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PERSISTENCE OF SOME ADDITIVE FUNCTIONALS OF SINAI’S WALK

ALEXIS DEVULDER

Abstract. We are interested in Sinai’s walk (Sn)n∈N. We prove that the annealed probability

that
∑n
k=0 f(Sk) is strictly positive for all n ∈ [1, N ] is equal to 1/(logN)

3−
√

5
2

+o(1), for a
large class of functions f , and in particular for f(x) = x. The persistence exponent 3−

√
5

2
first

appears in a non-rigorous paper of Le Doussal, Monthus and Fischer, with motivations coming
from physics. The proof relies on techniques of localization for Sinai’s walk and uses results of
Cheliotis about the sign changes of the bottom of valleys of a two-sided Brownian motion.

1. Introduction

In this paper we consider random walks in random environments in Z. Let ω := (ωi)i∈Z be
a collection of independent and identically distributed random variables taking values in (0, 1),
with joint law η. A realization of ω is called an environment. Conditionally on ω, we define a
Markov chain (Sn)n∈N by S0 = 0 and for n ∈ N, k ∈ Z and i ∈ Z,

Pω(Sn+1 = k|Sn = i) =

 ωi if k = i+ 1,
1− ωi if k = i− 1,
0 otherwise.

We say that (Sn)n∈N is a random walk in random environment (RWRE). This model has many
applications in physics (see e.g. Hughes [18]) and in biology (see e.g. Cocco and Monasson [10]
about DNA reconstruction), and has unusual properties. Moreover, its properties are used to
study several other mathematical models, see e.g. Zindy [32], Enriquez, Lucas and Simenhaus
[14] and Devulder [13].

The probability Pω is called the quenched law. We denote by P xω the quenched law for a RWRE
starting at x ∈ Z instead of 0. We also consider the annealed law, which is defined by

P(.) =

∫
Pω(.)η(dω).

Notice in particular that (Sn)n∈N is not Markovian under P. We also denote by E, Eω and Exω the
expectations under P, Pω and P xω respectively. We assume that the following ellipticity condition
holds:

∃ε0 ∈ (0, 1/2), η(ε0 ≤ ω0 ≤ 1− ε0) = 1. (1.1)
This ensures that | log(1−ω0

ω0
)| is η-a.s. bounded by log(1−ε0

ε0
). Solomon [28] proved that (Sn)n∈N

is recurrent for almost every environment ω if and only if∫
log

(
1− ω0

ω0

)
η(dω) = 0. (1.2)
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We assume that this condition is satisfied throughout the paper. Moreover, in order to avoid the
degenerate case of simple random walks, we suppose in the following that

σ :=

(∫
log2

(
1− ω0

ω0

)
η(dω)

)1/2

> 0. (1.3)

A RWRE (Sn)n∈N satisfying conditions (1.1), (1.2) and (1.3) is referred to as Sinai’s walk. Sinai
([26], see also Andreoletti [2] for extensions) proved that in this (recurrent) case,

σ2 Sn

log2 n
→law b∞

as n→ +∞, where b∞ is a non degenerate and non gaussian random variable and →law denotes
convergence in law under P. We refer to Hughes [18], Révész [21] and Zeitouni [31] for more
properties of RWRE.

Sinai [27] also showed in 1992 that for a symmetric simple random walk (Rn)n∈N, we have
P(
∑n

k=1Rk > 0 ∀1 ≤ n ≤ N) � N−1/4 as N → +∞. In this paper, we are interested in
the corresponding probability for Sinai’s walk (Sn)n∈N, and more generally in the one-sided exit
problem for some additive functionals of Sinai’s walk under the annealed law P. We say that
g(x) = o(1) as x→ +∞ (resp −∞) if g(x)→ 0 as x→ +∞ (resp −∞). Our main result is the
following.

Theorem 1.1. Let f be a function Z→ R, such that f(0) = 0; f(x) ≥ 1 for all x > 0; f(x) ≤ −1

for all x < 0; and |f(x)| ≤ exp(|x|o(1)) as x → ±∞. We consider a RWRE (Sn)n∈N satisfying
conditions (1.1), (1.2) and (1.3), and a real number u ≤ 0. We have as N → +∞,

P

(
n∑
k=0

f(Sk) > u ∀1 ≤ n ≤ N
)

=
1

(logN)
3−
√
5

2
+o(1)

.

Let (At)t∈D be a real valued stochastic process starting from 0, where D = R+ or D = N.
The asymptotic study of the survival function P(∀t ∈ (0, T ] ∩ D,At ≥ x) for x ≤ 0, when
T → +∞, is called one sided exit problem or persistence probability. This problem is equivalent
to the study of P(Tx > T ), where Tx is the first passage time of the process (−At)t strictly above
the level y = −x ≥ 0. In many cases with physical relevance, the survival function behaves
asymptotically like 1/Tα+o(1) as T → +∞, with α > 0. The exponent α is called the persistence
or survival exponent. This problem, which is well known for random walks or Lévy processes, is
less understood for the integrals of these processes, in particular in the discrete case. We refer
to Aurzada and Simon [4] for a recent review on this subject from the mathematical point of
view. Persistence properties have also received a considerable attention in physics, see e.g. Bray,
Majumdar and Schehr [6] for an up-to-date survey.

In our case, the probability we obtain in Theorem 1.1 for the integrals of (f(Sn))n is a power
of logN instead of N , which is quite unusual and contrasts with all the cases presented in the
review paper [4]. The value of the survival exponent is 3−

√
5

2 ; it does not depend on the function
f for a wide class of functions, and it also does not depend on the law η of the environment, as
long as (1.1), (1.2) and (1.3) are satisfied. It is derived from the results of Cheliotis [8] about
the number of sign changes of the bottom of valleys of Brownian motion, and was first stated
in a non rigorous paper of Le Doussal, Monthus and Fisher [16], with motivations coming from
physics.

Before giving some examples, we introduce some more notation. We denote by N∗ the set of
positive integers, and Z∗− is the set of negative integers. We define the local time of the RWRE
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(Sn)n∈N at time n ∈ N as follows:

L(A,n) :=
n∑
k=0

1{Sk∈A}, L(x, n) := L({x}, n)

for A ⊂ Z and x ∈ Z. In words L(A,n) is the number of visits of the random walk S to the set
A in the first n steps. This quantity will be useful in the proof of Theorem 1.1, because

n∑
k=0

g(Sk) =
∑
x∈Z

g(x)L(x, n), n ∈ N, (1.4)

for every function g.

It can be interesting to keep in mind the first example:

Example 1. For f(x) = 1{x>0} − 1{x<0}, Theorem 1.1 gives

P
[
L(N∗, n) > L(Z∗−, n) ∀1 ≤ n ≤ N

]
=

1

(logN)
3−
√
5

2
+o(1)

.

The following example gives for α = 1 the persistence of the temporal average or running
average of Sinai’s walk, that is 1

n

∑n
k=0 Sk, with the terminology of Le Doussal et al. ([16]

Section IV):

Example 2. Let α > 0, sgn(x) := 1{x>0} − 1{x<0} for x ∈ R, and f(x) = sgn(x)|x|α for x ∈ Z.
We get for u ≤ 0,

P

(
n∑
k=0

sgn(Sk)|Sk|α > u ∀1 ≤ n ≤ N
)

=
1

(logN)
3−
√
5

2
+o(1)

.

We recall that the corresponding probability for α = 1 for a simple random walk is of order
N−1/4 (see Sinai [27]; see also Vysotsky [30] and Dembo, Ding and Gao [11] for recent extensions).
Example 2 is also, for α > 0 arbitrary, the analogue for Sinai’s walk of the results obtained by
Simon [25] for some additive functionals of stable processes with no negative jumps. We can also
consider functions increasing more rapidly, such as f(x) = sgn(x)|x|| log(2+|x|)|α , x ∈ Z for α > 0.

The rest of the paper is organized as follows. We introduce some notation and basic facts in
Section 2. In Section 3 we build a set B(N) of bad environments, such that in a bad environment,∑n

k=0 f(Sk) is less than u for at least one integer n ∈ [1, N ] with a great quenched probability.
To this aim, we approximate the potential of the environment by a two-sided Brownian motion,
and we define strong changes of sign for the valleys of this Brownian motion. We prove that
in a bad environment, the existence of such a strong change of sign forces the walk to stay a
long time in Z∗− with a large quenched probability, leading to the upper bound of Theorem
1.1. A sketch of this proof is provided in Subsection 3.1. In Section 4 we build a set G(N) of
good environments. We prove, using a mathematical induction, that in such a good environment∑n

k=0 f(Sk) is strictly positive for all 1 ≤ n ≤ N with a large quenched probability, which leads
to the lower bound of Theorem 1.1. A sketch of this proof is given in Subsection 4.1. Finally,
Section 5 is devoted to the proof of two technical lemmas.

Throughout the paper, ci, i ∈ N, denote positive constants, and log denotes the natural loga-
rithm.
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2. Preliminaries

2.1. Potential. We recall that the potential V is a function of the environment ω, which is
defined on Z as follows:

V (n) :=


∑n

i=1 log 1−ωi
ωi

if n > 0,

0 if n = 0,

−∑0
i=n+1 log 1−ωi

ωi
if n < 0.

For p ∈ Z, we define the hitting time of p by (Sn)n by:

τ(p) := inf{k ∈ N, Sk = p}.
We now recall some basic estimates that will be useful throughout the paper.

Lemma 2.1. (see e.g. Zeitouni [31] formula (2.1.4) p. 196) If p < q < r, then

P qω[τ(r) < τ(p)] =
( q−1∑
k=p

eV (k)
)( r−1∑

k=p

eV (k)
)−1

. (2.1)

Lemma 2.2. (see e.g. Zeitouni [31] p. 250) If g < h < i,

Ehω[τ(g) ∧ τ(i)] ≤
i−1∑
k=h

k∑
`=g

exp[V (k)− V (`)]

ω`
≤ ε−1

0 (i− g)2 exp

[
max

g≤`≤k≤i−1
(V (k)− V (`))

]
. (2.2)

Proof: This formula (2.2) is proved by Zeitouni [31] p. 250, in the particular case h = 0. Indeed,
Zeitouni uses the notation ω+

x := ωx, ρx := (1 − ωx)/ωx, x ∈ Z (see [31] p. 194 and p. 195),
T b,n := τ(anδ )∧ τ(bn) for some anδ < 0 < bnδ = bn, and proves in the fourth formula of [31] p. 250
that

E0
ω

[
τ(anδ ) ∧ τ(bn)

]
= E0

ω

[
T b,n

]
≤

bn∑
i=1

i−1−anδ∑
j=0

∏j
k=1 ρi−k
ωi−j−1

=

bn−1∑
k=0

k∑
`=anδ

exp[V (k)− V (`)]

ω`
. (2.3)

Since the proof of this formula does not use any property of anδ and bn except anδ < 0 < bδn = bn,
it is true for any integers anδ < 0 < bn. The general case (2.2) follows from (2.3) by translation,
since Ehω[τ(g)∧ τ(i)] = E0

ω̂[τ(g−h)∧ τ(i−h)] for g < h < i, with ω̂x := ωx+h for every x ∈ Z. �

Moreover, the following estimate can be found in Andreoletti ([1] p. 22) and is in the spirit of
Révész ([21] p278-279).

Lemma 2.3. If p < z ≤ q < r or p < q < z < r,

Eqω[L(z, τ(p) ∧ τ(r))] =
P qω[τ(z) < τ(p) ∧ τ(r)]

ωzP
z+1
ω [τ(z) > τ(r)] + (1− ωz)P z−1

ω [τ(z) > τ(p)]
. (2.4)

For the sake of completeness, we recall the proof:

Proof of Lemma 2.3: By the strong Markov property,

Eqω[L(z, τ(p) ∧ τ(r))] = Eqω[L(z, τ(p) ∧ τ(r))1{τ(z)<τ(p)∧τ(r)}]

= Ezω[L(z, τ(p) ∧ τ(r))]P qω[τ(z) < τ(p) ∧ τ(r)].

Since L(z, τ(p) ∧ τ(r)) is under P zω a geometric random variable of parameter ωzP z+1
ω [τ(z) >

τ(r)] + (1− ωz)P z−1
ω [τ(z) > τ(p)], we get (2.4). �
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2.2. x-extrema. We now recall some definitions introduced by Neveu and Pitman [20]. If w is
a continuous function R → R, x > 0, and y0 ∈ R, it is said that w admits an x-minimum at
y0 if there exists real numbers α and β such that α < y0 < β, w(y0) = inf{w(y), y ∈ [α, β]},
w(α) ≥ w(y0) + x and w(β) ≥ w(y0) + x. It is said that w admits an x-maximum at y0 if −w
admits an x-minimum at y0. In these two cases we say that w admits an x-extremum at y0.

We denote by W the set of functions w from R to R such that the three following conditions
are satisfied: (a) w is continuous on R; (b) for every x > 0, the set of x-extrema of w can be
written {xk(w, x), k ∈ Z}, where (xk(w, x))k∈Z is strictly increasing, unbounded from above and
below, with x0(w, x) ≤ 0 < x1(w, x); (c) for all x > 0 and k ∈ Z, xk+1(w, x) is an x-maximum if
and only if xk(w, x) is an x-minimum. We now consider a two-sided standard Brownian motion
W . We know from Cheliotis ([8], Lemma 8) that η(W ∈ W) = 1.

For each x > 0, bW (x), also denoted by b(x) when no confusion is possible, is defined on {W ∈ W}
as

bW (x) :=

{
x0(W,x) if x0(W,x) is an x-minimum,
x1(W,x) otherwise.

One interesting feature about bW is that the diffusion in the random potential W , defined by
Schumacher [23], is localized in a small neighborhood of bW (log t) at time t with probability nearly
one (see Brox [7], Tanaka [29] and Hu [17]). Such a diffusion can be viewed as a continuous time
analogue of Sinai’s walk (see e.g. Shi [24]), and a similar localization phenomenon arises for
Sinai’s walk (see Sinai [26], Golosov [15] and more recently Andreoletti [2]).

For x > 0 and k ∈ Z, the restriction of W −W (xk(W,x)) to [xk(W,x), xk+1(W,x)] is denoted
by Tk(x) and is called an x-slope. It is the translation of the trajectory of W between two
consecutive x-extrema. If xk(W,x) is an x-minimum (resp. x-maximum), it is a nonnegative
(resp. non-positive) function, and its maximum (resp. minimum) is attained at xk+1(W,x). For
each x-slope Tk(x), we denote by H(Tk(x)) its height and by e(Tk(x)) its excess height, that is
H(Tk(x)) := |W [xk+1(W,x)] −W [xk(W,x)]| ≥ x and e(Tk(x)) := H(Tk(x)) − x ≥ 0. We also
define e(Tk(0)) = H(Tk(0)) = 0, k ∈ Z.

The point of view of x-extrema has been used in some recent studies of processes in random
environment, see e.g. Bovier and Faggionato [5] for Sinai’s walk, Cheliotis [9] for (recurrent)
diffusions in a Brownian potential, and Andreoletti and Devulder [3] for (transient) diffusions in
a drifted Brownian potential.

3. Proof of the upper bound

3.1. Sketch of the proof, and organization of this proof. We approximate the potential
V in (3.2) by σW , where W is a suitable two-sided Brownian motion.

In many cases for Sinai’s walk, the environment largely controls the behavior of the random
walk. This is due to the fact that the random walk tends to go to places with a low potential,
and spend a large amount of time around these places. So, heuristically speaking, the idea is to
prove that for most environments, the deepest location (in terms of potential) visited until time
n is < 0 for at least one time n ≤ N , and that the RWRE (Sk)k spends a large amount of time
around this deepest location before going back to the positive locations at some time m ≤ N ,
making the sum

∑m
k=1 f(Sk) negative with large annealed probability.

One good candidate for this deepest location visited until time n seems to be bσW (log n), that
is, bσW (x) for some x much bigger that 1 and much smaller than logN such that bW (x) < 0.
However, the existence of such an x with bσW (x) < 0 is not enough to ensure that with a large
quenched probability the random walk (Sk)k will go quickly to this (negative) place and spend
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a great amount of time around it before going back to 0. This is why we introduce, in Definition
3.2 below, the notion of a-strong change of sign for bW , in order to push the walk to go quickly
to negative locations and spend a large amount of time there.

We first study the potential in Subsections 3.2 and 3.3. We prove in Lemma 3.4 that with
a very large probability, the environment is what we call a bad environment: it satisfies some
technical conditions, but also, there are many changes of sign Xk of bW in [(logN)ε, (logN)1−ε]
(see (3.3)), and among them, at least one is a "strong" change of sign hN := XkN of bW (see (3.4)
and Lemma 3.3), as defined in Definition 3.2 below, with bW (XkN+1

) ≤ 0. A schema representing
the potential V of a typical "bad environment" is given in Figure 1 page 9.

Then in Subsection 3.4, we consider a random walk (Sk)k in such a bad environment ω. Due
to the conditions defining our strong change of sign hN , we prove that with a large quenched
probability, the random walk (Sk)k goes quickly to x−1 := x−1(W,hN ) ≤ −1 before going to
some v2 ≤ x2(W,hN ) =: x2 (see Figure 1). Moreover, it stays a long time in Z∗− before going
back to 0. It stays such a long time in Z∗−, on which f < 0, that

∑n
k=1 f(Sk) becomes ≤ u for

some 1 ≤ n < N , with large quenched probability uniformly on bad environments (see Lemma
3.5), and so with a large annealed probability. This leads to the upper bound of Theorem 1.1.

3.2. Strong change of sign. Let c > 0. Similarly as in Cheliotis ([8] Corollary 2), we denote
by (Xk)k≥1 the strictly increasing sequence of points for which bW (.) changes its sign in [c,+∞).
The proof of the following fact is deferred to Section 5:

Fact 3.1. Almost surely,

X1 = inf{x ≥ c, e(T0(x)) = 0},
Xk+1 = inf{x > Xk, e(T0(x)) = 0}, k ∈ N∗.

Moreover, the sign of bW (.) is constant on every interval [c,X1], (Xk, Xk+1], k ∈ N∗.

As a consequence, a.s. for every x > 0, bW changes its sign at x if and only if e(T0(x)) = 0.
We can now define strong changes of sign of bW as follows:

Definition 3.2. Consider x > 0. For a > 0, we say that x is an a-strong change of sign of bW
if and only if

e(T0(x)) = 0, e(T−1(x)) ≥ ax, and e(T1(x)) ≥ ax.

In the following lemma, we evaluate the probability that there is no a-strong change of sign x
such that bW (x) > 0 in [c,X2k+1).

Lemma 3.3. For a > 0, c ≥ 1 and k ∈ N∗, we define A(k, a, c) also denoted by Ak,a,c as follows:

Ak,a,c := {∀i ∈ {1, . . . , 2k}, bW (Xi) > 0⇒ (e(T−1(Xi)) < aXi or e(T1(Xi)) < aXi)}.
We have,

η(Ak,a,c) ≤ η(A1,a,c)
(
1− e−2a

)k−1
. (3.1)

The proof of this lemma is deferred to Section 5.

3.3. Bad environments. Let (ωi)i∈Z be a collection of independent and identically distributed
random variables satisfying (1.1), (1.2) and (1.3). We now fix ε ∈ (0, 1/2). Let K ≥ 1. In order
to transfer to our random potential V , with some approximations, some results such as the ones
of Cheliotis [8], which are available for Brownian motion, but unavailable for V to the extent of
our knowledge, we use the following coupling. According to the Komlós–Major–Tusnády strong
approximation theorem (see Komlós et al. [19]), there exist (strictly) positive constants C1, C2
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and C3, independent of K ∈ N∗, such that, possibly in an enlarged probability space, there exists
a two-sided standard Brownian motion (W (t), t ∈ R), such that

B1(K) :=

{
sup

−K≤i≤K

∣∣V (i)− σW (i)
∣∣ ≤ C1 logK

}
(3.2)

satisfies η([B1(K)]c) ≤ C2K
−C3 .

Throughout the proof, we set a :=
1

2
exp

(√5− 3

2ε

)
. Moreover, for u ∈ R, buc denotes the

integer part of u. We define for N > 2 the events

B2(N) := {the number of sign changes of bW
in [(logN)ε, (logN)1−ε] is at least 2ε log2N + 2}, (3.3)

B3(N) := [A(bε log2Nc, a, (logN)ε)]c, (3.4)

where log2 x := log log x for x > 1.

We now introduce, for every continuous process (Z(t), t ≥ 0),

Z(t) := inf{Z(u), 0 ≤ u ≤ t}, t ≥ 0, (3.5)
dZ(r) := inf{t ≥ 0, Z(t)− Z(t) ≥ r}, r ≥ 0.

Then we set W+(t) := W (t) and W−(t) := W (−t) for t ≥ 0, and consider for N > 1:

B4(N) :=
{
dσW+(5 logN) ≤ (logN)4

}
, B5(N) :=

{
dσW−(5 logN) ≤ (logN)4

}
.

For technical reasons, we also introduce

B6(N) :=
{
∀k ∈ Z ∩ [− log4N − 1, log4N), ∀t ∈ [k, k + 1], |W (t)−W (k)| ≤ log2N

}
.

This enables us to define the set B(N) of bad environments as follows:

B(N) := B1

[⌊
(logN)

3−
√
5

2C3
+4⌋] ∩ 6⋂

i=2

Bi(N).

We now estimate the probability of bad environments with the following lemma:

Lemma 3.4. If ε > 0 is small enough, we have for large N ,

η(B(N)c) ≤ 3

(logN)
3−
√
5

2
−ζ(ε)

, (3.6)

where ζ is a function (0, 1/3) → R such that ζ(t) →t→0 0 and ζ(t) > 0 for t > 0 small enough,
which is defined just after (3.7).

Proof: Denote by kW (et) the number of sign changes of bW in [1, et] for t > 0. Cheliotis ([8]
Corollary 5) proves that the laws of kW (et)/t, t > 0 satisfy a large deviation principle with speed
t and good rate function I, defined by I(x) := x log

(
2x
(
x+
√
x2 + 5/4

))
+3/2−

(
x+
√
x2 + 5/4

)
for x > 0, I(x) := +∞ for x < 0, and I(0) := (3−

√
5)/2. Hence by scaling, for N large enough,

η(B2(N)c) ≤ η
(
kW
(
e(1−2ε) log2N

)
≤ 3ε log2N

)
≤ exp {− [I (3ε/(1− 2ε))− ε] (1− 2ε) log2N}
= (logN)ζ(ε)−

3−
√
5

2 , (3.7)

where ζ(t) := I(0) − [I(3t/(1 − 2t)) − t](1 − 2t) for t ∈ (0, 1/3). Notice that ζ(t) > 0 for small
t > 0 since 0 < I(u) < I(0) for small u > 0. Moreover, ζ(t) → 0 as t → 0, t > 0, since I is
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right-continuous at 0. Lemma 3.3 gives since 1 − e−t ≤ t for t ∈ R, for N large enough so that
bε log2Nc − 1 > 0,

η
[
B3(N)c

]
= η

[
A
(
bε log2Nc, a, (logN)ε

)]
≤
(
1− e−2a

)bε log2Nc−1 ≤
(
2a
)bε log2Nc−1

.

So, since 2a = exp
(
[
√

5− 3]/(2ε)
)
∈ (0, 1),

η
[
B3(N)c

]
≤
(
2a
)ε log2N−2

=
[

exp
(
(3−

√
5)/ε

)]
(logN)

√
5−3
2 .

Consequently, for every (fixed) ε > 0 small enough so that ζ(ε) > 0, we have for N large enough,
exp

(
(3−

√
5)/ε

)
≤ (logN)ζ(ε) and then

η
[
B3(N)c

]
≤ (logN)ζ(ε)−

3−
√
5

2 . (3.8)

Notice that for r ≥ 0 and T > 0,

η(dW+(r) > T ) ≤ η
(
W+(T )−W+(T ) ≤ r

)
= η(|W (T )| ≤ r) ≤ 2r/

√
T ,

since W+(T )−W+(T ) =law |W (T )| (see Lé́vy’s theorem e.g. in Revuz and Yor [22] th VI.2.3).
This gives

η[B4(N)c] = η[B5(N)c] ≤ 10/(σ logN). (3.9)
Moreover for large N , we get since sup0≤t≤1W (t) =law |W (1)| and η[W (1) ≥ x] ≤ e−x

2/2 for
x ≥ 1,

η(B6(N)c) ≤ 3(log4N)η
(

sup
0≤t≤1

|W (t)| > log2N
)
≤ 12(log4N) exp(−(log2N)2/2) ≤ (logN)−2.

(3.10)

Combining this with (3.7), (3.8), (3.9) and η(B1(K)c) ≤ C2

KC3
proves the lemma. �

3.4. Random walk in a bad environment. In the following lemma, we show that in a bad
environment, the quenched probability that

∑n
k=0 f(Sk) is greater than u ≤ 0 for all n between

1 and N is small:

Lemma 3.5. Let f be as in Theorem 1.1, and u ≤ 0. For large N ,

∀ω ∈ B(N), Pω

(
∀n ∈ [1, N ],

n∑
k=0

f(Sk) > u

)
≤ 4(logN)−2. (3.11)

Proof of Lemma 3.5: We assume that ω ∈ B(N), and we prove that in such a bad environ-
ment, there exists a time t ∈ [1, N ] such that

∑t
k=1 f(Sk) ≤ u, with a large enough quenched

probability.

First, define C4 := σ + 3−
√

5
2C3

C1 + 4C1. Since ω ∈ B6(N) ∩ B1

[⌊
(logN)

3−
√
5

2C3
+4⌋], we have

∀u ∈ [− log4N, log4N ], |V (buc)− σW (u)| ≤ C4 log2N. (3.12)

Notice that since ω ∈ B3(N), there exists kN ∈ {1, . . . , 2bε log2Nc} such that hN := XkN is an
a-strong change of sign of bW and bW (hN ) > 0, where the (Xk)k are the ones in Fact 3.1 with
c = (logN)ε. Moreover, since ω ∈ B2(N) ∩ B3(N),

(logN)ε ≤ hN = XkN < XkN+1 < XkN+2 ≤ X2bε log2Nc+2 ≤ (logN)1−ε.

To simplify the notation, we set xi := xi(W,hN ) and yi := bxic for i ∈ {−2, . . . , 2}. We also
define (see Figure 1)

v−2 := max{k ∈ Z, k ≤ y−1, V (k) ≥ V (y0)},
v2 := min{k ∈ Z, k > y1, V (k) ≥ σW (x0) + (7 + C4) log2N}.
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σW

V (k)≥ σahN

≤ C4 log2N

≤ C4 log2N

y−1
x−1

y−2
x−2

v−2

y1
x1

k

0 σhN

≥ σahN

(7 + C4) log2N

y0
x0

v2 y2
x2

1

Figure 1. Schema of the potential V for a “bad” environment ω ∈ B(N) in the
case x−2 < v−2

Since bW (hN ) > 0, x1 is an hN -minimum for W , and consequently x0 and x2 are hN -maxima
for W and x−1 is an hN -minimum for W . Moreover, e(T0(hN )) = 0, e(T1(hN )) ≥ ahN and
e(T−1(hN )) ≥ ahN since hN is an a-strong change of sign of bW . Due to these properties, we
get

W (x0) = sup{W (t), t ∈ [x−1, x1]} ≥ 0, (3.13)
W (x1) = inf{W (t), t ∈ [x0, x2]} ≤ 0, (3.14)

W (x0)−W (x1) = hN , (3.15)
W (x2)−W (x1) ≥ (1 + a)hN , (3.16)
W (x0)−W (x−1) ≥ (1 + a)hN , (3.17)

W (x−1) = inf{W (t), t ∈ [x−2, x0]} < W (x1). (3.18)

The following lemma will allow us to apply (3.12) to some xi, yi and vi.

Lemma 3.6. For N large enough,

∀ω ∈ B(N), −(logN)4 ≤ v−2 ≤ x−1 < x0 ≤ 0 < x1 < v2 < x2 ≤ (logN)4,

∀ω ∈ B(N), v−2 + 3 ≤ y−1 ≤ y0 − 3 ≤ −3. (3.19)

Proof: First, it is clear by definition that x−2 < x−1 < x0 ≤ 0 < x1 < x2.

Moreover, x1 is an XkN -minimum, whereas x1(W,XkN+1) is an (XkN+1)-maximum because
XkN = hN and XkN+1 are consecutive changes of sign for bW . So x1 6= x1(W,XkN+1). Since
x1(W,XkN+1) is also an XkN -maximum, and x2 is the smallest positive XkN -maximum, we get
x2 ≤ x1(W,XkN+1). Now, if 0 ≤ t ≤ x1(W,XkN+1), W+(t)−W+(t) is less than or equal to

W+[x1(W,XkN+1)]−W+[x1(W,XkN+1)] ≤W [x1(W,XkN+1)]−W [x0(W,XkN+1)] = XkN+1.
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Since XkN+1 ≤ (logN)1−ε ≤ (5/σ) logN for N such that 5 logN > σ(logN)1−ε, and ω ∈ B4(N),
this yields

0 < x2 ≤ x1(W,XkN+1) ≤ dσW+(5 logN) ≤ (logN)4.

Since v2 > y1 = bx1c, we have x1 < v2. Moreover, we can now apply (3.12) to x2 together
with (3.15) and (3.16), which gives V (y2) ≥ σW (x2)−C4 log2N ≥ σW (x0)+σahN −C4 log2N ,
which is greater than σW (x0) + (7 + C4) log2N + 2 log[(1 − ε0)/ε0] uniformly on B(N) for N
large enough. This gives v2 < y2 ≤ x2.

Moreover, v−2 ≤ y−1 ≤ x−1. Now, similarly as before, x0(W,XkN+2) < x0(W,XkN+1) <
x0(W,XkN ), and since all of them are XkN -extrema, this yields x0(W,XkN+2) ≤ x−2. Now, we
have W−(−x0(W,XkN+2)) − W−(−x0(W,XkN+2)) ≤ H(T0(XkN+2)) = XkN+2 ≤ (logN)1−ε,
which gives as previously x−2 ≥ x0(W,XkN+2) ≥ −dσW−(5 logN) ≥ −(logN)4.

We already know that x0(W,XkN+2) ≤ x−1 < 0 < x2 ≤ x1(W,XkN+1) < x1(W,XkN+2),
which leads to W [x0(W,XkN+2)] ≥ W (x2) ≥ W (x0) + ahN since x0(W,XkN+2) is an (XkN+2)-
maximum. Applying (3.12) to x0(W,XkN+2) ≥ − log4N and to x0 ≥ x0(W,XkN+2) ≥ − log4N ,
this gives V (bx0(W,XkN+2)c) ≥ σW (x0(W,XkN+2))−C4 log2N ≥ σW (x0)+C4 log2N ≥ V (y0)
for N such that σahN ≥ 2C4 log2N , which yields v−2 ≥ bx0(W,XkN+2)c ≥ −(logN)4.

Finally, notice that by (3.12) and (3.17),

V (y0)− V (y−1) ≥ σW (x0)− σW (x−1)− 2C4 log2N ≥ σ(1 + a)hN − 2C4 log2N,

which is, for largeN uniformly on B(N ), strictly larger than−3 log ε0 ≥ 3 supk∈Z |V (k)−V (k−1)|
since hN ≥ (logN)ε. This and x−1 ≤ x0 ≤ 0 give the second inequality in (3.19). The first one
is obtained similarly. �

Let

E1 := {τ(y−1) < τ(v2)}, E2 :=
{
L((0, v2], τ(y−1) ∧ τ(v2)) ≤ (logN)18+2C4eσhN

}
.

We prove the following lemma:

Lemma 3.7. For large N ,

∀ω ∈ B(N), Pω(Ec1) ≤ (logN)−2, Pω(Ec2) ≤ (logN)−2.

Proof: First, due to the previous lemma, −(logN)4 ≤ y−1 ≤ −3 uniformly on B(N) for large
N , and equations (1.1), (2.1), (3.12) and (3.13) yield

Pω(Ec1) ≤ |y−1| max
y−1≤k≤−1

eV (k)−V (v2−1) ≤ ε−1
0 (logN)4+C4 exp[σW (x0)− V (v2)] ≤ (logN)−2,

for every ω ∈ B(N) for large N , which proves the first part of the lemma.

Thanks to x0 ≤ 0 < v2 < x2 and to (3.14), we have W (z) ≥ W (x1) for all z ∈ (0, v2).
Moreover, V (k) ≤ σW (x0) + (7 + C4) log2N for every k ∈ [y−1, v2 − 1] by the definition of v2,
(3.13), and (3.12). This, Lemma 3.6, (2.1), (3.15) and (3.12) again give for z ∈ (0, v2),

P z−1
ω [τ(z) > τ(y−1)] =

eV (z−1)∑z−1
k=y−1

eV (k)
≥ ε0e

σW (x1)−C4 log2N

2(logN)4eσW (x0)+(7+C4) log2N
≥ ε0e

−σhN

2(logN)11+2C4
.

Applying (2.4) and observing that v2 ≤ (logN)4, Pω[τ(z) < τ(y−1)] ≤ 1 and y−1 ≤ −1, we
obtain for every ω ∈ B(N) for large N ,

Eω[L((0, v2], τ(y−1) ∧ τ(v2))] ≤
v2−1∑
z=1

Pω[τ(z) < τ(y−1)]

ωzP
z+1
ω [τ(z) > τ(v2)] + (1− ωz)P z−1

ω [τ(z) > τ(y−1)]
+ 1

≤ 2ε−2
0 (logN)15+2C4eσhN + 1.
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Using Markov’s inequality, we get Pω(Ec2) ≤ (logN)−2 for large N . �

Now, let T := inf{k > τ(y−1), Sk ∈ {v−2, y0 − 1}} be the first exit time from the interval
(v−2, y0 − 1) by the random walk S after τ(y−1). We introduce n1 :=

⌊ ε20 exp(σ(1+a)hN )

2(logN)2+2C4

⌋
and the

events
E3 := {T ≥ τ(y−1) + n1}, E4 := {τ(y−1) + n1 < N}.

Lemma 3.8. For N large enough,

∀ω ∈ B(N), Pω(Ec3) ≤ (logN)−2, Pω(Ec4 ∩ E1) ≤ (logN)−2.

Proof: Recall that v−2 < y−1 < y0 − 1 on B(N) for N large enough by (3.19), and that
τ(y−1) < ∞ P-a.s. since (Sn)n is recurrent. We first consider L(y−1, T ) and notice that it is
under Pω a geometric random variable of parameter

p1 := ωy−1P
y−1+1
ω [τ(y−1) > τ(y0 − 1)] + (1− ωy−1)P y−1−1

ω [τ(y−1) > τ(v−2)]

= ωy−1e
V (y−1)

( y0−2∑
k=y−1

eV (k)
)−1

+ (1− ωy−1)eV (y−1−1)
( y−1−1∑
k=v−2

eV (k)
)−1

≤ ε−2
0 exp[V (y−1)− V (y0)]

≤ ε−2
0 e−σ(1+a)hN (logN)2C4 =: p2,

thanks to (2.1) and the definition of v−2, and where the last inequality comes from (3.12) and
(3.17). This ensures that for large N , uniformly on B(N) since hN ≥ (logN)ε,

logPω[L(y−1, T ) ≥ n1] = (n1 − 1) log(1− p1) ≥ −2n1p1 ≥ −2n1p2 ≥ −(logN)−2.

Since 1 − e−t ≤ t for t ∈ R, this yields Pω[L(y−1, T ) < n1] ≤ (logN)−2. Finally, we have
T ≥ τ(y−1) + L(y−1, T ), which gives Pω(Ec3) ≤ Pω[L(y−1, T ) < n1] ≤ (logN)−2.

We now turn to E4. Notice that uniformly on B(N) for large N , thanks to Lemma 3.6, (3.12),
(3.13), (3.14), (3.18) and the definition of v2, we have

∀k ∈ [y−1, v2 − 1], σW (x−1)− C4 log2N ≤ V (k) ≤ σW (x0) + (7 + C4) log2N. (3.20)

Since H(T0(XkN )) = XkN < XkN+1
, x0 and x1 are not (XkN+1

)-extrema. Hence, [x−1, x2] ⊂
[x0(W,XkN+1), x1(W,XkN+1)], and then W (x2)−W (x−1) ≤ XkN+1. Moreover, log2N = o(hN )
uniformly on B(N) and W (x0) ≤W (x2)− ahN by (3.15) and (3.16), so (3.20) gives for large N ,

max{V (k)− V (`), y−1 ≤ ` ≤ k ≤ v2 − 1} ≤ σ(W (x0)−W (x−1)) + (7 + 2C4) log2N

≤ σ(W (x2)−W (x−1)) ≤ σXkN+1 ≤ σ(logN)1−ε.

This together with (2.2) and |v2− y−1| ≤ 2(logN)4 yield Eω(τ(y−1)1E1) ≤ Eω[τ(y−1)∧ τ(v2)] <√
N uniformly on B(N) for large N . Since Eω(n11E1) <

√
N because hN ≤ (logN)1−ε on B(N),

this yields Pω(Ec4 ∩ E1) ≤ (logN)−2 for every ω ∈ B(N) for large N by Markov’s inequality. �

We now consider f satisfying the hypotheses of Theorem 1.1. For every ω ∈ B(N), we have
on E1 ∩ E2 and then on E5 := ∩4

i=1Ei, since f(x) ≤ 0 for every x ≤ 0,
τ(y−1)−1∑
k=0

f(Sk) =

v2−1∑
x=−∞

f(x)L(x, τ(y−1) ∧ τ(v2)− 1) ≤
[

max
k∈(0,v2]

f(k)

]
L((0, v2], τ(y−1) ∧ τ(v2))

≤
[

max
k∈(0,v2]

f(k)

]
(logN)18+2C4eσhN .(3.21)

For every ∆ ⊂ Z and 0 ≤ s ≤ t, we define L(∆, s  t) :=
∑t

k=s 1{Sk∈∆}, which is the number
of visits of (Sn)n∈N to the set ∆ between times s and t.
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For every ω ∈ B(N) and each integer k ∈ [τ(y−1), τ(y−1) + n1], we have τ(y−1) ≤ k ≤ T on
E3, so Sk ≤ y0 − 1 ≤ −1, thus f(Sk) ≤ −1. As a consequence on E5 for large N ,

τ(y−1)+n1∑
k=τ(y−1)

f(Sk) ≤ −n1 − 1 ≤ −ε2
0

exp[σhN + σa(logN)ε]

2(logN)2+2C4
, (3.22)

since hN ≥ (logN)ε. Combining (3.21), (3.22), and maxk∈(0,v2] f(k) ≤ maxk∈(0,(logN)4] f(k) ≤
exp((logN)ε/2) for large N , we get

∑τ(y−1)+n1

k=0 f(Sk) ≤ u on E5 for every ω ∈ B(N) for large
N . Moreover, 1 ≤ τ(y−1) + n1 ≤ N on E5, hence for large N , for every ω ∈ B(N), we have
E5 ⊂ {∃n ∈ [1, N ],

∑n
k=0 f(Sk) ≤ u}. Consequently, the left hand side of (3.11) is less than

Pω(Ec5) ≤ 4(logN)−2 for every ω ∈ B(N) for large N by Lemmas 3.7 and 3.8, which proves
Lemma 3.5. �

Finally, integrating (3.11) on the set of bad environments B(N) gives by Lemma 3.4:

P

(
∀n ∈ [1, N ],

n∑
k=0

f(Sk) > u

)
≤
∫
B(N)

Pω

(
∀n ∈ [1, N ],

n∑
k=0

f(Sk) > u

)
η(dω) + η(B(N)c)

≤ 4(logN)−2 +
3

(logN)
3−
√
5

2
−ζ(ε)

≤ 4

(logN)
3−
√
5

2
−ζ(ε)

for large N . Now, let ε→ 0, so ζ(ε)→ 0. This gives the upper bound in Theorem 1.1. �

4. Proof of the lower bound

4.1. Sketch of the proof, and organization of this proof. We give in this subsection some
non-rigorous heuristics, for which we invite the reader to look at Figure 2; everything will be
proved in details in the next subsections.

Let N ≥ 2. We build in Subsection 4.2 a set G(N) of "good environments". We would like
that uniformly on these good environments ω ∈ G(N),

∑n
k=0 f(Sk) > 0 for all 1 ≤ n ≤ N with

large quenched probability (see Lemma 4.3). To this aim, we first require that the potential V
of such good environments decreases quickly between 0 and ε log2N and then remains low up to
some random θ0, which is the smallest k > 0 such that V (k) ≤ −5h(N) (h(N) being defined in
(4.1) below). We then make a coupling between the potential outside this interval [0, θ0], called
V̂ and defined in (4.3), and a two-sided Brownian motion W (see (4.4) below). We then require
that bσW (x) > 0 for all 1 ≤ x ≤ 5 logN , and add some technical conditions. Such environments
are called good environments ω ∈ G(N). A schema of the potential of a good environment is
given in Figure 2.

We then show in Subsection 4.3 that loosely speaking, the probability of the set of good
environments is η[G(N)] ≥ 1/(logN)

3−
√
5

2
+o(1).

Finally, we study in Subsection 4.4 a random walk (Sk)k in a good environment ω ∈ G(N).
We introduce the location θi ≈ inf{k ≥ θ0, V (k) − inf0≤`≤k V (`) ≥ ih(N)}, i ≥ 1, which is
approximatively the first location where there is an increase of at least ih(N) for the potential
V restricted to [θ0,+∞) (see Figure 2, and (4.9) below). We first show in Lemma 4.4 that,
because the potential V decreases quickly in [0, ε log2N ] and remains low up to θ1 with V (θ1)
much lower than 0, with a large quenched probability the random walk (Sk)k goes to θ1 before
going to −1, and then

∑n
k=0 f(Sk) ≥ f(S1) = f(1) > 0 for all 1 ≤ n ≤ τ(θ1). Moreover we

prove that
∑τ(θ1)

k=0 f(Sk) ≥ L(m1, τ(−1) ∧ τ(θ1)) ≥ eh(N)/[2(logN)ν ] for some ν > 0 with large
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quenched probability, that is, the sum of f(Sk) has accumulated some large positive quantity at
time τ(θ1).

We then prove by induction in Lemma 4.5 (see also (4.16)) that for every i ≥ 1 such that
ih(N) ≤ 4 logN , with large quenched probability uniformly on all good environments ω ∈ G(N),∑n

k=0 f(Sk) > 0 for all 1 ≤ n ≤ τ(θi), and the sum of f(Sk) has accumulated some large positive
quantity at time τ(θi), that is,

∑τ(θi)
k=0 f(Sk) ≥ eih(N)/[2(logN)ν ].

Assume that this is true for such an i, and fix a good environment ω ∈ G(N). Loosely
speaking, since bσW [ih(N)] > 0 and bσW [(i + 1)h(N)] > 0, the deepest location (in terms of
potential) that (Sk)k can visit with large quenched probability between times τ(θi) and τ(θi+1)
is mi+1 ≈ θ0 +x1(σW, (i+1)h(N)) > θ0 > 0 (see (4.10) and Figure 2). Moreover, our hypotheses
for V (x), 0 ≤ x ≤ θ0 have "lowered" the potential V in [θ0,+∞) compared to the potential V
in Z∗−. In particular, the potential V (x) for locations x < 0 that the random walk (Sk)k may
visit between τ(θi) and τ(θi+1), that is, x ∈ [x0(σW, (i + 1)h(N)),−1], satisfy by definition of
x1(σW, .),

V (x) ≈ σW (x) ≥ σW [x1(σW, (i+ 1)h(N))] ≈ V (mi+1)− V (θ0) ≈ V (mi+1) + 5h(N).

Hence, V (mi+1) is much lower than the potential V (x) in the negative locations x the random
walk (Sk)k may visit between times τ(θi) and τ(θi+1), so the random walk can go to these
negative locations, where f < 0, but the total amount of time it spends there is small, with large
quenched probability (this is proved in details in the second step of the proof of Lemma 4.5).

Consequently,
∣∣∑τ(θi+1)

k=τ(θi)+1 f(Sk)1f(Sk)<0

∣∣ is very small compared to the quite large (positive)

sum
∑τ(θi)

k=0 f(Sk) ≥ eih(N)/[2(logN)ν ] already accumulated by induction hypothesis. This allows
us to prove that

∑n
k=0 f(Sk) > 0 for all τ(θi) < n ≤ τ(θi+1) (recall that f(x) ≥ 0 for x ≥ 0).

Finally we prove (in the third step) that (Sk)k spends a large amount of time in the deepest loca-
tion mi+1 between times τ(θi) and τ(θi+1). This leads to

∑τ(θi+1)
k=0 f(Sk) ≥ e(i+1)h(N)/[2(logN)ν ]

with large quenched probability, which ends the induction. Since we can choose i so large that
τ(θi) ≥ N with large probability, this leads to the lower bound of Theorem 1.1.

4.2. Definition of the set G(N) of good environments. We consider a collection (ωi)i∈Z of
independent and identically distributed random variables, satisfying (1.1), (1.2) and (1.3).

We notice that due to (1.2) and (1.3), there exist γ > 0 and δ > 0 such that η(−2δ ≤
log 1−ω0

ω0
≤ −δ) =: e−γ > 0. We fix ε > 0 such that εδ/4 < 4. Let N ∈ N such that N ≥ 3. In

the spirit of Devulder [12], we first define

G1(N) :=

{
∀k ∈ {1, . . . , bε log2Nc}, −2δ ≤ log

1− ωk
ωk

≤ −δ
}
,

and we introduce

h(N) := (logN)εδ/32, (4.1)
θ0 := inf{k ≥ bε log2Nc, V (k) ≤ −5h(N)}, (4.2)

G2(N) :=
{
∀k ∈ {bε log2Nc, . . . , θ0}, V (k) ≤ −(δε/2) log2N

}
,

G3(N) :=
{
θ0 ≤ bε log2Nc+ (logN)εδ/4

}
.

We also set

V̂ (i) :=

{
V (i+ θ0)− V (θ0) if i ≥ 0,
V (i) if i < 0.

(4.3)

By the strong Markov property, V̂ has the same law as V and is independent of (V (i), 0 ≤ i ≤ θ0).
Let K ≥ 1. As before, according to the Komlós–Major–Tusnády strong approximation theorem
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(see Komlós et al. [19]), possibly in an enlarged probability space, there exists a standard two-
sided Brownian motion (W (t), t ∈ R) such that the set

G4(K) :=

{
sup

−K≤i≤K

∣∣∣V̂ (i)− σW (i)
∣∣∣ ≤ C1 logK

}
(4.4)

satisfies η(G4(K)c) ≤ C2/K
C3 . Moreover, we can choose (W (t), t ∈ R) so that it is independent

of (V (i), 0 ≤ i ≤ θ0) since V̂ is independent of (V (i), 0 ≤ i ≤ θ0). In the following, we take

K = (logN)
3−
√
5

2C3
+4. We introduce

G5(N) :=
{

max{dσW+(5 logN), dσW−(5 logN), d−σW−(5 logN)} ≤ (logN)4
}
,

G7(N) := {∀x ∈ [1/σ, 5(logN)/σ], bW (x) > 0},

and define G6(N) by the same formula as B6(N).

(i + 1)h

ih

h

θi+1

k

−εδ log2N

θim1

−5h

0
θi

V (k)

miθ1θ0ε log2N

−2εδ log2N

h + C5 log2N

1

Figure 2. Schema of the potential V for a “good” environment ω ∈ G(N) in the
case mi = mi+1, where h denotes h(N).

We can now define the set G(N) of good environments as follows (see Figure 2):

G(N) := G4

[
(logN)

3−
√
5

2C3
+4
]
∩

⋂
i=1,...,7, i 6=4

Gi(N).

When no confusion is possible we write G instead of G(N) and Gi instead of Gi(N), i 6= 4.
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4.3. Probability of the set G(N) of good environments.

Lemma 4.1. We have for large N ,

η(G(N)) ≥ c1ε log2N

(logN)
3−
√
5

2
+ε(γ+δ/32)

. (4.5)

Proof: First, observe that

η(G1) ≥ (e−γ)ε log2N = (logN)−εγ .

We now prove that

η(G2 ∩ G3 | G1) ≥ δε log2N

40h(N)
(4.6)

for large N . To this aim, we define A := log((1 − ε0)/ε0), so |V (k + 1) − V (k)| ≤ A a.s.
for every k ∈ Z thanks to (1.1). For a ∈ R and b ∈ R such that a < 0 < b, let Ta,b :=
inf{k ≥ 0, V (k) /∈ (a, b)} < ∞ a.s. We recall that thanks to the optimal stopping theorem,
η[V (Ta,b) < 0] ≥ b/(b − a + A) (see e.g. Zindy [32] Lemma 2.1 and apply it to −V ). In
particular, we get on G1 uniformly for N large enough,

η[G2 | V (bε log2Nc)] ≥ δε log2N/(20h(N)),

which yields η(G2|G1) ≥ δε log2N/(20h(N)). Moreover, we have on G1 by the Markov property

η(G2 ∩ Gc3|V (bε log2Nc)) ≤ η
(
V
(⌊

(logN)δε/4
⌋)
∈ [−5h(N), 2δε log2N ]

)
≤ η

(∣∣V (⌊(logN)δε/4
⌋)∣∣

σ
√
b(logN)δε/4c

≤ 5h(N)

σ
√
b(logN)δε/4c

)
for N large enough. By Berry-Esseen, we get with Y =law N (0, 1),

η(G2 ∩ Gc3|V (bε log2Nc)) ≤ η

(
|Y | ≤ 5h(N)

σ
√
b(logN)δε/4c

)
+

c2√
b(logN)δε/4c

≤ 11h(N)

σ
√

2π(logN)δε/8
+

2c2

(logN)δε/8
= o(η(G2 | G1))

as N → +∞. Consequently η(G2 ∩ Gc3 | G1) = o(η(G2 | G1)), which gives (4.6) for large N .

Since W and V̂ are independent of (V (i), 0 ≤ i ≤ θ0), we get

η(G(N)) = η(G1 ∩ G2 ∩ G3)η(G8) ≥ c3ε log2N

(logN)εγh(N)
η(G8) (4.7)

where G8(N) := G4

[
(logN)

3−
√
5

2C3
+4] ∩⋂i=5...7 Gi(N). We now need the following result:

Theorem 4.2. (Cheliotis [8], Corollary 1)

η({(t 7→ bW (t)) keeps the same sign in [1, x]})/x(−3+
√

5)/2 −→x→+∞ 1/2 + 7
√

5/30 =: c4.

Hence, η(G7) ∼N→+∞ c4/[2(5 logN)(3−
√

5)/2], due to the scaling property of bW , that is for fixed
r > 0, (

bW (rx), x > 0
)

=law
(
r2bW (x), x > 0

)
.

Moreover, η[Gc5] ≤ 30/(σ logN) by (3.9), η[(G4(K))c] ≤ C2/K
C3 , and η[G6(N)c] ≤ (logN)−2 by

(3.10), so

η(Gc8) ≤ 1− c5/(logN)
3−
√
5

2
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for N large enough for some c5 > 0, since 3−
√

5
2 < 1. Hence, η(G8) ≥ c5/(logN)

3−
√
5

2 for large
N . This, combined with (4.7), gives (4.5). �

4.4. Random walk in a good environment. In this subsection, we prove the following lemma,
and then the lower bound of Theorem 1.1. Notice that we just have to consider the case u = 0.
In all the rest of this section, the function f satisfies the hypotheses of Theorem 1.1.

Lemma 4.3. There exists a constant c6 > 0 such that for N large enough,

∀ω ∈ G(N), Pω

(
n∑
k=0

f(Sk) > 0 ∀1 ≤ n ≤ N
)
≥ c6. (4.8)

Before proving this lemma, we introduce some more notation. We consider N ≥ 3 and a good
environment ω ∈ G(N). We introduce for i ∈ N∗ (see Figure 2),

ti := inf{t > 0, σW (t)− σW (t) ≥ ih(N)} = dσW+(ih(N)),

θi := btic+ θ0, (4.9)

mi := inf
{
k ∈ N, V (k) = inf

0≤`≤θi
V (`)

}
, (4.10)

where θ0 is defined in (4.2). In particular, σW (ti) = σW (ti) + ih(N) by continuity of W .
Moreover, ω ∈ G7, so x0(σW, ih(N)) = x0(W, ih(N)/σ) is an ih(N)-maximum for σW and
x1(σW, ih(N)) an ih(N)-minimum for σW for every integer i ≥ 1 such that 1 ≤ ih(N) ≤
5 logN . Consequently for such i, ti ≥ x1(σW, ih(N)), otherwise there would be an ih(N)-
maximum for σW in (0, x1(σW, ih(N))), which is not possible. Moreover, σW [x2(σW, ih(N))]−
σW [x1(σW, ih(N))] ≥ ih(N), which gives ti ≤ x2(σW, ih(N)). Hence,

x0(σW, ih(N)) ≤ 0 < x1(σW, ih(N)) < ti ≤ x2(σW, ih(N)), (4.11)

then

inf{W (t), x0(σW, ih(N)) ≤ t ≤ ti} = W [x1(σW, ih(N))], (4.12)
sup{W (t), x0(σW, ih(N)) ≤ t ≤ ti} = W [x0(σW, ih(N))], (4.13)

since σW [x0(σW, ih(N))] ≥ σW [x1(σW, ih(N))] + ih(N) = σW (ti). We set similarly as in (3.5),

V (n) := inf{V (k), 0 ≤ k ≤ n}, n ∈ N.

We recall that C4 = σ + 3−
√

5
2C3

C1 + 4C1 and notice that similarly as in (3.12),

∀u ∈
[
− (logN)4, (logN)4

]
,

∣∣V̂ (buc)− σW (u)
∣∣ ≤ C4 log2N. (4.14)

We also introduce imax(N) := max{i ∈ N, ih(N) ≤ 4 logN}. Since εδ/4 < 4 and G(N) ⊂
G3(N) ∩ G5(N), we get uniformly on G(N) for large N ,

∀1 ≤ i ≤ imax(N), 0 ≤ mi ≤ θi ≤ bdσW+(5 logN)c+ θ0 ≤ 2(logN)4; 0 ≤ ti ≤ (logN)4.
(4.15)

We now define for 1 ≤ i ≤ imax(N), with ν := 8 + 2C4,

Fi(N) :=

{
n∑
k=0

f(Sk) > 0 ∀1 ≤ n ≤ τ(θi)

}
∩
{
τ(θi)∑
k=0

f(Sk) ≥
exp(ih(N))

2(logN)ν

}
. (4.16)

Our aim in the following is to prove, by induction on i, a lower bound for Pω(Fi(N)) for 1 ≤ i ≤
imax(N). We also prove that τ(θi) ≥ N for i = imax(N) with high probability. We start with
i = 1.
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Lemma 4.4. There exists a constant c7 > 0 such that for N large enough,

∀ω ∈ G(N), Pω(F1(N)) ≥ c7 − 4(logN)−6. (4.17)

Proof: Recall that ε0 ≤ eV (−1) ≤ ε−1
0 . Moreover, we have for ω ∈ G(N), V (k) ≤ −δk for

0 ≤ k ≤ bε log2Nc, whereas V (k) ≤ −(δε/2) log2N for bε log2Nc < k ≤ θ0, and for θ0 < k ≤ θ1,

V (k) = V (θ0) + V̂ (k − θ0) ≤ −5h(N) + σW (k − θ0) + C4 log2N ≤ −4h(N) + C4 log2N,

thanks to (4.14) since t1 ≤ (logN)4 by (4.15) for N large enough so that imax(N) ≥ 1. Let
c7 := ε0

(
ε−1

0 + 2
(
1 − e−δ

)−1)−1. We have Pω[τ(θ1) < τ(−1)] = eV (−1)
(∑θ1−1

k=−1 e
V (k)

)−1
, which

is, due to the previous remarks, greater than or equal to

ε0

ε−1
0 +

bε log2Nc∑
k=0

e−δk + (θ0 − bε log2Nc)(logN)−(δε/2) + (θ1 − θ0)e−4h(N)(logN)C4

−1

≥ c7,

(4.18)
for every ω ∈ G(N) for large N since θ0 − bε log2Nc ≤ (logN)εδ/4 on G3(N) and due to (4.15).

Moreover on G1(N), θ1 ≥ m1 ≥ θ0 ≥ bε log2Nc, which is greater than 1 for large N , so
f(m1) ≥ 1. Observe that on {τ(θ1) < τ(−1)}, due to (1.4) and since f(m1) ≥ 1 and f ≥ 0 on
N,

τ(θ1)∑
k=0

f(Sk) ≥ L(m1, τ(θ1) ∧ τ(−1)),

n∑
k=0

f(Sk) ≥ f(1) > 0, 1 ≤ n ≤ τ(θ1). (4.19)

In order to give a lower bound of L(m1, τ(θ1) ∧ τ(−1)), notice that thanks to (4.14) and since
t1 ≤ (logN)4 and σW (t1) = σW (t1) + h(N), we have for ω ∈ G(N),

V̂ (m1 − θ0) ≤ σW (t1) + C4 log2N ≤ V̂ (bt1c)− h(N) + 2C4 log2N.

Consequently, uniformly on G(N) for large N , we have m1 + 1 < θ1 and

Pm1+1
ω [τ(θ1) < τ(m1)] = eV (m1)

( θ1−1∑
k=m1

eV (k)

)−1

≤ eV (m1)−V (θ1−1) ≤ ε−1
0 e−h(N)(logN)2C4 ,

Pm1−1
ω [τ(−1) < τ(m1)] = eV (m1−1)

(m1−1∑
k=−1

eV (k)

)−1

≤ eV (m1−1)−V (0) ≤ ε−1
0 e−h(N)(logN)2C4

since V (m1) ≤ V (θ0) ≤ −5h(N) ≤ −h(N) + 2C4 log2N . We know that L(m1, τ(−1) ∧ τ(θ1))
is under Pm1

ω a geometric random variable of parameter Pm1
ω [τ(−1) ∧ τ(θ1) < τ∗(m1)], where

τ∗(m1) := inf{k ∈ N∗, Sk = m1} is the first return time to m1. Hence,

Pm1
ω

[
L(m1, τ(−1) ∧ τ(θ1)) > k

]
≥
(
Pm1
ω [τ(−1) ∧ τ(θ1) > τ∗(m1)]

)k ≥ (1− ε−1
0 (logN)2C4

eh(N)

)k
.

Taking k = k1 :=
⌊ exp(h(N))

2(logN)ν

⌋
, we obtain uniformly on G(N) for large N ,

logPm1
ω

[
L(m1, τ(−1) ∧ τ(θ1)) > k1

]
≥ −2k1ε

−1
0 e−h(N)(logN)2C4 ≥ −(logN)−6.

Hence,
Pm1
ω

[
L(m1, τ(−1) ∧ τ(θ1)) ≤ k1

]
≤ 1− exp(−(logN)−6) ≤ (logN)−6. (4.20)

Since f(k) ≥ 1 for k ≥ 1 and f(0) = 0, we have, using twice (4.19),

Pω[τ(θ1) < τ(−1)] = Pω

[
n∑
k=0

f(Sk) > 0 ∀1 ≤ n ≤ τ(θ1), τ(θ1) < τ(−1)

]
≤ Pω[F1(N)] + Pω[τ(θ1) < τ(−1), L(m1, τ(θ1) ∧ τ(−1)) ≤ k1].
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We get in particular for large N by the strong Markov property, (4.18) and (4.20),

∀ω ∈ G(N), Pω[F1(N)] ≥ Pω[τ(θ1) < τ(−1)]− Pm1
ω

[
L(m1, τ(θ1) ∧ τ(−1)) ≤ k1

]
≥ c7 − (logN)−6.

This gives (4.17) for N large enough. �

We now set C5 := 11 + 2C4. By Lemma 4.4, there exists Nε ∈ N such that for every N ≥ Nε,
inequality (4.23) holds for i = 1, (4.15) holds for every ω ∈ G(N), bε log2Nc ≥ 1, and the
following conditions are satisfied:

∀N ≥ Nε, logN ≥ h(N) ≥ (C5 + 17 + 8C4) log2N ≥ 4 + 3ε−2
0 , (4.21)

∀N ≥ Nε, min
[−(logN)4,0]

f ≥ − exp
(
(log4N)εδ/2

7)
= −eh(N). (4.22)

We prove by induction on i the following lemma:

Lemma 4.5. For all N ≥ Nε and for every 1 ≤ i ≤ imax(N),

∀ω ∈ G(N), Pω[Fi(N)] ≥ c7 − 4i(logN)−6. (4.23)

Moreover for all N ≥ Nε,

∀ω ∈ G(N), Pω
[
τ
(
θimax(N)

)
≥ N

]
≥ 1− 2(logN)−6. (4.24)

Proof: We fix N ≥ Nε. We already know that (4.23) is true for i = 1. Now, assume (4.23) is
true for an integer i such that 1 ≤ i ≤ imax(N)− 1, and let us prove it is true for i+ 1. We fix
ω ∈ G(N).

We notice that θi < θi+1. Indeed, if W (ti) = W (ti+1), we have σW (ti+1) = σW (ti) + h(N),
which gives, since N ≥ Nε, V̂ (bti+1c) ≥ V̂ (btic) + h(N) − 2C4 log2N > V̂ (btic) by (4.14) and
(4.15), so θi+1 6= θi. If W (ti) 6= W (ti+1), there exists u ∈ [ti, ti+1] such that |σW (u)−σW (ti)| >
ih(N), and θi = θi+1 would imply |u − ti| ≤ |ti+1 − ti| ≤ 1 and then contradict ω ∈ G6(N) for
N ≥ Nε. So, θi < θi+1.

First step : Define (see Figure 2)

θi := max{k ∈ Z, k < θi, V (k) ≥ V (θi) + h(N) + C5 log2N}, (4.25)
E6,i :=

{
inf{k ≥ τ(θi), Sk = θi+1} < inf{k ≥ τ(θi), Sk = θi}

}
= {τ(θi+1) < τ(θi, θi)},

where
∀(a, b) ∈ Z2, τ(a, b) := inf{k ≥ τ(a), Sk = b}.

We prove that Pω(Ec6,i) ≤ (logN)−6. First, notice that since W (t) ≤ W (ti) for ti ≤ t ≤ ti+1,
applying twice (4.14) gives

max
[θi,θi+1]

V ≤ V (θi) + h(N) + 2C4 log2N. (4.26)

Hence, applying the Markov property at time τ(θi), we get since θi+1 ≤ 2(logN)4 by (4.15),

Pω(Ec6,i) =

∑θi+1−1
k=θi

eV (k)∑θi+1−1

k=θi
eV (k)

≤ 2(logN)4+2C4eV (θi)+h(N)

eV (θi)+h(N)(logN)C5
≤ (logN)−6. (4.27)

Second step : We recall that for every ∆ ⊂ Z and 0 ≤ s ≤ t, L(∆, s  t) =
∑t

k=s 1{Sk∈∆} is
the number of visits of (Sn)n∈N to the set ∆ between times s and t, as defined after (3.21). In
this step, we consider

E7,i :=
{
L
(
(θi, 0), τ(θi) τ(θi, θi) ∧ τ(θi+1)

)
< exp[(i− 3)h(N)]

}
,
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and we show that
Pω(Ec7,i) ≤ (logN)−6. (4.28)

We consider separately two cases.

First case: Assume that θi ≥ −1. Then, (θi, 0) ∩ Z = ∅, hence
L
(
(θi, 0), τ(θi) τ(θi, θi) ∧ τ(θi+1)

)
= 0 < exp[(i− 3)h(N)].

Consequently in this case, Pω(Ec7,i) = Pω(∅) = 0 ≤ (logN)−6, which proves (4.28) and then the
second step in this first case. We notice in particular that for i ∈ {1, 2, 3}, since V (θ0) ≤ −5h(N)
by (4.2) and σW (ti) = σW (ti) + ih(N), using (4.14) applied to ti (because ti ≤ (logN)4 by
(4.15)),

V (θi) = V (θ0 + btic) = V (θ0) + V̂ (btic) ≤ −5h(N) + σW (ti) + ih(N) + C4 log2N.

Since σW (ti) ≤ 0 and (C5 + C4) log2N ≤ h(N) by (4.21), this gives for i ∈ {1, 2, 3},
V (θi) + h(N) + C5 log2N ≤ (i− 4)h(N) + (C5 + C4) log2N ≤ −h(N) + (C5 + C4) log2N ≤ 0,

and so θi ≥ 0. So if i ≤ 3, we are automatically in the first case. Heuristically, this is due to the
fact that we have lowered the potential in [θ0,+∞) by the quantity |V (θ0)| ≥ 5h(N), which is
quite large, in our definitions (4.2) and (4.3) of θ0 and V̂ .

Second case: Assume that θi < −1, which implies that i ≥ 4 due to the previous remark.
First, notice that since x0(σW, ih(N)) is a ih(N)-maximum for σW , we have by (4.14) since
x0(σW, ih(N)) ≥ −d−σW−(5 logN) ≥ −(logN)4 (where we used i ≤ imax(N)),

V (bx0(σW, ih(N))c) ≥ σW [x0(σW, ih(N))]− C4 log2N

≥ σW [x1(σW, ih(N))] + ih(N)− C4 log2N

≥ σW [x1(σW, ih(N))] + ih(N)− C4 log2N + 5h(N) + V (θ0).(4.29)

Moreover, σW (ti) = σW (ti) + ih(N), and W (ti) = W [x1(σW, ih(N))] due to (4.12). This
together with (4.14) and ti ≤ (logN)4 (see (4.15)) gives

V (θi)−V (θ0) = V̂ (btic) ≤ σW (ti)+C4 log2N = σW [x1(σW, ih(N))]+ih(N)+C4 log2N. (4.30)

Hence, (4.29) and then N ≥ Nε and (4.21) lead to

V (bx0(σW, ih(N))c) ≥ V (θi) + 5h(N)− 2C4 log2N > V (θi).

Consequently, bx0(σW, ih(N))c < θi < θi < θi+1 by definition of θi. Recalling that θi < −1 in
this second case, we can consider z ∈ (θi, 0) ∩ Z. We get by Lemma 2.3,

Eθiω
[
L
(
z, τ(θi) ∧ τ(θi+1)

)]
=

P θiω [τ(z) < τ(θi+1)]

ωzeV (z)
(∑θi+1−1

k=z eV (k)
)−1

+ (1− ωz)P z−1
ω [τ(z) > τ(θi)]

≤ ε−1
0 e−V (z)

θi+1−1∑
k=z

eV (k)

≤ 3ε−1
0 (logN)4 exp

(
− V (z) + max

[z,θi+1]
V
)
, (4.31)

since θi+1 ≤ 2(logN)4 by (4.15) and z > θi ≥ bx0(σW, ih(N))c ≥ −(logN)4. We notice that by
(4.30) and since V (θ0) ≤ −5h(N) by (4.2),

V (θi) = V (θ0) + V̂ (θi − θ0) ≤ −5h(N) + σW [x1(σW, ih(N))] + ih(N) + C4 log2N. (4.32)
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Since − log4N ≤ x0(σW, ih(N)) ≤ θi < z < 0 < x1(σW, ih(N)) ≤ ti ≤ log4N by (4.11) and
(4.15), equations (4.12), (4.14) and (4.32) give

V (z) = V̂ (z) ≥ σW [x1(σW, ih(N))]− C4 log2N ≥ (5− i)h(N) + V (θi)− 2C4 log2N. (4.33)

Moreover by definition (4.25) of θi and (1.1),

max
[θi,θi]

V ≤ V (θi) + h(N) + C5 log2N − log ε0.

Combining this with (4.26), (4.31) and (4.33) gives since N ≥ Nε,

Eθiω
[
L
(
z, τ(θi) ∧ τ(θi+1)

)]
≤ 3ε−1

0 (logN)4 exp
(
− V (z) + V (θi) + h(N) + C5 log2N − log ε0

)
≤ 3ε−2

0 (logN)C5+2C4+4e(i−4)h(N)

≤ (logN)−10e(i−3)h(N).

Summing this over z gives Eθiω
[
L
(
(θi, 0), τ(θi) ∧ τ(θi+1)

)]
≤ (logN)−6e(i−3)h(N) since θi ≥

−(logN)4. We get Pω(Ec7,i) = P θiω (Ec7,i) ≤ (logN)−6 by Markov’s inequality and property.
This proves (4.28) in this second case, which ends the second step.

Third step : we define

E8,i :=

{
L
(
mi+1, τ(θi) τ(θi, θi) ∧ τ(θi+1)

)
>

exp[(i+ 1)h(N)]

(logN)ν

}
.

We prove that
Pω
(
Ec8,i

)
≤ 2(logN)−6. (4.34)

To this aim, we first show that

P θiω
[
τ(mi+1) > τ

(
θi
)
∧ τ(θi+1)

]
≤ (logN)−6. (4.35)

This is true if θi ≤ mi+1 ≤ θi+1 by (4.27). Else, mi = mi+1 < θi and then σW (ti+1) ≥
σW (ti)− 2C4 log2N by (4.14) and (4.15), which leads to

V (θi+1) ≥ V (θi) + h(N)− 4C4 log2N. (4.36)

We get successively, again by (4.14) and (4.15), for every mi ≤ k ≤ θi,
σW (mi − θ0) ≤ V̂ (mi − θ0) + C4 log2N = inf [0,bti]c V̂ + C4 log2N ≤ σW (ti) + 2C4 log2N,

V̂ (k − θ0) ≤ σ[W (k − θ0)−W (mi − θ0)] + σW (mi − θ0) + C4 log2N

≤ ih(N) + σW (ti) + 3C4 log2N = σW (ti) + 3C4 log2N, (4.37)

where we used the definition of ti in the last inequality. Using (4.37), then (4.14) and (4.15),
then the definitions (4.3) and (4.9) of V̂ and θi, and finally (4.36), we get

max
[mi,θi]

V ≤ V (θ0) + σW (ti) + 3C4 log2N ≤ V (θ0) + V̂ (btic) + 4C4 log2N

= V (θi) + 4C4 log2N (4.38)
≤ V (θi+1)− h(N) + 8C4 log2N. (4.39)

In particular, (4.38) combined with (4.21) and the definition (4.25) of θi leads to θi < mi. Now,
in this case mi = mi+1 < θi < θi+1, we have since N ≥ Nε, θi ≤ 2(logN)4 by (4.15), and by
(2.1),

P θiω
[
τ(mi+1) > τ

(
θi
)
∧ τ(θi+1)

]
= P θiω [τ(mi+1) > τ(θi+1)]

≤ 2(logN)4ε−1
0 exp

[
max
[mi,θi]

V − V (θi+1)
]
,

which together with (4.39) gives (4.35) since N ≥ Nε.
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Moreover, we prove that Pmi+1
ω (Ec9,i) ≤ (logN)−6, where

E9,i :=

{
L
(
mi+1, τ

(
θi
)
∧ τ(θi+1)

)
>

exp[(i+ 1)h(N)]

(logN)ν

}
.

We know that θi < mi ≤ mi+1 < θi+1 thanks to (4.38), which is true in every case, as is (4.37).
So, L

(
mi+1, τ

(
θi
)
∧ τ(θi+1)

)
is under Pmi+1

ω a geometric r.v. with parameter

q1 := ωmi+1P
mi+1+1
ω [τ(mi+1) > τ(θi+1)] + (1− ωmi+1)P

mi+1−1
ω

[
τ(mi+1) > τ

(
θi
)]

≤ ωmi+1ε
−1
0 eV (mi+1)−V (θi+1) + (1− ωmi+1)ε−1

0 eV (mi+1)−V (θi), (4.40)

by (2.1). Moreover, we obtain successively the following inequalities:

V (mi+1) ≤ V (θ0) + σW (ti+1) + C4 log2N = V (θ0) + σW (ti+1)− (i+ 1)h(N) + C4 log2N

≤ V (θi+1)− (i+ 1)h(N) + 2C4 log2N, (4.41)
V (θi) ≥ V (θ0) + σW (ti)− C4 log2N = V (θ0) + σW (ti) + ih(N)− C4 log2N

≥ V (θ0) + σW (ti+1) + ih(N)− C4 log2N ≥ V (mi+1) + ih(N)− 2C4 log2N, (4.42)

V
(
θi
)
≥ V (θi) + h(N) + C5 log2N ≥ V (mi+1) + (i+ 1)h(N) + 11 log2N, (4.43)

where we used V (mi+1) ≤ V (θ0 + bzi+1c) = V (θ0) + V̂ (bzi+1c) with zi+1 ∈ [0, ti+1] such that
W (zi+1) = W (ti+1) and (4.14) in the first inequality of (4.41), W (ti) ≥ W (ti+1) in (4.42), and
the definition (4.25) of θi in (4.43). It follows from (4.40), (4.41) and (4.43) that

q1 ≤ ε0
−1 exp(−(i+ 1)h(N) + 2C4 log2N) =: q2.

Now, define n2 :=
⌊ exp[(i+1)h(N)]

(logN)ν

⌋
. We have for N ≥ Nε,

logP
mi+1
ω (E9,i) = n2 log(1− q1) ≥ n2 log(1− q2) ≥ −2n2q2 ≥ −(logN)−6.

Indeed, q2 ∈ (0, 1/2) hence log(1 − q2) ≥ −2q2. Since 1 − e−t ≤ t for t ∈ R, this yields
P
mi+1
ω (Ec9,i) ≤ (logN)−6. Hence by the strong Markov property,

Pω(Ec8,i) = P θiω
[
Ec8,i, τ(mi+1) > τ(θi) ∧ τ(θi+1)

]
+ P θiω

[
Ec8,i, τ(mi+1) ≤ τ(θi) ∧ τ(θi+1)

]
≤ P θiω

[
τ(mi+1) > τ(θi) ∧ τ(θi+1)

]
+ P

mi+1
ω (Ec9,i)

≤ 2(logN)−6,

where we used (4.35) in the last inequality. This gives (4.34). Moreover, notice that in the
particular case i = imax(N)− 1, we get on E8,i since N ≥ Nε,

τ
(
θimax(N)

)
≥ L

(
mimax(N), τ

(
θimax(N)−1

)
 τ

(
θimax(N)−1, θimax(N)−1

)
∧ τ
(
θimax(N)

))
≥ N.
(4.44)

This and (4.34) already prove (4.24), since we did not yet use our induction hypothesis.

Fourth step: conclusion. First, let τ(θi) < n ≤ τ(θi+1). We have in the case θi < −1,

n∑
k=0

f(Sk) =

τ(θi)−1∑
k=0

f(Sk) +

∑
z≤θi

+
∑

θi<z<0

+
∑
z≥0

 f(z)L(z, τ(θi) n). (4.45)

The second sum of the right hand side is 0 on E6,i, and the last sum is at least f(θi) because
f ≥ 0 on N. Since f < 0 on Z∗− and θi ≥ −(logN)4, we get on E6,i,

n∑
k=0

f(Sk) ≥
τ(θi)∑
k=0

f(Sk) +
(

min
[−(logN)4,0]

f
)
L
((
θi, 0

)
, τ(θi) τ

(
θi, θi

)
∧ τ(θi+1)

)
.
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Since for N ≥ Nε, 0 > min[−(logN)4,0] f ≥ −eh(N) by (4.22) and eh(N) ≥ min{(logN)ν , 4}, we
get on Fi(N) ∩ E6,i ∩ E7,i,

n∑
k=0

f(Sk) ≥
exp(ih(N))

2(logN)ν
− exp[h(N)] exp[(i− 3)h(N)] > 0. (4.46)

The proof is similar if θi ≥ −1, since in this case on E6,i, for all τ(θi) ≤ k ≤ n ≤ τ(θi+1),
Sk ≥ θi + 1 ≥ 0 and then f(Sk) ≥ 0, which leads to

∑n
k=0 f(Sk) ≥

∑τ(θi)
k=0 f(Sk) ≥ exp(ih(N))

2(logN)ν > 0

on Fi(N) ∩ E6,i ∩ E7,i, which gives (4.46) also in this case.

We now consider
∑τ(θi+1)

k=0 f(Sk), which is on E6,i equal to (assuming first that θi < −1)

τ(θi)−1∑
k=0

f(Sk) +

∑
z≤θi

+
∑

θi<z<0

+
∑

z∈N−{mi+1}

+
∑

z∈{mi+1}

 f(z)L
(
z, τ(θi) τ

(
θi, θi

)
∧ τ(θi+1)

)
.

(4.47)
The potential V is decreasing on [0, bε log2Nc] since ω ∈ G1(N), hence mi+1 ≥ bε log2Nc ≥ 1
since N ≥ Nε, and then f(mi+1) ≥ 1. Consequently, the last sum in the right hand side of (4.47)
is at least L

(
mi+1, τ(θi)  τ

(
θi, θi

)
∧ τ(θi+1)

)
. Moreover, the first term is positive on Fi(N),

the second one is 0 on E6,i, and the forth one is nonnegative since f ≥ 0 on N. So, we have on
Fi(N) ∩ E6,i ∩ E7,i ∩ E8,i for N ≥ Nε, since θi ≥ −(logN)4,

τ(θi+1)∑
k=0

f(Sk) ≥ L
(
mi+1, τ(θi) τ

(
θi, θi

)
∧ τ(θi+1)

)
+
(

min
[−(logN)4,0]

f
)
L
((
θi, 0

)
, τ(θi) τ

(
θi, θi

)
∧ τ(θi+1)

)
This gives on Fi(N) ∩ E6,i ∩ E7,i ∩ E8,i for N ≥ Nε,

τ(θi+1)∑
k=0

f(Sk) ≥
exp[(i+ 1)h(N)]

(logN)ν
− exp[(i− 2)h(N)] ≥ exp[(i+ 1)h(N)]

2(logN)ν
. (4.48)

We get (4.48) similarly if θi ≥ −1, since in this case on E6,i, f(Sk) ≥ 0 for all τ(θi) ≤ k ≤ τ(θi+1)

as explained after (4.46), and so
∑τ(θi+1)

k=0 f(Sk) ≥
∑τ(θi)−1

k=0 f(Sk) + L
(
mi+1, τ(θi)  τ

(
θi, θi

)
∧

τ(θi+1)
)
, which also leads as previously to (4.48) in this case.

Now, (4.46) and (4.48) yield Fi(N)∩E6,i∩E7,i∩E8,i ⊂ Fi+1(N). Consequently, our induction
hypothesis Pω[Fi(N)] ≥ c7− 4i(logN)−6 and inequalities (4.27), (4.28) and (4.34) give for every
ω ∈ G(N),

Pω[Fi+1(N)] ≥ Pω[Fi(N)]− Pω(Ec6,i)− Pω(Ec7,i)− Pω(Ec8,i) ≥ c7 − 4(i+ 1)(logN)−6. (4.49)

This ends the induction for all N ≥ Nε. Hence (4.23) is true for every 1 ≤ i ≤ imax(N) for each
N ≥ Nε, which ends the proof of Lemma 4.5. �

Proof of Lemma 4.3: Notice that due to (4.23) and (4.24) of Lemma 4.5, Pω
[
Fimax(N)(N) ∩{

τ
(
θimax(N)

)
≥ N

}]
≥ c7 − 4imax(N)

(logN)6
− 2

(logN)6
≥ c7 − 18

(logN)5
for all N ≥ Nε and ω ∈ G(N).

Consequently, for N large enough,

∀ω ∈ G(N), Pω

(
n∑
k=0

f(Sk) > 0 ∀1 ≤ n ≤ N
)

≥ Pω
[
Fimax(N)(N) ∩

{
τ
(
θimax(N)

)
≥ N

}]
≥ c7

2
=: c6,
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which proves Lemma 4.3. �

Now, integrating (4.8) on G(N) and applying Lemma 4.1 gives

P

(
n∑
k=0

f(Sk) > 0 ∀1 ≤ n ≤ N
)
≥ c6η(G(N)) ≥ c6c1ε log2N

(logN)
3−
√
5

2
+ε(γ+δ/32)

for N large enough. Now, let ε→ 0; this proves the lower bound of Theorem 1.1 for u = 0 and
then for every u ≤ 0.

5. Proofs of Fact 3.1 and Lemma 3.3

5.1. Proof of Fact 3.1. We first study the left continuity of some functions. The following
lemma is more or less obvious, however we provide a proof for the sake of completeness.

Lemma 5.1. On {W ∈ W}, for all k ∈ Z, the functions xk(W, .), e(Tk(.)) and H(Tk(.)) are
left-continuous on (0,+∞). More precisely, for all realization of W in W, for every n ∈ N∗
and x > 0, there exists Kx,n ∈ (0, x) such that all the functions xk(W, .), k ∈ {−n, . . . , n}, are
constant on [Kx,n, x].

Proof: We assume throughout the proof that W ∈ W. Let x > 0. We first notice that
limk→±∞ |xk(W,x/2)| = +∞, so there is a finite number of (x/2)-extrema on every compact set,
and in particular on [x0(W,x), x1(W,x)]. Now, we can denote the (x/2)-extrema in this interval
by x0(W,x) = xK0(W,x/2) < · · · < xK1(W,x/2) = x1(W,x) for some integers K0 < K1.

Assume that K1 > K0 + 1, and let i ∈ {K0 + 1, . . . ,K1 − 1}. We define Hi := sup{y >
0, xi(W,x/2) is an y-extremum}. Assume for example that xi(W,x/2) is an (x/2)-minimum
and that x0(W,x) is an x-minimum. There exists an increasing sequence (yn)n, converging to
Hi as n → +∞, and such that for every n ∈ N, xi(W,x/2) is an yn-extremum, and so an
yn-minimum. So, W being continuous, there exist αn < xi(W,x/2) < βn such that

W [xi(W,x/2)] = inf
[αn,βn]

W, W (αn) = W [xi(W,x/2)] + yn = W (βn).

Since x0(W,x) < xi(W,x/2) < x1(W,x), xi(W,x/2) is not an x-extremum, so x ≥ Hi ≥ yn. If
αn < x0(W,x), thenW [xi(W,x/2)] ≤W [x0(W,x)] so xi(W,x/2) would be an x-minimum, which
is not the case, so αn ∈ [x0(W,x), x1(W,x)). If W (βn) ≤ W [x1(W,x)] and βn > x1(W,x), we
can replace βn by another βn ≤ x1(W,x). IfW (βn) > W [x1(W,x)] and βn > x1(W,x), we would
have W (αn) = W (βn) > W [x1(W,x)], which is the supremum of W in [x0(W,x), x1(W,x)], and
this is not possible. Hence (αn, βn) belongs to the compact [x0(W,x), x1(W,x)]2, thus there
exists a strictly increasing sequence np and (α, β) ∈ R2 such that (αnp , βnp)p→+∞(α, β). By
continuity of W , W [xi(W,x/2)] = inf [α,β]W , and W (α) = W [xi(W,x/2)] +Hi = W (β). Hence
xi(W,x/2) is an Hi-minimum. Since xi(W,x/2) is not an x-extremum, this gives Hi < x. The
other cases are treated similarly.

Now, let H ′x := maxK0<i<K1 Hi; we have x/2 ≤ H ′x < x. For y ∈ (H ′x, x), the only possible
y-extrema in (x0(W,x), x1(W,x)) are the (x/2)-extrema, that is the xi(W,x/2), K0 < i < K1,
but they are not y-extrema since y > Hi. So, there is no y-extrema in (x0(W,x), x1(W,x)), and
then x0(W, y) = x0(W,x) and x1(W, y) = x1(W,x), for every y ∈ (H ′x, x). This is also true with
H ′x = x/2 in the case K1 = K0 + 1. Hence in every case, for every x > 0, there exists H ′′x < x
such that the functions x0(W, .) and x1(W, .) are constant on [H ′′x , x], and consequently, they are
left-continuous. More generally, we prove similarly that for all n ∈ N∗, there exists Kx,n ∈ (0, x)
such that all the functions xk(W, .), k ∈ {−n, . . . , n} are constant on [Kx,n, x]. Hence all the
functions xk(W, .), H(Tk(.)) and e(Tk(.)), k ∈ Z are left-continuous. �
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Proof of Fact 3.1: Let c > 0. Assume that we are on {W ∈ W}, and let x > 0. We saw in
Lemma 5.1 that there exists an interval [y, x] with 0 < y < x such that x0(W, .) and x1(W, .) are
constant on this interval, and so is b(.), therefore b(.) does not change its sign on [y, x].

Define Hp,q :=
∣∣∑q−1

k=p(−1)kH(Tk(c))
∣∣ for p < q and H := {∀p < q ≤ r < s, Hp,q 6=

Hr,s} ∩ {W ∈ W}. Since the r.v. H(Tk(c)), k ∈ Z are independent (see [20] Proposition of
Section 1) and have a density (see [8] (8) p. 1768 and (11) p. 1770), it follows that the r.v.
Hp,q − Hr,s, p < q ≤ r < s also have densities, thus η(H) = 1. Moreover, for every trajectory
W ∈ W, every x ≥ c and m < n, there exist p < q ≤ r < s such that H(Tm(x)) = Hp,q and
H(Tn(x)) = Hr,s. Consequently, on H, for every x ≥ c, all the H(Ti(x)), i ∈ Z are different.

Now, assume we are on H. Let x ≥ c. The e(Ti(x)), i ∈ {−3, . . . 3} are all different, so for
ε > 0 small enough, at most one of them is less than ε. As was shown in the proof of Lemma 2
of Cheliotis ([8] p. 1772), for such ε > 0, b(x) and b(x+ ε) have a different sign iff e[T0(x)] < ε.
So, if e(T0(x)) > 0 (resp. e(T0(x)) = 0), there exists ε > 0 such that the sign of b(.) in (x, x+ ε]
is the sign of b(x) (resp. of −b(x)).

Hence on H there is a change of sign of b at x iff e(T0(x)) = 0, which proves Fact 3.1. �

5.2. Proof of Lemma 3.3. We consider a two-sided Brownian motion W defined on a proba-
bility space (Ω,A, η). We know that η(H ∩ {W ∈ W}) = 1. This enables us to replace, in the
rest of the paper, Ω by Ω ∩H ∩ {W ∈ W}.

We denote by Fx the completion of the σ-field σ
(
W (s)1{x0(W,x)≤s≤x1(W,x)}, s ∈ R

)
for x > 0,

and by F0 and F∞ the completions of σ(∅) and σ(W (s), s ∈ R) respectively. For 0 < y ≤ x,
[x0(W, y), x1(W, y)] ⊂ [x0(W,x), x1(W,x)] and x0(W, y) and x1(W, y) are Fx-measurable (which
we prove in details in Lemma 5.5 in Subsection 5.3 Appendix), so Fy ⊂ Fx. Hence (Fx)x≥0

is a filtration. Notice that W is not adapted to (Fx)x≥0. Moreover, for k ∈ Z, x 7→ e[Tk(x)]
is left-continuous by Lemma 5.1, but it is not right-continuous, and (Fx)x≥0 is not the natural
filtration of one of these processes. We now give an elementary proof of Lemma 3.3. We start
with the following lemma.

Lemma 5.2. For every k ≥ 1, Xk is a (Fx)x≥0-stopping time.

Proof: Instead of trying to prove whether the filtration (Fx)x is right-continuous, we give an
elementary proof. Notice that e[T0(y)] = (supR− infR)(W1[x0(W,y),x1(W,y)])− y is Fy-measurable
for every y > 0, that means, the processes (e[T0(y)])y and then (H[T0(y)])y are adapted to the
filtration (Fy)y. Moreover, the function e[T0(.)] has a jump at y ∈ [c, x] if and only if x0(W, y)
or x1(W, y) is a y-extremum but is not a z-extremum for z > y, and in this case the number
of z-extrema in [x0(W,x), x1(W,x)] decreases by at least 1 between z = y and every z > y.
So, the number of discontinuities of e[T0(.)] in [c, x] is less than the number of c-extrema in
[x0(W,x), x1(W,x)], which is finite on {W ∈ W}.
Hence, the process e(T0(.)) is left-continuous with a finite number of discontinuities in [c, x],
is nonnegative, and it is strictly decreasing between two consecutive discontinuities and then
has right limits. Moreover on {W ∈ W}, H(T0(.)) is nondecreasing and so only has positive
jumps, and then e(T0(.)) also has only positive jumps. As a consequence, e(T0(.)), which is
left-continuous with right limits, is lower semi-continuous on (0,+∞).

Recalling that {X1 ≤ x} = {∃y ∈ [c, x], e[T0(y)] = 0} by the proof of Fact 3.1 since Ω ⊂ H, we
claim that for x ≥ c,

{X1 ≤ x} = ∩p∈N∗{∃y ∈ [c, x], e[T0(y)] < 1/p} (5.1)
= ∩p∈N∗ ∪y∈([c,x]∩Q)∪{c} {e[T0(y)] < 1/p}. (5.2)
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Indeed for the first line, inclusion ⊂ is clear. For the inclusion ⊃, on the event in RHS of
(5.1), where RHS stands for right hand side, there is a sequence yn ∈ [c, x], n ∈ N∗ such that
e[T0(yn)] < 1/n for n ∈ N∗. Since [c, x] is compact, there exists a subsequence (ypn)n, which
converges to an y ∈ [c, x]. Hence, 0 ≤ e[T0(y)] ≤ lim infn→+∞ e[T0(ypn)] = 0 by lower semi-
continuity, which proves the inclusion. For line (5.2), inclusion (RHS of (5.1)) ⊃ (RHS of (5.2))
is clear, whereas inclusion ⊂ follows from the left-continuity of e(T0(.)).

Hence {X1 ≤ x} ∈ Fx for every x ≥ c, and {X1 ≤ x} = ∅ ∈ Fx for 0 ≤ x < c, so X1 is a
(Fx)x≥0-stopping time. Let k ≥ 1. Since limu→Xk,u>Xk e[T0(u)] > 0 because e[T0(Xk)] = 0 and
so there is a positive jump at x for e[T0(.)], we show similarly that for x ≥ c,

{Xk+1 ≤ x} = {Xk < x} ∩ ∩p∈N∗{∃y ∈ (Xk, x], e(T0(y)) < 1/p}
= {Xk < x} ∩ ∩p∈N∗ ∪y∈((c,x]∩Q) [{y > Xk} ∩ {e(T0(y)) < 1/p}].

Hence it follows by induction that Xk is a (Fx)x≥0-stopping time for every k ≥ 1. �

We can then consider the σ-fields FXk for k ≥ 1.

We now fix k ≥ 1. First, we notice that Ak+1,a,c = A+
k+1,a,c ∪ A−k+1,a,c, where A

+
k+1,a,c :=

Ak+1,a,c ∩ {b(c) > 0} and A−k+1,a,c := Ak+1,a,c ∩ {b(c) ≤ 0}. We start with A+
k+1,a,c, and notice

that

A+
k+1,a,c = Ak,a,c ∩ {b(X1) > 0} ∩ [{e(T−1(X2k+1)) < aX2k+1} ∪ {e(T1(X2k+1)) < aX2k+1}] .

(5.3)
Let n0 ∈ N∗. We define a sequence (Rn)n≥n0 by induction as follows:

Rn0 := 2−n0(b2n0X2kc+ 1)1{X2k+1>2−n0 (b2n0X2kc+1)},

Rn := 2−nb2nH[T0(Rn−1)]c1{X2k+1>2−n0 (b2n0X2kc+1)}, n > n0.

In particular, we have c ≤ X2k < Rn0 < X2k+1 on B+,n0

k+1,a,c := {X2k+1 > 2−n0(b2n0X2kc+ 1)} =

{Rn0 6= 0}. Moreover Rn ∈ (2−nN) for all n ≥ n0. We have Rn ≤ H[T0(Rn−1)] ≤ Rn + 2−n on
B+,n0

k+1,a,c and Rn = 0 on (B+,n0

k+1,a,c)
c for n ≥ n0. We now prove the two following lemmas:

Lemma 5.3. The sequence (Rn)n≥n0 is nondecreasing. It converges a.s. to a r.v. R∞, and

R∞ = X2k+11B+,n0
k+1,a,c

.

Proof: Since H[T0(x)] ≥ x for every x ≥ 0 and (2nRn−1) ∈ N for n > n0, we get on B+,n0

k+1,a,c,

Rn−1 = 2−nb2nRn−1c ≤ 2−nb2nH[T0(Rn−1)]c = Rn, n > n0.

So, (Rn)n≥n0 is a nondecreasing sequence on B+,n0

k+1,a,c, and also on (B+,n0

k+1,a,c)
c on which Rn = 0

for every n ≥ n0. Hence, it tends a.s. to R∞ := limn→+∞Rn ∈ [Rn0 ,+∞].

Let n ≥ n0 + 1. If Rn−1 < x < Rn, then Rn 6= 0 and we have

e[T0(x)] = H[T0(x)]− x ≥ H[T0(Rn−1)]− x ≥ Rn − x > 0. (5.4)

Assume that Rn0 6= 0 and that there exists n ≥ n0 such that e[T0(Rn)] = 0, and let n1 denote
the smallest such n. Then, H[T0(Rn1)] = Rn1 + e[T0(Rn1)] = Rn1 , so

Rn1+1 = 2−(n1+1)b2n1+1H[T0(Rn1)]c = 2−(n1+1)b2n1+1Rn1c = Rn1

since Rn1 ∈ 2−n1N. We prove similarly by induction that Rn = Rn1 for every n ≥ n1, so
R∞ = Rn1 and then e[T0(R∞)] = 0. Moreover, by (5.4), e(T0(.)) > 0 on (Rn0 , R∞). Furthermore
we know that on B+,n0

k+1,a,c, X2k < Rn0 < X2k+1, so e(T0(.)) > 0 on (X2k, Rn0 ] by Fact 3.1 and
then on (X2k, R∞). Hence R∞ = inf{x > X2k, e[T0(x)] = 0} = X2k+1 in this case.
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Else, assume that Rn0 6= 0 and e[T0(Rn)] 6= 0 for every n ≥ n0. Then (Rn)n≥n0 is a nondecreasing
sequence such that e[T0(.)] > 0 on each interval (Rn−1, Rn), n > n0 by (5.4), and then e[T0(.)] > 0
on [Rn0 , R∞). As in the previous case, we get e[T0(.)] > 0 on (X2k, R∞). Since e[T0(X2k+1)] = 0
and X2k < X2k+1, this yields R∞ ≤ X2k+1 <∞.

Moreover in this case, as explained before Lemma 5.3, 0 < e[T0(Rn−1)] = H[T0(Rn−1)]−Rn−1 ≤
Rn + 2−n − Rn−1 →n→+∞ 0 a.s., because Rn →n→+∞ R∞. Since e[T0(.)] is a left-continuous
function on W and (Rn)n is nondecreasing and converging to R∞ <∞, this gives e[T0(R∞)] =
limn→+∞ e[T0(Rn−1)] = 0. As in the previous case, we conclude that R∞ = X2k+1. Since Rn = 0

∀n ≥ n0 if Rn0 = 0, that is, on
(
B+,n0

k+1,a,c

)c, this proves the lemma. �

Lemma 5.4. For all n ≥ n0,

∀m ∈ N∗, {Rn = m2−n} ∈ Fm2−n . (5.5)

Proof: We prove this lemma by induction. We start with Rn0 , and observe that for m ∈ N∗,
{Rn0 = m2−n0} = {X2k+1 > 2−n0(b2n0X2kc+ 1)} ∩ {b2n0X2kc = m− 1}

= {X2k+1 > m2−n0} ∩ {(m− 1)2−n0 ≤ X2k < m2−n0},
which belongs to Fm2−n0 since X2k and X2k+1 are (Fx)x≥0-stopping times by Lemma 5.2. This
gives (5.5) for n = n0. Now, assume that (5.5) is true for some n ≥ n0. Then for m ∈ N∗,

{Rn+1 = m2−(n+1)} = {b2n+1H[T0(Rn)]c = m} ∩B+,n0

k+1,a,c

= ∪p∈N∗{Rn = p2−n, b2n+1H[T0(Rn)]c = m}
= ∪p∈N∗,p2−n≤m2−(n+1) [{Rn = p2−n} ∩ {b2n+1H[T0(p2−n)]c = m}].

The second equality comes from {Rn 6= 0} = {Rn+1 6= 0} = B+,n0

k+1,a,c, which itself is a consequence
of Rn ≥ Rn0 > X2k ≥ c > 0 on B+,n0

k+1,a,c. The third one is a consequence of Rn ≤ Rn+1. If
0 < p2−n ≤ m2−(n+1), our induction hypothesis gives {Rn = p2−n} ∈ Fp2−n ⊂ Fm2−(n+1) , and
{b2n+1H[T0(p2−n)]c = m} ∈ Fp2−n ⊂ Fm2−(n+1) since (H[T0(y)], y ≥ 0) is adapted to (Fy)y≥0.
Consequently,

{
Rn+1 = m2−(n+1)

}
∈ Fm2−(n+1) for every m ∈ N∗, which ends the induction. �

In view of (5.3), we define for n ≥ n0,

C+,n
k+1,a,c := Ak,a,c ∩ {b(X1) > 0} ∩ [{e[T−1(Rn)] < aRn} ∪ {e[T1(Rn)] < aRn}] .

Assume that we are on B+,n0

k+1,a,c ∩ A+
k+1,a,c. There exists i ∈ {−1, 1} such that e(Ti(X2k+1)) <

aX2k+1, that is H[Ti(X2k+1)] < (a + 1)X2k+1. On the one hand, Rn →n→+∞ X2k+1, Rn ≤
X2k+1 by Lemma 5.3, then by Lemma 5.1, for n large enough, Rn ∈ [KX2k+1,2, X2k+1], then
xj(W,Rn) = xj(W,X2k+1) for −1 ≤ j ≤ 2 and so H[Ti(Rn)] = H[Ti(X2k+1)]. On the other
hand, (a + 1)(X2k+1 − Rn) tends to 0 as n → ∞ by Lemma 5.3 and then is strictly less than
(a+ 1)X2k+1 −H[Ti(X2k+1)] > 0 for n large enough. So for large n,

H[Ti(Rn)]− (a+ 1)Rn = (a+ 1)(X2k+1 −Rn)− [(a+ 1)X2k+1 −H[Ti(X2k+1)]] < 0,

and so e[Ti(Rn)] < aRn. Then for large n, 1
B

+,n0
k+1,a,c∩C

+,n
k+1,a,c

= 1.

Hence, in every case, 1
B

+,n0
k+1,a,c∩A

+
k+1,a,c

≤ lim infn→+∞ 1
B

+,n0
k+1,a,c∩C

+,n
k+1,a,c

. Then by Fatou’s lemma,

η
(
B+,n0

k+1,a,c ∩A+
k+1,a,c

)
≤
∫

Ω

(
lim inf
n→+∞

1
B

+,n0
k+1,a,c∩C

+,n
k+1,a,c

)
dη ≤ lim inf

n→+∞
η
(
B+,n0

k+1,a,c ∩ C
+,n
k+1,a,c

)
. (5.6)

Let n ≥ n0. We now have to estimate, recalling that Rn ≥ Rn0 > X2k ≥ c > 0 on B+,n0

k+1,a,c,

η
(
B+,n0

k+1,a,c ∩ C
+,n
k+1,a,c

)
=

∑
m∈N, m≥c2n

η
(
B+,n0

k+1,a,c ∩ C
+,n
k+1,a,c ∩ {Rn = m2−n}

)
. (5.7)
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For m ≥ c2n, we have, since m > 0 and then {Rn = m2−n} ⊂ B+,n0

k+1,a,c,

η
(
B+,n0

k+1,a,c ∩ C
+,n
k+1,a,c ∩ {Rn = m2−n}

)
= η

(
C+,n
k+1,a,c ∩ {Rn = m2−n}

)
= η([Ak,a,c ∩ {b(X1) > 0} ∩ ∪i=±1{e[Ti(Rn)] < aRn}] ∩ {Rn = m2−n})
= η(Ak,a,c ∩ {b(c) > 0} ∩ {X2k < m2−n} ∩ {Rn = m2−n} ∩ ∪i=±1{e[Ti(m2−n)] < am2−n}),

(5.8)

where the last equality comes from X2k < Rn0 ≤ Rn on {Rn > 0} = B+,n0

k+1,a,c.

For ` ≥ 1, we have on {X` < x}, [x−1(W,X`), x2(W,X`)] ⊂ [x0(W,x), x1(W,x)] since x0(W,X`)
and x1(W,X`) are not x-extrema on H due to H[T0(X`)] = X` < x. Hence, the random variables
e[Ti(X`)], i ∈ {−1, 1} are measurable with respect to FX`+ = {A ∈ F∞, ∀x ≥ 0, A ∩ {X` <
x} ∈ Fx} (this is proved in details in Lemma 5.6 in Subsection 5.3 Appendix). As a consequence,
Ak,a,c ∈ FX2k+ for every k ≥ 1. which gives in particular [Ak,a,c ∩ {X2k < m2−n}] ∈ Fm2−n for
every m ∈ N.

Moreover, let m ∈ N such that c ≤ m2−n. We have {b(c) > 0} ∈ Fc ⊂ Fm2−n . Since {Rn =
m2−n} ∈ Fm2−n by Lemma 5.4, we get [Ak,a,c ∩ {X2k < m2−n} ∩ {b(c) > 0} ∩ {Rn = m2−n}] ∈
Fm2−n . But e[T1(m2−n)], e[T−1(m2−n)] and Fm2−n are independent by Neveu et al. ([20],
Proposition of Section 1), so

RHS of (5.8) = η[Ak,a,c ∩ {b(c) > 0} ∩ {X2k < m2−n} ∩ {Rn = m2−n}]
×η(∪i=±1{e[Ti(m2−n)] < am2−n})

=
(
1− e−2a

)
η[Ak,a,c ∩ {b(c) > 0} ∩ {Rn = m2−n}] (5.9)

since e[Ti(m2−n)]/(m2−n), i 6= 0, are independent exponential r.v. with mean 1 (also by Neveu
et al. [20], prop. 1) and X2k < Rn on {Rn 6= 0}. So, (5.7), (5.8) and (5.9), give

η
(
B+,n0

k+1,a,c ∩ C
+,n
k+1,a,c

)
= (1− e−2a)

∑
m∈N, m≥c2n

η[Ak,a,c ∩ {b(c) > 0} ∩ {Rn = m2−n}]

≤
(
1− e−2a

)
η
[
A+
k,a,c

]
.

Consequently, (5.6) leads to

η
(
A+
k+1,a,c

)
≤ η

(
A+
k+1,a,c ∩B

+,n0

k+1,a,c

)
+ η
[(
B+,n0

k+1,a,c

)c] ≤ (1− e−2a
)
η
[
A+
k,a,c

]
+ η
[(
B+,n0

k+1,a,c

)c]
.

But c ≤ X2k and X2k+1/X2k > 1 a.s., so

η
[(
B+,n0

k+1,a,c

)c] ≤ η[X2k+1 ≤ X2k + 2−n0
]
≤ η

[
X2k+1/X2k ≤ 1 + 2−n0/c

]
→n0→+∞ 0.

As a consequence,
η
(
A+
k+1,a,c

)
≤
(
1− e−2a

)
η
(
A+
k,a,c

)
.

We get similarly η
(
A−k+1,a,c

)
≤
(
1 − e−2a

)
η
(
A−k,a,c

)
. These two inequalities yield η(Ak+1,a,c) ≤(

1 − e−2a
)
η(Ak,a,c). Using this last inequality, we obtain (3.1) by induction on k, which proves

Lemma 3.3. �

5.3. Appendix : measurability. We fix x > 0. We define

Z(s) = W (s)1{x0(W,x)≤s≤x1(W,x)}, (5.10)

so that Fx is the completion of σ(Z(s), s ∈ R). For the sake of completeness, we prove in this
appendix the measurability of some random variables. We start with the following lemma, which
is used before Lemma 5.2 to prove that (Fx)x≥0 is a filtration.

Lemma 5.5. If 0 < y ≤ x, then x0(W, y) and x1(W, y) are Fx-measurable.
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Proof: Let 0 < y < x, and

z0 = z0(y) := inf{t ∈ R, Z(t) 6= 0} = x0(W,x), z∞ := sup{t ∈ R, Z(t) 6= 0} = x1(W,x).

This already proves that x0(W,x) and x1(W,x) are Fx-measurable. We define recursively for
k ∈ N, (with inf ∅ = +∞ and sup ∅ = −∞)

u2k+1(y) := inf{t > z2k(y), Z(t)− inf{Z(u), z2k(y) ≤ u ≤ t} ≥ y}1{Z(z0)>Z(z∞)}

+ inf{t > z2k(y), sup{Z(u), z2k(y) ≤ u ≤ t} − Z(t) ≥ y}1{Z(z0)<Z(z∞)},

z2k+1(y) :=[inf{t > z2k(y), Z(t) = inf{Z(u), z2k(y) ≤ u ≤ u2k+1(y)}} ∧ z∞]1{Z(z0)>Z(z∞)}

+ [inf{t > z2k(y), Z(t) = sup{Z(u), z2k(y) ≤ u ≤ u2k+1(y)}} ∧ z∞]1{Z(z0)<Z(z∞)},

u2k+2(y) := inf{t > z2k+1(y), sup{Z(u), z2k+1(y) ≤ u ≤ t} − Z(t) ≥ y}1{Z(z0)>Z(z∞)}

+ inf{t > z2k+1(y), Z(t)− inf{Z(u), z2k+1(y) ≤ u ≤ t} ≥ y}1{Z(z0)<Z(z∞)},

z2k+2(y) :=[inf{t > z2k+1(y), Z(t) = sup{Z(u), z2k+1(y) ≤ u ≤ u2k+2(y)}} ∧ z∞]1{Z(z0)>Z(z∞)}

+ [inf{t > z2k+1(y), Z(t) = inf{Z(u), z2k+1 ≤ u ≤ u2k+2(y)}} ∧ z∞]1{Z(z0)<Z(z∞)}.

Consequently, all these r.v. zi(y), i ≥ 0 are Fx-measurable and so are the r.v. Z(zk(y)),
k ∈ N. Moreover it follows from the definition of y and y-extrema that the y-extrema in
[x0(W,x), x1(W,x)] are exactly the zk(y), k ∈ N (with repetitions at z∞). In particular,
x0(W, y) =

∑
k∈N zk(y)1{zk(y)≤0<zk+1(y)} and x1(W, y) =

∑
k∈N zk+1(y)1{zk(y)≤0<zk+1(y)} are Fx-

measurable. �

We now prove the following lemma, which is useful in the proof of Lemma 3.3 between equa-
tions (5.8) and (5.9), in particular to show the independence used in (5.9):

Lemma 5.6. For k ≥ 1, the random variables e[Ti(Xk)], i ∈ {−1, 1} are measurable with respect
to FXk+, where FXk+ = {A ∈ F∞, ∀x ≥ 0, A ∩ {Xk < x} ∈ Fx}.

Proof: We use the same notation as in the previous proof. Let k ≥ 1 and 0 < y < x. We
define K(y) :=

∑
`∈N `1{z`(y)≤0<z`+1(y)}, so xi(W, y) = zK(y)+i(y) for every i ∈ Z such that

xi(W, y) ∈ [x0(W,x), x1(W,x)], and K(y) is Fx-measurable. For i ∈ Z (with zj(y) := z0(y) for
j < 0),

hi(y) :=
∣∣Z(zK(y)+i(y)

)
−Z

(
zK(y)+i+1(y)

)∣∣ =
∑
k∈N

1{K(y)=k}
∣∣Z(zk+i(y)

)
−Z

(
zk+i+1(y)

)∣∣ (5.11)

is also Fx-measurable (for every 0 < y < x). And hi(y) = H(Ti(y)) if the support of the
slope Ti(y) is included in [x0(W,x), x1(W,x)], since in this case, Z

(
zK(y)+i(y)

)
= Z(xi(W, y)) =

W (xi(W, y)) and Z
(
zK(y)+i+1(y)

)
= Z(xi+1(W, y)) = W (xi+1(W, y)).

We first prove that H(T1(Xk)) is (FXk+)-measurable. Let a ∈ R; we have to prove that
{H(T1(Xk)) ≤ a} ∈ (FXk+), which means that {H(T1(Xk)) ≤ a} ∩ {Xk < x} ∈ Fx for ev-
ery x ≥ 0. This is obvious for 0 ≤ x < c since Xk ≥ c a.s. We now fix x ≥ c and define for
p > 1/c (h1(u) is defined in (5.11) for 0 < u < x, and we set h1(u) := 0 if u ≤ 0)

Dp(x) :=

∞∑
i=1

h1(x− i/p)1{0<x−i/p}1{x−i/p≤Xk}1{Xk<x−(i−1)/p},

which is Fx-measurable. Moreover, on {Xk < x}, there exists a unique (random) j = j(p) ≥ 1
such that x− j/p ≤ Xk < x− (j− 1)/p ≤ x, and then x− j/p > 0 since Xk ≥ c > 1/p. We have

[x−1(W,x− j/p), x2(W,x− j/p)] ⊂ [x−1(W,Xk), x2(W,Xk)] ⊂ [x0(W,x), x1(W,x)]. (5.12)

Indeed, the last inclusion comes from the fact that Xk is a change of sign of b(.), and x > Xk,
so e(T0(Xk)) = 0 and x0(W,Xk) and x1(W,Xk) are not x-extrema



PERSISTENCE OF SOME ADDITIVE FUNCTIONALS OF SINAI’S WALK 29

Let yp := (x−j(p)/p)1{Xk<x}. So on {Xk < x}, Dp(x) = h1(yp) = H(T1(yp)) (see the comments
after (5.11) since the support of slope T1(yp) is included in [x0(W,x), x1(W,x)] by (5.12)). Since
yp ∈ (Xk − 1/p,Xk], yp →p→+∞ Xk on {Xk < x}, and since H(T1(.)) is left-continuous on
(0,+∞) onW by Lemma 5.1,H(T1(Xk)) = limp→+∞H(T1(yp)) = limp→+∞Dp(x) on {Xk < x}.
Hence,

{H(T1(Xk)) ≤ a} ∩ {Xk < x} =
{

lim
p→+∞

Dp(x) ≤ a
}
∩ {Xk < x}.

Since limp→+∞Dp(x) is the limit of a sequence of Fx-measurable r.v., it is also Fx-measurable,
and then {limp→+∞Dp(x) ≤ a} ∈ Fx. Since {Xk < x} ∈ Fx, we get {H(T1(Xk)) ≤ a} ∩ {Xk <
x} ∈ Fx, and this is true for every x ≥ 0. So {H(T1(Xk)) ≤ a} ∈ FXk+ for every a ∈ R.

Hence H(T1(Xk)) and then e(T1(Xk)) are (FXk+)-measurable. Finally, we show similarly that
H(T−1(Xk)) and then e(T−1(Xk)) are (FXk+)-measurable. �
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