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Introduction

In this paper we consider random walks in random environments in Z. Let ω := (ω i ) i∈Z be a collection of independent and identically distributed random variables taking values in (0, 1), with joint law η. A realization of ω is called an environment. Conditionally on ω, we define a Markov chain (S n ) n∈N by S 0 = 0 and for n ∈ N, k ∈ Z and i ∈ Z,

P ω (S n+1 = k|S n = i) =    ω i if k = i + 1, 1 -ω i if k = i -1, 0 otherwise.
We say that (S n ) n∈N is a random walk in random environment (RWRE). This model has many applications in physics (see e.g. Hughes [START_REF] Hughes | Random Environments[END_REF]) and in biology (see e.g. Cocco and Monasson [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF] about DNA reconstruction), and has unusual properties. Moreover, its properties are used to study several other mathematical models, see e.g. Zindy [START_REF] Zindy | Upper limits of Sinai's walk in random scenery[END_REF], Enriquez, Lucas and Simenhaus [START_REF] Enriquez | The Arcsine law as the limit of the internal DLA cluster generated by Sinai's walk[END_REF] and Devulder [START_REF] Devulder | The speed of a branching system of random walks in random environment[END_REF].

The probability P ω is called the quenched law. We denote by P x ω the quenched law for a RWRE starting at x ∈ Z instead of 0. We also consider the annealed law, which is defined by P(.) = P ω (.)η(dω).

Notice in particular that (S n ) n∈N is not Markovian under P. We also denote by E, E ω and E x ω the expectations under P, P ω and P x ω respectively. We assume that the following ellipticity condition holds:

∃ε 0 ∈ (0, 1/2), η(ε 0 ≤ ω 0 ≤ 1 -ε 0 ) = 1. (1.1)
This ensures that | log( 1-ω 0 ω 0 )| is η-a.s. bounded by log( 1-ε 0 ε 0 ). Solomon [START_REF] Solomon | Random walks in a random environment[END_REF] proved that (S n ) n∈N is recurrent for almost every environment ω if and only if

log 1 -ω 0 ω 0 η(dω) = 0. (1.2)
We assume that this condition is satisfied throughout the paper. Moreover, in order to avoid the degenerate case of simple random walks, we suppose in the following that σ := log 2 1ω 0 ω 0 η(dω)

1/2 > 0.

(1.3)

A RWRE (S n ) n∈N satisfying conditions (1.1), (1.2) and (1.3) is referred to as Sinai's walk. Sinai ( [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF], see also Andreoletti [START_REF] Andreoletti | Alternative proof for the localization of Sinai's walk[END_REF] for extensions) proved that in this (recurrent) case,

σ 2 S n log 2 n → law b ∞
as n → +∞, where b ∞ is a non degenerate and non gaussian random variable and → law denotes convergence in law under P. We refer to Hughes [START_REF] Hughes | Random Environments[END_REF], Révész [START_REF] Révész | Random walk in random and non-random environments[END_REF] and Zeitouni [START_REF] Zeitouni | Lectures notes on random walks in random environment[END_REF] for more properties of RWRE.

Sinai [START_REF] Sinai | Distribution of some functionals of the integral of a random walk[END_REF] also showed in 1992 that for a symmetric simple random walk (R n ) n∈N , we have

P( n k=1 R k > 0 ∀1 ≤ n ≤ N ) N -1/4
as N → +∞. In this paper, we are interested in the corresponding probability for Sinai's walk (S n ) n∈N , and more generally in the one-sided exit problem for some additive functionals of Sinai's walk under the annealed law P. We say that g(x) = o(1) as x → +∞ (resp -∞) if g(x) → 0 as x → +∞ (resp -∞). Our main result is the following.

Theorem 1.1. Let f be a function Z → R, such that f (0) = 0; f (x) ≥ 1 for all x > 0; f (x) ≤ -1 for all x < 0; and |f (x)| ≤ exp(|x| o (1) ) as x → ±∞. We consider a RWRE (S n ) n∈N satisfying conditions (1.1), (1.2) and (1.3), and a real number u ≤ 0. We have as N → +∞,

P n k=0 f (S k ) > u ∀1 ≤ n ≤ N = 1 (log N ) 3- √ 5 2 +o (1) 
.

Let (A t ) t∈D be a real valued stochastic process starting from 0, where D = R + or D = N. The asymptotic study of the survival function P(∀t ∈ (0, T ] ∩ D, A t ≥ x) for x ≤ 0, when T → +∞, is called one sided exit problem or persistence probability. This problem is equivalent to the study of P(T x > T ), where T x is the first passage time of the process (-A t ) t strictly above the level y = -x ≥ 0. In many cases with physical relevance, the survival function behaves asymptotically like 1/T α+o (1) as T → +∞, with α > 0. The exponent α is called the persistence or survival exponent. This problem, which is well known for random walks or Lévy processes, is less understood for the integrals of these processes, in particular in the discrete case. We refer to Aurzada and Simon [START_REF] Aurzada | Persistence probabilities & exponents[END_REF] for a recent review on this subject from the mathematical point of view. Persistence properties have also received a considerable attention in physics, see e.g. Bray, Majumdar and Schehr [START_REF] Bray | Persistence and First-Passage Properties in Non-equilibrium Systems[END_REF] for an up-to-date survey.

In our case, the probability we obtain in Theorem 1.1 for the integrals of (f (S n )) n is a power of log N instead of N , which is quite unusual and contrasts with all the cases presented in the review paper [START_REF] Aurzada | Persistence probabilities & exponents[END_REF]. The value of the survival exponent is 3- √ 5

2 ; it does not depend on the function f for a wide class of functions, and it also does not depend on the law η of the environment, as long as (1.1), (1.2) and (1.3) are satisfied. It is derived from the results of Cheliotis [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF] about the number of sign changes of the bottom of valleys of Brownian motion, and was first stated in a non rigorous paper of Le Doussal, Monthus and Fisher [START_REF] Doussal | Random walkers in one-dimensional random environments; Exact renormalization group analysis[END_REF], with motivations coming from physics.

Before giving some examples, we introduce some more notation. We denote by N * the set of positive integers, and Z * -is the set of negative integers. We define the local time of the RWRE (S n ) n∈N at time n ∈ N as follows:

L(A, n) := n k=0 1 {S k ∈A} , L(x, n) := L({x}, n)
for A ⊂ Z and x ∈ Z. In words L(A, n) is the number of visits of the random walk S to the set A in the first n steps. This quantity will be useful in the proof of Theorem 1.1, because

n k=0 g(S k ) = x∈Z g(x)L(x, n), n ∈ N, (1.4) 
for every function g.

It can be interesting to keep in mind the first example:

Example 1. For f (x) = 1 {x>0} -1 {x<0} , Theorem 1.1 gives

P L(N * , n) > L(Z * -, n) ∀1 ≤ n ≤ N = 1 (log N ) 3- √ 5 
2 +o(1)

.

The following example gives for α = 1 the persistence of the temporal average or running average of Sinai's walk, that is 1 n n k=0 S k , with the terminology of Le Doussal et al. ( [START_REF] Doussal | Random walkers in one-dimensional random environments; Exact renormalization group analysis[END_REF] Section IV):

Example 2. Let α > 0, sgn(x) := 1 {x>0} -1 {x<0} for x ∈ R, and f (x) = sgn(x)|x| α for x ∈ Z. We get for u ≤ 0,

P n k=0 sgn(S k )|S k | α > u ∀1 ≤ n ≤ N = 1 (log N ) 3- √ 5 
2 +o [START_REF] Andreoletti | Localisation et Concentration de la Marche de Sinai[END_REF] .

We recall that the corresponding probability for α = 1 for a simple random walk is of order N -1/4 (see Sinai [START_REF] Sinai | Distribution of some functionals of the integral of a random walk[END_REF]; see also Vysotsky [START_REF] Vysotsky | On the probability that integrated random walks stay positive[END_REF] and Dembo, Ding and Gao [START_REF] Dembo | Persistence of iterated partial sums[END_REF] for recent extensions). Example 2 is also, for α > 0 arbitrary, the analogue for Sinai's walk of the results obtained by Simon [START_REF] Simon | The lower tail problem for homogeneous functionals of stable processes with no negative jumps[END_REF] for some additive functionals of stable processes with no negative jumps. We can also consider functions increasing more rapidly, such as

f (x) = sgn(x)|x| | log(2+|x|)| α , x ∈ Z for α > 0.
The rest of the paper is organized as follows. We introduce some notation and basic facts in Section 2. In Section 3 we build a set B(N ) of bad environments, such that in a bad environment, n k=0 f (S k ) is less than u for at least one integer n ∈ [1, N ] with a great quenched probability. To this aim, we approximate the potential of the environment by a two-sided Brownian motion, and we define strong changes of sign for the valleys of this Brownian motion. We prove that in a bad environment, the existence of such a strong change of sign forces the walk to stay a long time in Z * -with a large quenched probability, leading to the upper bound of Theorem 1.1. A sketch of this proof is provided in Subsection 3.1. In Section 4 we build a set G(N ) of good environments. We prove, using a mathematical induction, that in such a good environment n k=0 f (S k ) is strictly positive for all 1 ≤ n ≤ N with a large quenched probability, which leads to the lower bound of Theorem 1.1. A sketch of this proof is given in Subsection 4.1. Finally, Section 5 is devoted to the proof of two technical lemmas. Throughout the paper, c i , i ∈ N, denote positive constants, and log denotes the natural logarithm.

Preliminaries

2.1. Potential. We recall that the potential V is a function of the environment ω, which is defined on Z as follows:

V (n) :=    n i=1 log 1-ω i ω i if n > 0, 0 if n = 0, -0 i=n+1 log 1-ω i ω i if n < 0.
For p ∈ Z, we define the hitting time of p by (S n ) n by:

τ (p) := inf{k ∈ N, S k = p}.
We now recall some basic estimates that will be useful throughout the paper.

Lemma 2.1. (see e.g. Zeitouni [31] formula (2.1.4) p. 196) If p < q < r, then

P q ω [τ (r) < τ (p)] = q-1 k=p e V (k) r-1 k=p e V (k) -1 . (2.1) Lemma 2.2. (see e.g. Zeitouni [31] p. 250) If g < h < i, E h ω [τ (g) ∧ τ (i)] ≤ i-1 k=h k =g exp[V (k) -V ( )] ω ≤ ε -1 0 (i -g) 2 exp max g≤ ≤k≤i-1 (V (k) -V ( )) . (2.

2)

Proof: This formula (2.2) is proved by Zeitouni [START_REF] Zeitouni | Lectures notes on random walks in random environment[END_REF] p. 250, in the particular case h = 0. Indeed, Zeitouni uses the notation ω + [START_REF] Zeitouni | Lectures notes on random walks in random environment[END_REF] p. 194 and p. 195),

x := ω x , ρ x := (1 -ω x )/ω x , x ∈ Z (see
T b,n := τ (a n δ ) ∧ τ (b n ) for some a n δ < 0 < b n δ = b n ,
and proves in the fourth formula of [START_REF] Zeitouni | Lectures notes on random walks in random environment[END_REF] p. 250 that

E 0 ω τ (a n δ ) ∧ τ (b n ) = E 0 ω T b,n ≤ b n i=1 i-1-a n δ j=0 j k=1 ρ i-k ω i-j-1 = b n -1 k=0 k =a n δ exp[V (k) -V ( )] ω . (2.3)
Since the proof of this formula does not use any property of a n δ and b n except a n δ < 0 < b δ n = b n , it is true for any integers a n δ < 0 < b n . The general case (2.2) follows from (2.3) by translation, since

E h ω [τ (g) ∧ τ (i)] = E 0 ω [τ (g -h) ∧ τ (i -h)]
for g < h < i, with ω x := ω x+h for every x ∈ Z. Moreover, the following estimate can be found in Andreoletti ([1] p. 22) and is in the spirit of Révész ([21] p278-279).

Lemma 2.3. If p < z ≤ q < r or p < q < z < r, E q ω [L(z, τ (p) ∧ τ (r))] = P q ω [τ (z) < τ (p) ∧ τ (r)] ω z P z+1 ω [τ (z) > τ (r)] + (1 -ω z )P z-1 ω [τ (z) > τ (p)] . (2.4)
For the sake of completeness, we recall the proof:

Proof of Lemma 2.3: By the strong Markov property,

E q ω [L(z, τ (p) ∧ τ (r))] = E q ω [L(z, τ (p) ∧ τ (r))1 {τ (z)<τ (p)∧τ (r)} ] = E z ω [L(z, τ (p) ∧ τ (r))]P q ω [τ (z) < τ (p) ∧ τ (r)]. Since L(z, τ (p) ∧ τ (r)) is under P z ω a geometric random variable of parameter ω z P z+1 ω [τ (z) > τ (r)] + (1 -ω z )P z-1 ω [τ (z) > τ (p)],
we get (2.4).

2.2.

x-extrema. We now recall some definitions introduced by Neveu and Pitman [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF]. If w is a continuous function R → R, x > 0, and y 0 ∈ R, it is said that w admits an x-minimum at y 0 if there exists real numbers α and β such that α < y 0 < β, w(y 0 ) = inf{w(y), y ∈ [α, β]}, w(α) ≥ w(y 0 ) + x and w(β) ≥ w(y 0 ) + x. It is said that w admits an x-maximum at y 0 if -w admits an x-minimum at y 0 . In these two cases we say that w admits an x-extremum at y 0 .

We denote by W the set of functions w from R to R such that the three following conditions are satisfied: (a) w is continuous on R; (b) for every x > 0, the set of x-extrema of w can be written {x k (w, x), k ∈ Z}, where (x k (w, x)) k∈Z is strictly increasing, unbounded from above and below, with x 0 (w, x) ≤ 0 < x 1 (w, x); (c) for all x > 0 and k ∈ Z, x k+1 (w, x) is an x-maximum if and only if x k (w, x) is an x-minimum. We now consider a two-sided standard Brownian motion W . We know from Cheliotis ([8], Lemma 8) that η(W ∈ W) = 1.

For each x > 0, b W (x), also denoted by b(x) when no confusion is possible, is defined on {W ∈ W} as

b W (x) := x 0 (W, x) if x 0 (W, x) is an x-minimum, x 1 (W, x)
otherwise.

One interesting feature about b W is that the diffusion in the random potential W , defined by Schumacher [START_REF] Schumacher | Diffusions with random coefficients[END_REF], is localized in a small neighborhood of b W (log t) at time t with probability nearly one (see Brox [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF], Tanaka [START_REF] Tanaka | Localization of a diffusion process in a one-dimensional Brownian environment[END_REF] and Hu [START_REF] Hu | Tightness of localization and return time in random environment[END_REF]). Such a diffusion can be viewed as a continuous time analogue of Sinai's walk (see e.g. Shi [START_REF] Shi | Sinai's walk via stochastic calculus[END_REF]), and a similar localization phenomenon arises for Sinai's walk (see Sinai [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF], Golosov [START_REF] Golosov | Localization of random walks in one-dimensional random environments[END_REF] and more recently Andreoletti [START_REF] Andreoletti | Alternative proof for the localization of Sinai's walk[END_REF]).

For x > 0 and k ∈ Z, the restriction of W -W (x k (W, x)) to [x k (W, x), x k+1 (W, x)] is denoted by T k (x)
and is called an x-slope. It is the translation of the trajectory of W between two consecutive x-extrema. If x k (W, x) is an x-minimum (resp. x-maximum), it is a nonnegative (resp. non-positive) function, and its maximum (resp. minimum) is attained at x k+1 (W, x). For each x-slope T k (x), we denote by H(T k (x)) its height and by e(T k (x)) its excess height, that is

H(T k (x)) := |W [x k+1 (W, x)] -W [x k (W, x)]| ≥ x and e(T k (x)) := H(T k (x)) -x ≥ 0. We also define e(T k (0)) = H(T k (0)) = 0, k ∈ Z.
The point of view of x-extrema has been used in some recent studies of processes in random environment, see e.g. Bovier and Faggionato [START_REF] Bovier | Spectral analysis of Sinai's walk for small eigenvalues[END_REF] for Sinai's walk, Cheliotis [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF] for (recurrent) diffusions in a Brownian potential, and Andreoletti and Devulder [START_REF] Andreoletti | Localization and number of visited valleys for a transient diffusion in random environment[END_REF] for (transient) diffusions in a drifted Brownian potential.

Proof of the upper bound

3.1. Sketch of the proof, and organization of this proof. We approximate the potential V in (3.2) by σW , where W is a suitable two-sided Brownian motion.

In many cases for Sinai's walk, the environment largely controls the behavior of the random walk. This is due to the fact that the random walk tends to go to places with a low potential, and spend a large amount of time around these places. So, heuristically speaking, the idea is to prove that for most environments, the deepest location (in terms of potential) visited until time n is < 0 for at least one time n ≤ N , and that the RWRE (S k ) k spends a large amount of time around this deepest location before going back to the positive locations at some time m ≤ N , making the sum m k=1 f (S k ) negative with large annealed probability. One good candidate for this deepest location visited until time n seems to be b σW (log n), that is, b σW (x) for some x much bigger that 1 and much smaller than log N such that b W (x) < 0. However, the existence of such an x with b σW (x) < 0 is not enough to ensure that with a large quenched probability the random walk (S k ) k will go quickly to this (negative) place and spend a great amount of time around it before going back to 0. This is why we introduce, in Definition 3.2 below, the notion of a-strong change of sign for b W , in order to push the walk to go quickly to negative locations and spend a large amount of time there.

We first study the potential in Subsections 3.2 and 3.3. We prove in Lemma 3.4 that with a very large probability, the environment is what we call a bad environment: it satisfies some technical conditions, but also, there are many changes of sign X k of b W in [(log N ) ε , (log N ) 1-ε ] (see (3.3)), and among them, at least one is a "strong" change of sign h N := X k N of b W (see (3.4) and Lemma 3.3), as defined in Definition 3.2 below, with b W (X k N +1 ) ≤ 0. A schema representing the potential V of a typical "bad environment" is given in Figure 1 page 9.

Then in Subsection 3.4, we consider a random walk (S k ) k in such a bad environment ω. Due to the conditions defining our strong change of sign h N , we prove that with a large quenched probability, the random walk (S k ) k goes quickly to x -1 := x -1 (W, h N ) ≤ -1 before going to some v 2 ≤ x 2 (W, h N ) =: x 2 (see Figure 1). Moreover, it stays a long time in Z * -before going back to 0. It stays such a long time in Z * -, on which f < 0, that n k=1 f (S k ) becomes ≤ u for some 1 ≤ n < N , with large quenched probability uniformly on bad environments (see Lemma 3.5), and so with a large annealed probability. This leads to the upper bound of Theorem 1.1.

3.2.

Strong change of sign. Let c > 0. Similarly as in Cheliotis ([8] Corollary 2), we denote by (X k ) k≥1 the strictly increasing sequence of points for which b W (.) changes its sign in [c, +∞). The proof of the following fact is deferred to Section 5:

Fact 3.1. Almost surely, X 1 = inf{x ≥ c, e(T 0 (x)) = 0}, X k+1 = inf{x > X k , e(T 0 (x)) = 0}, k ∈ N * . Moreover, the sign of b W (.) is constant on every interval [c, X 1 ], (X k , X k+1 ], k ∈ N * .
As a consequence, a.s. for every x > 0, b W changes its sign at x if and only if e(T 0 (x)) = 0. We can now define strong changes of sign of b W as follows: Definition 3.2. Consider x > 0. For a > 0, we say that x is an a-strong change of sign of b W if and only if e(T 0 (x)) = 0, e(T -1 (x)) ≥ ax, and e(T 1 (x)) ≥ ax.

In the following lemma, we evaluate the probability that there is no a-strong change of sign x such that b W (x) > 0 in [c, X 2k+1 ). Lemma 3.3. For a > 0, c ≥ 1 and k ∈ N * , we define A(k, a, c) also denoted by A k,a,c as follows:

A k,a,c := {∀i ∈ {1, . . . , 2k}, b W (X i ) > 0 ⇒ (e(T -1 (X i )) < aX i or e(T 1 (X i )) < aX i )}. We have, η(A k,a,c ) ≤ η(A 1,a,c ) 1 -e -2a k-1 . (3.1)
The proof of this lemma is deferred to Section 5.

3.3. Bad environments. Let (ω i ) i∈Z be a collection of independent and identically distributed random variables satisfying (1.1), (1.2) and (1.3). We now fix ε ∈ (0, 1/2). Let K ≥ 1. In order to transfer to our random potential V , with some approximations, some results such as the ones of Cheliotis [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF], which are available for Brownian motion, but unavailable for V to the extent of our knowledge, we use the following coupling. According to the Komlós-Major-Tusnády strong approximation theorem (see Komlós et al. [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF]), there exist (strictly) positive constants C 1 , C 2 and C 3 , independent of K ∈ N * , such that, possibly in an enlarged probability space, there exists a two-sided standard Brownian motion (W (t), t ∈ R), such that

B 1 (K) := sup -K≤i≤K V (i) -σW (i) ≤ C 1 log K (3.2) satisfies η([B 1 (K)] c ) ≤ C 2 K -C 3 .
Throughout the proof, we set a := 1 2 exp √ 5 -3 2ε . Moreover, for u ∈ R, u denotes the integer part of u. We define for N > 2 the events

B 2 (N ) := {the number of sign changes of b W in [(log N ) ε , (log N ) 1-ε ] is at least 2ε log 2 N + 2}, (3.3) B 3 (N ) := [A( ε log 2 N , a, (log N ) ε )] c , (3.4) 
where log 2 x := log log x for x > 1.

We now introduce, for every continuous process (Z(t), t ≥ 0),

Z(t) := inf{Z(u), 0 ≤ u ≤ t}, t ≥ 0, (3.5) d Z (r) := inf{t ≥ 0, Z(t) -Z(t) ≥ r}, r ≥ 0.
Then we set W + (t) := W (t) and W -(t) := W (-t) for t ≥ 0, and consider for N > 1:

B 4 (N ) := d σW + (5 log N ) ≤ (log N ) 4 , B 5 (N ) := d σW -(5 log N ) ≤ (log N ) 4 .
For technical reasons, we also introduce

B 6 (N ) := ∀k ∈ Z ∩ [-log 4 N -1, log 4 N ), ∀t ∈ [k, k + 1], |W (t) -W (k)| ≤ log 2 N .
This enables us to define the set B(N ) of bad environments as follows:

B(N ) := B 1 (log N ) 3- √ 5 2C 3 +4 ∩ 6 i=2 B i (N ).
We now estimate the probability of bad environments with the following lemma:

Lemma 3.4. If ε > 0 is small enough, we have for large N , η(B(N ) c ) ≤ 3 (log N ) 3- √ 5 2 -ζ(ε) , (3.6) 
where ζ is a function (0, 1/3) → R such that ζ(t) → t→0 0 and ζ(t) > 0 for t > 0 small enough, which is defined just after (3.7). 

Proof

η(B 2 (N ) c ) ≤ η k W e (1-2ε) log 2 N ≤ 3ε log 2 N ≤ exp {-[I (3ε/(1 -2ε)) -ε] (1 -2ε) log 2 N } = (log N ) ζ(ε)-3-√ 5 2 , ( 3.7) 
where

ζ(t) := I(0) -[I(3t/(1 -2t)) -t](1 -2t) for t ∈ (0, 1/3). Notice that ζ(t) > 0 for small t > 0 since 0 < I(u) < I(0) for small u > 0. Moreover, ζ(t) → 0 as t → 0, t > 0, since I is right-continuous at 0. Lemma 3.3 gives since 1 -e -t ≤ t for t ∈ R, for N large enough so that ε log 2 N -1 > 0, η B 3 (N ) c = η A ε log 2 N , a, (log N ) ε ≤ 1 -e -2a ε log 2 N -1 ≤ 2a ε log 2 N -1 . So, since 2a = exp [ √ 5 -3]/(2ε) ∈ (0, 1), η B 3 (N ) c ≤ 2a ε log 2 N -2 = exp (3 - √ 5)/ε (log N ) √ 5-3 2
.

Consequently, for every (fixed) ε > 0 small enough so that ζ(ε) > 0, we have for N large enough,

exp (3 - √ 5)/ε ≤ (log N ) ζ(ε) and then η B 3 (N ) c ≤ (log N ) ζ(ε)-3-√ 5 2
.

(3.8)

Notice that for r ≥ 0 and T > 0,

η(d W + (r) > T ) ≤ η W + (T ) -W + (T ) ≤ r = η(|W (T )| ≤ r) ≤ 2r/ √ T , since W + (T ) -W + (T ) = law |W (T )| (see L évy's theorem e.
g. in Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] th VI.2.3). This gives

η[B 4 (N ) c ] = η[B 5 (N ) c ] ≤ 10/(σ log N ). (3.9) 
Moreover for large N , we get since

sup 0≤t≤1 W (t) = law |W (1)| and η[W (1) ≥ x] ≤ e -x 2 /2 for x ≥ 1, η(B 6 (N ) c ) ≤ 3(log 4 N )η sup 0≤t≤1 |W (t)| > log 2 N ≤ 12(log 4 N ) exp(-(log 2 N ) 2 /2) ≤ (log N ) -2 . (3.10) 
Combining this with (3.7), (3.8), (3.9) and η(B

1 (K) c ) ≤ C 2 K C 3 proves the lemma.
3.4. Random walk in a bad environment. In the following lemma, we show that in a bad environment, the quenched probability that n k=0 f (S k ) is greater than u ≤ 0 for all n between 1 and N is small: Lemma 3.5. Let f be as in Theorem 1.1, and u ≤ 0. For large N , ∀ω ∈ B(N ),

P ω ∀n ∈ [1, N ], n k=0 f (S k ) > u ≤ 4(log N ) -2 . (3.11)
Proof of Lemma 3.5: We assume that ω ∈ B(N ), and we prove that in such a bad environment, there exists a time t ∈ [1, N ] such that t k=1 f (S k ) ≤ u, with a large enough quenched probability.

First, define C

4 := σ + 3- √ 5 2C 3 C 1 + 4C 1 . Since ω ∈ B 6 (N ) ∩ B 1 (log N ) 3- √ 5 2C 3 +4 , we have ∀u ∈ [-log 4 N, log 4 N ], |V ( u ) -σW (u)| ≤ C 4 log 2 N. (3.12) Notice that since ω ∈ B 3 (N ), there exists k N ∈ {1, . . . , 2 ε log 2 N } such that h N := X k N is an a-strong change of sign of b W and b W (h N ) > 0, where the (X k ) k are the ones in Fact 3.1 with c = (log N ) ε . Moreover, since ω ∈ B 2 (N ) ∩ B 3 (N ), (log N ) ε ≤ h N = X k N < X k N +1 < X k N +2 ≤ X 2 ε log 2 N +2 ≤ (log N ) 1-ε .
To simplify the notation, we set x i := x i (W, h N ) and y i := x i for i ∈ {-2, . . . , 2}. We also define (see Figure 1)

v -2 := max{k ∈ Z, k ≤ y -1 , V (k) ≥ V (y 0 )}, v 2 := min{k ∈ Z, k > y 1 , V (k) ≥ σW (x 0 ) + (7 + C 4 ) log 2 N }. σW V (k) ≥ σah N ≤ C 4 log 2 N ≤ C 4 log 2 N y -1 x -1 y -2 x -2 v -2 y 1 x 1 k 0 σh N ≥ σah N (7 + C 4 ) log 2 N y 0 x 0 v 2 y 2 x 2 1 Figure 1. Schema of the potential V for a "bad" environment ω ∈ B(N ) in the case x -2 < v -2 Since b W (h N ) > 0, x 1 is an h N -minimum for W , and consequently x 0 and x 2 are h N -maxima for W and x -1 is an h N -minimum for W . Moreover, e(T 0 (h N )) = 0, e(T 1 (h N )) ≥ ah N and e(T -1 (h N )) ≥ ah N since h N is an a-strong change of sign of b W .
Due to these properties, we get

W (x 0 ) = sup{W (t), t ∈ [x -1 , x 1 ]} ≥ 0, (3.13) W (x 1 ) = inf{W (t), t ∈ [x 0 , x 2 ]} ≤ 0, (3.14) W (x 0 ) -W (x 1 ) = h N , (3.15) W (x 2 ) -W (x 1 ) ≥ (1 + a)h N , (3.16) W (x 0 ) -W (x -1 ) ≥ (1 + a)h N , (3.17) W (x -1 ) = inf{W (t), t ∈ [x -2 , x 0 ]} < W (x 1 ). (3.18) 
The following lemma will allow us to apply (3.12) to some x i , y i and v i .

Lemma 3.6. For N large enough,

∀ω ∈ B(N ), -(log N ) 4 ≤ v -2 ≤ x -1 < x 0 ≤ 0 < x 1 < v 2 < x 2 ≤ (log N ) 4 , ∀ω ∈ B(N ), v -2 + 3 ≤ y -1 ≤ y 0 -3 ≤ -3. (3.19) Proof: First, it is clear by definition that x -2 < x -1 < x 0 ≤ 0 < x 1 < x 2 . Moreover, x 1 is an X k N -minimum, whereas x 1 (W, X k N +1 ) is an (X k N +1 )-maximum because X k N = h N and X k N +1 are consecutive changes of sign for b W . So x 1 = x 1 (W, X k N +1 ). Since x 1 (W, X k N +1 ) is also an X k N -maximum, and x 2 is the smallest positive X k N -maximum, we get x 2 ≤ x 1 (W, X k N +1 ). Now, if 0 ≤ t ≤ x 1 (W, X k N +1 ), W + (t) -W + (t) is less than or equal to W + [x 1 (W, X k N +1 )] -W + [x 1 (W, X k N +1 )] ≤ W [x 1 (W, X k N +1 )] -W [x 0 (W, X k N +1 )] = X k N +1 . Since X k N +1 ≤ (log N ) 1-ε ≤ (5/σ) log N for N such that 5 log N > σ(log N ) 1-ε , and ω ∈ B 4 (N ), this yields 0 < x 2 ≤ x 1 (W, X k N +1 ) ≤ d σW + (5 log N ) ≤ (log N ) 4 .
Since v 2 > y 1 = x 1 , we have x 1 < v 2 . Moreover, we can now apply (3.12) to x 2 together with (3.15) and (3.16), which gives

V (y 2 ) ≥ σW (x 2 ) -C 4 log 2 N ≥ σW (x 0 ) + σah N -C 4 log 2 N , which is greater than σW (x 0 ) + (7 + C 4 ) log 2 N + 2 log[(1 -ε 0 )/ε 0 ] uniformly on B(N ) for N large enough. This gives v 2 < y 2 ≤ x 2 . Moreover, v -2 ≤ y -1 ≤ x -1 . Now, similarly as before, x 0 (W, X k N +2 ) < x 0 (W, X k N +1 ) < x 0 (W, X k N )
, and since all of them are X k N -extrema, this yields x 0 (W,

X k N +2 ) ≤ x -2 . Now, we have W -(-x 0 (W, X k N +2 )) -W -(-x 0 (W, X k N +2 )) ≤ H(T 0 (X k N +2 )) = X k N +2 ≤ (log N ) 1-ε , which gives as previously x -2 ≥ x 0 (W, X k N +2 ) ≥ -d σW -(5 log N ) ≥ -(log N ) 4 .
We already know that x 0 (W,

X k N +2 ) ≤ x -1 < 0 < x 2 ≤ x 1 (W, X k N +1 ) < x 1 (W, X k N +2 ), which leads to W [x 0 (W, X k N +2 )] ≥ W (x 2 ) ≥ W (x 0 ) + ah N since x 0 (W, X k N +2 ) is an (X k N +2 )- maximum. Applying (3.12) to x 0 (W, X k N +2 ) ≥ -log 4 N and to x 0 ≥ x 0 (W, X k N +2 ) ≥ -log 4 N , this gives V ( x 0 (W, X k N +2 ) ) ≥ σW (x 0 (W, X k N +2 )) -C 4 log 2 N ≥ σW (x 0 ) + C 4 log 2 N ≥ V (y 0 ) for N such that σah N ≥ 2C 4 log 2 N , which yields v -2 ≥ x 0 (W, X k N +2 ) ≥ -(log N ) 4 .
Finally, notice that by (3.12) and (3.17),

V (y 0 ) -V (y -1 ) ≥ σW (x 0 ) -σW (x -1 ) -2C 4 log 2 N ≥ σ(1 + a)h N -2C 4 log 2 N,
which is, for large N uniformly on B(N ), strictly larger than -3 log

ε 0 ≥ 3 sup k∈Z |V (k)-V (k-1)| since h N ≥ (log N ) ε
. This and x -1 ≤ x 0 ≤ 0 give the second inequality in (3.19). The first one is obtained similarly.

Let

E 1 := {τ (y -1 ) < τ (v 2 )}, E 2 := L((0, v 2 ], τ (y -1 ) ∧ τ (v 2 )) ≤ (log N ) 18+2C 4 e σh N .
We prove the following lemma:

Lemma 3.7. For large N , ∀ω ∈ B(N ), P ω (E c 1 ) ≤ (log N ) -2 , P ω (E c 2 ) ≤ (log N ) -2 .
Proof: First, due to the previous lemma, -(log N ) 4 ≤ y -1 ≤ -3 uniformly on B(N ) for large N , and equations (1.1), (2.1), (3.12) and (3.13) yield

P ω (E c 1 ) ≤ |y -1 | max y -1 ≤k≤-1 e V (k)-V (v 2 -1) ≤ ε -1 0 (log N ) 4+C 4 exp[σW (x 0 ) -V (v 2 )] ≤ (log N ) -2 ,
for every ω ∈ B(N ) for large N , which proves the first part of the lemma.

Thanks to x 0 ≤ 0 < v 2 < x 2 and to (3.14), we have

W (z) ≥ W (x 1 ) for all z ∈ (0, v 2 ). Moreover, V (k) ≤ σW (x 0 ) + (7 + C 4 ) log 2 N for every k ∈ [y -1 , v 2 -1]
by the definition of v 2 , (3.13), and (3.12). This, Lemma 3.6, (2.1), (3.15) and (3.12) again give for z ∈ (0, v 2 ),

P z-1 ω [τ (z) > τ (y -1 )] = e V (z-1) z-1 k=y -1 e V (k) ≥ ε 0 e σW (x 1 )-C 4 log 2 N 2(log N ) 4 e σW (x 0 )+(7+C 4 ) log 2 N ≥ ε 0 e -σh N 2(log N ) 11+2C 4 .
Applying (2.4) and observing that v 2 ≤ (log N ) 4 , P ω [τ (z) < τ (y -1 )] ≤ 1 and y -1 ≤ -1, we obtain for every ω ∈ B(N ) for large N ,

E ω [L((0, v 2 ], τ (y -1 ) ∧ τ (v 2 ))] ≤ v 2 -1 z=1 P ω [τ (z) < τ (y -1 )] ω z P z+1 ω [τ (z) > τ (v 2 )] + (1 -ω z )P z-1 ω [τ (z) > τ (y -1 )] + 1 ≤ 2ε -2 0 (log N ) 15+2C 4 e σh N + 1.
Using Markov's inequality, we get P ω (E c 2 ) ≤ (log N ) -2 for large N . Now, let T := inf{k > τ (y -1 ), S k ∈ {v -2 , y 0 -1}} be the first exit time from the interval (v -2 , y 0 -1) by the random walk S after τ (y -1 ). We introduce n 1 :=

ε 2 0 exp(σ(1+a)h N ) 2(log N ) 2+2C 4
and the events

E 3 := {T ≥ τ (y -1 ) + n 1 }, E 4 := {τ (y -1 ) + n 1 < N }. Lemma 3.8. For N large enough, ∀ω ∈ B(N ), P ω (E c 3 ) ≤ (log N ) -2 , P ω (E c 4 ∩ E 1 ) ≤ (log N ) -2 .
Proof: Recall that v -2 < y -1 < y 0 -1 on B(N ) for N large enough by (3.19), and that τ (y -1 ) < ∞ P-a.s. since (S n ) n is recurrent. We first consider L(y -1 , T ) and notice that it is under P ω a geometric random variable of parameter

p 1 := ω y -1 P y -1 +1 ω [τ (y -1 ) > τ (y 0 -1)] + (1 -ω y -1 )P y -1 -1 ω [τ (y -1 ) > τ (v -2 )] = ω y -1 e V (y -1 ) y 0 -2 k=y -1 e V (k) -1 + (1 -ω y -1 )e V (y -1 -1) y -1 -1 k=v -2 e V (k) -1 ≤ ε -2 0 exp[V (y -1 ) -V (y 0 )] ≤ ε -2 0 e -σ(1+a)h N (log N ) 2C 4 =: p 2 , thanks to (2.1
) and the definition of v -2 , and where the last inequality comes from (3.12) and (3.17). This ensures that for large N , uniformly on B(N

) since h N ≥ (log N ) ε , log P ω [L(y -1 , T ) ≥ n 1 ] = (n 1 -1) log(1 -p 1 ) ≥ -2n 1 p 1 ≥ -2n 1 p 2 ≥ -(log N ) -2 . Since 1 -e -t ≤ t for t ∈ R, this yields P ω [L(y -1 , T ) < n 1 ] ≤ (log N ) -2 . Finally, we have T ≥ τ (y -1 ) + L(y -1 , T ), which gives P ω (E c 3 ) ≤ P ω [L(y -1 , T ) < n 1 ] ≤ (log N ) -2
. We now turn to E 4 . Notice that uniformly on B(N ) for large N , thanks to Lemma 3.6, (3.12), (3.13), (3.14), (3.18) and the definition of v 2 , we have

∀k ∈ [y -1 , v 2 -1], σW (x -1 ) -C 4 log 2 N ≤ V (k) ≤ σW (x 0 ) + (7 + C 4 ) log 2 N. (3.20) Since H(T 0 (X k N )) = X k N < X k N +1 , x 0 and x 1 are not (X k N +1 )-extrema. Hence, [x -1 , x 2 ] ⊂ [x 0 (W, X k N +1 ), x 1 (W, X k N +1 )], and then W (x 2 ) -W (x -1 ) ≤ X k N +1 . Moreover, log 2 N = o(h N )
uniformly on B(N ) and W (x 0 ) ≤ W (x 2 )ah N by (3.15) and (3.16), so (3.20) gives for large N ,

max{V (k) -V ( ), y -1 ≤ ≤ k ≤ v 2 -1} ≤ σ(W (x 0 ) -W (x -1 )) + (7 + 2C 4 ) log 2 N ≤ σ(W (x 2 ) -W (x -1 )) ≤ σX k N +1 ≤ σ(log N ) 1-ε .
This together with (2.2) and

|v 2 -y -1 | ≤ 2(log N ) 4 yield E ω (τ (y -1 )1 E 1 ) ≤ E ω [τ (y -1 ) ∧ τ (v 2 )] < √ N uniformly on B(N ) for large N . Since E ω (n 1 1 E 1 ) < √ N because h N ≤ (log N ) 1-ε on B(N ), this yields P ω (E c 4 ∩ E 1 ) ≤ (log N ) -2
for every ω ∈ B(N ) for large N by Markov's inequality. We now consider f satisfying the hypotheses of Theorem 1.1. For every ω ∈ B(N ), we have on E 1 ∩ E 2 and then on

E 5 := ∩ 4 i=1 E i , since f (x) ≤ 0 for every x ≤ 0, τ (y -1 )-1 k=0 f (S k ) = v 2 -1 x=-∞ f (x)L(x, τ (y -1 ) ∧ τ (v 2 ) -1) ≤ max k∈(0,v 2 ] f (k) L((0, v 2 ], τ (y -1 ) ∧ τ (v 2 )) ≤ max k∈(0,v 2 ] f (k) (log N ) 18+2C 4 e σh N . (3.21)
For every ∆ ⊂ Z and 0 ≤ s ≤ t, we define L(∆, s t) := t k=s 1 {S k ∈∆} , which is the number of visits of (S n ) n∈N to the set ∆ between times s and t.

For every ω ∈ B(N ) and each integer

k ∈ [τ (y -1 ), τ (y -1 ) + n 1 ], we have τ (y -1 ) ≤ k ≤ T on E 3 , so S k ≤ y 0 -1 ≤ -1, thus f (S k ) ≤ -1. As a consequence on E 5 for large N , τ (y -1 )+n 1 k=τ (y -1 ) f (S k ) ≤ -n 1 -1 ≤ -ε 2 0 exp[σh N + σa(log N ) ε ] 2(log N ) 2+2C 4 , (3.22) 
since h N ≥ (log N ) ε . Combining (3.21), (3.22), and

max k∈(0,v 2 ] f (k) ≤ max k∈(0,(log N ) 4 ] f (k) ≤ exp((log N ) ε/2
) for large N , we get τ (y -1 )+n 1 k=0

f (S k ) ≤ u on E 5 for every ω ∈ B(N ) for large N . Moreover, 1 ≤ τ (y -1 ) + n 1 ≤ N on E 5 , hence for large N , for every ω ∈ B(N ), we have 

E 5 ⊂ {∃n ∈ [1, N ],
P ∀n ∈ [1, N ], n k=0 f (S k ) > u ≤ B(N ) P ω ∀n ∈ [1, N ], n k=0 f (S k ) > u η(dω) + η(B(N ) c ) ≤ 4(log N ) -2 + 3 (log N ) 3- √ 5 2 -ζ(ε) ≤ 4 (log N ) 3- √ 5 2 -ζ(ε)
for large N . Now, let ε → 0, so ζ(ε) → 0. This gives the upper bound in Theorem 1.1.

Proof of the lower bound

4.1. Sketch of the proof, and organization of this proof. We give in this subsection some non-rigorous heuristics, for which we invite the reader to look at Figure 2; everything will be proved in details in the next subsections.

Let N ≥ 2. We build in Subsection 4.2 a set G(N ) of "good environments". We would like that uniformly on these good environments ω ∈ G(N ), n k=0 f (S k ) > 0 for all 1 ≤ n ≤ N with large quenched probability (see Lemma 4.3). To this aim, we first require that the potential V of such good environments decreases quickly between 0 and ε log 2 N and then remains low up to some random θ 0 , which is the smallest k > 0 such that V (k) ≤ -5h(N ) (h(N ) being defined in (4.1) below). We then make a coupling between the potential outside this interval [0, θ 0 ], called V and defined in (4.3), and a two-sided Brownian motion W (see (4.4) below). We then require that b σW (x) > 0 for all 1 ≤ x ≤ 5 log N , and add some technical conditions. Such environments are called good environments ω ∈ G(N ). A schema of the potential of a good environment is given in Figure 2.

We then show in Subsection 4.3 that loosely speaking, the probability of the set of good

environments is η[G(N )] ≥ 1/(log N ) 3- √ 5 
2 +o(1) . Finally, we study in Subsection 4.4 a random walk (S k ) k in a good environment ω ∈ G(N ). We introduce the location

θ i ≈ inf{k ≥ θ 0 , V (k) -inf 0≤ ≤k V ( ) ≥ ih(N )}, i ≥ 1,
which is approximatively the first location where there is an increase of at least ih(N ) for the potential V restricted to [θ 0 , +∞) (see Figure 2, and (4.9) below). We first show in Lemma 4.4 that, because the potential V decreases quickly in [0, ε log 2 N ] and remains low up to θ 1 with V (θ 1 ) much lower than 0, with a large quenched probability the random walk (S k ) k goes to θ 1 before going to -1, and then n k=0 f (S k ) ≥ f (S 1 ) = f (1) > 0 for all 1 ≤ n ≤ τ (θ 1 ). Moreover we prove that

τ (θ 1 ) k=0 f (S k ) ≥ L(m 1 , τ (-1) ∧ τ (θ 1 )) ≥ e h(N ) /[2(log N ) ν ]
for some ν > 0 with large quenched probability, that is, the sum of f (S k ) has accumulated some large positive quantity at time τ (θ 1 ).

We then prove by induction in Lemma 4.5 (see also (4.16)) that for every i ≥ 1 such that ih(N ) ≤ 4 log N , with large quenched probability uniformly on all good environments ω ∈ G(N ), n k=0 f (S k ) > 0 for all 1 ≤ n ≤ τ (θ i ), and the sum of f (S k ) has accumulated some large positive quantity at time τ (θ i ), that is,

τ (θ i ) k=0 f (S k ) ≥ e ih(N ) /[2(log N ) ν ].
Assume that this is true for such an i, and fix a good environment ω ∈ G(N ). Loosely speaking, since b σW [ih(N )] > 0 and b σW [(i + 1)h(N )] > 0, the deepest location (in terms of potential) that (S k ) k can visit with large quenched probability between times τ (θ i ) and τ (θ i+1 ) is m i+1 ≈ θ 0 +x 1 (σW, (i+1)h(N )) > θ 0 > 0 (see (4.10) and Figure 2). Moreover, our hypotheses for V (x), 0 ≤ x ≤ θ 0 have "lowered" the potential V in [θ 0 , +∞) compared to the potential V in Z * -. In particular, the potential V (x) for locations x < 0 that the random walk (S k ) k may visit between τ (θ i ) and τ (θ i+1 ), that is, x ∈ [x 0 (σW, (i + 1)h(N )), -1], satisfy by definition of x 1 (σW, .),

V (x) ≈ σW (x) ≥ σW [x 1 (σW, (i + 1)h(N ))] ≈ V (m i+1 ) -V (θ 0 ) ≈ V (m i+1 ) + 5h(N ).
Hence, V (m i+1 ) is much lower than the potential V (x) in the negative locations x the random walk (S k ) k may visit between times τ (θ i ) and τ (θ i+1 ), so the random walk can go to these negative locations, where f < 0, but the total amount of time it spends there is small, with large quenched probability (this is proved in details in the second step of the proof of Lemma 4.5).

Consequently,

τ (θ i+1 ) k=τ (θ i )+1 f (S k )1 f (S k )<0 is very small compared to the quite large (positive) sum τ (θ i ) k=0 f (S k ) ≥ e ih(N ) /[2(log N ) ν ]
already accumulated by induction hypothesis. This allows us to prove that n k=0 f (S k ) > 0 for all τ (θ i ) < n ≤ τ (θ i+1 ) (recall that f (x) ≥ 0 for x ≥ 0). Finally we prove (in the third step) that (S k ) k spends a large amount of time in the deepest location m i+1 between times τ (θ i ) and τ (θ i+1 ). This leads to

τ (θ i+1 ) k=0 f (S k ) ≥ e (i+1)h(N ) /[2(log N ) ν ]
with large quenched probability, which ends the induction. Since we can choose i so large that τ (θ i ) ≥ N with large probability, this leads to the lower bound of Theorem 1.1.

4.2.

Definition of the set G(N ) of good environments. We consider a collection (ω i ) i∈Z of independent and identically distributed random variables, satisfying (1.1), (1.2) and (1.3).

We notice that due to (1.2) and (1.3), there exist γ > 0 and δ > 0 such that η(-2δ ≤ log 1-ω 0 ω 0 ≤ -δ) =: e -γ > 0. We fix ε > 0 such that εδ/4 < 4. Let N ∈ N such that N ≥ 3. In the spirit of Devulder [START_REF] Devulder | Some properties of the rate function of quenched large deviations for random walk in random environment[END_REF], we first define

G 1 (N ) := ∀k ∈ {1, . . . , ε log 2 N }, -2δ ≤ log 1 -ω k ω k ≤ -δ ,
and we introduce h(N ) := (log N ) εδ/32 , (4.1)

θ 0 := inf{k ≥ ε log 2 N , V (k) ≤ -5h(N )}, (4.2) G 2 (N ) := ∀k ∈ { ε log 2 N , . . . , θ 0 }, V (k) ≤ -(δε/2) log 2 N , G 3 (N ) := θ 0 ≤ ε log 2 N + (log N ) εδ/4 .
We also set

V (i) := V (i + θ 0 ) -V (θ 0 ) if i ≥ 0, V (i) if i < 0. (4.3)
By the strong Markov property, V has the same law as V and is independent of (V (i), 0 ≤ i ≤ θ 0 ). Let K ≥ 1. As before, according to the Komlós-Major-Tusnády strong approximation theorem (see Komlós et al. [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF]), possibly in an enlarged probability space, there exists a standard twosided Brownian motion (W (t), t ∈ R) such that the set

G 4 (K) := sup -K≤i≤K V (i) -σW (i) ≤ C 1 log K (4.4) satisfies η(G 4 (K) c ) ≤ C 2 /K C 3 .
Moreover, we can choose (W (t), t ∈ R) so that it is independent of (V (i), 0 ≤ i ≤ θ 0 ) since V is independent of (V (i), 0 ≤ i ≤ θ 0 ). In the following, we take

K = (log N ) 3- √ 5 2C 3 +4 . We introduce G 5 (N ) := max{d σW + (5 log N ), d σW -(5 log N ), d -σW -(5 log N )} ≤ (log N ) 4 , G 7 (N ) := {∀x ∈ [1/σ, 5(log N )/σ], b W (x) > 0},
and define G 6 (N ) by the same formula as B 6 (N ).

(i + 1)h ih h θ i+1 k -εδ log 2 N θ i m 1 -5h 0 θ i V (k) m i θ 1 θ 0 ε log 2 N -2εδ log 2 N h + C 5 log 2 N
Figure 2. of the potential V for a "good" environment ω ∈ G(N ) in the case m i = m i+1 , where h denotes h(N ).

We can now define the set G(N ) of good environments as follows (see Figure 2):

G(N ) := G 4 (log N ) 3- √ 5 2C 3 +4 ∩ i=1,...,7, i =4 G i (N ).
When no confusion is possible we write G instead of G(N ) and G i instead of G i (N ), i = 4. Proof: First, observe that η(G 1 ) ≥ (e -γ ) ε log 2 N = (log N ) -εγ .

We now prove that

η(G 2 ∩ G 3 | G 1 ) ≥ δε log 2 N 40h(N ) (4.6)
for large N . To this aim, we define

A := log((1 -ε 0 )/ε 0 ), so |V (k + 1) -V (k)| ≤ A a.s. for every k ∈ Z thanks to (1.1). For a ∈ R and b ∈ R such that a < 0 < b, let T a,b := inf{k ≥ 0, V (k) / ∈ (a, b)} < ∞ a.
s. We recall that thanks to the optimal stopping theorem, η[V (T a,b ) < 0] ≥ b/(ba + A) (see e.g. Zindy [START_REF] Zindy | Upper limits of Sinai's walk in random scenery[END_REF] Lemma 2.1 and apply it to -V ). In particular, we get on G 1 uniformly for N large enough,

η[G 2 | V ( ε log 2 N )] ≥ δε log 2 N/(20h(N )), which yields η(G 2 |G 1 ) ≥ δε log 2 N/(20h(N ))
. Moreover, we have on G 1 by the Markov property

η(G 2 ∩ G c 3 |V ( ε log 2 N )) ≤ η V (log N ) δε/4 ∈ [-5h(N ), 2δε log 2 N ] ≤ η V (log N ) δε/4 σ (log N ) δε/4 ≤ 5h(N ) σ (log N ) δε/4
for N large enough. By Berry-Esseen, we get with Y = law N (0, 1),

η(G 2 ∩ G c 3 |V ( ε log 2 N )) ≤ η |Y | ≤ 5h(N ) σ (log N ) δε/4 + c 2 (log N ) δε/4 ≤ 11h(N ) σ √ 2π(log N ) δε/8 + 2c 2 (log N ) δε/8 = o(η(G 2 | G 1 )) as N → +∞. Consequently η(G 2 ∩ G c 3 | G 1 ) = o(η(G 2 | G 1 )
), which gives (4.6) for large N . Since W and V are independent of (V (i), 0 ≤ i ≤ θ 0 ), we get

η(G(N )) = η(G 1 ∩ G 2 ∩ G 3 )η(G 8 ) ≥ c 3 ε log 2 N (log N ) εγ h(N ) η(G 8 ) (4.7) 
where

G 8 (N ) := G 4 (log N ) 3- √ 5 2C 3
+4 ∩ i=5...7 G i (N ). We now need the following result: 

η({(t → b W (t)) keeps the same sign in [1, x]})/x (-3+ √ 5)/2 -→ x→+∞ 1/2 + 7 √ 5/30 =: c 4 . Hence, η(G 7 ) ∼ N →+∞ c 4 /[2(5 log N ) (3- √ 5)/2 ], due to the scaling property of b W , that is for fixed r > 0, b W (rx), x > 0 = law r 2 b W (x), x > 0 . Moreover, η[G c 5 ] ≤ 30/(σ log N ) by (3.9), η[(G 4 (K)) c ] ≤ C 2 /K C 3 , and η[G 6 (N ) c ] ≤ (log N ) -2 by (3.10), so η(G c 8 ) ≤ 1 -c 5 /(log N ) 3- √ 5 2
for N large enough for some c 5 > 0, since 3-

√ 5 2 < 1. Hence, η(G 8 ) ≥ c 5 /(log N ) 3- √ 5 2
for large N . This, combined with (4.7), gives (4.5).

4.4.

Random walk in a good environment. In this subsection, we prove the following lemma, and then the lower bound of Theorem 1.1. Notice that we just have to consider the case u = 0. In all the rest of this section, the function f satisfies the hypotheses of Theorem 1.1.

Lemma 4.3.

There exists a constant c 6 > 0 such that for N large enough,

∀ω ∈ G(N ), P ω n k=0 f (S k ) > 0 ∀1 ≤ n ≤ N ≥ c 6 . (4.8) 
Before proving this lemma, we introduce some more notation. We consider N ≥ 3 and a good environment ω ∈ G(N ). We introduce for i ∈ N * (see Figure 2),

t i := inf{t > 0, σW (t) -σW (t) ≥ ih(N )} = d σW + (ih(N )), θ i := t i + θ 0 , (4.9) 
m i := inf k ∈ N, V (k) = inf 0≤ ≤θ i V ( ) , (4.10) 
where θ 0 is defined in (4.2). In particular, σW (t i ) = σW (t i ) + ih(N ) by continuity of W . Moreover, ω ∈ G 7 , so x 0 (σW, ih(N )) = x 0 (W, ih(N )/σ) is an ih(N )-maximum for σW and x 1 (σW, ih(N )) an ih(N )-minimum for σW for every integer i ≥ 1 such that 1 ≤ ih(N ) ≤ 5 log N . Consequently for such i, t i ≥ x 1 (σW, ih(N )), otherwise there would be an ih(N )maximum for σW in (0, x 1 (σW, ih(N ))), which is not possible. Moreover, σW

[x 2 (σW, ih(N ))] - σW [x 1 (σW, ih(N ))] ≥ ih(N ), which gives t i ≤ x 2 (σW, ih(N )). Hence, x 0 (σW, ih(N )) ≤ 0 < x 1 (σW, ih(N )) < t i ≤ x 2 (σW, ih(N )), (4.11) 
then

inf{W (t), x 0 (σW, ih(N )) ≤ t ≤ t i } = W [x 1 (σW, ih(N ))], (4.12) sup{W (t), x 0 (σW, ih(N )) ≤ t ≤ t i } = W [x 0 (σW, ih(N ))], (4.13) 
since σW [x 0 (σW, ih(N ))] ≥ σW [x 1 (σW, ih(N ))] + ih(N ) = σW (t i ). We set similarly as in (3.5),

V (n) := inf{V (k), 0 ≤ k ≤ n}, n ∈ N.
We recall that C 4 = σ + 3- √ 5

2C 3 C 1 + 4C 1 and notice that similarly as in (3.12), ∀u ∈ -

(log N ) 4 , (log N ) 4 , V ( u ) -σW (u) ≤ C 4 log 2 N. (4.14) 
We also introduce i max (N ) := max{i ∈ N, ih(N ) ≤ 4 log N }. Since εδ/4 < 4 and G(N ) ⊂ G 3 (N ) ∩ G 5 (N ), we get uniformly on G(N ) for large N ,

∀1 ≤ i ≤ i max (N ), 0 ≤ m i ≤ θ i ≤ d σW + (5 log N ) + θ 0 ≤ 2(log N ) 4 ; 0 ≤ t i ≤ (log N ) 4 . (4.15) We now define for 1 ≤ i ≤ i max (N ), with ν := 8 + 2C 4 , F i (N ) := n k=0 f (S k ) > 0 ∀1 ≤ n ≤ τ (θ i ) ∩ τ (θ i ) k=0 f (S k ) ≥ exp(ih(N )) 2(log N ) ν . (4.16)
Our aim in the following is to prove, by induction on i, a lower bound for P ω (F i (N )) for 1 ≤ i ≤ i max (N ). We also prove that τ (θ i ) ≥ N for i = i max (N ) with high probability. We start with i = 1.

Lemma 4.4.

There exists a constant c 7 > 0 such that for N large enough, ∀ω ∈ G(N ), P ω (F 1 (N )) ≥ c 7 -4(log N ) -6 . (4.17)

Proof: Recall that ε 0 ≤ e V (-1) ≤ ε -1 0 . Moreover, we have for ω ∈ G(N ), V (k) ≤ -δk for 0 ≤ k ≤ ε log 2 N , whereas V (k) ≤ -(δε/2) log 2 N for ε log 2 N < k ≤ θ 0 , and for θ 0 < k ≤ θ 1 , V (k) = V (θ 0 ) + V (k -θ 0 ) ≤ -5h(N ) + σW (k -θ 0 ) + C 4 log 2 N ≤ -4h(N ) + C 4 log 2 N,
thanks to (4.14) since t 1 ≤ (log N ) 4 by (4.15) for N large enough so that i max (N ) ≥ 1. Let 1)

c 7 := ε 0 ε -1 0 + 2 1 -e -δ -1 -1 . We have P ω [τ (θ 1 ) < τ (-1)] = e V (-
θ 1 -1 k=-1 e V (k) -1
, which is, due to the previous remarks, greater than or equal to

ε 0   ε -1 0 + ε log 2 N k=0 e -δk + (θ 0 -ε log 2 N )(log N ) -(δε/2) + (θ 1 -θ 0 )e -4h(N ) (log N ) C 4   -1 ≥ c 7 ,
(4.18) for every ω ∈ G(N ) for large N since θ 0ε log 2 N ≤ (log N ) εδ/4 on G 3 (N ) and due to (4.15).

Moreover on G 1 (N ), θ 1 ≥ m 1 ≥ θ 0 ≥ ε log 2 N ,
which is greater than 1 for large N , so f (m 1 ) ≥ 1. Observe that on {τ (θ 1 ) < τ (-1)}, due to (1.4) and since f (m 1 ) ≥ 1 and f ≥ 0 on N,

τ (θ 1 ) k=0 f (S k ) ≥ L(m 1 , τ (θ 1 ) ∧ τ (-1)), n k=0 f (S k ) ≥ f (1) > 0, 1 ≤ n ≤ τ (θ 1 ). (4.19)
In order to give a lower bound of L(m 1 , τ (θ 1 ) ∧ τ (-1)), notice that thanks to (4.14) and since t 1 ≤ (log N ) 4 and σW (t 1 ) = σW (t 1 ) + h(N ), we have for ω ∈ G(N ),

V (m 1 -θ 0 ) ≤ σW (t 1 ) + C 4 log 2 N ≤ V ( t 1 ) -h(N ) + 2C 4 log 2 N.
Consequently, uniformly on G(N ) for large N , we have m 1 + 1 < θ 1 and

P m 1 +1 ω [τ (θ 1 ) < τ (m 1 )] = e V (m 1 ) θ 1 -1 k=m 1 e V (k) -1 ≤ e V (m 1 )-V (θ 1 -1) ≤ ε -1 0 e -h(N ) (log N ) 2C 4 , P m 1 -1 ω [τ (-1) < τ (m 1 )] = e V (m 1 -1) m 1 -1 k=-1 e V (k) -1 ≤ e V (m 1 -1)-V (0) ≤ ε -1 0 e -h(N ) (log N ) 2C 4 since V (m 1 ) ≤ V (θ 0 ) ≤ -5h(N ) ≤ -h(N ) + 2C 4 log 2 N . We know that L(m 1 , τ (-1) ∧ τ (θ 1 )) is under P m 1 ω a geometric random variable of parameter P m 1 ω [τ (-1) ∧ τ (θ 1 ) < τ * (m 1 )]
, where τ * (m 1 ) := inf{k ∈ N * , S k = m 1 } is the first return time to m 1 . Hence,

P m 1 ω L(m 1 , τ (-1) ∧ τ (θ 1 )) > k ≥ P m 1 ω [τ (-1) ∧ τ (θ 1 ) > τ * (m 1 )] k ≥ 1 - ε -1 0 (log N ) 2C 4 e h(N ) k . Taking k = k 1 := exp(h(N )) 2(log N ) ν , we obtain uniformly on G(N ) for large N , log P m 1 ω L(m 1 , τ (-1) ∧ τ (θ 1 )) > k 1 ≥ -2k 1 ε -1 0 e -h(N ) (log N ) 2C 4 ≥ -(log N ) -6 . Hence, P m 1 ω L(m 1 , τ (-1) ∧ τ (θ 1 )) ≤ k 1 ≤ 1 -exp(-(log N ) -6 ) ≤ (log N ) -6 .
(4.20) Since f (k) ≥ 1 for k ≥ 1 and f (0) = 0, we have, using twice (4. [START_REF] Komlós | An approximation of partial sums of independent RV's and the sample DF[END_REF],

P ω [τ (θ 1 ) < τ (-1)] = P ω n k=0 f (S k ) > 0 ∀1 ≤ n ≤ τ (θ 1 ), τ (θ 1 ) < τ (-1) ≤ P ω [F 1 (N )] + P ω [τ (θ 1 ) < τ (-1), L(m 1 , τ (θ 1 ) ∧ τ (-1)) ≤ k 1 ].
We get in particular for large N by the strong Markov property, (4.18) and (4.20),

∀ω ∈ G(N ), P ω [F 1 (N )] ≥ P ω [τ (θ 1 ) < τ (-1)] -P m 1 ω L(m 1 , τ (θ 1 ) ∧ τ (-1)) ≤ k 1 ≥ c 7 -(log N ) -6 .
This gives (4.17) for N large enough.

We now set C 5 := 11 + 2C 4 . By Lemma 4.4, there exists N ε ∈ N such that for every N ≥ N ε , inequality (4.23) holds for i = 1, (4.15) holds for every ω ∈ G(N ), ε log 2 N ≥ 1, and the following conditions are satisfied:

∀N ≥ N ε , log N ≥ h(N ) ≥ (C 5 + 17 + 8C 4 ) log 2 N ≥ 4 + 3ε -2 0 , (4.21) ∀N ≥ N ε , min [-(log N ) 4 ,0] f ≥ -exp (log 4 N ) εδ/2 7 = -e h(N ) . (4.22)
We prove by induction on i the following lemma:

Lemma 4.5. For all N ≥ N ε and for every

1 ≤ i ≤ i max (N ), ∀ω ∈ G(N ), P ω [F i (N )] ≥ c 7 -4i(log N ) -6 . (4.23) Moreover for all N ≥ N ε , ∀ω ∈ G(N ), P ω τ θ imax(N ) ≥ N ≥ 1 -2(log N ) -6 . ( 4 

.24)

Proof: We fix N ≥ N ε . We already know that (4.23) is true for i = 1. Now, assume (4.23) is true for an integer i such that 1 ≤ i ≤ i max (N ) -1, and let us prove it is true for i + 1. We fix ω ∈ G(N ).

We notice that

θ i < θ i+1 . Indeed, if W (t i ) = W (t i+1 ), we have σW (t i+1 ) = σW (t i ) + h(N ), which gives, since N ≥ N ε , V ( t i+1 ) ≥ V ( t i ) + h(N ) -2C 4 log 2 N > V ( t i ) by (4.14) and (4.15), so θ i+1 = θ i . If W (t i ) = W (t i+1 ), there exists u ∈ [t i , t i+1 ] such that |σW (u) -σW (t i )| > ih(N ), and θ i = θ i+1 would imply |u -t i | ≤ |t i+1 -t i | ≤ 1 and then contradict ω ∈ G 6 (N ) for N ≥ N ε . So, θ i < θ i+1 .
First step : Define (see Figure 2)

θ i := max{k ∈ Z, k < θ i , V (k) ≥ V (θ i ) + h(N ) + C 5 log 2 N }, (4.25) E 6,i := inf{k ≥ τ (θ i ), S k = θ i+1 } < inf{k ≥ τ (θ i ), S k = θ i } = {τ (θ i+1 ) < τ (θ i , θ i )}, where ∀(a, b) ∈ Z 2 , τ (a, b) := inf{k ≥ τ (a), S k = b}. We prove that P ω (E c 6,i ) ≤ (log N ) -6 . First, notice that since W (t) ≤ W (t i ) for t i ≤ t ≤ t i+1 , applying twice (4.14) gives max [θ i ,θ i+1 ] V ≤ V (θ i ) + h(N ) + 2C 4 log 2 N. (4.26)
Hence, applying the Markov property at time τ (θ i ), we get since θ i+1 ≤ 2(log N ) 4 by (4.15),

P ω (E c 6,i ) = θ i+1 -1 k=θ i e V (k) θ i+1 -1 k=θ i e V (k) ≤ 2(log N ) 4+2C 4 e V (θ i )+h(N ) e V (θ i )+h(N ) (log N ) C 5 ≤ (log N ) -6 . (4.27)
Second step : We recall that for every ∆ ⊂ Z and 0 ≤ s ≤ t, L(∆, s t) = t k=s 1 {S k ∈∆} is the number of visits of (S n ) n∈N to the set ∆ between times s and t, as defined after (3.21). In this step, we consider

E 7,i := L (θ i , 0), τ (θ i ) τ (θ i , θ i ) ∧ τ (θ i+1 ) < exp[(i -3)h(N )] ,
and we show that P ω (E c 7,i ) ≤ (log N ) -6 . (4.28)

We consider separately two cases.

First case: Assume that θ i ≥ -1. Then, (θ i , 0) ∩ Z = ∅, hence

L (θ i , 0), τ (θ i ) τ (θ i , θ i ) ∧ τ (θ i+1 ) = 0 < exp[(i -3)h(N )].
Consequently in this case, P ω (E c 7,i ) = P ω (∅) = 0 ≤ (log N ) -6 , which proves (4.28) and then the second step in this first case. We notice in particular that for i ∈ {1, 2, 3}, since V (θ 0 ) ≤ -5h(N ) by (4.2) and σW (t i ) = σW (t i ) + ih(N ), using (4.14) applied to t i (because t i ≤ (log N ) 4 by (4.15)),

V (θ i ) = V (θ 0 + t i ) = V (θ 0 ) + V ( t i ) ≤ -5h(N ) + σW (t i ) + ih(N ) + C 4 log 2 N.
Since σW (t i ) ≤ 0 and (C 5 + C 4 ) log 2 N ≤ h(N ) by (4.21), this gives for i ∈ {1, 2, 3},

V (θ i ) + h(N ) + C 5 log 2 N ≤ (i -4)h(N ) + (C 5 + C 4 ) log 2 N ≤ -h(N ) + (C 5 + C 4 ) log 2 N ≤ 0,
and so θ i ≥ 0. So if i ≤ 3, we are automatically in the first case. Heuristically, this is due to the fact that we have lowered the potential in [θ 0 , +∞) by the quantity |V (θ 0 )| ≥ 5h(N ), which is quite large, in our definitions (4.2) and (4.3) of θ 0 and V .

Second case: Assume that θ i < -1, which implies that i ≥ 4 due to the previous remark. First, notice that since x 0 (σW, ih(N )) is a ih(N )-maximum for σW , we have by (4.14) since

x 0 (σW, ih(N )) ≥ -d -σW -(5 log N ) ≥ -(log N ) 4 (where we used i ≤ i max (N )), V ( x 0 (σW, ih(N )) ) ≥ σW [x 0 (σW, ih(N ))] -C 4 log 2 N ≥ σW [x 1 (σW, ih(N ))] + ih(N ) -C 4 log 2 N ≥ σW [x 1 (σW, ih(N ))] + ih(N ) -C 4 log 2 N + 5h(N ) + V (θ 0 ). (4.29)
Moreover, σW (t i ) = σW (t i ) + ih(N ), and W (t i ) = W [x 1 (σW, ih(N ))] due to (4.12). This together with (4.14) and t i ≤ (log N ) 4 (see (4.15)) gives

V (θ i )-V (θ 0 ) = V ( t i ) ≤ σW (t i )+C 4 log 2 N = σW [x 1 (σW, ih(N ))]+ih(N )+C 4 log 2 N. (4.30)
Hence, (4.29) and then N ≥ N ε and (4.21) lead to

V ( x 0 (σW, ih(N )) ) ≥ V (θ i ) + 5h(N ) -2C 4 log 2 N > V (θ i ).
Consequently, x 0 (σW, ih(N )) < θ i < θ i < θ i+1 by definition of θ i . Recalling that θ i < -1 in this second case, we can consider z ∈ (θ i , 0) ∩ Z. We get by Lemma 2.3,

E θ i ω L z, τ (θ i ) ∧ τ (θ i+1 ) = P θ i ω [τ (z) < τ (θ i+1 )] ω z e V (z) θ i+1 -1 k=z e V (k) -1 + (1 -ω z )P z-1 ω [τ (z) > τ (θ i )] ≤ ε -1 0 e -V (z) θ i+1 -1 k=z e V (k) ≤ 3ε -1 0 (log N ) 4 exp -V (z) + max [z,θ i+1 ] V , (4.31) 
since θ i+1 ≤ 2(log N ) 4 by (4.15) and z > θ i ≥ x 0 (σW, ih(N )) ≥ -(log N ) 4 . We notice that by (4.30) and since V (θ 0 ) ≤ -5h(N ) by (4.2), 

V (θ i ) = V (θ 0 ) + V (θ i -θ 0 ) ≤ -5h(N ) + σW [x 1 (σW, ih(N ))] + ih(N ) + C 4 log 2 N. (4.32) Since -log 4 N ≤ x 0 (σW, ih(N )) ≤ θ i < z < 0 < x 1 (σW, ih(N )) ≤ t i ≤ log 4 N
V (z) = V (z) ≥ σW [x 1 (σW, ih(N ))] -C 4 log 2 N ≥ (5 -i)h(N ) + V (θ i ) -2C 4 log 2 N. (4.33)
Moreover by definition (4.25) of θ i and (1.1), max

[θ i ,θ i ] V ≤ V (θ i ) + h(N ) + C 5 log 2 N -log ε 0 .
Combining this with (4.26), (4.31) and (4.33) gives since N ≥ N ε ,

E θ i ω L z, τ (θ i ) ∧ τ (θ i+1 ) ≤ 3ε -1 0 (log N ) 4 exp -V (z) + V (θ i ) + h(N ) + C 5 log 2 N -log ε 0 ≤ 3ε -2 0 (log N ) C 5 +2C 4 +4 e (i-4)h(N ) ≤ (log N ) -10 e (i-3)h(N ) .
Summing this over z gives

E θ i ω L (θ i , 0), τ (θ i ) ∧ τ (θ i+1 ) ≤ (log N ) -6 e (i-3)h(N ) since θ i ≥ -(log N ) 4 . We get P ω (E c 7,i ) = P θ i ω (E c 7,i ) ≤ (log N ) -6
by Markov's inequality and property. This proves (4.28) in this second case, which ends the second step.

Third step : we define

E 8,i := L m i+1 , τ (θ i ) τ (θ i , θ i ) ∧ τ (θ i+1 ) > exp[(i + 1)h(N )] (log N ) ν .
We prove that

P ω E c 8,i ≤ 2(log N ) -6 . (4.34) 
To this aim, we first show that

P θ i ω τ (m i+1 ) > τ θ i ∧ τ (θ i+1 ) ≤ (log N ) -6 . (4.35) 
This is true if θ i ≤ m i+1 ≤ θ i+1 by (4.27). Else, m i = m i+1 < θ i and then σW (t i+1 ) ≥ σW (t i ) -2C 4 log 2 N by (4.14) and (4.15), which leads to

V (θ i+1 ) ≥ V (θ i ) + h(N ) -4C 4 log 2 N. (4.36) 
We get successively, again by (4.14) and (4.15), for every

m i ≤ k ≤ θ i , σW (m i -θ 0 ) ≤ V (m i -θ 0 ) + C 4 log 2 N = inf [0, t i ] V + C 4 log 2 N ≤ σW (t i ) + 2C 4 log 2 N, V (k -θ 0 ) ≤ σ[W (k -θ 0 ) -W (m i -θ 0 )] + σW (m i -θ 0 ) + C 4 log 2 N ≤ ih(N ) + σW (t i ) + 3C 4 log 2 N = σW (t i ) + 3C 4 log 2 N, (4.37) 
where we used the definition of t i in the last inequality. Using (4.37), then (4.14) and (4.15), then the definitions (4.3) and (4.9) of V and θ i , and finally (4.36), we get max

[m i ,θ i ] V ≤ V (θ 0 ) + σW (t i ) + 3C 4 log 2 N ≤ V (θ 0 ) + V ( t i ) + 4C 4 log 2 N = V (θ i ) + 4C 4 log 2 N (4.38) ≤ V (θ i+1 ) -h(N ) + 8C 4 log 2 N. (4.39) 
In particular, (4.38) combined with (4.21) and the definition (4.25) of θ i leads to θ i < m i . Now, in this case m i = m i+1 < θ i < θ i+1 , we have since N ≥ N ε , θ i ≤ 2(log N ) 4 by (4.15), and by (2.1),

P θ i ω τ (m i+1 ) > τ θ i ∧ τ (θ i+1 ) = P θ i ω [τ (m i+1 ) > τ (θ i+1 )] ≤ 2(log N ) 4 ε -1 0 exp max [m i ,θ i ] V -V (θ i+1 ) ,
which together with (4.39) gives (4.35) since N ≥ N ε .

Moreover, we prove that P

m i+1 ω (E c 9,i ) ≤ (log N ) -6
, where

E 9,i := L m i+1 , τ θ i ∧ τ (θ i+1 ) > exp[(i + 1)h(N )] (log N ) ν .
We know that θ i < m i ≤ m i+1 < θ i+1 thanks to (4.38), which is true in every case, as is (4.37). So, L m i+1 , τ θ i ∧ τ (θ i+1 ) is under P m i+1 ω a geometric r.v. with parameter

q 1 := ω m i+1 P m i+1 +1 ω [τ (m i+1 ) > τ (θ i+1 )] + (1 -ω m i+1 )P m i+1 -1 ω τ (m i+1 ) > τ θ i ≤ ω m i+1 ε -1 0 e V (m i+1 )-V (θ i+1 ) + (1 -ω m i+1 )ε -1 0 e V (m i+1 )-V (θ i ) , (4.40) 
by (2.1). Moreover, we obtain successively the following inequalities:

V (m i+1 ) ≤ V (θ 0 ) + σW (t i+1 ) + C 4 log 2 N = V (θ 0 ) + σW (t i+1 ) -(i + 1)h(N ) + C 4 log 2 N ≤ V (θ i+1 ) -(i + 1)h(N ) + 2C 4 log 2 N, (4.41) 
V (θ i ) ≥ V (θ 0 ) + σW (t i ) -C 4 log 2 N = V (θ 0 ) + σW (t i ) + ih(N ) -C 4 log 2 N ≥ V (θ 0 ) + σW (t i+1 ) + ih(N ) -C 4 log 2 N ≥ V (m i+1 ) + ih(N ) -2C 4 log 2 N, (4.42) V θ i ≥ V (θ i ) + h(N ) + C 5 log 2 N ≥ V (m i+1 ) + (i + 1)h(N ) + 11 log 2 N, (4.43) 
where we used 

V (m i+1 ) ≤ V (θ 0 + z i+1 ) = V (θ 0 ) + V ( z i+1 ) with z i+1 ∈ [0, t i+1 ] such that W (z i+1 ) = W (t
q 1 ≤ ε 0 -1 exp(-(i + 1)h(N ) + 2C 4 log 2 N ) =: q 2 . Now, define n 2 := exp[(i+1)h(N )] (log N ) ν . We have for N ≥ N ε , log P m i+1 ω (E 9,i ) = n 2 log(1 -q 1 ) ≥ n 2 log(1 -q 2 ) ≥ -2n 2 q 2 ≥ -(log N ) -6 . Indeed, q 2 ∈ (0, 1/2) hence log(1 -q 2 ) ≥ -2q 2 . Since 1 -e -t ≤ t for t ∈ R, this yields P m i+1 ω (E c 9,i ) ≤ (log N ) -6 .
Hence by the strong Markov property,

P ω (E c 8,i ) = P θ i ω E c 8,i , τ (m i+1 ) > τ (θ i ) ∧ τ (θ i+1 ) + P θ i ω E c 8,i , τ (m i+1 ) ≤ τ (θ i ) ∧ τ (θ i+1 ) ≤ P θ i ω τ (m i+1 ) > τ (θ i ) ∧ τ (θ i+1 ) + P m i+1 ω (E c 9,i ) ≤ 2(log N ) -6 ,
where we used (4.35) in the last inequality. This gives (4.34). Moreover, notice that in the particular case i = i max (N ) -1, we get on E 8,i since N ≥ N ε , Fourth step: conclusion. First, let τ (θ i ) < n ≤ τ (θ i+1 ). We have in the case

τ θ imax(N ) ≥ L m imax(N ) , τ θ imax(N )-1 τ θ imax(N )-1 , θ imax(N )-1 ∧ τ θ imax(N ) ≥ N. ( 4 
θ i < -1, n k=0 f (S k ) = τ (θ i )-1 k=0 f (S k ) +   z≤θ i + θ i <z<0 + z≥0   f (z)L(z, τ (θ i ) n). (4.45)
The second sum of the right hand side is 0 on E 6,i , and the last sum is at least f (θ i ) because f ≥ 0 on N. Since f < 0 on Z * -and θ i ≥ -(log N ) 4 , we get on E 6,i , (4.22) and e h(N ) ≥ min{(log N ) ν , 4}, we get on

n k=0 f (S k ) ≥ τ (θ i ) k=0 f (S k ) + min [-(log N ) 4 ,0] f L θ i , 0 , τ (θ i ) τ θ i , θ i ∧ τ (θ i+1 ) . Since for N ≥ N ε , 0 > min [-(log N ) 4 ,0] f ≥ -e h(N ) by
F i (N ) ∩ E 6,i ∩ E 7,i , n k=0 f (S k ) ≥ exp(ih(N )) 2(log N ) ν -exp[h(N )] exp[(i -3)h(N )] > 0. (4.46)
The proof is similar if θ i ≥ -1, since in this case on E 6,i , for all τ

(θ i ) ≤ k ≤ n ≤ τ (θ i+1 ), S k ≥ θ i + 1 ≥ 0 and then f (S k ) ≥ 0, which leads to n k=0 f (S k ) ≥ τ (θ i ) k=0 f (S k ) ≥ exp(ih(N )) 2(log N ) ν > 0 on F i (N ) ∩ E 6,i ∩ E 7,i
, which gives (4.46) also in this case.

We now consider τ (θ i+1 ) k=0 f (S k ), which is on E 6,i equal to (assuming first that θ i < -1)

τ (θ i )-1 k=0 f (S k ) +   z≤θ i + θ i <z<0 + z∈N-{m i+1 } + z∈{m i+1 }   f (z)L z, τ (θ i ) τ θ i , θ i ∧ τ (θ i+1 ) . (4.47) The potential V is decreasing on [0, ε log 2 N ] since ω ∈ G 1 (N ), hence m i+1 ≥ ε log 2 N ≥ 1 since N ≥ N ε ,
and then f (m i+1 ) ≥ 1. Consequently, the last sum in the right hand side of (4.47) is at least L m i+1 , τ (θ i ) τ θ i , θ i ∧ τ (θ i+1 ) . Moreover, the first term is positive on F i (N ), the second one is 0 on E 6,i , and the forth one is nonnegative since f ≥ 0 on N. So, we have on

F i (N ) ∩ E 6,i ∩ E 7,i ∩ E 8,i for N ≥ N ε , since θ i ≥ -(log N ) 4 , τ (θ i+1 ) k=0 f (S k ) ≥ L m i+1 , τ (θ i ) τ θ i , θ i ∧ τ (θ i+1 ) + min [-(log N ) 4 ,0] f L θ i , 0 , τ (θ i ) τ θ i , θ i ∧ τ (θ i+1 )
This gives on

F i (N ) ∩ E 6,i ∩ E 7,i ∩ E 8,i for N ≥ N ε , τ (θ i+1 ) k=0 f (S k ) ≥ exp[(i + 1)h(N )] (log N ) ν -exp[(i -2)h(N )] ≥ exp[(i + 1)h(N )] 2(log N ) ν . (4.48)
We get (4.48) similarly if θ i ≥ -1, since in this case on E 6,i , f (S k ) ≥ 0 for all τ (θ i ) ≤ k ≤ τ (θ i+1 ) as explained after (4.46), and so

τ (θ i+1 ) k=0 f (S k ) ≥ τ (θ i )-1 k=0 f (S k ) + L m i+1 , τ (θ i ) τ θ i , θ i ∧ τ (θ i+1
) , which also leads as previously to (4.48) in this case. Now, (4.46) and (4.48) yield F i (N ) ∩ E 6,i ∩ E 7,i ∩ E 8,i ⊂ F i+1 (N ). Consequently, our induction hypothesis P ω [F i (N )] ≥ c 7 -4i(log N ) -6 and inequalities (4.27), (4.28) and (4.34) give for every ω ∈ G(N ), 

P ω [F i+1 (N )] ≥ P ω [F i (N )] -P ω (E c 6,i ) -P ω (E c 7,i ) -P ω (E c 8,i ) ≥ c 7 -4(i + 1)(log N ) -6 .
P ω F imax(N ) (N ) ∩ τ θ imax(N ) ≥ N ≥ c 7 -4imax(N ) (log N ) 6 - 2 (log N ) 6 ≥ c 7 -18 (log N ) 5 for all N ≥ N ε and ω ∈ G(N ). Consequently, for N large enough, ∀ω ∈ G(N ), P ω n k=0 f (S k ) > 0 ∀1 ≤ n ≤ N ≥ P ω F imax(N ) (N ) ∩ τ θ imax(N ) ≥ N ≥ c 7 2 =: c 6 ,
which proves Lemma 4.3. Now, integrating (4.8) on G(N ) and applying Lemma 4.1 gives

P n k=0 f (S k ) > 0 ∀1 ≤ n ≤ N ≥ c 6 η(G(N )) ≥ c 6 c 1 ε log 2 N (log N ) 3- √ 5 
2 +ε(γ+δ/32)

for N large enough. Now, let ε → 0; this proves the lower bound of Theorem 1.1 for u = 0 and then for every u ≤ 0. We first study the left continuity of some functions. The following lemma is more or less obvious, however we provide a proof for the sake of completeness.

Lemma 5.1. On {W ∈ W}, for all k ∈ Z, the functions x k (W, .), e(T k (.)) and H(T k (.)) are left-continuous on (0, +∞). More precisely, for all realization of W in W, for every n ∈ N * and x > 0, there exists K x,n ∈ (0, x) such that all the functions x k (W, .), k ∈ {-n, . . . , n}, are constant on [K x,n , x].

Proof: We assume throughout the proof that W ∈ W. Let x > 0. We first notice that lim k→±∞ |x k (W, x/2)| = +∞, so there is a finite number of (x/2)-extrema on every compact set, and in particular on [x 0 (W, x), x 1 (W, x)]. Now, we can denote the (x/2)-extrema in this interval by

x 0 (W, x) = x K 0 (W, x/2) < • • • < x K 1 (W, x/2) = x 1 (W, x) for some integers K 0 < K 1 .
Assume that K 1 > K 0 + 1, and let i ∈ {K 0 + 1, . . . , K 1 -1}. We define H i := sup{y > 0, x i (W, x/2) is an y-extremum}. Assume for example that x i (W, x/2) is an (x/2)-minimum and that x 0 (W, x) is an x-minimum. There exists an increasing sequence (y n ) n , converging to H i as n → +∞, and such that for every n ∈ N, x i (W, x/2) is an y n -extremum, and so an y n -minimum. So, W being continuous, there exist α n < x i (W, x/2) < β n such that

W [x i (W, x/2)] = inf [αn,βn] W, W (α n ) = W [x i (W, x/2)] + y n = W (β n ).
Since x 0 (W, x) < x i (W, x/2) < x 1 (W, x), x i (W, x/2) is not an x-extremum, so x ≥ H i ≥ y n . If α n < x 0 (W, x), then W [x i (W, x/2)] ≤ W [x 0 (W, x)] so x i (W, x/2) would be an x-minimum, which is not the case, so α n ∈ [x 0 (W, x), x 1 (W, x)). If W (β n ) ≤ W [x 1 (W, x)] and β n > x 1 (W, x), we can replace β n by another

β n ≤ x 1 (W, x). If W (β n ) > W [x 1 (W, x)] and β n > x 1 (W, x), we would have W (α n ) = W (β n ) > W [x 1 (W, x)],
which is the supremum of W in [x 0 (W, x), x 1 (W, x)], and this is not possible. Hence (α n , β n ) belongs to the compact [x 0 (W, x), x 1 (W, x)] 2 , thus there exists a strictly increasing sequence n p and (α,

β) ∈ R 2 such that (α np , β np ) p→+∞ (α, β). By continuity of W , W [x i (W, x/2)] = inf [α,β] W , and W (α) = W [x i (W, x/2)] + H i = W (β). Hence x i (W, x/2) is an H i -minimum. Since x i (W, x/2) is not an x-extremum, this gives H i < x.
The other cases are treated similarly. Now, let H x := max K 0 <i<K 1 H i ; we have x/2 ≤ H x < x. For y ∈ (H x , x), the only possible y-extrema in (x 0 (W, x), x 1 (W, x)) are the (x/2)-extrema, that is the x i (W, x/2), K 0 < i < K 1 , but they are not y-extrema since y > H i . So, there is no y-extrema in (x 0 (W, x), x 1 (W, x)), and then x 0 (W, y) = x 0 (W, x) and x 1 (W, y) = x 1 (W, x), for every y ∈ (H x , x). This is also true with H x = x/2 in the case K 1 = K 0 + 1. Hence in every case, for every x > 0, there exists H x < x such that the functions x 0 (W, .) and x 1 (W, .) are constant on [H x , x], and consequently, they are left-continuous. More generally, we prove similarly that for all n ∈ N * , there exists K x,n ∈ (0, x) such that all the functions x k (W, .), k ∈ {-n, . . . , n} are constant on [K x,n , x]. Hence all the functions x k (W, .), H(T k (.)) and e(T k (.)), k ∈ Z are left-continuous.

Proof of Fact 3.1: Let c > 0. Assume that we are on {W ∈ W}, and let x > 0. We saw in Lemma 5.1 that there exists an interval [y, x] with 0 < y < x such that x 0 (W, .) and x 1 (W, .) are constant on this interval, and so is b(.), therefore b(.) does not change its sign on [y, x].

Define H p,q := q-1 k=p (-1) k H(T k (c)) for p < q and H := {∀p < q ≤ r < s, H p,q = H r,s } ∩ {W ∈ W}. Since the r.v. H(T k (c)), k ∈ Z are independent (see [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF] Proposition of Section 1) and have a density (see [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF] (8) p. 1768 and (11) p. 1770), it follows that the r.v. H p,q -H r,s , p < q ≤ r < s also have densities, thus η(H) = 1. Moreover, for every trajectory W ∈ W, every x ≥ c and m < n, there exist p < q ≤ r < s such that H(T m (x)) = H p,q and H(T n (x)) = H r,s . Consequently, on H, for every x ≥ c, all the H(T i (x)), i ∈ Z are different. Now, assume we are on H. Let x ≥ c. The e(T i (x)), i ∈ {-3, . . . 3} are all different, so for ε > 0 small enough, at most one of them is less than ε. As was shown in the proof of Lemma 2 of Cheliotis ([8] p. 1772), for such ε > 0, b(x) and b(x + ε) have a different sign iff e[T 0 (x)] < ε. So, if e(T 0 (x)) > 0 (resp. e(T 0 (x)) = 0), there exists ε > 0 such that the sign of b(.) in (x, x + ε] is the sign of b(x) (resp. of -b(x)).

Hence on H there is a change of sign of b at x iff e(T 0 (x)) = 0, which proves Fact 3.1.

5.2.

Proof of Lemma 3.3. We consider a two-sided Brownian motion W defined on a probability space (Ω, A, η). We know that η(H ∩ {W ∈ W}) = 1. This enables us to replace, in the rest of the paper, Ω by Ω ∩ H ∩ {W ∈ W}.

We denote by F x the completion of the σ-field σ W (s)1 {x 0 (W,x)≤s≤x 1 (W,x)} , s ∈ R for x > 0, and by F 0 and F ∞ the completions of σ(∅) and σ(W (s), s ∈ R) respectively. For 0 < y ≤ x, [x 0 (W, y), x 1 (W, y)] ⊂ [x 0 (W, x), x 1 (W, x)] and x 0 (W, y) and x 1 (W, y) are F x -measurable (which we prove in details in Lemma 5.5 in Subsection 5.3 Appendix), so

F y ⊂ F x . Hence (F x ) x≥0 is a filtration. Notice that W is not adapted to (F x ) x≥0 . Moreover, for k ∈ Z, x → e[T k (x)]
is left-continuous by Lemma 5.1, but it is not right-continuous, and (F x ) x≥0 is not the natural filtration of one of these processes. We now give an elementary proof of Lemma 3.3. We start with the following lemma. Lemma 5.2. For every k ≥ 1, X k is a (F x ) x≥0 -stopping time.

Proof: Instead of trying to prove whether the filtration (F x ) x is right-continuous, we give an elementary proof. Notice that e[T 0 (y)] = (sup Rinf R )(W 1 [x 0 (W,y),x 1 (W,y)] )y is F y -measurable for every y > 0, that means, the processes (e[T 0 (y)]) y and then (H[T 0 (y)]) y are adapted to the filtration (F y ) y . Moreover, the function e[T 0 (.)] has a jump at y ∈ [c, x] if and only if x 0 (W, y) or x 1 (W, y) is a y-extremum but is not a z-extremum for z > y, and in this case the number of z-extrema in [x 0 (W, x), x 1 (W, x)] decreases by at least 1 between z = y and every z > y. So, the number of discontinuities of e[T 0 (.)] in [c, x] is less than the number of c-extrema in [x 0 (W, x), x 1 (W, x)], which is finite on {W ∈ W}.

Hence, the process e(T 0 (.)) is left-continuous with a finite number of discontinuities in [c, x], is nonnegative, and it is strictly decreasing between two consecutive discontinuities and then has right limits. Moreover on {W ∈ W}, H(T 0 (.)) is nondecreasing and so only has positive jumps, and then e(T 0 (.)) also has only positive jumps. As a consequence, e(T 0 (.)), which is left-continuous with right limits, is lower semi-continuous on (0, +∞).

Recalling that {X 1 ≤ x} = {∃y ∈ [c, x], e[T 0 (y)] = 0} by the proof of Fact 3.1 since Ω ⊂ H, we claim that for x ≥ c,

{X 1 ≤ x} = ∩ p∈N * {∃y ∈ [c, x], e[T 0 (y)] < 1/p} (5.1) = ∩ p∈N * ∪ y∈([c,x]∩Q)∪{c} {e[T 0 (y)] < 1/p}. (5.2) 
Else, assume that R n 0 = 0 and e[T 0 (R n )] = 0 for every n ≥ n 0 . Then (R n ) n≥n 0 is a nondecreasing sequence such that e[T 0 (.)] > 0 on each interval (R n-1 , R n ), n > n 0 by (5.4), and then e[T 0 (.)] > 0 on [R n 0 , R ∞ ). As in the previous case, we get e[T 0 (.)] > 0 on (X 2k , R ∞ ). Since e[T 0 (X 2k+1 )] = 0 and X 2k < X 2k+1 , this yields R ∞ ≤ X 2k+1 < ∞.

Moreover in this case, as explained before Lemma 5.3,

0 < e[T 0 (R n-1 )] = H[T 0 (R n-1 )] -R n-1 ≤ R n + 2 -n -R n-1 → n→+∞ 0 a.s., because R n → n→+∞ R ∞ . Since e[T 0 (.)] is a left-continuous function on W and (R n ) n is nondecreasing and converging to R ∞ < ∞, this gives e[T 0 (R ∞ )] = lim n→+∞ e[T 0 (R n-1 )] = 0. As in the previous case, we conclude that R ∞ = X 2k+1 . Since R n = 0 ∀n ≥ n 0 if R n 0 = 0, that is, on B +,n 0 k+1,a,c
c , this proves the lemma.

Lemma 5.4. For all n ≥ n 0 ,

∀m ∈ N * , {R n = m2 -n } ∈ F m2 -n . (5.5) 
Proof: We prove this lemma by induction. We start with R n 0 , and observe that for m ∈ N * ,

{R n 0 = m2 -n 0 } = {X 2k+1 > 2 -n 0 ( 2 n 0 X 2k + 1)} ∩ { 2 n 0 X 2k = m -1} = {X 2k+1 > m2 -n 0 } ∩ {(m -1)2 -n 0 ≤ X 2k < m2 -n 0 },
which belongs to F m2 -n 0 since X 2k and X 2k+1 are (F x ) x≥0 -stopping times by Lemma 5.2. This gives (5.5) for n = n 0 . Now, assume that (5.5) is true for some n ≥ n 0 . Then for m ∈ N * ,

{R n+1 = m2 -(n+1) } = { 2 n+1 H[T 0 (R n )] = m} ∩ B +,n 0 k+1,a,c = ∪ p∈N * {R n = p2 -n , 2 n+1 H[T 0 (R n )] = m} = ∪ p∈N * ,p2 -n ≤m2 -(n+1) [{R n = p2 -n } ∩ { 2 n+1 H[T 0 (p2 -n )] = m}].
The second equality comes from {R n = 0} = {R n+1 = 0} = B +,n 0 k+1,a,c , which itself is a consequence of R n ≥ R n 0 > X 2k ≥ c > 0 on B +,n 0 k+1,a,c . The third one is a consequence of R n ≤ R n+1 . If 0 < p2 -n ≤ m2 -(n+1) , our induction hypothesis gives {R n = p2 -n } ∈ F p2 -n ⊂ F m2 -(n+1) , and { 2 n+1 H[T 0 (p2 -n )] = m} ∈ F p2 -n ⊂ F m2 -(n+1) since (H[T 0 (y)], y ≥ 0) is adapted to (F y ) y≥0 . Consequently, R n+1 = m2 -(n+1) ∈ F m2 -(n+1) for every m ∈ N * , which ends the induction.

In view of (5. . Assume that we are on B +,n 0 k+1,a,c ∩ A + k+1,a,c . There exists i ∈ {-1, 1} such that e(T i (X 2k+1 )) < aX 2k+1 , that is H[T i (X 2k+1 )] < (a + 1)X 2k+1 . On the one hand, R n → n→+∞ X 2k+1 , R n ≤ X 2k+1 by Lemma 5.3, then by Lemma 5.1, for n large enough, R n ∈ [K X 2k+1 ,2 , X 2k+1 ], then x j (W, R n ) = x j (W, X 2k+1 ) for -1 ≤ j ≤ 2 and so H[T i (R n )] = H[T i (X 2k+1 )]. On the other hand, (a + 1)(X 2k+1 -R n ) tends to 0 as n → ∞ by Lemma 5.3 and then is strictly less than (a + 1)X 2k+1 -H[T i (X 2k+1 )] > 0 for n large enough. So for large n, For m ≥ c2 n , we have, since m > 0 and then {R n = m2 -n } ⊂ B +,n 0 k+1,a,c , η B +,n 0 k+1,a,c ∩ C +,n k+1,a,c ∩ {R n = m2 -n } = η C +,n k+1,a,c ∩ {R n = m2 -n } = η([A k,a,c ∩ {b(X 1 ) > 0} ∩ ∪ i=±1 {e[T i (R n )] < aR n }] ∩ {R n = m2 -n }) = η(A k,a,c ∩ {b(c) > 0} ∩ {X 2k < m2 -n } ∩ {R n = m2 -n } ∩ ∪ i=±1 {e[T i (m2 -n )] < am2 -n }), (5.8) where the last equality comes from X 2k < R n 0 ≤ R n on {R n > 0} = B +,n 0 k+1,a,c . For ≥ 1, we have on {X < x}, [x -1 (W, X ), x 2 (W, X )] ⊂ [x 0 (W, x), x 1 (W, x)] since x 0 (W, X ) and x 1 (W, X ) are not x-extrema on H due to H[T 0 (X )] = X < x. Hence, the random variables e[T i (X )], i ∈ {-1, 1} are measurable with respect to F X + = {A ∈ F ∞ , ∀x ≥ 0, A ∩ {X < x} ∈ F x } (this is proved in details in Lemma 5.6 in Subsection 5.3 Appendix). As a consequence, A k,a,c ∈ F X 2k + for every k ≥ 1. which gives in particular [A k,a,c ∩ {X 2k < m2 -n }] ∈ F m2 -n for every m ∈ N. But c ≤ X 2k and X 2k+1 /X 2k > 1 a.s., so η B +,n 0 k+1,a,c c ≤ η X 2k+1 ≤ X 2k + 2 -n 0 ≤ η X 2k+1 /X 2k ≤ 1 + 2 -n 0 /c → n 0 →+∞ 0.

H[T i (R n )] -(a + 1)R n = (a + 1)(X 2k+1 -R n ) -[(a + 1)X 2k+1 -H[T i (X 2k+1 )]] < 0,
As a consequence, η A + k+1,a,c ≤ 1e -2a η A + k,a,c . We get similarly η A - k+1,a,c ≤ 1e -2a η A - k,a,c . These two inequalities yield η(A k+1,a,c ) ≤ 1e -2a η(A k,a,c ). Using this last inequality, we obtain (3.1) by induction on k, which proves Lemma 3.3. 5.3. Appendix : measurability. We fix x > 0. We define Z(s) = W (s)1 {x 0 (W,x)≤s≤x 1 (W,x)} , (5.10) so that F x is the completion of σ(Z(s), s ∈ R). For the sake of completeness, we prove in this appendix the measurability of some random variables. We start with the following lemma, which is used before Lemma 5.2 to prove that (F x ) x≥0 is a filtration. Since lim p→+∞ D p (x) is the limit of a sequence of F x -measurable r.v., it is also F x -measurable, and then {lim p→+∞ D p (x) ≤ a} ∈ F x . Since {X k < x} ∈ F x , we get {H(T 1 (X k )) ≤ a} ∩ {X k < x} ∈ F x , and this is true for every x ≥ 0. So {H(T 1 (X k )) ≤ a} ∈ F X k + for every a ∈ R.

Hence H(T 1 (X k )) and then e(T 1 (X k )) are (F X k + )-measurable. Finally, we show similarly that H(T -1 (X k )) and then e(T -1 (X k )) are (F X k + )-measurable.

: 5 )/ 2 .

 52 Denote by k W (e t ) the number of sign changes of b W in [1, e t ] for t > 0. Cheliotis ([8] Corollary 5) proves that the laws of k W (e t )/t, t > 0 satisfy a large deviation principle with speed t and good rate function I, defined by I(x) := x log 2x x+ x 2 + 5/4 +3/2-x+ x 2 + 5/4 for x > 0, I(x) := +∞ for x < 0, and I(0) := (3 -√ Hence by scaling, for N large enough,

  n k=0 f (S k ) ≤ u}. Consequently, the left hand side of (3.11) is less than P ω (E c 5 ) ≤ 4(log N ) -2 for every ω ∈ B(N ) for large N by Lemmas 3.7 and 3.8, which proves Lemma 3.5. Finally, integrating (3.11) on the set of bad environments B(N ) gives by Lemma 3.4:

4. 3 .Lemma 4 . 1 .c 1 ε log 2 N

 3412 Probability of the set G(N ) of good environments. We have for large N , η(G(N )) ≥

Theorem 4 . 2 .

 42 (Cheliotis [8], Corollary 1)

  .44) This and (4.34) already prove (4.24), since we did not yet use our induction hypothesis.

  (4.49) This ends the induction for all N ≥ N ε . Hence (4.23) is true for every 1 ≤ i ≤ i max (N ) for each N ≥ N ε , which ends the proof of Lemma 4.5.Proof of Lemma 4.3: Notice that due to (4.23) and (4.24) of Lemma 4.5,

5 . 3 5. 1 .

 531 Proofs of Fact 3.1 and Lemma 3.Proof of Fact 3.1.

  3), we define for n ≥ n 0 ,C +,n k+1,a,c := A k,a,c ∩ {b(X 1 ) > 0} ∩ [{e[T -1 (R n )] < aR n } ∪ {e[T 1 (R n )] < aR n }]

1 .lim inf n→+∞ 1 B

 11 and so e[T i (R n )] < aR n . Then for large n,1 B +,n 0 k+1,a,c ∩C +,n k+1,a,c = Hence, in every case, 1 B +,n 0 k+1,a,c ∩A + k+1,a,c ≤ lim inf n→+∞ 1 B +,n 0 k+1,a,c ∩C +,n k+1,a,c. Then by Fatou's lemma,η B +,n 0 k+1,a,c ∩ A + k+1,a,c ≤ Ω +,n 0 k+1,a,c ∩C +,n k+1,a,c dη ≤ lim inf n→+∞ η B +,n 0 k+1,a,c ∩ C +,n k+1,a,c . (5.6)Let n ≥ n 0 . We now have to estimate, recalling that R n ≥ R n 0 > X 2k ≥ c > 0 on B +,n 0 k+1,a,c , η B +,n 0 k+1,a,c ∩ C +,n k+1,a,c = m∈N, m≥c2 n η B +,n 0 k+1,a,c ∩ C +,n k+1,a,c ∩ {R n = m2 -n } .(5.7)

  Moreover, let m ∈ N such that c ≤ m2 -n . We have {b(c)> 0} ∈ F c ⊂ F m2 -n . Since {R n = m2 -n } ∈ F m2 -n by Lemma 5.4, we get [A k,a,c ∩ {X 2k < m2 -n } ∩ {b(c) > 0} ∩ {R n = m2 -n }] ∈ F m2 -n . But e[T 1 (m2 -n )], e[T -1 (m2 -n )] and F m2 -n are independent by Neveu et al. ([20], Proposition of Section 1), so RHS of (5.8) = η[A k,a,c ∩ {b(c) > 0} ∩ {X 2k < m2 -n } ∩ {R n = m2 -n }] ×η(∪ i=±1 {e[T i (m2 -n )] < am2 -n }) = 1e -2a η[A k,a,c ∩ {b(c) > 0} ∩ {R n = m2 -n }](5.9)since e[T i (m2 -n )]/(m2 -n ), i = 0, are independent exponential r.v. with mean 1 (also by Neveu et al.[START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF], prop. 1) and X 2k < R n on {R n = 0}. So, (5.7), (5.8) and (5.9), give η B +,n 0 k+1,a,c ∩ C +,n k+1,a,c = (1e -2a ) m∈N, m≥c2 n η[A k,a,c ∩ {b(c) > 0} ∩ {R n = m2 -n }] ≤ 1e -2a η A + k,a,c . Consequently, (5.6) leads to η A + k+1,a,c ≤ η A + k+1,a,c ∩ B +,n 0 k+1,a,c + η B +,n 0 k+1,a,c c ≤ 1e -2a η A + k,a,c + η B +,n 0 k+1,a,c c .
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 55 If 0 < y ≤ x, then x 0 (W, y) and x 1 (W, y) are F x -measurable.Let y p := (x-j(p)/p)1 {X k <x} . So on {X k < x}, D p (x) = h 1 (y p ) = H(T 1 (y p )) (see the comments after(5.11) since the support of slope T 1 (y p ) is included in [x 0 (W, x), x 1 (W, x)] by (5.12)). Sincey p ∈ (X k -1/p, X k ], y p → p→+∞ X k on {X k < x}, and since H(T 1 (.)) is left-continuous on (0, +∞) on W by Lemma 5.1, H(T 1 (X k )) = lim p→+∞ H(T 1 (y p )) = lim p→+∞ D p (x) on {X k < x}. Hence, {H(T 1 (X k )) ≤ a} ∩ {X k < x} = lim p→+∞ D p (x) ≤ a ∩ {X k < x}.

  by (4.11) and (4.15), equations (4.12), (4.14) and (4.32) give

  i+1 ) and (4.14) in the first inequality of (4.41), W (t i ) ≥ W (t i+1 ) in (4.42), and the definition (4.25) of θ i in (4.43). It follows from (4.40), (4.41) and (4.43) that

Acknowledgment : I am grateful to an anonymous referee for reading the paper very carefully.

This research was partially supported by the french ANR project MEMEMO2 2010 BLAN 0125.

Indeed for the first line, inclusion ⊂ is clear. For the inclusion ⊃, on the event in RHS of (5.1), where RHS stands for right hand side, there is a sequence y n ∈ [c, x], n ∈ N * such that e[T 0 (y n )] < 1/n for n ∈ N * . Since [c, x] is compact, there exists a subsequence (y pn ) n , which converges to an y ∈ [c, x]. Hence, 0 ≤ e[T 0 (y)] ≤ lim inf n→+∞ e[T 0 (y pn )] = 0 by lower semicontinuity, which proves the inclusion. For line (5.2), inclusion (RHS of (5.1)) ⊃ (RHS of (5.2)) is clear, whereas inclusion ⊂ follows from the left-continuity of e(T 0 (.)).

Hence {X 1 ≤ x} ∈ F x for every x ≥ c, and

0 and so there is a positive jump at x for e[T 0 (.)], we show similarly that for x ≥ c,

Hence it follows by induction that X k is a (F x ) x≥0 -stopping time for every k ≥ 1.

We can then consider the σ-fields F X k for k ≥ 1.

We now fix k ≥ First, we notice that A k+1,a,c = A + k+1,a,c ∪ A - k+1,a,c , where A + k+1,a,c := A k+1,a,c ∩ {b(c) > 0} and A - k+1,a,c := A k+1,a,c ∩ {b(c) ≤ 0}. We start with A + k+1,a,c , and notice that

(5.3) Let n 0 ∈ N * . We define a sequence (R n ) n≥n 0 by induction as follows:

In particular, we have c

k+1,a,c and R n = 0 on (B +,n 0 k+1,a,c ) c for n ≥ n 0 . We now prove the two following lemmas: Lemma 5.3. The sequence (R n ) n≥n 0 is nondecreasing. It converges a.s. to a r.v. R ∞ , and

So, (R n ) n≥n 0 is a nondecreasing sequence on B +,n 0 k+1,a,c , and also on (B +,n 0 k+1,a,c ) c on which R n = 0 for every n ≥ n 0 . Hence, it tends a.s. to

(5.4)

Assume that R n 0 = 0 and that there exists n ≥ n 0 such that e[T 0 (R n )] = 0, and let n 1 denote the smallest such n. Then,

and then e[T 0 (R ∞ )] = 0. Moreover, by (5.4), e(T 0 (.)) > 0 on (R n 0 , R ∞ ). Furthermore we know that on B +,n 0 k+1,a,c , X 2k < R n 0 < X 2k+1 , so e(T 0 (.)) > 0 on (X 2k , R n 0 ] by Fact 3.1 and then on (X 2k , R ∞ ). Hence R ∞ = inf{x > X 2k , e[T 0 (x)] = 0} = X 2k+1 in this case.

Proof: Let 0 < y < x, and

This already proves that x 0 (W, x) and x 1 (W, x) are F x -measurable. We define recursively for k ∈ N, (with inf ∅ = +∞ and sup ∅ = -∞)

Consequently, all these r.v. z i (y), i ≥ 0 are F x -measurable and so are the r.v. Z(z k (y)), k ∈ N. Moreover it follows from the definition of y and y-extrema that the y-extrema in [x 0 (W, x), x 1 (W, x)] are exactly the z k (y), k ∈ N (with repetitions at z ∞ ). In particular,

We now prove the following lemma, which is useful in the proof of Lemma 3.3 between equations (5.8) and (5.9), in particular to show the independence used in (5.9):

Proof: We use the same notation as in the previous proof. Let k ≥ 1 and 0 < y < x. We define K(y) := ∈N 1 {z (y)≤0<z +1 (y)} , so x i (W, y) = z K(y)+i (y) for every i ∈ Z such that x i (W, y) ∈ [x 0 (W, x), x 1 (W, x)], and K(y) is F x -measurable. For i ∈ Z (with z j (y) := z 0 (y) for j < 0), h i (y) := Z z K(y)+i (y) -Z z K(y)+i+1 (y) = k∈N 1 {K(y)=k} Z z k+i (y) -Z z k+i+1 (y) (5.11) is also F x -measurable (for every 0 < y < x). And h i (y) = H(T i (y)) if the support of the slope T

for every x ≥ 0. This is obvious for 0 ≤ x < c since X k ≥ c a.s. We now fix x ≥ c and define for p > 1/c (h 1 (u) is defined in (5.11) for 0 < u < x, and we set h 1 (u) := 0 if u ≤ 0) D p (x) := ∞ i=1 h 1 (xi/p)1 {0<x-i/p} 1 {x-i/p≤X k } 1 {X k <x-(i-1)/p} , which is F x -measurable. Moreover, on {X k < x}, there exists a unique (random) j = j(p) ≥ 1 such that xj/p ≤ X k < x -(j -1)/p ≤ x, and then xj/p > 0 since X k ≥ c > 1/p. We have [x -1 (W, xj/p), x 2 (W, xj/p)] ⊂ [x -1 (W, X k ), x 2 (W, X k )] ⊂ [x 0 (W, x), x 1 (W, x)]. (5.12) Indeed, the last inclusion comes from the fact that X k is a change of sign of b(.), and x > X k , so e(T 0 (X k )) = 0 and x 0 (W, X k ) and x 1 (W, X k ) are not x-extrema