que le f -uplet (c 0 , . . . , c f -1 ) n'est ni (0, . . . , 0) ni (p -1, . . . , p -1).

Considérons à présent une O E -algèbre R que nous supposons comme habituellement locale, complète, noetherienne et de corps résiduel k E . Nous notons m R l'idéal maximal de R. Soit M un module de Breuil-Kisin sur R ⊗Zp S de type (v 0 , t, ψ). D'après la définition, il existe pour tout i dans Z/f Z, une base e

(i)
η , e (i) η ′ de M (i) dans laquelle l'action de la donnée de descente est diagonale et donnée par les caractères η et η ′ . Il en résulte que la matrice du Frobenius dans ces mêmes bases est de la forme ( 16)

G (i) = s (i) 1 u e-γ i+1 s (i) 2 u γ i+1 s (i) 3 s (i) 4 avec s (i) j ∈ R[[u e ]] pour 1 j 4 et det G (i) = (u e + p)α avec α ∈ R[[u]
] inversible. Un changement de base de M (i) compatible à l'action de Gal(L/F ) a pour matrice ( 17)

P (i) = σ (i) 1 u e-γ i σ (i) 2 u γ i σ (i) 3 σ (i) 4 avec σ (i) j ∈ R[[u e ]
] pour 1 j 4. La matrice de ϕ : M (i) → M (i+1) après changement de base s'écrit ( 18)

H (i) = P (i+1) -1 G (i) ϕ(P (i) )
Réciproquement, une famille (G (i) ) 0 i f -1 de matrices de cette forme définit un module de Breuil-Kisin et deux telles familles définissent le même module de Breuil-Kisin de type η⊕η ′ à isomorphisme près si et seulement si elles s'obtiennent par des changements de base de la forme (18) pour 0 i f -1. Le lemme suivant nous permet de définir la notion de genre d'un module de Breuil-Kisin :

Lemme 3.1.7. -Soit G = s 1 u e-γ s 2 u γ s 3 s 4 avec s j ∈ R[[u e ]] pour 1 j 4, γ un entier entre 0 et e et det G = α(u e + p) pour α dans R[[u e ]] inversible. Notons si ≡ s i (mod u e ). (i) Si s4 est inversible dans R, notons G(G) = I η , (ii) Si s1 est inversible dans R, notons G(G) = I η ′ , (iii) Sinon, notons G(G) = II.
Soit M un module de Breuil-Kisin sur R ⊗Zp S de type (v 0 , t, ψ) et (G (i) ) 0 i f -1 une famille de matrices de Frobenius pour un choix de bases de M (i) . Alors la suite des genres (G(G (i) )) 0 i f -1 est uniquement déterminée par le module de Breuil-Kisin M et est dite genre de M.

Démonstration. -Il suffit de constater que la définition de G(G) est compatible au changement de base (18).

Dans la suite, nous allons énoncer un théorème de classification (Proposition 3.1.9 des modules de Breuil-Kisin excluant certains genres très particuliers dont l'étude fera l'objet d'un article ultérieur. Définition 3.1.8. -Un module de Breuil-Kisin M sur R ⊗Zp S de type (v 0 , t, ψ) est dit de mauvais genre s'il n'a aucun facteur de genre II et si pour tout 0 i f -1

c f -1-i =        1 si G(G (i-1) ) = G(G (i) ) = I η , 0 si G(G (i-1) ) = I η et G(G (i) ) = I η ′ , p -2 si G(G (i-1) ) = G(G (i) ) = I η ′ , p -1 si G(G (i-1) ) = I η ′ et G(G (i) ) = I η .
3.1.3. Énoncé du théorème de classification. -L'objectif du paragraphe 3.1 est de démontrer les propositions 3.1.9 et 3.1.12 ci-dessous.

Proposition 3.1.9. -Nous supposons soit que R est plate sur

O E , soit que R = k E . Soit M = M (0) ⊕ • • • ⊕ M (f -1)
un module de Breuil-Kisin libre de rang 2 sur R ⊗Zp S de type galoisien η ⊕ η ′ et de type de Hodge v 0 .

Alors il existe des éléments α, α ′ dans R × ainsi que, pour tout i ∈ {0, . . . , f -1}, une base e

(i)
η , e (i) η ′ de M (i) et des paramètres a i , a ′ i (vivant dans un espace précisé ci-après) tels que :

(1) pour tout i, la donnée de descente agit sur e (i) i+1) est de l'une des formes suivantes :

η (resp. e (i) η ′ ) par le caractère η (resp. η ′ ) ; (2) la matrice G (i) pour 0 i f -2 (resp. α -1 0 0 α ′-1 G (f -1) pour i = f -1) de ϕ : M (i) → M (
-Genre I η : u e + p 0 a i u γ i+1 1 pour a i dans R + Ru e et, par convention, a ′ i = 0 ; -Genre I η ′ : 1 a ′ i u e-γ i+1 0 u e + p pour a ′ i dans R + Ru e et, par convention, a i = 0 ; -Genre II : a i u e-γ i+1 u γ i+1 a ′ i avec a i , a ′ i dans m R et a i a ′ i = -p.
De plus, si le module M n'a pas mauvais genre, on peut choisir a i et a ′ i dans R pour tout i.

Remarque 3.1.10. -Réciproquement, la donnée d'une suite de genres (g 0 , . . . , g f -1 ) et de paramètres (α, α ′ , a 0 , a ′ 0 , . . . , a f -1 , a ′ f -1 ) satisfaisant aux conditions de la proposition 3.1.9 définit un module de Breuil-Kisin de type de Hodge v 0 , de type galoisien η ⊕ η ′ et de déterminant ηη ′ • nr (-1) |II| (αα ′ ) -1 • ε, où |II| désigne le nombre de g i égaux à II.

Remarque 3.1.11. -Le résultat de la proposition 3.1.9 pour R = k E se déduit du cas R = O E . En effet, il suffit de constater que tout module de Breuil-Kisin de type galoisien η ⊕ η ′ et de type de Hodge v 0 sur k E se relève en un module de Breuil-Kisin sur O E de mêmes types puis de réduire modulo ̟ E la matrice à coefficients dans O E obtenue par la proposition 3.1.9.

Proposition 3.1.12. -Nous conservons les hypothèses de la proposition 3.1.9 et supposons de plus que M n'a pas mauvais genre. Nous nous donnons deux écritures de M correspondant à une suite de genres (g 0 , . . . , g f -1 ) et à des paramètres

(α, α ′ , a 0 , a ′ 0 , . . . , a f -1 , a ′ f -1 ) et (β, β ′ , b 0 , b ′ 0 , . . . , b f -1 , b ′ f -1
) respectivement. En notant n i le nombre de genres II parmi g 0 , . . . , g i-1 , il existe un élément λ de R × vérifiant :

pour tout i ∈ {0, . . . , f -1}, b i = λ (-1) n i a i et b ′ i = λ -(-1) n i a ′ i et, de plus : -si n f est pair, α = β, α ′ = β ′ , tandis que -si n f est impair, αα ′ = ββ ′ et λ = α β = β ′ α ′ .
Il est alors immédiat de déduire le résultat suivant :

Corollaire 3.1.13. -Dans le cadre de la proposition 3.1.12, nous avons les résultats suivants :

1. si le genre de M possède un nombre impair de facteurs II, alors M admet une unique écriture avec le paramètre α égal à 1 ;

2. si le genre de M possède un nombre pair de facteurs II et s'il existe un paramètre a i ou a ′ i qui est inversible dans R ( i.e. non nul dans le corps résiduel k E ), alors M admet une unique écriture où ce paramètre est égal à 1.

Polygones de Newton des éléments de R[[u]

]. -Avant d'entamer la démonstration de la proposition 3.1.9, nous regroupons dans ce numéro quelques résultats (classiques) sur les polygones de Newton que nous utilisons constamment dans la suite. L'hypothèse de platitude que nous avons faite sur R implique que l'uniformisante ̟ E n'est pas diviseur de 0 dans R. Nous pouvons ainsi définir une fonction v R : R → N ∪ {∞} comme suit : pour x dans R, v R (x) désigne le plus grand entier n tel que ̟ n E divise x avec la convention v R (0) = +∞. Pour x et y dans R, nous avons :

-

v R (xy) v R (x) + v R (y) avec égalité dès que x ou y est dans O E , et -v R (x + y) min(v R (x), v R (y)) avec égalité dès que v R (x) = v R (y). Définition 3.1.14. -Soit a = ∞ i=0 a i u i un élément de R[[u]].
Le polygone de Newton NP(a) de a est l'enveloppe convexe dans le plan des points de coordonnées (i, v R (a i )) pour i variant dans N et d'un point supplémentaire situé à l'infini dans la direction des ordonnées positives. Démonstration.

-Écrivons a = ∞ i=0 a i u i , b = ∞ i=0 b i u i et ab = ∞ i=0 c i u i où les a i , les b i et les c i sont des éléments de R. Pour tout entier s, nous avons c s = i+j=s a i b j et donc (19) v R (c s ) min i+j=s v R (a i ) + v R (b j ).
L'inclusion NP(ab) ⊂ NP(a) + NP(b) en résulte directement. Supposons maintenant que tous les a i appartiennent à O E . Pour démontrer l'égalité souhaitée, il suffit de vérifier que tout point extrémal de NP(a)+NP(b) est dans NP(ab). Supposons par l'absurde que ce ne soit pas le cas et notons (s, v) les coordonnées d'un point M qui est un contre-exemple. Par définition des polygones de Newton, notre supposition implique en particulier que l'inégalité (19) est stricte. Ainsi, il existe deux couples distincts (i 1 , j 1 ) et (i 2 , j 2 ) avec i (ii) Si s1 est inversible dans R i.e. G(G) = I η ′ , posons

1 + j 1 = i 2 + j 2 = s et v = v R (a i 1 b j 1 ) = v R (a i 1 ) + v R (b j 1 ) = v R (a i 2 b j 2 ) = v R (a i 2 ) + v R (b j 2 ) < v R (c s ). Les points i 1 + j 2 , v R (a i 1 ) + v R (b j 2 ) , i 2 + j 1 , v R (a i 2 ) + v R (b j 1 )
B(G) = s 1 u e-γ s 2 -a ′ s 1 u e +p u γ s 3 s 4 -u e a ′ s 3 u e +p
où a ′ dans R est défini par a ′ ≡ s 2 /s 1 = u -e s 4 /s 3 (mod u e + p). Alors 

G = B(G) 1 a ′ u e-γ 0 u e + p . (iii) Sinon G(G) = II et posons B(G) = u e s 2 -a ′ s 1 u e +p u e-γ
σ 1 u e-γ σ 2 u γ σ 3 σ 4 avec σ i ∈ R[[u e ]].
Le cas (ii) est analogue. 

I t = ∞ i=0 a i u ei , a i ∈ R, v R (a i ) t -pi p-1 , I ϕ t = ∞ i=0 a i u ei , a i ∈ R, v R (a i ) t -i p-1 . En particulier, nous avons ϕ(I t ) ⊂ I ϕ t . Lemme 3.1.17. -Supposons t ∈ N. Soit x ∈ R[[u p ]] tel que (u e + p)x ∈ I ϕ t . Alors x ∈ I t .
Démonstration. -Si (u e + p)x ∈ I ϕ t , son polygone de Newton est inclus dans la région du plan D = (a, b) ∈ R 2 , b t -a p-1 . D'après le lemme 3.1.15, le polygone de Newton de x est inclus dans le translaté (-1, 0) + D, donc en notant x = ∞ i=0 a i u ei , nous avons v R (a i ) t -i+1 p-1 pour tout i 0. Nous en tirons v R (a i ) > t -pi p-1 pour tout i 0 et, par suite, x ∈ I t . -le polygone de Newton d'un élément de u e I ϕ t est inclus dans

(a, b) ∈ R 2 | a 1, b 0, b t -a-1 p-1 ,
-le polygone de Newton d'un élément de ϕ(

I t ∩ u e R[[u e ]]) est inclus dans (a, b) ∈ R 2 | a p, b 0, b t -a p-1 ,
-le polygone de Newton d'un élément de

p̟ t+1 E R[[u e ]] est inclus dans {0} × [t + 1 + v R (p), ∞[.
Ainsi le polygone de Newton de (u e + p)x est inclus dans l'enveloppe convexe des trois régions précédentes, représentées en gris sur la figure ci-après.

0 1 p -1 p (p-1)t (p-1)t + 1 t + 1 + v R (p) t + 1 t t -p (p-1) 2 t -p p-1
Il suit alors du lemme 3.1.15 que le polygone de Newton de x est inclus dans la région délimitée par le trait en gras. Le lemme s'en déduit.

Lemme 3.1.19. -Soit t ∈ N et P ′ = σ ′ 1 u e-γ ′ σ ′ 2 u γ ′ σ ′ 3 σ ′ 4 ∈ GL 2 (R[[u]]) avec 0 γ ′ e, σ ′ j ∈ R[[u e ]] pour 1 j 4 et σ ′ 1 ≡ σ ′ 4 ≡ 1 (mod u e , I t ), σ ′ 2 ≡ σ ′ 3 ≡ 0 (mod I t ). Soit c ∈ {0, . . . , p -1} tel que 0 γ = pγ ′ -ec e. Alors (i) Si G = u e + p 0 au γ 1 avec a ∈ R, alors G(G) = I η = G(Gϕ(P ′ )) et la matrice B(Gϕ(P ′ )) est de la forme (20) B(Gϕ(P ′ )) = σ 1 u e-γ σ 2 u γ σ 3 σ 4 avec        σ 1 ≡ σ 4 ≡ 1 (mod u e , I t+1 ), σ 2 ≡ σ 3 ≡ 0 (mod ̟ E , u e ), σ 2 ≡ 0 (mod I t+1 ), σ 3 ≡ 0 (mod I t ).
De plus,

σ 3 ≡    0 (mod I t+1 ) si c ∈ {1, p -1}, ϕ(σ ′ 3 ) (mod I t+1 ) si c = 1, -a 2 ϕ(σ ′ 2 ) (mod I t+1 ) si c = p -1. (ii) Si G = 1 a ′ u e-γ 0 u e + p , avec a ′ ∈ R, alors G(G) = I η ′ = G(Gϕ(P ′ )) et la matrice B(Gϕ(P ′ )) est de la forme (21) B(Gϕ(P ′ )) = σ 1 u e-γ σ 2 u γ σ 3 σ 4 avec        σ 1 ≡ σ 4 ≡ 1 (mod u e , I t+1 ), σ 2 ≡ σ 3 ≡ 0 (mod ̟ E , u e ), σ 3 ≡ 0 (mod I t+1 ), σ 2 ≡ 0 (mod I t ).
De plus,

σ 2 ≡    0 (mod I t+1 ) si c ∈ {0, p -2}, ϕ(σ ′ 2 ) (mod I t+1 ) si c = p -2, -a ′2 ϕ(σ ′ 3 ) (mod I t+1 ) si c = 0. (iii) Si G = a u e-γ u γ a ′ , avec a, a ′ ∈ R et aa ′ = -p alors G(G) = II = G(Gϕ(P ′ )) et la matrice B(Gϕ(P ′ )) est de la forme (22) B(Gϕ(P ′ )) = σ 1 u e-γ σ 2 u γ σ 3 σ 4 avec    σ 1 ≡ σ 4 ≡ 1 (mod u e , I t+1 ), σ 2 ≡ σ 3 ≡ 0 (mod ̟ E , u e ), σ 2 ≡ σ 3 ≡ 0 (mod I t+1 ).
Démonstration. -Nous traitons en détails le cas (i), le cas (ii) est similaire. Un premier calcul donne

Gϕ(P ′ ) = (u e + p)ϕ(σ ′ 1 ) u e-γ (u e + p)u e(p-1-c) ϕ(σ ′ 2 ) u γ (aϕ(σ ′ 1 ) + u ec ϕ(σ ′ 3 )) au e(p-c) ϕ(σ ′ 2 ) + ϕ(σ ′ 4 )
.

Remarquons que au

e(p-c) ϕ(σ ′ 2 ) + ϕ(σ ′ 4 ) ≡ σ ′ 4 (mod m R[[u e ]] ) et det P ′ ≡ σ ′ 1 σ ′ 4 (mod m R[[u e ]] ) est inversible car P ′ ∈ GL 2 (R[[u]]). Donc σ′ 4 est inversible dans R et G(Gϕ(P ′ )) = I η . Il reste à montrer que B(Gϕ(P ′ )) satisfait (20). Soit b ∈ R tel que b ≡ aϕ(σ ′ 1 ) + u ec ϕ(σ ′ 3 ) au e(p-c) ϕ(σ ′ 2 ) + ϕ(σ ′ 4 ) (mod u e + p).
Nous avons ainsi (u e + p)σ i ≡ 0 (mod I ϕ f ) pour i = 2, 3. Comme dans le cas (i), nous obtenons b ≡ a (mod

̟ t E R) et b ′ ≡ a ′ (mod ̟ t E R) et ab ′ ≡ a ′ b ≡ -p (mod ̟ t E R
). Donc (u e + p)(σ i -1) ≡ 0 (mod I ϕ t ) pour i = 1, 4. Le lemme 3.1.17 donne alors σ 1 ≡ σ 4 ≡ 1 (mod I t+1 ), σ 2 ≡ σ 3 ≡ 0 (mod I t+1 ).

Les définitions de b et b ′ permettent d'obtenir les autres congruences annoncées.

Soit M un module de Breuil-Kisin de rang 2 de genre η ⊕ η ′ et de Frobenius donné par la famille fixée des matrices G = (G (0) . . . , G (f -1) ). Convenons d'étendre les suites (γ s ) et (G (s) ) en des suites périodiques de période f définies sur N tout entier. Soit la suite de matrices (P (s) ) s∈N définies par

P (0) = Id, B(G (s) ϕ(P (s) )) = ∆ (s) P (s+1) avec P (s+1) = σ (s+1) 1 u e-γ s+1 σ (s+1) 2 u γ s+1 σ (s+1) 3 σ (s+1) 4 , où σ (s+1) j ∈ R[[u e ]] (1 j 4), σ (s+1) 1 ≡ σ (s+1) 4
≡ 1 (mod u e ) et ∆ (s) est une matrice diagonale à coefficients dans R.

Lemme 3.1.20. -Supposons que M n'ait pas mauvais genre. Alors, pour tout 0 j f -1 la suite des P (j+f n) converge vers une matrice R (j) dans GL 2 (R[[u]]) quand n tend vers l'infini.

Démonstration. -Étant donné deux nombres entiers s et t ainsi qu'une matrice M prenant la forme :

M =
σ 1 u e-γs σ 2 u γs σ 3 σ 4 convenons de dire que M est t-proche de l'identité si :

σ 1 ≡ σ 4 ≡ 1 (mod I t , u e ) et σ 2 ≡ σ 3 ≡ 0 (mod I t ).
Une récurrence sur s, à partir du lemme 3.1.19, montre que, pour tout entier s, la matrice Q (s) = P (s+f ) • (P (s) ) -1 est t-proche de l'identité pour t égal à la partie entière de s f . Ceci permet clairement de conclure.

Sous les hypothèses du lemme 3.1.20, nous obtenons par passage à la limite des matrices R (i) = lim n→∞ P (i+f n) , 0 i f -1 qui définissent un module de Breuil-Kisin isomorphe à M de Frobenius donné par la famille de matrices :

H (i) = (R (i+1) ) -1 • G (i) • ϕ(R (i) ) (0 i f -1)
qui prennent toutes l'une des trois formes suivantes :

-∆ (i) u e + p 0 au γ i+1 1 -∆ (i) a u e-γ i+1 u γ i+1 b -∆ (i) 1 u e-γ i+1
0 u e + p où ∆ (i) est une matrice diagonale à coefficients dans R. Une dernière normalisation des vecteurs de base pour éliminer ces matrices diagonales 0 i < f -2 permet d'obtenir l'écriture canonique suivante : Proposition 3.1.21. -Soit M = M (0) × . . . × M (f -1) un module de Breuil-Kisin libre de rang 2 sur R ⊗S de type η ⊗ η ′ et de type de Hodge v 0 satisfaisant les hypothèses du lemme 3.1.19. Alors il existe α, α ′ inversibles dans R et pour tout i ∈ {0, . . . , f -1}, il existe une base e i+1) soit de l'une des trois formes suivantes :

(i) η , e (i) η ′ de M (i) compatible à l'action de Gal(K/F ) telle que si 0 i f -2 la matrice G (i) (resp. si i = f -1, la matrice α -1 0 0 α ′-1 G (i) ) de ϕ : M (i) → M (
-Genre I η :

u e + p 0 a i u γ i+1 1 pour a i ∈ R, -Genre I η ′ : 1 a ′ i u e-γ i+1 0 u e + p pour a ′ i ∈ R, -Genre II : a i u e-γ i+1 u γ i+1 a ′ i avec a i , a ′ i ∈ m R et a i a ′ i = -p.
Comparons enfin deux écritures obtenues via la proposition 3.1.9 d'un même module M. Pour la commodité du lecteur, nous rappelons ici l'énoncé (proposition 3.1.12) qu'il nous faut montrer.

Proposition 3.1.22. -Nous conservons les hypothèses de la proposition 3.1.21 et nous supposons données deux écritures de M correspondant à une suite de genres (g 0 , . . . , g f -1 ) et à des paramètres (α, α ′ , a 0 , a ′ 0 , . . . ,

a f -1 , a ′ f -1 ) et (β, β ′ , b 0 , b ′ 0 , . . . , b f -1 , b ′ f -1 ) respectivement.
En notant n i le nombre de II parmi g 0 , . . . , g i-1 , il existe un élément λ de R × vérifiant :

pour tout i ∈ {0, . . . , f -1}, b i = λ (-1) n i a i et b ′ i = λ -(-1) n i a ′ i et, de plus : -si n f est pair, α = β, α ′ = β ′ , tandis que -si n f est impair, αα ′ = ββ ′ et λ = α β = β ′ α ′ . Démonstration. -Soit (G (i) ) 0 i f -1 et (H (i)
) 0 i f -1 les matrices correspondant aux deux écritures de M. Il existe une famille (P (i) ) 0 i f -1 de matrices de passage qui préservent la donnée de descente et vérifient :

(23) (P (i+1) ) -1 G (i) ϕ(P (i) ) = H (i) pour 0 i f -1.
Un examen attentif de l'algorithme de réduction de la preuve de la proposition 3.1.21, montre que les P (i) sont nécessairement de la forme

P (i) = λ i 0 0 µ i pour 0 i f -1.
Les égalités (23) conduisent pour 0 i f -1 :

-si g i = h i = I η ou I η ′ , si 0 i f -2 : a i = µ i+1 b i /λ i , a ′ i = λ i+1 b ′ i /µ i , λ i = λ i+1 , µ i = µ i+1 , si i = f -1 : a f -1 = β ′ µ 0 b f -1 /(α ′ f -1 ), a ′ f -1 = βλ 0 b ′ f -1 /(αµ f -1 ) µ 0 = α ′ µ f -1 /β ′ , λ 0 = αλ f -1 /β. -si g i = h i = II, si 0 i f -2 : a i = λ i+1 b i /λ i , a ′ i = µ i+1 b ′ i /µ i , λ i = µ i+1 , µ i = λ i+1 , si i = f -1 : a f -1 = βλ 0 b f -1 /(αλ f -1 ), a ′ f -1 = β ′ µ 0 b ′ f -1 /(α ′ µ f -1 ) µ 0 = α ′ λ f -1 /β ′ , λ 0 = αµ f -1 /β
En posant λ = λ 0 /µ 0 ∈ R × , nous obtenons le résultat annoncé.

3.2. Application au calcul d'espaces de déformations. -Adaptant les idées de [START_REF] Breuil | Multiplicités modulaires raffinées, A paraître dans Bull[END_REF] à notre situation plus générale, nous expliquons, dans ce numéro, comment utiliser les résultats de la partie précédente pour déterminer les espaces de déformations R ψ (v 0 , η ⊕ η ′ , ρ) avec ρ absolument irréductible et v 0 , t fixés comme au début de la partie 3.

Nous commençons par rappeler ou établir quelques résultats préparatoires concernant, d'une part, le calcul de la représentation résiduelle d'une représentation donnée par un module de Breuil-Kisin et, d'autre part, le calcul explicite de certains groupes d'extensions de représentations de G ∞ .

3.2.1. Calcul de la représentation résiduelle. -Soient R une O E -algèbre locale complète noetherienne de corps résiduel k E et M un module de Breuil-Kisin sur R ⊗Zp S libre de rang 2, avec donnée de descente de L à F . Comme R est en particulier une W -algèbre, rappelons la décomposition ( 11)

M = M (0) ⊕ . . . ⊕ M (f -1) .
Nous supposons de plus que chaque M (i) (pour i entre 0 et f -1) est muni d'une base (e

(i)
η , e (i) η ′ ) sur laquelle la donnée de descente agit par η ⊕ η ′ et telle que la matrice G (i) du Frobenius ϕ : M (i) -→ M (i+1) est donnée par l'une des trois formes de la proposition 3.1.21.

Notons ρ M la R-représentation libre de rang 2 de G ∞ associée à M et ρ M sa réduction modulo l'idéal maximal de R. Dans cette partie, nous expliquons comment s'assurer que la k E -représentation résiduelle ρ M est irréductible et, lorsqu'elle l'est, comment la déterminer complètement. À partir de maintenant, pour alléger les notations, nous noterons φ à la place de ϕ f .

Soit M L = O E,L ⊗ S L M le ϕ-module sur R ⊗Zp O E,L (avec action semi-linéaire de Gal(L/F )) associé à ρ M|G L∞ et soit M F le ϕ-module sur R ⊗Zp O E,F associé à ρ M .
D'après la partie 2.1.3 (relation ( 12)), M F est l'ensemble des points fixes de M L par l'action de Gal(L/F ) : pour tout i entre 0 et f -1, nous avons M (i)

F = H 0 (Gal(L/F ), M (i) L ). De l'écriture de M, nous déduisons Proposition 3.2.1. -Pour tout i entre 0 et f -1, la famille (1 ⊗ u e-γ i -β i e (i) η , 1 ⊗ u e-β i e (i) η ′ )
est une base de M (i)

F comme R ⊗W,ι•ϕ -i O E,F -module. Dans ces bases, la matrice B (i) (resp., si i = f -1, la matrice α -1 0 0 α ′-1 B (i) ) du Frobenius M (i) F dans M (i+1) F est :
-Genre I η :

v d i (v + p) 0 a i v d i v p-1 v -b f -1-i ; -Genre I η ′ : v d i a ′ i v p 0 v p-1 (v + p) v -b f -1-i ; -Genre II : a i v d i v p v d i a ′ i v p-1 v -b f -1-i . où v = u e et d i = p -1 -c f -1-i pour tout i dans {0, . . . , f -1}. Démonstration. -Soit i un indice entre 0 et f -1. Tout élément de M (i)
L s'écrit de manière unique sous la forme λe

(i) η + λ ′ e (i) η ′ où λ et λ ′ s'écrivent eux-mêmes respective- ment λ = j∈Z a j u j et λ ′ = j∈Z a ′ j u j avec a j , a ′ j dans R et lim j→-∞ a j = lim j→-∞
a ′ j = 0. Avec ces notations, un calcul immédiat montre que, pour tout g ∈ Gal(L/K), nous avons g λe

(i) η + λ ′ e (i) η ′ = µe (i) η + µ ′ e (i) η ′ avec µ = j∈Z a j • ϕ -i ε f (g) j+β i +γ i • u j et µ ′ = j∈Z a ′ j • ϕ -i ε f (g) j+β i • u j .
Ainsi λe

(i) η + λ ′ e (i)
η ′ est fixe par Gal(L/F ) si, et seulement si les seuls coefficients non nuls dans λ (resp. λ ′ ) sont ceux pour lesquels j + β i + γ i (resp. j + β i ) est divisible par e. Ceci démontre que la famille indiquée est une base de M (i) F . Les matrices du Frobenius dans ces nouvelles bases sont obtenues en multipliant les matrices de la proposition 3.1.9 à gauche par

u γ i+1 0 0 1 u β i+1 -e et à droite par u -pγ i 0 0 1 u -p(β i -e) puis en utilisant la formule γ i+1 -pγ i = -ec f -1-i et son équivalent pour les b i .
Par le théorème 2.1.6 et la proposition 2.1.7, ρ M est aussi la R-représentation associée à M (0)

F muni d'une structure de φ-module sur R ⊗W O E,F par l'endomorphisme ϕ f M F
que, par un léger abus de notations, nous notons encore φ. Avec les notations de la proposition 3.2.1, pour tout i entre 0 et f -1, B (i) désigne la matrice associée à ϕ de M (i)

F dans M (i+1) F
. Ainsi, dans la base de M (0) F donnée par la proposition 3.2.1, la matrice à coefficients dans R ⊗W O E,F de l'endomorphisme φ est :

(24) B = B (f -1) • ϕ(B (f -2) ) • • • ϕ f -2 (B (1) ) • ϕ f -1 (B (0) ).
Remarquons que, d'après la forme des matrices B (i) dans la proposition 3.2.1, les coefficients de la matrice B obtenue par la formule (24) sont en fait dans

R ⊗W S F = R[[v]].
Par construction (voir §2.1.1), la k E -représentation ρ M est la k E -représentation de 

G ∞ associée à k E ⊗ R M ( 
T (B) = φ(a) + d • φ(c) c , ∆(B) = φ(c) • (ad -bc), avec la convention φ(c) c = 0 si c = 0.
(i) (p f + 1)(val v (T (B)) > p f val v (∆(B)) ; (ii) val v (∆(B)) ≡ 0 (mod p f + 1).
Lorsque c'est le cas, notons h et δ les éléments respectifs de Z et k × E définis par la congruence ∆(B) ≡ -δv h (mod v h+1 ) ( i.e. -δv h est le terme de plus bas degré de ∆(B)). Alors, il existe une base de

k E ⊗ R M (0)
F dans laquelle la matrice de φ est :

0 δv h 1 0 et la représentation ρ M est isomorphe à Ind G F G F ′ ω -h 2f • nr ′ (δ -1
) ⊗ ω (rappelons que ω désigne le caractère cyclotomique).

Remarque 3.2.3. -Supposons que les paramètres a i et a ′ i correspondant à M introduits dans la proposition 3.1.21 sont tous dans l'idéal maximal de R et que le genre de M fait intervenir un nombre pair de composantes II. Alors, la matrice B est le produit de matrices diagonales et d'un nombre pair de matrices anti-diagonales. Par conséquent, elle est diagonale et la représentation résiduelle ρ M est réductible.

Calcul de Ext 1

G∞ (ρ, ρ). -Nous fixons dans ce paragraphe ρ une k Ereprésentation irréductible de dimension 2 de G F . Une telle représentation est de la forme Ind

G F G F ′ ω -h 2f ⊗ nr ′ (δ -1 ) ⊗ ω, pour un certain entier h non nul modulo p f + 1 et δ un élément de k × E .
L'objectif de cette partie est de décrire l'espace Ext 1 G∞ (ρ, ρ) des extensions de ρ par elle-même dans la catégorie des représentations de G ∞ . D'après le lemme 2.2.9 et la remarque qui le suit (avec d = 2 et p 5), cet espace contient (canoniquement) celui des extensions de ρ par elle-même comme représentation de G F . D'après le théorème 2.1.6 (pour R = k E ), la catégorie des k E -représentations de G ∞ de dimension finie est équivalente à celle des φ-modules étales sur k E ((v)). Soit D(ρ) le φ-module étale sur k E ((v)), de dimension 2, associé à ρ. Ainsi l'espace Ext 1 G∞ (ρ, ρ) que nous voulons décrire est isomorphe à l'espace Ext 1 (D(ρ), D(ρ)) des extensions de D(ρ) par lui-même dans la catégorie des φ-modules étales sur k E ((v)). L'application

M 2 (k E ((v))) Im(X →Bφ(X)-XB) -→ Ext 1 (D(ρ), D(ρ))
A -→ classe de D A est alors un isomorphisme de k E -espaces vectoriels.

Il s'agit maintenant de déterminer l'image de l'application de M 2 (k E ((v))) dans luimême qui envoie une matrice X sur la matrice Bφ(X) -XB. Nous pouvons supposer que la base B a été choisie de façon à ce que la matrice B du Frobenius φ dans B soit de la forme

B = 0 δv h 1 0 , avec δ dans k × E , 0 h q 2 -2 et h ≡ 0 (mod q + 1). Proposition 3.2.4. -L'application M 2 (k E ((v))) Im(X →Bφ(X)-XB) -→ k E ((v)) Im(v (q-1)h φ 2 -Id) ⊕ k E ((v)) Im(φ 2 -Id) a b c d -→ 1 δv h (φ(a) + d) , 1 δv h b + φ(c)
est un isomorphisme de k E -espaces vectoriels.

Lemme 3.2.5. -

(i) Le quotient k E ((v))
Im(v (q-1)h φ 2 -Id) a pour base v n , n < -h q+1 et n ≡ (q -1)h (mod q 2 ) .

(ii) Le quotient k E ((v)) Im(φ 2 -Id) a pour base v n , n < 0 et n ≡ 0 (mod q 2 ) ∪ {1} .

Démonstration. -Soit m un entier relatif. Notons f m l'application k E -linéaire de k E ((v)) dans lui-même qui envoie x sur v m φ(x)x. Notons M le rationnel -m q 2 -1 , point fixe de z → q 2 z + m. Nous traitons simultanément les deux cas du lemme en démontrant que le quotient k E ((v))/Imf m a pour base l'ensemble

B m = v n , n < M et n ≡ m (mod q 2 ) ∪ v M , si M est entier .
Remarquons que dans le point (i), M ne peut être un entier à cause de l'hypothèse h ≡ 0 (mod q + 1).

Les égalités et inégalités

(25) ∀x ∈ k E ((v)) val(x) > M =⇒ val v (f m (x)) = val v (x) > M val(x) < M =⇒ val v (f m (x)) = m + q 2 val v (x) < M
assurent la continuité de f m et que l'image de f m est fermée. Notons que, comme v M est dans le noyau de f m , tout élément de l'image de f m est de valuation différente de M et a un antécédent de valuation différente de M . Nous affirmons que, pour tout entier n strictement supérieur à M , v n est dans l'image de f m . En effet, la suite (n i ) i∈N définie par n 0 = n et n i+1 = q 2 n i + m tend vers +∞ et la sériei 0 v n i ainsi définie a pour image v n par f m . Ainsi, toute classe dans k E ((v))/Imf m a un représentant qui est un polynôme de Laurent de degré inférieur ou égal à M .

De plus, pour tout entier n, l'élément v m+q 2 nv n est dans l'image de f m . Soit n un entier strictement inférieur à M et congru à m modulo q 2 . Alors l'entier

n ′ = n-m q 2 est strictement compris entre n et M et les puissances v n et v n ′ coïncident dans k E ((v))/Imf m . Ceci implique que l'ensemble B m engendre k E ((v))/Imf m .
Pour démontrer enfin que la famille B m est libre, il nous suffit enfin de remarquer que tout élement de Imf m de valuation inférieure ou égale à M est en fait de valuation strictement inférieure à M et congrue à m modulo q 2 . Remarque 3.2.6. -Avec les notations de la démonstration précédente, nous pouvons déterminer pratiquement l'image d'une série a i v i dans k E ((v))/Imf m en procédant comme suit :

(1) nous tronquons les puissances strictement supérieures à -m q 2 -1 ; (2) pour tout n strictement inférieur à -m q 2 -1 , nous remplaçons v m+q 2 n par v n , jusqu'à avoir fait disparaître toutes les puissances congrues à m modulo q 2 . 3.2.3. Exposé sommaire de la stratégie. -Soient ρ une représentation irréductible de G F dans GL 2 (k E ), t un type galoisien de la forme η ⊕ η ′ et v 0 le type de Hodge ((0, 2)) τ ∈S choisis comme au début de la partie 3. Dans cette partie, nous présentons une méthode générale de détermination de l'anneau de déformations R ψ (v 0 , t, ρ). Nous appliquons notamment cette méthode dans la partie 4 lorsque F est de degré 2 sur Q p .

Rappelons que le caractère ψ est fixé et satisfait une relation de compatibilité (2) avec v 0 et t. Pour nos choix de v 0 et t, ψ est donc de la forme

(26) ψ = ηη ′ • nr(-δ -1 ) où δ est un élément dans O × E , fixé.
3.2.3.1. Première étape : les engeances. -Dans [START_REF] Kisin | Moduli of finite flat group schemes, and modularity[END_REF] puis dans [START_REF] Kisin | The structure of potentially semi-stable deformation rings[END_REF], Kisin démontre qu'il existe des variétés définies sur O E qui paramètrent les modules de Breuil-Kisin de hauteur h (pour un certain entier h fixé) à coefficients dans des O E -algèbres locales complètes et noetheriennes variables qui sont munis éventuellement de structures supplémentaires. Les fibres spéciales de ces variétés sont des variétés algébriques quasiprojectives réduites définies sur k E que Pappas et Rapoport appelent variétés de Kisin dans [PR]. 8) variété de Kisin dont les k-points s'identifient, pour toute extension finie k de k E , à l'ensemble des modules de Breuil-Kisin sur k ⊗ Zp S de type (v 0 , t, ψ) qui sont inclus dans k ⊗ k E M(ρ |G ∞,L ) muni de sa donnée de descente.

Étant donnés une représentation irréductible

ρ : G F → GL 2 (k E ) et un type galoisien t = η ⊕ η ′ , notons GR ρ,ψ,v 0 ,t la (
8. Les variétés de Kisin apparaissant naturellement comme des sous-schémas localement fermés et réduits d'espaces projectifs, la donnée de leurs ensembles de points dans toutes les extensions finies de kE suffit à les déterminer entièrement. Définition 3.2.7. -Soient ρ : G F → GL 2 (k E ) une représentation irréductible de G F et t = η ⊕ η ′ un type galoisien. Si E ′ est une extension finie de E, un k E ′ -point de la variété de Kisin GR ρ,ψ,v 0 ,t est appelé une E ′ -engeance de type t de ρ.

Remarque 3.2.8. -Lorsque E ′ est E et que la situation ne prête pas à confusion, nous dirons simplement engeance à la place de E-engeance.

De la proposition 3.1.9 appliquée à R = k E et du fait que ρ est absolument irréductible, nous déduisons que la donnée d'une engeance est équivalente à la donnée d'un genre (g 0 , . . . , g f -1 ) et d'une famille de paramètres (α, α ′ , a 0 , a ′ 0 , . . . , a f -1 , a ′ f -1 ) vivant dans k E , satisfaisant aux conditions de la proposition 3.1.9 et considérés modulo la relation d'équivalence décrite par la proposition 3.1.12.

La première étape consiste à déterminer la liste des engeances de type t de la représentation ρ. Pour y parvenir, une possibilité consiste à parcourir tous les genres et paramètres possibles puis, en utilisant la proposition 3.2.2, à sélectionner ceux donnant lieu à une représentation résiduelle isomorphe à ρ. Cette étape est entièrement algorithmique et nous l'avons implémentée en sage. Nous renvoyons le lecteur à la page web https://cethop.math.cnrs.fr:8443/home/pub/14 pour une présentation rapide de notre logiciel sage ainsi que des exemples de calculs.

Remarquons toutefois qu'il devrait être également possible de déterminer la liste des engeances en revenant à la définition et en calculant la variété de Kisin GR ρ,ψ,v 0 ,t . Cette approche sera développée dans un travail ultérieur.

Deuxième étape : construction d'une famille de morphismes

. -Soit E ′ une extension finie de E. Pour chaque E ′ -engeance ξ ′ = ((g i ) i , (α, α ′ ), (a i , a ′ i ) i ) de type t de ρ, nous définissons une O E ′ -algèbre locale complète noetherienne R ξ ′ ,E ′ , de corps résiduel k E ′ , ainsi qu'un module de Breuil-Kisin M ξ ′ ,E ′ sur R ξ ′ ,E ′ comme suit :
(a) Supposons que le genre de ξ ′ comporte un nombre impair de facteurs II. Nous posons :

R ξ ′ ,E ′ = O E ′ [[X i , Y i , i ∈ II, T i , i ∈ II]] (X i Y i + p, i ∈ II) .
Par la remarque 3.1.10, nous obtenons un module de Breuil-Kisin M ξ ′ ,E ′ sur R ξ ′ ,E ′ en remplaçant dans les formules de la proposition 3.1.9 :

• α par 1 et α ′ par δ ; • pour les indices i de genre I η , a i par [a i ] + T i ; • pour les indices i de genre I η ′ , a ′ i par [a ′ i ] + T i ; • pour les indices i de genre II, a i par X i et a ′ i par Y i . (b)
Supposons que le genre de ξ ′ comporte un nombre pair de facteurs II. Alors, d'après la remarque 3.2.3, le genre de ξ ′ possède aussi un facteur (de genre I η ou I η ′ ) avec un paramètre non nul dans k E . Fixons i 0 l'indice d'un tel facteur. Nous posons :

R ξ ′ ,E ′ = O E ′ [[X i , Y i , i ∈ II, T i , i ∈ II ∪ {i 0 }, Z]] (X i Y i + p, i ∈ II) .
Par la remarque 3.1.10, nous obtenons un module de Breuil-Kisin M ξ ′ ,E ′ sur R ξ ′ ,E ′ en remplaçant dans les formules de la proposition 3.1.21 :

• α par [α] + Z et α ′ par -δ([α] + Z) -1 ; • a i 0 (si i 0 est de genre I η ) ou a ′ i 0 (si i 0 est de genre I η ′ ) par 1 ; • pour les indices i = i 0 de genre I η , a i par [a i ] + T i ; • pour les indices i = i 0 de genre I η ′ , a ′ i par [a ′ i ] + T i ; • pour les indices i de genre II, a i par X i et a ′ i par Y i . Dans les deux cas (a) et (b) ci-dessus, la R ξ ′ ,E ′ -représentation de G F associé à M ξ ′ ,E ′ est de déterminant ψε et se réduit sur ρ modulo l'idéal maximal. Nous obtenons donc un morphisme de O E ′ -algèbres (locales) f ξ ′ ,E ′ de O E ′ ⊗ O E R ψ (ρ) dans R ξ ′ ,E ′ , qui induit l'identité sur les corps résiduels k E ′ . Lemme 3.2.9. -Pour tout E ′ -engeance ξ ′ , le morphisme f ξ ′ ,E ′ se factorise par O E ′ ⊗ O E R ψ (v 0 , t, ρ).
Démonstration. -Convenons de dire qu'un morphisme de

O E ′ -algèbres α : O E ′ ⊗ O E R ψ (ρ) → Z p est de type (v 0 , t, ψ) si la Q p -représentation de G F qu'il définit est de type (v 0 , t, ψ). La O E ′ -algèbre O E ′ ⊗ O E R ψ (v 0 , t, ρ) est alors égale au quotient de O E ′ ⊗ O E R ψ (ρ) par l'idéal I = ∩ ker f où l'intersection est étendue à tous les morphismes f de type (v 0 , t, ψ) (voir la remarque 1.1.1).
Pour démontrer le lemme, il suffit de démontrer que tout élément x dans I s'envoie sur 0 par f ξ ′ ,E ′ . Considérons un élément x dans I et posons y = f ξ ′ ,E ′ (x). Soit également g : R ξ ′ ,E ′ → Q p un morphisme de O E ′ -algèbres. La composée g • f ξ ′ ,E ′ est alors de type (v 0 , t, ψ). Nous déduisons qu'elle s'annule sur x, ce qui revient à dire que g(y) = 0. Ainsi y appartient à l'idéal J = ∩ ker g où l'intersection est étendue à tous les morphismes g comme ci-dessus. Or, à partir de la forme explicite de R ξ ′ ,E ′ , nous déduisons aisément que l'idéal J est nul. Ainsi nous avons bien démontré que y = f ξ ′ ,E ′ (x) = 0 comme annoncé.

Notons fξ

′ ,E ′ : O E ′ ⊗ O E R ψ (v 0 , t, ρ) → R ξ ′ ,E ′ l'application correspondant à la factori- sation du lemme précédent. Soit aussi f E ′ l'application produit ξ ′ f ξ ′ ,E ′ où le produit est étendu à toutes les E ′ -engeances ξ ′ de type t de ρ. Elle prend ses valeurs dans le ≪ produit local ≫ R expl,E ′ = ξ ′ k E ′ R ξ ′ ,E ′
défini comme le sous-anneau du produit ξ ′ R ξ ′ ,E ′ formé des familles (x ξ ′ ) dont toutes les composantes se réduisent sur le même élément dans le corps résiduel k E ′ . Par ce qui précède, le morphisme f se factorise par un morphisme

fE ′ : O E ′ ⊗ O E R ψ (v 0 , t, ρ) -→ R expl,E ′
qui n'est autre que le produit des fξ ′ ,E ′ .

Les morphismes fE ′ que nous venons de construire vérifient en outre des conditions de compatibilité. Pour les énoncer, considérons E ′′ une extension finie de E ′ . L'ensemble des E ′ -engeances est alors naturellement inclus dans celui des E ′′ -engeances. De plus, si ξ ′ est une E ′ -engeance, il est clair d'après les définitions que

O E ′′ ⊗ O E ′ R ξ ′ ,E ′ ≃ R ξ ′ ,E ′′ .
Nous pouvons ainsi définir un morphisme de O E ′′ -algèbres :

ψ E ′′ ,E ′ : R expl,E ′′ → O E ′′ ⊗ O E ′ R expl,E ′
en envoyant une famille (x ξ ′′ ) sur la restriction de cette famille aux E ′ -engeances. Ces morphismes font commuter les diagrammes suivants : 

(27) R expl,E ′′ ψ E ′′ ,E ′ O E ′′ ⊗ O E R ψ (v, t, ρ) fE ′′ 1 1 d d d d d d d d d d d d d d d d fE ′ , , Z Z Z Z Z Z Z Z Z Z Z O E ′′ ⊗ O E ′ R expl,E ′ . 3.
f ♯ : Hom O E -alg (R, k E [ε]) → Ext 1 G∞ (ρ, ρ) est injective.
Or le fait que R et M R soient explicites permet de décrire entièrement f ♯ . Expliquons à présent comment procéder concrètement pour y parvenir. L'algèbre R étant explicite, nous pouvons déterminer une base (f 1 , . .

. , f n ) du k E -espace vectoriel Hom O E -alg (R, k E [ε]). Pour chaque f i , considérons le φ-module M i sur k E [ε]((v))
déduit de M R par extension des scalaires via f i . Étant donné que f i correspond à une déformation de ρ, il existe une base de M i dans laquelle la matrice de φ prend la forme :

0 δv h 1 0 + εA i , avec A i dans M 2 (k E ((v))
). Avec ces conventions, l'image de f i dans Ext 1 G∞ (ρ, ρ) s'identifie à celle de A i par l'application de la proposition 3.2.4, que nous pouvons calculer de façon entièrement explicite à l'aide du lemme 3.2.5 et de la remarque 3.2.6. 9. Nous rappelons que φ = ϕ f . Maintenant que nous avons déterminé l'application f ♯ , nous pouvons vérifier si, oui ou non, elle est injective. Si elle l'est, le morphisme f est surjectif et son image est déterminée : c'est R tout entier. Si, au contraire, elle ne l'est pas, notons N son noyau. Pour tout α dans N , le morphisme composé α • f prend alors ses valeurs dans k E ⊂ k E [ε]. Ceci signifie que l'image de f est incluse dans la sous-O E -algèbre de R :

R 1 = α∈N α -1 (k E ).
En outre, une lecture attentive de la démonstration du lemme 3.2.5 fournit une nouvelle base de M R dans laquelle la matrice de φ est à coefficients dans R 1 .

Nous nous ramenons, de cette manière, au même problème que précédemment où R est remplacée par R 1 . En appliquant à nouveau la même méthode, nous pouvons déterminer si l'application f : R ψ (v 0 , t, ρ) → R 1 est surjective. Si elle l'est, nous avons déterminé son image tandis que si elle ne l'est pas, nous pouvons exhiber une sousalgèbre explicite R 2 de R 1 dans laquelle f prend ses valeurs et poursuivre ainsi notre recherche... Malheureusement, le processus que nous venons de décrire peut ne pas prendre fin après un nombre fini d'étapes ; nous entendons par là qu'il est possible qu'aucun des R n (pour n dans N) ne soit l'image de f . Usuellement, ce problème peut être résolu en définissant R ω comme l'intersection de tous les R n puis en continuant la construction sur les ordinaux. Toutefois, nous ne pouvons alors plus vraiment parler de ≪ construction explicite ≫. En pratique, nous retiendrons donc que la méthode présentée ci-dessus est efficace si f est ≪ presque ≫ surjective mais qu'elle ne l'est plus dès lors que l'image de f est très petite dans R.

3.2.3.4. Troisième étape : recollement des R expl,E ′ . -Nous revenons à présent à la situation exposée à la fin de la seconde étape ( §3.2.3.2). Rappelons que nous avons construit des algèbres R expl,E ′ (où E ′ désigne une extension finie variable de E) munies de morphismes fE de compatibilité (27). Le but de cette troisième et dernière étape -qui est, de loin, la plus délicate -est de mettre ensemble toutes les R expl,E ′ afin de déterminer R ψ (v 0 , t, ρ).

′ : O E ′ ⊗ O E R ψ (v 0 , t, ρ) → R expl,E ′ vérifiant des conditions
Pour ce faire, notre méthode consiste à exhiber une O E -algèbre locale noetherienne complète R expl munie d'un morphisme de O E -algèbres g : R ψ (v, t, ρ) → R expl et, pour toute extension

E ′ de E, d'un morphisme de O E ′ -algèbres O E ′ ⊗ O E R expl → R expl,E ′ de sorte que les diagrammes suivants commutent : R expl,E ′′ ψ E ′′ ,E ′ O E ′′ ⊗ O E R ψ (v, t, ρ) id⊗g / / fE ′′ e e e e , , Y Y Y Y Y Y Y Y Y Y Y O E ′′ ⊗ O E ′ R expl,E ′ pour E ′ et E ′′ deux extensions finies de E avec E ′ ⊂ E ′′ .
Remarque 3.2.10. -Il existe, à vrai dire, une formule qui fournit une algèbre R expl convenable, à savoir : Démonstration. -Il suit de la définition de R ψ (v 0 , t, ρ) que, pour élément x non nul dans R ψ (v 0 , t, ρ), il existe un morphisme de O E -algèbres α : R ψ (v 0 , t, ρ) → Z p tel que α(x) est non nul. Pour démontrer que g est injectif, il suffit donc de montrer que tout morphisme α comme ci-dessus se factorise par g. Soit donc α : R ψ (v 0 , t, ρ) → Z p un morphisme de O E -algèbres. Remarquons, d'une part, qu'il prend ses valeurs dans l'anneau des entiers O E ′ d'une extension finie E ′ de E et, d'autre part, que, par définition, la E ′ -représentation de G F qu'il définit, est de type (v 0 , t, ψ). D'après la proposition 3.1.4, le théorème de classification des modules de Kisin (cf Proposition 3.1.9) et la construction de R expl,E ′ , il existe un morphisme de O E ′ -algèbres β : R expl,E ′ → O E ′ qui fait commuter le diagramme suivant :

(28) R expl = lim ← - E ′ fE ′ (R ψ (v 0 , t,
O E ′ ⊗ O E R ψ (v 0 , t, ρ) Id ⊗g / / α O E ′ ⊗ O E R expl / / R expl,E ′ β
r r ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee

O E ′
Il en résulte directement que α se factorise par g comme nous le souhaitions.

D'après le lemme 3.2.12 ci-dessus, l'anneau de déformations R ψ (v 0 , t, ρ) que nous cherchons à déterminer s'identifie à l'image du morphisme g. Or, au moins si nous avons été adroits dans le choix de R expl afin que g soit ≪ presque ≫ surjectif, nous pouvons déterminer l'image de g à l'aide de la méthode expliquée au §3.2.3.3. ρ ≃ Ind G F G F ′ ω 1+r 0 +p(1+r 1 ) 4

• nr ′ (θ) ⊗ ω s 2 où G F ′ est le groupe de Galois absolu de l'extension non ramifiée F ′ de degré 2 de F , ω 4 (resp. ω 2 ) est le caractère fondamental de niveau 4 (resp. 2) associé au plongement fixé τ ′ 0 de F ′ dans E (resp. τ 0 = τ ′ 0|F de F dans E), s est dans Z, r 0 est un entier entre 0 et p -1 et r 1 est un entier entre -1 et p -2.

Les cas génériques, i.e. pour lesquels 1 r 0 p -2 et 0 r 1 p -3, ont déjà été traités dans [START_REF] Breuil | Multiplicités modulaires raffinées, A paraître dans Bull[END_REF], Théorème 5.2.1. Les auteurs obtiennent une description explicite des anneaux R ψ (v 0 , t, ρ), pour les types galoisiens t comme dans la partie 3 :

R ψ (v 0 , t, ρ) ≃ {0} si D(t) ∩ D(ρ) = ∅, ≃ O E [[X, Y, T ]]/(XY + p) sinon.
Nous traitons donc dans cette partie les cas restants. Nous renvoyons à la partie 1.2.1 pour la forme des représentations non génériques et la liste de leurs poids de Serre.

Dans la suite du texte, nous traitons le cas des représentations pour lesquelles l'entier s est nul ; le cas général s'en déduit par torsion par un caractère de G F . Rappelons également que nous avons fixé le caractère ψ d'une manière compatible avec le type galoisien t (relations (2) et ( 26)) en choisissant un élément δ dans O × E . La compatibilité entre ψ et le déterminant de ρ impose de plus que δ se réduise sur θ -1 dans k E .

Dans toute la fin du texte, t désigne un type galoisien choisi comme au début de la partie 3 : t = (η ⊕ η ′ ) |I F , où η et η ′ sont deux caractères distincts de Gal(L/F ) dans O × E .

Dans [GK] (théorème A), Gee et Kisin démontrent l'existence de multiplicités intrinsèques satisfaisant la version cristalline de la conjecture de Breuil-Mézard pour le type v 0 et tout type galoisien t. Nos calculs permettent de déterminer presque toutes les valeurs de ces multiplicités intrinsèques, confirmant ainsi une conjecture de Kisin ([Ki5], conjecture 2.3.2).

4.1. Liste des engeances de type t de ρ. -Un type galoisien t étant fixé, la première étape de la stratégie expliquée au §3.2.3 pour le calcul de l'anneau R ψ (v 0 , t, ρ) consiste à établir la liste des engeances de type t de la représentation ρ.

Pour cela, nous listons les genres un par un et, pour chacun d'eux, en utilisant la méthode du §3.2.1, nous calculons en fonction des paramètres (α, α ′ , (a i , a ′ i ) i=0,...,f -1 ) la représentation résiduelle associée. Nous ne conservons enfin que les engeances pour lesquelles la représentation résiduelle correspondante est irréductible et isomorphe à ρ.

Il convient de remarquer que, pour f égal à 2, les mauvais genres exclus par la définition 3.1.8 donnent toujours lieu à des représentations résiduelles réductibles. Cela se vérifie en appliquant les techniques de calcul de la représentation résiduelle de la partie 3.2.1. Pour les bons genres, le calcul est facile et ne présente pas d'intérêt majeur. Afin de ne pas allonger démesurément la taille de l'article, nous ne le présentons pas ici mais regroupons simplement les résultats que nous avons obtenus dans le tableau de la figure 1 (page 46) : pour chaque représentation ρ, nous indiquons les types galoisiens t

Représentation ρ = Ind G F G F ′ (χ • nr ′ (θ)) Type t Engeances η η ′ d Genre (α, α ′ ) (a 0 , a 1 ) χ = ω 1+r 0 4 0 r 0 p -2 ω r 0 2 ω -p 2 (p -2, p -1 -r 0 ) Iη × II (1, θ -1 ) (0, 0) 1 r 0 p -2 ω r 0 -p 2 1 (0, p -r 0 ) II × I η ′ (1, θ -1 ) (0, 0) 0 r 0 p -3 ω 1+r 0 -p 2 ω -1 2 (0, p -2 -r 0 ) I η ′ × II (1, θ -1 ) (0, 0) II × Iη (1, θ -1 ) (0, 0) I η ′ × Iη (α, -1 θα ) (1, θα 2 ) χ = ω p(2+r 1 ) 4 -1 r 1 p -3 ω p(1+r 1 ) 2 ω -1 2 (p -2 -r 1 , p -2) II × Iη (1, θ -1 ) (0, 0) 0 r 1 p -3 ω -1+p(1+r 1 ) 2 1 (p -1 -r 1 , 0) I η ′ × II (1, θ -1 ) (0, 0) -1 r 1 p -4 ω -1+p(r 1 +2) 2 ω -p 2 (p -3 -r 1 , 0) Iη × II (1, θ -1 ) (0, 0) II × I η ′ (1, θ -1 ) (0, 0) Iη × I η ′ (α, -1 θα ) (1, -1)
Figure 1. Liste des engeances de type t de la représentation ρ pour lesquels la variété de Kisin GR ρ,ψ,v 0 ,t est non vide et les engeances qui la décrivent (les paramètres a i , a ′ i , α et α ′ vivent dans k E ). Nous renvoyons également au §3.2 de [Dav] pour la présentation d'un calcul analogue.

Nous remarquons que, pour chaque couple (t, ρ) correspondant aux lignes du tableau qui apparaissent en noir, il n'y a qu'une seule engeance. La variété de Kisin correspondante est donc réduite à un point. Au contraire, dans les autres situations, celles qui apparaissent en bleu dans le tableau, nous sommes en présence de trois possibilités pour le genre, les deux premiers conduisant à une unique engeance et la troisième conduisant à une famille d'engeances paramétrée par k × E . Il se trouve que, dans ces cas, la variété de Kisin est isomorphe à P 1 k E : les engeances paramétrées par le troisième genre correspondent naturellement à l'ouvert Zariski k × E dans P 1 (k E ) tandis que les deux autres genres correspondent respectivement aux points 0 et ∞ de P 1 (k E ). • nr ′ (θ) , avec r 0 entre 0 et p -2, l'autre étant absolument identique. 4.2.1. Cas d'une variété de Kisin de dimension nulle. -Supposons que la variété de Kisin GR ρ,ψ,v 0 ,t soit réduite à un point (c'est-à-dire que nous sommes dans une ligne noire du tableau de la figure 1). Notons ξ l'unique engeance correspondante et appelons R ξ l'anneau qui lui est associé par la construction du §3.2.3.2 : nous avons

R ξ ≃ O E [[T, X, Y ]]/(XY + p).
La troisième étape de notre stratégie consiste à exhiber une O E -algèbre R expl vérifiant un certain nombre de propriétés ( §3.2.3.4). Toutefois, nous sommes ici dans le cas simple où la variété de Kisin est de dimension nulle. D'après la remarque 3.2.11, nous pouvons donc simplement choisir R expl = R ξ . Le lemme 3.2.12 entraîne alors que nous avons une injection g : R ψ (v 0 , t, ρ) → R ξ . 

B = v p(p-1) X 1 v d 1 (v p + p) + T 0 v p v p 2 +p α ′ v p(p-1) v d 1 (v p + p) + T 0 Y 1 v p-1 α ′ Y 1 v p 2 +p-1 .
Après un changement de base correspondant à multiplier le deuxième vecteur de base par α ′ v d 1 +p 2 , nous obtenons la nouvelle matrice

B ′ = v p(p-1) X 1 v d 1 (v p + p) + T 0 v p δv p 2 (d 1 +1)+p+p 4 v -d 1 -p v d 1 (v p + p) + T 0 Y 1 v p-1 δY 1 v p+p 4 -1+(p 2 -1)d 1 qui, réduite dans k E [[v]], donne 0 δv h 1 0 avec h = p 4 + p + p 2 (d 1 + 1).
Pour une variable Z dans {T 0 , X 1 , Y 1 }, désignons par Z ⋆ le morphisme de O Ealgèbres de R ξ dans les nombres duaux k E [ε] qui envoie Z sur ε et les autres variables sur 0. D'après la partie 3.2.2, les images de T ⋆ 0 , X ⋆ 1 et Y ⋆ 1 dans Ext 1 G∞ (ρ, ρ) (décrit par la proposition 3.2.4) sont respectivement (θv -p-p 2 (d 1 +1) , 0), (θv -p-p 2 , 0) et (v -p 2 -d 1 -1 , 0). Par le lemme 3.2.5, ces trois vecteurs forment une famille libre. L'application g est donc surjective, ce qui démontre que l'anneau R

ψ (v 0 , t, ρ) est isomorphe à O E [[T 0 ,X 1 ,Y 1 ]] X 1 Y 1 +p . Nous traitons maintenant le cas du type galoisien ω r 0 -p 2 ⊕ 1, avec d = (0, p -r 0 ) et r 0 entre 1 et p -2. L'anneau explicite est dans ce cas O E [[X 0 ,Y 0 ,T ′ 1 ]] X 0 Y 0 +p
et la matrice du φ-module associé peut être mise sous la forme 

X 0 v d 1 + T ′ 1 v p δv p 3 +p 2 (v d 1 + Y 0 T ′ 1 ) v -1 (v + p) δY 0 v (p+1)(p 2 -1) (v + p) . Les images de X ⋆ 0 , Y ⋆ 0 et T ′ ⋆ 1 dans Ext 1 G∞ (ρ, ρ) sont respectivement (θv -1-p , 0), (v -d 1 -p , 0) et (θv -d 1 -p 2 , 0),
= 0 et t = ω r 0 2 ⊕ ω -p 2 , soit d = (p -2, p - 
1). Dans ce cas, le début de la démonstration de la proposition reste valable, mais nous observons que les images de X ⋆ 1 et Y ⋆ 1 dans Ext 1 G∞ (ρ, ρ) sont toutes les deux égales à (δ -1 v -p-p 2 , 0). L'injection g n'est donc pas surjective. 

Engeance

Anneau Paramètres Matrice B ξ ′ de φ sur M ξ ′ I η ′ × Iη ξ ′ ∈ k × E ′ O E ′ [[T ξ ′ , Z ξ ′ ]] α = [ξ ′ ] + Z ξ ′ α ′ = -δα -1 a ′ 0 = 1 a 1 = [θξ ′2 ] + T ξ ′ αv d 1 +1 (v + p) αa ′ 0 v p 2 +d 1 +1 (v + p) α ′ a 1 v d 1 +1 α ′ a ′ 0 a 1 v p 2 +d 1 +1 + α ′ v p 2 (v p + p) I η ′ × II ξ ′ = 0 O E ′ [[T ′ 0 ,X 0 ,Y 0 ]] X 0 Y 0 +p α = 1, α ′ = δ a ′ 0 = T ′ 0 a 1 = X 0 a ′ 1 = Y 0 αa 1 v d 1 +1 αa ′ 0 a 1 v p 2 +d 1 +1 + αv p 2 +1 (v p + p) α ′ v d 1 +1 α ′ a ′ 0 v p 2 +d 1 +1 + α ′ a ′ 1 v p 2 (v p + p) II × Iη ξ ′ = ∞ O E ′ [[X∞,Y∞,T∞]] X∞Y∞+p α = 1, α ′ = δ a 0 = X∞ a ′ 0 = Y∞ a 1 = T∞ αa 0 v d 1 +1 (v + p) αv p 2 +d 1 +1 (v + p) α ′ a 0 a 1 v d 1 +1 + α ′ v p α ′ a 1 v p 2 +d 1 +1 + α ′ a ′ 0 v p 2
= ω 1+r 0 -p 2 et η ′ = ω -1 2 ; d est alors (0, p -2 -r 0 ), avec p -2 -r 0 dans {1, . . . , p -2}.
Pour ces données, les E ′ -engeances sont en bijection naturelle avec P 1 (k E ′ ) pour toute extension E ′ de E. En suivant à nouveau la stratégie expliquée dans la partie 3.2.3, nous considérons une extension

E ′ de E et nous associons à chaque E ′ -engeance ξ ′ , la O E ′ -algèbre explicite R ξ ′ ainsi qu'un module de Breuil-Kisin M ξ ′ sur R ξ ′ ⊗Zp S définis dans le §3.2.3. Pour tout ξ ′ , posons M ξ ′ = H 0 Gal(L/F ), O E ⊗ S M (0) ξ ′ .
D'après les résultats de la partie 2.1.3, l'espace M ξ ′ muni du Frobenius φ = ϕ 2 s'identifie canoniquement au φ-module associé à la restriction à G ∞ de la représentation de G F correspondant à M ξ ′ . De plus, la proposition 3.2.1 et la formule (24) fournissent un moyen explicite pour calculer la matrice de φ agissant sur M ξ ′ . Dans le cas qui nous intéresse, nous trouvons, après calcul, les résultats regroupés dans le tableau de la figure 2 (page 48). Au niveau des anneaux de déformations, nous obtenons un morphisme de

O E ′ -algèbres f E ′ de O E ′ ⊗ O E R ψ (ρ) dans l'anneau explicite R expl,E ′ = ξ ′ k E ′ R ξ ′
où la notation ci-dessus désigne le ≪ produit local ≫. D'après le lemme 3.2.9, ce morphisme se factorise en un morphisme fE

′ : O E ′ ⊗ O E R ψ (v 0 , t, ρ) → R expl,E ′ . De plus, si E ′′ désigne une extension finie de E ′ , nous avons un morphisme ψ E ′′ ,E ′ : R expl,E ′′ → O E ′′ ⊗ O E ′ R expl,E ′ rendant commutatif le diagramme suivant : R expl,E ′′ ψ E ′′ ,E ′ O E ′′ ⊗ O E R ψ (v 0 , t, ρ) fE ′′ 1 1 d d d d d d d d d d d d d d d d fE ′ -- Z Z Z Z Z Z Z Z Z Z Z O E ′′ ⊗ O E ′ R expl,E ′ . Notons V E ′ la R expl,E ′ -représentation de G F correspondant à f E ′ . L'action de φ sur le φ-module M E ′ associé à (V E ′ )
|G∞ s'obtient en mettant ensemble les matrices qui apparaissent dans le tableau ci-dessus.

Suivant la stratégie de détermination de l'espace de déformations expliquée dans le §3.2, nous devons maintenant exhiber une O E -algèbre explicite R expl telle que, pour tout E ′ comme précédemment, le morphisme fE ′ se factorise par O E ′ ⊗ O E R expl . Pour construire R expl , nous cherchons pour chaque engeance ξ ′ ∈ P 1 (k E ′ ) une nouvelle base de M ξ ′ , de façon à ce que les matrices des φ-modules exprimées dans ces nouvelles bases ≪ se ressemblent ≫ davantage. Une première tentative conduit à considérer les changements de base que voici :

ξ ′ Changement de base P Matrice P -1 B ξ ′ φ(P ) de φ dans la nouvelle base ξ ′ ∈ k × E ′ -a ′ 0 0 v -1 α ′ v -1 v • 0 δv d1 (v + p) v p + p pα ′ + pαv d1 + (α ′ a ′ 0 a 1 + α)v d1+1 + α ′ v p ξ ′ = 0 -a ′ 0 α v -1 α ′ a ′ 1 v -1 v • 0 δv d1 (v + p) v p + p pα ′ a ′ 1 + αa 1 v d1 + α ′ a ′ 0 v d1+1 + α ′ a ′ 1 v p ξ ′ = ∞ 1 0 -a 0 v -1 α ′ v -1 v • 0 δv d1 (v + p) v p + p α ′ a ′ 0 + pαa 0 v d1 + (αa 0 + α ′ a 1 )v d1+1
Nous observons que les matrices sont analogues à la différence près qu'aucun terme en v p n'apparaît sur le coefficient en bas à droite dans le cas ξ ′ = ∞. Le but du lemme suivant est d'unifier définitivement ces écritures. 

M = 0 δv d 1 (v + p) v p + p a + bv d 1 + cv d 1 +1 + dv p et M ′ = 0 δv d 1 (v + p) v p + p a + bv d 1 + c ′ v d 1 +1 définissent des φ-modules isomorphes sur R ⊗Zp O E .
De plus, nous pouvons choisir c ′ congru à c modulo p et dépendant de façon analytique de δ, a, b, c, d. Démonstration. -Tout au long de la démonstration, nous posons : f n+1 : R 2 -→ R 2 (x, y) → p p S 1 (x, y), p p-1 δ -1 S 1 (x, y)p p-2 δ -1 S 2 (x, y) .

A = a + bv d 1 + cv d 1 +1 + dv p , B = a + bv d 1 + c ′ v d 1 +1 , S = v p + p et T = δv d 1 (v + p).
Or cette application est manifestement contractante. L'existence des éléments c n+1 et ξ n+1 s'ensuit. À partir de là, nous définissons z ′ n+1 par car NP(U ) a une seule pente qui vaut -1/p comme celle de φ(P n ). Un calcul montre que f n ≡ f n-1 (mod p n+p 2 +p-1 ). Ainsi, si t n et t n-1 sont respectivement les points fixes de f n et f n-1 , nous avons f n (t n-1 ) ≡ f n-1 (t n-1 ) ≡ t n-1 (mod p n+p 2 +p-1 ) Donc f k n (t n-1 ) ≡ t n-1 (mod p n+p 2 +p-1 ) pour tout k dans N. Comme f n est contractante, en passant à la limite sur k, nous trouvons t n ≡ t n-1 (mod p n+p 2 +p-1 ) et, par suite :

z ′ n+1 = -ξ n+1 + g(c ′ n+1 , ξ n+1 , z ′ n ) δv d 1 (v + p)(v + p p
(32) c ′ n ≡ c ′ n-1 (mod p n+1 ) et ξ n ≡ ξ n+1 (mod p n+1 ). Enfin :

z ′ n+1 -z ′ n = ξ n -ξ n+1 + g(c ′ n+1 , ξ n+1 , z ′ n ) -g(c ′ n , ξ n , z ′ n-1 ) δv d 1 (v + p)(v + p p )
Les calculs précédents garantissent que le polygone de Newton du numérateur de la fraction ci-dessus est situé au dessus de la droite reliant les points (0, n + p 2 -1) et (p 2 (n + p 2p -1), 0). Or, la division par δv d 1 (v + p)(v + p p ) translate le polygone de Newton d'au maximum (-d 1 -2, 0). Nous concluons alors la récurrence en remarquant que z ′ n+1z ′ n n'a pas de terme constant. De ( 32 Pour tout ξ ′ dans E ′ , considérons le morphisme 

h ξ ′ : O E ′ ⊗ O E R expl ≃ O E ′ [[X, Y, Z]]/(XY + δp 2 ) -→ R ξ ′ défini par : -si ξ ′ ∈ k × E ′ :    X → pα ′ Y → pα Z → F(δ, pα ′ , pα, α ′ a ′ 0 a 1 + α, α ′ ) -si ξ ′ = 0 :    X → pα ′ a ′ 1 Y → αa 1 Z → F(δ, pα ′ a ′ 1 , αa 1 , α ′ a ′ 0 , α ′ a ′ 1 ) -si ξ ′ = ∞ :    X → α ′ a ′ 0 Y → pαa 0 Z → αa 0 + α ′ a 1 où α, α ′ , a 0 , a ′ 0 ,
′ : O E ′ ⊗ O E R ψ (v 0 , t, ρ) gE ′ -→ O E ′ ⊗ O E R expl hE ′ -→ R E ′ .
De plus, ces factorisations commutent aux changements de base, dans le sens où l'application gE ′ s'identifie à Id ⊗g E pour toute extension finie E ′ de E. Le lemme 3.2.12 s'applique ainsi et assure que le morphisme gE : R ψ (v 0 , t, ρ) → R expl est injectif. À ce stade, il reste à déterminer son image par la méthode du §3.2.3.3. Pour cela, nous remarquons que la matrice de φ agissant sur k E ⊗ R expl M expl s'écrit :

0 δv d 1 +2 v p+1 Xv + Y v d 1 +1 + Zv d 1 +2 .
Dans la nouvelle base où le second vecteur a été multiplié par v p+1 , elle prend la forme : 0 θ -1 v p 3 +p 2 +d 1 +2 1 Xv p 3 +p 2 -p + Y v p 3 +p 2 -p+d 1 + Zv p 3 +p 2 -p+d 1 +1 qui a été considérée dans la partie 3.2.2. Notons X ⋆ : R expl → k E [ε] (avec, rappelonsle, ε 2 = 0) le morphisme de O E -algèbres qui envoie la variable X sur ε et les autres variables Y et Z sur 0. Définissons également Y ⋆ et Z ⋆ de manière analogue. Un calcul élémentaire montre que les images de X ⋆ , Y ⋆ et Z ⋆ dans Ext 1 G∞ (ρ, ρ) sont respectivement (θv -p-d 1 -2 , 0), (θv -p-2 , 0), (θv -p-1 , 0) où, ici, nous avons identifié Ext 1 G∞ (ρ, ρ) avec sa description explicite donnée par la proposition 3.2.4. Il résulte du lemme 3.2.5 que ces images sont linéairement indépendantes dans Ext 1 G∞ (ρ, ρ) et, par suite, que l'application tangente à gE est injective. Nous en déduisons que gE est surjectif ; c'est donc un isomorphisme.

Au final, nous avons donc démontré la proposition suivante. (XY +p 2 ) , l'isomorphisme étant obtenu par exemple en envoyant X sur δ -1 X, Y sur Y et Z sur Z.

Calcul des multiplicités intrinsèques. -

Dans cette dernière partie, nous appliquons les résultats précédents aux calculs des multiplicités intrinsèques (m ρ (σ)) σ∈D(ρ) des poids de Serre de ρ. Le théorème A de [GK] fournit la conjecture 1.1.2 pour v 0 et tout type galoisien t. Il assure également que m ρ (σ) est non nulle si et seulement si σ est un poids de ρ. Le théorème s'écrit donc ici µ Gal (v 0 , t, ρ) = σ∈D(ρ)∩D(v 0 ,t) m v 0 ,t (σ)m ρ (σ). Pour les types t considérés ici, nous avons D(v 0 , t) = D(t), la multiplicité m v 0 ,t (σ) vaut 1 pour tout σ dans D(t) et l'ensemble D(t) est décrit par une formule combinatoire rappelée dans la partie 1.2.2 (voir [BP] et [Dav]). Nous obtenons donc l'équation µ Gal (v 0 , t, ρ) = (ii) Supposons ρ totalement non générique, c'est-à-dire de la forme Ind G F G F ′ (ω 4 • nr ′ (θ)) ou Ind G F G F ′ (ω p 4 •nr ′ (θ)). Soit t un type galoisien tel que D(t) contient le poids modifié

  Définition 2.1.8. -Soit R une Z p -algèbre locale noetherienne complète. Un module de Breuil-Kisin sur R ⊗Zp S est la donnée d'un (R ⊗Zp S)-module de type fini M et d'un endomorphisme ϕ M : M → M vérifiant les conditions suivantes :

  3.1.1. Type des modulesde Breuil-Kisin. -Afin de pouvoir démontrer notre résultat de classification dans la généralité énoncée ci-dessus, nous avons besoin, en guise de préalable, d'étendre les notions de type de Hodge et de type galoisien à n'importe quel module de Breuil-Kisin à coefficients. C'est l'objet de ce paragraphe. Définition 3.1.1. -Soient R une O E -algèbre locale, complète, noetherienne, de corps résiduel k E et M un module de Breuil-Kisin libre de rang 2 sur R ⊗Zp S avec donnée de descente de L à F . Le module M est dit :

  où les c i et b i sont des entiers compris entre 0 et p -1. Il est commode, et nous le ferons, de considérer que les indices des b i et des c i vivent dans Z/f Z. Posons également

  Lemme 3.1.15. -Soit a, b ∈ R[[u]]. Le polygone de Newton NP(ab) est inclus dans la somme de Minkowski NP(a) + NP(b). Si en outre a ou b est dans O E [[u]], alors l'inclusion précédente est une égalité.

  sont distincts et appartiennent à NP(a) + NP(b) par construction. De plus, par ce qui précède, le milieu du segment qui les joint est (s, v). Ainsi (s, v) n'est pas un point extrémal de NP(a)+NP(b), ce qui constitue une contradiction. 3.1.5. Démonstration de la proposition 3.1.9. -Nous ne traitons que le cas d'un module n'ayant pas mauvais genre, le cas général étant similaire. Nous commençons par plusieurs lemmes préparatoires. Lemme 3.1.16. -Soit G = s 1 u e-γ s 2 u γ s 3 s 4 avec s j ∈ R[[u e ]] pour 1 j 4, γ un entier entre 0 et e et det G = α(u e + p) pour α dans R[[u e ]] inversible. Notons si ≡ s i (mod u e ). (i) Si s4 est inversible dans R i.e. G(G) = I η , posons B(G) = s 1 -u e as 2 u e +p u e-γ s 2 u γ s 3 -as 4 u e +p s 4 où a dans R est défini par a ≡ s 3 /s 4 (mod u e + p). Alors G = B(G) u e + p 0 au γ 1 .

  (iii) Supposons que s1 et s4 ne sont pas inversibles dans R. Rappelons que det G = α(u e + p) avec α dans R[[u]] inversible. Ainsi u e s 2 s 3 ≡ -u e α (mod ̟ E R[[u]]) et comme u e n'est pas diviseur de zéro dans R[[u e ]]/̟ E R[[u e ]], nous obtenons s 2 s 3 ≡ -α (mod ̟ E R). Ainsi s 2 et s 3 sont inversibles dans R[[u e ]], ce qui suffit à entraîner que la matrice B(G) est bien définie et à coefficients dans R[[u]]. Enfin, de l'égalité det(G) = α(u e + p) avec α inversible dans R, nous déduisons que le déterminant de B(G) est inversible dans R[[u]] dans chacun des cas. Pour t ∈ N, définissons les idéaux de R[[u e ]]

  Lemme 3.1.18. -Supposons t ∈ N * . Soit x ∈ R[[u e ]] tel que (u e + p)x ∈ u e I ϕ t + ϕ(I t ∩ u e R[[u e ]]) + p̟ t+1 E R[[u e ]]. Alors x ∈ I t+1 .Démonstration. -Remarquons que, d'après le lemme 3.1.15 :

0 )F

 0 , vu comme φ-module sur k E ((v)). Notons B = a b c d la réduction, à coefficients dans k E ((v)), de la matrice B. Nous définissons la trace et le déterminant tordus :

  Fixons une base B de D(ρ) et notons B la matrice de φ dans cette base. Pour toute matrice A dans M 2 (k E ((v))), nous notons D A le φ-module dont l'espace vectoriel sous-jacent est D(ρ) ⊕ D(ρ) et de Frobenius dans la base B ⊕ B donné par la matrice B A 0 B .

4.

  Mise en oeuvre de la méthode en degré 2 Nous mettons en oeuvre dans cette partie la méthode du paragraphe §3.2 dans le cas où ρ est une représentation irréductible de F = Q p 2 . De telles représentations ρ sont de la forme :

4. 2 .

 2 Détermination de l'anneau de déformations. -Nous continuons d'appliquer la méthode du §3.2.3, sachant que nous arrivons à la deuxième étape. Dans la suite, nous traitons uniquement le cas où ρ = Ind G F G F ′ ω 1+r 0 4

  Proposition 4.2.1. -Nous conservons les notations et les hypothèses précédentes et supposons de plus que la représentation ρ n'est pas totalement non générique. Alors le morphisme g est un isomorphisme. Démonstration. -Nous traitons d'abord le cas du type galoisien ω r 0 2 ⊕ ω -p 2 , correspondant à d = (p -2, p -1r 0 ), avec r 0 entre 1 et p -2 (l'hypothèse sur ρ revient à exclure le cas r 0 = 0). La matrice du φ-module M ξ sur R ξ ⊗ W O E associé est, d'après la partie 3.2.1 :

Figure 2 .

 2 Figure 2. Matrices du Frobenius sur les φ-modules M ξ ′

  Lemme 4.2.4. -Soit R une O E ′ -algèbre locale noetherienne complète de corps résiduel k E ′ et soient δ, a, b, c et d des éléments de R. Nous supposons que p divise a, que δ est inversible dans R et que ab = -δp 2 . Alors il existe un élément c ′ ∈ R tel que les matrices

  Remarque 4.2.5. -La dépendance analytique énoncée dans le lemme 4.2.4 signifie qu'il existe une série F(∆, A, B, C, D) à coefficients dans R telle que c ′ = F(δ, a, b, c, d).

  Les matrices M et M ′ définissent des φ-modules sur R ⊗Zp O E isomorphes entre eux si et seulement s'il existe une matrice P = x y z t ∈ GL 2 (R ⊗Zp O E ) telle que M ′ φ(P ) = P M . Si tel est le cas, les éléments x, y, z, t de R ⊗Zp O E satisfont le système Ay = T φ(t) St = Sφ(x) + Bφ(z) T z + At = Sφ(y) + Bφ(t) Nous allons donc exhiber un élément c ′ dans R, analytique en δ, a, b, c, d tel que les matrices M et M ′ soient équivalentes, i.e. que le système (29) ait une solution. Nous cherchons z sous la forme z= (v + p p )(ξ + z ′ ) avec ξ dans R et z ′ dans vR[[v]].Le systèmeSy = T (v p 2 + p p )(ξ + φ(z ′ )) T x + Ay = T φ(t) St = Sφ(x) + B(v p 2 + p p )(ξ + φ(z ′ )) T (v + p p )(ξ + z ′ ) = Sφ(y) + Bφ(t) -At En posant U = v p 2 +p p v p +p = v p(p-1)pv p(p-2) + • • • + (-p) p-1 , nous arrivons à : y = T U (ξ + φ(z ′ )) φ(t)x = AU (ξ + φ(z ′ )) tφ(x) = BU (ξ + φ(z ′ ))En éliminant x, nous trouvons :(Id -φ 2 )(t) = BU (ξ + φ(z ′ ))φ(AU )(ξ + φ 2 (z ′ )).Nous en déduisons une expression en t en fonction de z ′ :t = τ + ξ ∞ i=0 φ 2i (BUφ(AU )) + ∞ i=0 φ 2i (BU φ(z ′ )φ(AU )φ 2 (z ′ )).pour un certain élément τ de R. Nous allons démontrer que, pour τ = 1, le système (30) a une solution. En remplaçant y et t par leurs valeurs dans la dernière équation de (30), ceci revient à montrer qu'il existe c ′ , ξ et z ′ solutions de (31)T (v + p p )(ξ + z ′ ) = g(c ′ , ξ, z ′ ) avec : g(c ′ , ξ, z ′ ) = Sφ(T U )(ξ + φ 2 (z ′ )) + B + Bξ ∞ i=0 φ 2i+1 (BUφ(AU )) + B ∞ i=0 φ 2i+1 (BU φ(z ′ )φ(AU )φ 2 (z ′ )) -A -Aξ ∞ i=0 φ 2i (BUφ(AU )) -A ∞ i=0 φ 2i (BU φ(z ′ )φ(AU )φ 2 (z ′ )).Pour résoudre cette équation, nous procédons par approximations successives. Nous allons construire par récurrence des suites convergentes (ξn ) n 0 , (c ′ n ) n 0 à valeurs dans R et (z ′ n ) n 0 à valeurs dans vR[[v]] qui convergent vers une solution de (31). Posons pour initialiser la construction ξ 0 = 0, z ′ 0 = 0, c ′ 0 = c. Supposons à présent que ξ n , c ′ n et z ′ n sont construits pour un certain entier n. Nous allons déterminerξ n+1 et c ′ n+1 de façon à ce que g(c ′ n+1 , ξ n+1 , z ′ n ) soit divisible par T (v + p p ).Nous remarquons que tous les termes de g(c ′ n+1 , ξ n+1 , z ′ n ) sont divisibles par v d 1 . Comme T = δv d 1 (v + p), la divisibilité par T (v + p p ) est équivalente à ce que g(c ′ n+1 , ξ n+1 , z ′ n ) s'annule en v = -p et en v = -p p . En isolant les termes (c ′ n+1c)v d 1 +1 ; dv p et ξ n+1 δp p+1 v d 1 dans l'expression de g(c ′ n+1 , ξ n+1 , z ′ n ), nous voyons (après calcul) que ces conditions d'annulation se réécrivent sous la forme :c ′ n+1cd(-p) p-d 1 -1δpξ n+1 = p p-1 • S 2 (c ′ n+1cd(-p) p-d 1 -1 , ξ n+1 ), c ′ n+1cd(-p) p-d 1 -1 = p p • S 1 (c ′ n+1cd(-p) p-d 1 -1 , ξ n+1), où S 1 et S 2 sont des séries formelles en deux variables à coefficients dans R. Nous en déduisons que (c ′ n+1cd(-p) p-d 1 -1 , ξ n+1 ) est un point fixe de l'application :

n

  ) et vérifions que z ′ n+1 est multiple de v en regardant le coefficient en v d 1 dans g(c ′ n+1 , ξ n+1 , z ′ n ). Il s'agit à présent de montrer que les suites ainsi définies (ξ n ), (z′ n ) et (c ′ n ) convergent. Pour cela, montrons par récurrence sur n que • p n divise c ′ nc ′ n-1 et ξ nξ n-1 , • le polygone de Newton NP(z ′ nz ′ n-1) est situé dans la zone grisée P n définie dans le graphe ci-dessous.Par un abus de notation limité à la fin de cette démonstration, notons φ : (x, y) → (p 2 x, y). Supposons que les hypothèses de récurrence sont satisfaites pour un entiern 1. Alors NP(φ(z ′ n )φ(z ′ n-1 )) ⊂ φ(P n ) d'où nous déduisons NP(U φ(z ′ n ) -U φ(z ′ n-1)) ⊂ φ(P n ) + (0, p -1)

  ), nous déduisons que c ′ ≡ c (mod p). Et, enfin, en reprenant point par point les étapes de la démonstration, nous constatons que le c ′ que nous avons construit dépend effectivement de façon analytique de a, b, c, d et δ (sachant que le point fixe d'une application contractante s'obtient comme la limite des itérés successifs d'un point initial quelconque). Posons à présent R expl = O E [[X, Y, Z]]/(XY + δp 2 ) et considérons le φ-module libre de rang 2 sur R expl ⊗Zp O E sur lequel l'action de φ dans une base est donnée par la matrice 0 δv d 1 +1 (v + p) v(v p + p) Xv + Y v d 1 +1 + Zv d 1 +2 .

  Proposition 4.2.6.-Soit ρ = Ind G F G F ′ (ω 1+r 0 4 • nr ′ (θ)) pour un entier r 0 dans {0, . . . , p -3}. Alors l'anneau de déformations R ψ (v 0 , t, ρ) s'identifie à O E [[X,Y,Z]] (XY +p 2 ) .Démonstration. -D'après ce qui précède, l'application gE réalise un isomorphisme entreR ψ (v 0 , t, ρ) et O E [[X,Y,Z]] (XY +δp 2 ) . Or cette dernière O E -algèbre est isomorphe à O E [[X,Y,Z]]

Figure 3 .

 3 Figure 3. Poids de Serre communs à la représentation ρ et au type t

  m ρ (σ) dans N * pour tout σ dans D(ρ). Le tableau de la figure3(page 54) rassemble, pour les représentations ρ non génériques, les types t ayant des poids de Serre en commun avec ρ et l'ensemble D(ρ) ∩ D(t) de ces poids communs. Le code couleur utilisé dans ce tableau est le même que celui que nous avions introduit pour le tableau de la figure1: le bleu correspond aux couples (ρ, t) pour lesquels la variété de Kisin est isomorphe à P 1 k E . Nous nous apercevons que les lignes bleues sont exactement celles qui contiennent un poids modifié de ρ. Les résultats de la partie 4.2 se résument donc comme suit. Théorème 4.3.1. -Soit ρ une représentation irréductible et t un type galoisien comme dans la partie 3.(i) Supposons ρ non totalement non générique. Alors nous avons :R ψ (v 0 , t, ρ) ≃ {0} si D(t) ∩ D(ρ) = ∅ ; ≃ O E [[X, Y, T ]] (XY + p2 ) si D(t) ∩ D(ρ) contient un poids modifié de ρ ; ≃ O E [[X, Y, T ]] (XY + p) sinon.

  sep désigne une clôture séparable de k K ((u)). Notons O E nr l'extension étale (infinie) deO E correspondant à l'extension résiduelle k K ((u)) sep /k K ((u)). Le groupe de Galois absolu de k K ((u)) agit naturellement sur O E nr . Il en va donc de même de G ∞ grâce à l'isomorphisme (7). -Soit R une Z p -algèbre locale complète. Un ϕ-module sur R ⊗Zp O E est un (R ⊗Zp O E )-module M libre de rang fini muni d'une application ϕ M : M → M qui est linéaire par rapport à R et ϕ-semi-linéaire par rapport à O E .Le ϕ-module M est dit étale si l'image de ϕ M engendre M comme (R ⊗Zp O E )-module.

	Définition 2.1.1. Remarque 2.1.2. -Étant donné ϕ M comme dans la définition 2.1.1, il est souvent
	pratique de travailler avec son ≪ linéarisé ≫ :
	Id ⊗ϕ M : (R ⊗Zp O E ) ⊗ ϕ,R ⊗Zp O E M -→ M
	où l'endomorphisme ϕ de R ⊗Zp O E qui apparaît ci-dessus agit sur R par l'identité et sur O E par le Frobenius. L'application Id ⊗ϕ M est alors (R ⊗Zp O E )-linéaire et le ϕ-module M est étale si et seulement si Id ⊗ϕ M est un isomorphisme.

  (3) étales sur R ⊗Zp O E . G∞ est donnée par l'application Id ⊗ϕ.

	Le cas d'une W -algèbre. -Si l'anneau des coefficients R est une W -algèbre, nous
	disposons d'une variante du théorème 2.1.3 obtenue essentiellement en remplaçant ϕ
	par ϕ f .
	Définition 2.1.5. -Soit R une W -algèbre locale complète.
	Un ϕ f -module sur R ⊗W O E est un (R ⊗W O E )-module M libre de rang fini muni d'une application ϕ (f )
	Remarque 2.1.4. -Le foncteur M ⋆ , comme toutes les constructions présentées dans
	ce paragraphe, commute au changement de base.

3. La structure de ϕ-module sur (V ⋆ ⊗Zp OEnr )

  , la structure de ϕ-module sur O E ⊗ S M étant donnée par ϕ ⊗ ϕ M .

	Théorème 2.1.11 (Kisin). -Soit R une Z p -algèbre locale noetherienne complète
	que nous supposons de plus plate sur Z p . Soit V une représentation de G K à coefficients
	dans R qui est libre de rang fini. Nous supposons que pour tout morphisme d'anneaux
	R → Q p , la représentation Q p ⊗ R V est semi-stable à poids de Hodge-Tate compris entre 0 et h. Alors :
	(i) le ϕ-module associé à V |G∞ par le théorème 2.1.3 est de E(u)-hauteur h ;
	(ii) si M 1 et M 2 sont deux modules de Breuil-Kisin tels que :

  linéaire induite par f sur les espaces tangents. Rappelons le lemme classique suivant. Lemme 2.2.7. -Le morphisme f est surjectif si et seulement si l'application tangente f * est injective. Démonstration. -Par dualité, l'application f * est injective si, et seulement si son application duale :

  s 1 -as 2 ′ dans R sont définis par a ≡ s 1 /s 2 (mod u e +p) et a ′ ≡ s 4 /s 3 (mod u e +p).

	u γ s 4 -a ′ s 3 u e +p	u e +p u e s 3 -as 4 u e +p
	où a, a Alors	
	G = B(G)	a u e-γ u γ a

′ , et aa ′ = -p. De plus, dans tous les cas, B(G) ∈ GL 2 (R[[u]]). Démonstration. -(i) Commençons par montrer que la matrice B(G) est bien définie. D'une part, comme s4 est inversible dans R, s 4 est inversible modulo u e + p, ce qui montre que l'élément a est bien défini. D'autre part, comme det G ≡ 0 (mod u e + p), nous avons encore a ≡ u -e s 1 /s 2 . Nous en déduisons que B(G) est à coefficients dans R[[u]] et même, plus précisément, que la matrice B(G) est de la forme

  Avec ces notations et en notant en plus nr ′ (δ) le caractère non ramifié de G F ′ dans k × E qui envoie le Frobenius arithmétique sur un élément δ de k × E , le corollaire III.1.4.8 de [LB] s'énonce ainsi : Proposition 3.2.2. -La représentation ρ M est absolument irréductible si et seulement si c est non nul et les deux conditions suivantes sont réalisées :

  2.3.3. Interlude : calcul de l'image d'un morphisme de source R ψ (v 0 , t, ρ). -Nous mettons de côté momentanément les algèbres R expl,E ′ et nous intéressons au problème suivant (qui apparaîtra à plusieurs reprises dans la suite) :Soient R une O E -algèbre et M R un φ-module (9) sur R ⊗W O E tous deux explicites. Nous supposons que M R correspond à un morphisme f : R ψ (v 0 , t, ρ) → R.Comment déterminer l'image de f ? Dans la suite, nous supposerons pour simplifier que la représentation ρ est telle qu'il existe une base de son φ-module sur k E ((v)) dans laquelle l'action de φ est donnée par

	la matrice	0 δv h 1 0	.
	Une première étape vers la résolution de la question ci-dessus consiste à remarquer
	que, d'après le lemme 2.2.7, l'application f est surjective si et seulement si l'application
	tangente Hom O E -alg (R, k E [ε]) → Ext 1 G F (ρ, ρ) est injective. De plus, la condition p 5 assure, par le lemme 2.2.9, que l'application restriction de Ext 1 G F (ρ, ρ) dans Ext 1 G∞ (ρ, ρ) est injective. Ainsi, f est surjective si et seulement si l'application

  ρ)) où la limite projective est étendue à toutes les extensions finies E ′ de E et où les morphismes de transition sont induits par les ψ E ′′ ,E ′ . Toutefois, il est généralement difficile d'appliquer la méthode du §3.2.3.3 pour déterminer fE ′ (R ψ (v 0 , t, ρ)) car le morphisme fE ′ est souvent loin d'être surjectif. En conséquence, la formule (28) est rarement exploitable. Remarque 3.2.11. -Il existe toutefois un cas où déterminer un anneau R expl convenable est simple ; c'est celui où la variété de Kisin GR ρ,ψ,v 0 ,t est de dimension nulle. En effet, sous cette hypothèse additionnelle, les morphismes ψ E ′′ ,E ′ sont des isomorphismes dès que E ′ et E ′′ sont assez grands. Nous en déduisons que, quitte à agrandir E, nous pouvons choisir dans ce cas R expl = R expl,E . Lemme 3.2.12. -Avec les notations précédentes, le morphisme g : R ψ (v 0 , t, ρ) → R expl est injectif.

  qui forment une famille libre. Nous concluons enfin de la même manière que précédemment.Remarque 4.2.3. -L'hypothèse ≪ ρ non totalement non générique ≫ de la proposition 4.2.1 n'exclut qu'un seul cas dans les deux premières lignes du tableau : r 0

	Remarque 4.2.2. -Le résultat de la proposition 4.2.1 n'était connu auparavant que
	pour les représentations génériques [BM2].

  a 1 , a ′ 1 s'expriment en fonction des variables de R ξ ′ comme indiqué dans le tableau du début de la partie 4.2.2 et où F(∆, A, B, C, D) est la série dont il est question dans la remarque 4.2.5. Le produit des flèchesh ξ ′ définit un morphisme h E ′ : O E ′ ⊗ O E R expl → R expl,E ′ .En outre, les applications h ξ ′ sont définies de façon à ce que R expl,E ′ ⊗R expl M expl soit isomorphe à M E ′ . D'autre part, nous remarquons que h E ′ est injective pour tout E ′ . La proposition 2.2.11 entraîne alors l'existence d'une factorisation de fE ′ :

	fE

Ainsi B(Gϕ(P ′ )) = σ 1 u e-γ σ 2 u γ σ 3 σ 4 pour

u e(p-c) bϕ(σ ′ 2 ), σ 2 = (u e + p)u e(p-1-c) ϕ(σ ′ 2 ), (u e + p) σ 3 = aϕ(σ ′ 1 ) + u ec ϕ(σ ′ 3 )abu e(p-c) ϕ(σ ′ 2 )bϕ(σ ′ 4 ), σ 4 = au e(p-c) ϕ(σ ′

2 ) + ϕ(σ ′ 4 ). Des hypothèses sur σ ′ j , 1 j 4 découle le résultat souhaité pour σ 1 , σ 4 . Pour σ 2 , il suffit d'appliquer le lemme 3.1.17. Pour σ 3 , nous avons

Nous en déduisons que, si c ∈ {1, p -1}, alors :

. Le lemme 3.1.18 conclut. Dans le cas (iii), la stratégie est analogue. D'abord les termes diagonaux modulo u e de

La matrice B(Gϕ(P ′ )) est alors de la forme

de ρ ; alors nous avons Nous observons que, dans tous les cas du théorème 4.3.1 pour lesquels l'anneau R ψ (v 0 , t, ρ) n'est pas nul, la multiplicité galoisienne µ Gal (v 0 , t, ρ) est 2 et l'ensemble D(t) ∩ D(ρ) est composé d'exactement deux poids. Ainsi pour tout poids de Serre σ de ρ, nous avons : si σ est contenu dans un D(t) pour un t tel que R ψ (v 0 , t, ρ) est prédit par le théorème 4.3.1 et est non nul, alors σ a multiplicité intrinsèque 1 dans ρ.

Or, tout poids de Serre de ρ est dans un tel D(t), sauf : 

. Nous en déduisons le corollaire suivant. (ii) Supposons que ρ possède un poids totalement irrégulier. Alors ρ n'est pas totalement non générique et les trois poids de ρ qui ne sont pas totalement irréguliers ont pour multiplicité intrinsèque 1.

(iii) Supposons que ρ est totalement non générique. Alors le poids modifié de ρ et son symétrique ont pour multiplicité intrinsèque 1.