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On the force density method for slack cable nets

L. Greco, M. Cuomo™*

Departrnent of Chvil and Environmental Engineering, Universitd degli Snudi di Catania, viale A Dorig 6, ltaly

ABSTRACT

The design of cable nets and light tenso-structures reguires a non conventicnal mechanical analysis, due
either to the varicus sources of non linearity (large displacements, unilateral behaviour of the cables, non
conservative loads) and to the fact that the initial configuraticn of the cable net is not known, depending
on the prestress applied and, in general, on the dead lead acting on it. As a consequence, the first problem
that the engineer has to face is to determine the initial state of the structure under its own weight com-
patible with a set of fixed supports (the so called zero state). This problem is known as form finding.

The paper examines the force density method for form finding, and it is presented a generalization that
uses the exact expressions of the equilibrium derived from the equation of the catenary, The method
allows to obtain an exact configuration that may be used as a starting peoint for subsequent incremental
non linear analyses.

In the paper it is shown that the use of the exact equilibrium conditions leads te a ferm finding methed
that is very similar to the FDM, but yields significant differences in the initial form when the weight of the

cables is not negligible. A dimensionless parameter is intredeced as degree of freedom of the form.

1. Introduction

Cable nets are employed for large roofs either as bearing struc-
tures {e.g. cable trusses) or as support for the fabric that constitutes
the tenso-structures, In many cases the design process of light
roofs starts with the project of a large cable net, then the inner
cables are substituted by equivalent membranes. The subject bears
therefore a significant engineering relevance.

From a mechanical point of view, the design of cable nets and
tenso-structures requires non linear analyses. Accounting for large
displacements and the unilateral behaviour of the cables. Further-
more, the initial configuration of the cable is not univocal, but
depends on the prestress and on dead load. As a consequence,
the first problem that the engineer has to face is to determine
the initial state of the structure under its own weight compatible
with a set of fixed supports (the so called zero state . This problem
is known as form finding, and it holds either for cable-nets and
tenso-structures. Different kinds of appreaches for form finding
exist in literature, the most used methods being the dynamical
relaxation, the minimal surface method and the force density
method (FDM}.

In the dynamic relaxation methoed, starting from an arbitrary
non equilibrated configuration the initial form is sought by means
of an iterative pseudo-dynamical process, with each iteration
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based on an update of the geometry, see Day { 1965). The minimal
surfaces are equilibrated surfaces having a uniform isotropic posi-
tive membrane stress distribution. This method was proposed by
Bletzinger and Ramm {1999, who proved the existence of minimal
surfaces under assigned boundary conditions. The ehvious advan-
tage of having a uniform stress state in the membrane is however
counterbalanced by the fact that the forms obtained usually pres-
ent very flat surfaces with extremely high curvatures in the prox-
imity of the supports. These kinds of forms are subjected o
dynamic instabilities due to aero-elastic effects and to other engi-
neering problems. Wiichner and Bletzinger (2005) have extended
the method to non isotropic stress states, and, subsequently, to
the case of heavy structures, using Finite Element approximations
for the membrane {Bletzinger et al, 2005]. It is interesting to ob-
serve that in Wichner and Bletzinger (2005) the authors proved
the equivalence of the FDM with the minimal surface method,
and proposed an iterative strategy for obtaining a minimal surface
using a sequence of force density steps.

The FOM searches for an initial equilibrated solution using the
coordinates of the nodes as unknowns. In its original version to
each cable is assigned a ratio, called force density, between the
normal force acting in an equivalent truss element and the length
of the element itsell, see Schek {1974), Linkwitz { 1999) and Grun-
dig and Bahndorf {1988). Usually, in order to obtain reasonable
forms, the force densities are assigned constant everywhere except
for the boundary cables. Once an equilibrated configuration has
been obtained, it is necessary to perform a fully non linear analysis
for subsequent loads that may act on the roofs, including self



weight, wind and snow loads. In most of the available computer
codes, in the case of complex cable nets, the single element is mod-
elled by a non linear truss, especially in the case that the thrust is
high.

In the paper is presented an enhancement of the FDM, that is
particularly useful when slack cables or very heavy elements are
present. In this case, indeed, the initial configuration determined
with the equivalent truss element can be very far from the effective
catenary configuration. This goal is reached using the exact equi-
librium equations of the heavy cable. It is shown that the use of
the exact equilibrium conditions leads to a form finding method
that is very similar to the standard FDM, although it requires the
solution of a non linear system of equations.

The proposed method uses as degrees of freedom for the form a
dimensionless parameter # (see Eq. (40)), analogous to the force
density, but that includes also the weight of the cable. The initial
form is sought within the class of the configurations having the
prescribed value for the parameter # that, as will be shown in
the paper, can be related to the form of the cable. The proposed
procedure is different from using the standard FDM for truss struc-
tures, followed by a non linear analysis that accounts for the self
weight. In the latter case, as a matter of fact, during the non linear
analysis the degrees of freedom of the form (i.e., the force densi-
ties), are not kept constant. In our case, on the contrary, the de-
grees of freedom for the form retain their prescribed values in
the final exact equilibrated configuration. In the paper are used
the exact expressions of the vertical nodal forces and of the length
of the cable, see Peyrot and Goulois (1979) and Jayaraman and
Knudson (1981). It is shown that the proposed method yields sig-
nificant differences in the initial form when the weight of the
cables is not negligible compared to other methods.

In the paper we first present the basic equations of the heavy
cable and we obtain the exact expressions for the length of the
cable and its end forces (Sections 2 through 4). Then we present
the standard FDM and its improvements for obtaining an exactly
equilibrated configuration (Section 5). Section 6 illustrates the
use of the method with some examples, comparing the results with
those obtained using standard FDM.

2. Equilibrium equations for cable elements
2.1. Variational principle of a cable element

Let p = p(s) be the parametric configuration of the cable at a
generic instant, with s the arc-length. The tangent space Tp53, at
point p is generated by the unitary triad constituted by the tangent

vector t = d,p, the unit it = Hgsgu and the unit bi-normal vector

fi = t x fi. We denote with 7 the resultant of the component along
t of the stress vectors associated to t, defined by 7 = tt. Indicating
with L the current length of the cable for any virtual displacement
v the principle of virtual work is given by

L L
/r-c?s(v)ds=/q-vds+F0-vo+FL-vL (1)
Jo Jo
integrating the first term of Eq. (1) we have
oL L
[t-v]éf/ 85(1:)-vds=/ q-vds+Fy-vy+F v (2)
Jo Jo

The field equations in [0,L] is

—0s(1) =q 3)
and the boundary conditions are

—1(0)=F, or »(0)=1w )
t(l)=F, or v()=uv,.

From the last condition the boundary forces must be tangent to the
configuration of the cable.

2.2. Intrinsic representation of the equilibrium equations
Projecting the equilibrium Eq. (3) in the intrinsic tangent space
we have
=qj- (5)

Using Frenet’s formula and considering that t = tt the component
of grad,(t) are

ot -t=0T, dt-n=1y, 0T =0, (6)

where y = ||dst| is the curvature of the funicular curve.
Finally the intrinsic representation of the equilibrium equations
(3)is

— 05T(s) = qi(s),

—T($)1(5) = 4a(5). (7)
q;(s) =0,

with the boundary conditions

—-1(0)=Fy or wv(0)=w,,

t(l)y=F, or o(l)=uw.

2.3. Cartesian representation of the equilibrium equations

Projecting the equilibrium Eq. (3) on the Euclidean spatial frame
we obtain, (noting that o;7-e; = 9;(7-€;) Vi=1,2,3.)
—o5(tt-e,)=q e,

9)

and remembering the definition of the tangent vector t = Ze,+
e, +Ze, we obtain

— &[T FEG) = q.09),
~ 5 (1% () = g(5), (10)
—& ([T E(S) = q.(5).

The projections of the internal traction stress resultant T along the
Cartesian directions are usually called thrust and shears

H(s) = T(s) - € = T(5) 5 ().

K(s) = 1(s) - & = T(5) (), (1)

V(s) = 1(s) - €, = T(s) Z(s).

—Os(tt-e)=q-e, —0Os(tt-e,)=q-e,

Using the definitions (11) the Cartesian equilibrium equations (10)
assume the compact form

—OsH(S) = qx(8),  —0sK(s) = qy(s),  —0sV(S) = q,($). (12)
By a first integration along s we have
(s = Ho — [ au(s)ds
Jo
K(s) =Ko —/ q,(s)ds, (13)
0

vm:w—[m@m

where we have indicated Hy = H(0), Vo = V(0), Ko = £(0). A new
integration along s yields the parametric representation of the
funicular configuration



ds +x(0),

[T Ho— [y qy(s)ds
%= [ =

S Ko — [5 q,(s)ds
yo) = [ S
205~ [ X Jo 4:(5)ds

7(s)

ds +y(0),

ds + z(0), (14)

where the tangent component of the resultant stress traction is
defined by

2

r(s)\/(Ho—/Oquds>2+ (Ko—/osqyds>2+ <V0—/Osqzds> .

(15)

3. Formulation of the elastic catenary element

In this section, the simplification of the equilibrium equation to
the case of an elastic catenary obeying Hooke’s law is shown, sus-
pended at its ends and subjected only to its self weight. A discus-
sion on a wide variety of elastic catenaries can be found in
Ahmadi-Kashani and Bell (1981), Tibert (1998), Jayaraman and
Knudson (1981), Peyrot and Goulois (1979) and Irvine (1982).

3.1. Assumptions
The basic hypotheses of the present formulation are:

. Small strains only are considered (but large displacements).

. Linear-elastic constitutive behaviour only is considered
(t = EApé&).

3. Conservation of mass of the cable element during the deforma-
tion process is assumed, i.e. the value of the weight per unit-
length varies in agreement with the mass conservation (the
associated catenary model Ahmadi-Kashani and Bell (1981) is
considered).

. Bending stiffness is neglected.

5. Only the distributed vertical load (along the z direction) due to

self weight is considered, so that the geometry of the configura-

tion of the cable is plane. These hypotheses define the elastic
catenary element.

N —

I

3.2. Equations of the elastic cable element

A total Lagrangian approach is used. As reference configuration
we adopt the inextensible catenary configuration of the cable and
we denote with sy € [0,Lo] the arc-length coordinate, referred to
the length L, of the non-deformed cable.

Since we consider that the only external action is the self
weight q,, along the z-direction, we have from Eq. (13)

H(s) =Ho, K(s) =Ko, —0V(s) = 4,(s). (16)

Eq. (12) reduce to
)% 6 = o OGS =Ko —g (e ) ~as. (17

with

(s ):\/Ho
2 Vo—%so\?
:\/H5+IC5+<V0‘£V50> =4 1+<°AL°°>, (18)
0

where A = \/H3 + K3 and W is the total weight of the cable, that by
virtue of the mass conservation can be represented
W = [;q,ds = [,° q, £ dso = [;° g,odso. Integrating the previous
equations on the Lagranglan configuration we have

- 5o Ho ds
)= |, oy

o %o Ko ds
Y(So) —/0 050) d—SOdswym (19)
o Vo — 50 ds
Z(So) = /0 71(50) &, ——dso + zp.

Considering that ¢ = (d—snf ) and assuming a linear constitutive
relation 7 = EAg (ﬂ — 1) we have ds = ﬁ+ 1, then equations (19)
become

Ho [ (]
x(So) = +
(S0) 0/0 (EAO

(1 )> dso + Xo,

¥(So) =iCo/0.0 (E,14\0+ (] )>d50+y07 (20)
o Vo180 (1(so)
z(so)_/0 W(EAO +1>dso+zo

and integrating we have

X(So) — X0 = Hoso + Holo (Sinh]

EAo w

VO . -1 _V 7%50_
?} — Sinh — )

The components of the vector joining the ends of the elastic cate-
nary element are described by Eqgs. (21)-(23), which are summa-
rized as

(P _PO) ey =l = X(LO) —Xo :ﬁ((HO,KO,Vo,LO),
(P —Pyo)-e, =1, =y(Lo) — Yo = fy(Ho, Ko, Vo, Lo), (24)
(P 7P0) -, = h= Z(Lo) — 2 Ig(Ho,’Co,VmLo).

Fig. 1 shows the nodal forces in the plane of the catenary.
The total length of the deformed catenary is given by the sum of
the undeformed length L, and the total elongation AL

Lo
L(A,Vo,Lo) =Ly + AL(A, V(),L()) =1Ly +/ dSo (25)
0 EAo

Using the relation (18) and integrating we obtain the expression for
the global elongation of the cable that can be formulated in either
one of the following equivalent expressions:

1
AL(A,Vo,Lo) = 3FAG, Voy/ A +V3 — (Vo

Vo —q,Lo) + 1/ A% + (Vo — q,Lo)?
| p2Log| Yo k) Voo ) | (o)
V0+\//12+V(2)

—q,Lo)\/ A + (Vo — q,Lo)?




Fo=-7(0)

‘\C,\

Fig. 1. Representation of the nodal forces in the catenary plane z-/.

1
AL(A. Vo, Lo) = 35z {vm/tht(vofquo) (Vo —q,Lo)* + A4

+ A2Arcsinh (X2) - A2Aresinh (Yo =%\ | (27)

A A
In the case of non extensible cable in the equations (19) the ratio
ddTSD =1 so that the parametric equations of the undeformable

catenary element are obtained for Egs. (21)-(23) in the limit
EAO — 0

(30)

4. Vertical forces at the ends of the cable

In this section, explicit formulas for the vertical forces transmit-
ted by the cable to the end nodes are derived. In addition to the ex-
act expressions, approximated ones will also be proposed. These
results will be used in the formulations proposed in Section 5.

4.1. Exact catenary element

Squaring and adding the first two of the catenary equilibrium
relations (17), we have

di A \Hi+Kg ay 1)

. - - 9 go Yz

ds 1 T ds

where ds = V/di? + dz*, with di=1/dx* +dy*. Manipulating we

have

dz\?

+<ﬁ> , A:\/HTW.

Similarly & = —q,\/1+ (%)2 and remembering the definition of

(32)

V=1% % we have

d [dz T dz\?
L N S 1+(—>. (33)
o\ @ = @

1+ (%)

Using Eq. (32), considering that A is constant, we have an alterna-
tive cartesian representation of the equilibrium equation along
the z direction

d’z dz\?
A =-aa1+(g) (34)

where 1€ [0,1, with [=/E +F. Letting &=f(%) the previous
equation assumes the form & = —% /1 + f(1)* that has the solution

dz . [q,2
- —Sinh {7 - cl} (35)
Y
4
V(4) = —ASinh {— - cl} (36)
so it is found that
Vo = ASinh|cq]. (37)
Integrating Eq. (35) we obtain the Cartesian representation of the

catenary

z

z(2) = ——Cosh {— - 61} + 2, (38)

with boundary conditions, for 7 = 0 and for 1 =1

Zp = A Coshjcy] +¢; or V(0) = /1% =V,
q l =0 dz (39)
z(h=-— Cosh {— - cl} +c or V()= Aﬁ =V,.
z =l

In the case of fixed supports, subtracting the first from the second
equation and introducing the dimensionless parameter

_ 4l
24°
we have

A !
h=z()—2z = 4 {Cosh [qu - c1} - Cosh[q]}

q,! ql] 1.
l(qzl)s nh[q 2/&5 nh[ } 7ESmh[C1

From the last relation and the first of Eq. (39) the constants ¢; and c;
are obtained

(40)

—n|Sinh[y]  (41)

_sinp "
¢, = Sinh {Sinh[iﬂ l} +7 (42)
and
! N h\*> nh
Q=2+5, 0 Cosh(n] (Slnh[n] l) +] (43)

Note that, since # > 0, for any value of 17, h and ], c; is a positive con-
stant. Therefore the equation of the catenary is
nthch[n]} } ) .

<2A Sinh [YM} Sinh [11 (1 — —) + ArcSinh
(44)

) l
The length of the catenary, (for the deformable and the unde-

formable case), is given by the relation L = fé 1+ (% ) dJ, where
I is the horizontal span of the catenary. From the equality
& Y4 — _Sinh[% — ¢;] and using the expression (42), after some
manipulation we have

z(1) = Zo+q

z
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Fig. 2. Definition of the sag ratio for the catenary (a), different configurations of the catenary (b).

2
[ = (Lo + AL)? = %Sinhz[;ﬂ +h% (45)
In the case of the undeformable cable AL = 0 then we have

P
2= Wsmhz ]+ h. (46)
The vertical forces at the extremities of the cable are obtained

from Eq. (37), that, inserting the expression (46) for the length,
can be written as

_ q:Lo | g,h Cosh[n]
Vo = T Sinhy] (47)
and the shear at the second extremity is given by
_ q,Lo M Cosh[y]
Vilo) = =757+ Sinh[y] (48)

Similar relations can be found in Tibert (1998), Jayaraman and
Knudson (1981), Peyrot and Goulois (1979), Ahmadi-Kashani and
Bell (1981) and Ahmadi-Kashani (1988).

The dimensionless parameter # is related to the sag of the cable,
that can be defined as the ratio f/I between the sag related to the
chord and the horizontal span of the cable (see Fig. 2(a)). Since
f =2z(4) — & from Eq. (44) it is readily found

f 1/..n_. . [n . [nh 1h
=7 smhj sinh ot ArcSinh TCsch17 57 (49)
In Fig. 3 is plotted the sag ratio against #, for some values of &

For fixed h and I the cable can assume either of the two config-
urations shown in Fig. 2(b) that are characterized by having the

Sag Ratio of a catenary

/-
151 h/1=0.0 //, ]
—  hl=05 Ve
h/1=1.0 /7,
=
_Lor 1
Py
0.5 1
0.0 L \ . . . . .
0.0 0.5 1.0 1.5 2.0 2.5 3.0

n

Fig. 3. Sag ratio for a catenary as function of the parameter 7.

tangents at the extremities of the same sign, or of opposite signs.
The former case occurs when the parameter # is such that

2 2 2
c?sh 7 (1\"sinh M _1-0 (50)
sinh’y  \h/ n?

In this case the maximum axial force in the cable occurs at the
extremity, and is equal to

2
‘cmax_r(O)_\/A2+V§—A\/1+172<I“T0+?cothn> . (51)

In the latter case, the maximum axial force is equal to A and it oc-
curs at the point of abscissa

50_1 LO h
T 75 (T+T COthn). (52)

4.2. Approximated parabolic element

From expressions (44), (47) and (48) approximated forms of the
relevant parameters of the cable can be obtained. The solution of
the catenary equation depends on the parameter # = g—A’ the ratio
between the weight of the cable and the horizontal thrust. Then
in the limit as # — 0 we can expand expressions (44) and (36) in

Taylor series at the first order in 7

P
I

2 2
h VIE+h A(l—z’l

linV(A)] = V()0 +dyV(2) = 7 A+ T) n. (54)

linjz(3)] = 20 + dy (2(2) = 20 + h% + 12+h2(1—§>%, (53)
1 1

The shears at the ends of the cable are then given by

2 2 2 2

lin[Vo] :?A +7”l,+h/1n :?Aﬂzi ’2”’ (55)
2 2 2 2

linpy | = Mg VIR Ry aVEHh (56)

I I l 2

Observation. The results (53)-(56) can be obtained linearizing
the catenary Eq. (34) for small sagging of the cable, in which case
we have:

i’z q, lz+h27£k7 k

a2 A\ Ta1i g

(37)
the solution of which can be expressed in the parametric form

2
zZ(A) = —nk G) + (h+ nk) % + Zp. (58)



Similarly for the length of the cable we have

lin[L] = \/ I’ + k. (59)

In this work we have also used a second order approximated
parabolic model developed by Deng et al. (2005) in which for the
length of the parabola, in place of Eq. (45) the current length of
the parabola itself is used, i.e.

L= /,/1+ dz dz (60)

in which z(2) is given by the expression (58). Performing the inte-
gral the length assumes the form

0| [P (h—kn) h+k;7

+lArcsinh<h+lkn> lArcsmh( I ﬂ (61)

In this approximation the shear components at the ends are gi-
ven by the same expressions as (55) and (56)

_qlo R _ gL, R
Vo="50+ A7, Vo) ="+ A7, (62)

In the case of a deformable parabolic element the length
becomes

L
L=lLo+AL AL—_L / A+ (Vo — q,50)%do, (63)

while in the case of undeformable parabola AL = 0 then L = Ly, i.e.
the current length is the undeformable length.

4.3. The straight cable element
If g, — 0, i.e. light cable net, the equilibrium equation becomes

d’z h h

ero7 Z()»):T},JFZO, V():V(l):/l77

that is, a straight truss is recovered.

(64)

5. The force density method

The force density method was developed by Schek (1974) who
successively developed the constrained force density method. He
considered weightless cables, so that they could be approximated
with truss elements (approximation (64)), ad demonstrated that
the form of the net could be obtained directly solving the linear
equilibrium equations in the unknowns positions of the nodes,
using as degrees of freedom of the form the ratios T;/k; (T; being
the axial force in the truss), called force density of the element.
He proved that the procedure yields a set of minimal length if
the axial forces T; are taken equal in all the branches.

Later Haber and Abel (1982) pointed out that the force density
corresponds to the initial geometric stiffness of the truss, clarifying
the interpretation of the axial force T; as prestress. Bletzinger and
Ramm (1999) and Wiichner and Bletzinger (2005) generalized
the idea of Schek to the case of membranes, using as parameter
for the form finding the second Piola-Kirchhoff stresses, that are
iteratively adjusted to leading the prescribed Chachy stresses. They
proved that a uniform isotropic Cauchy stress state leads to mem-
branes of minimal surface. The method was then extended to non
isotropic stress states for improving the shape of the membrane.
Bletzinger et al. (2005) also studied the effects of self weight add-
ing an elastic stress to the prestress. These procedures were partic-
ularized to the case of cables, using the straight element

approximation. In the latter case, the self weight of the cables
are imposed as external loads on the form previously obtained.

In this work we propose a generalization of the form finding
procedure to the case of heavy cables, that is, to the case of consid-
erably slack cables, using the exact solution for heavy cables (cat-
enary). The solution sought in this way is an exact one, so it can be
used as starting point of an incremental analysis. Since the equilib-
rium equations become non linear in the node coordinates, the
solution is sought by means of iterative techniques. At the end of
the paper we will discuss how the present method can also be used
for obtaining nets with uniform thrusts.

In this section, starting from the equilibrium equations of the
net, first the standard FDM, will be recalled, then two non linear
implementations similar to the one proposed by Haber and Abel
(1982) will be outlined, and finally the new proposal will be
presented.

Let i be the generic free node of the net, identified by the (un-
known) position vector P;. Let r be the number of cable elements

Fig. 4. Representation of the effective traction force f ; in the plane z-4 in the case of
the truss, parabolic and catenary element.

Table 1
Fixed node.
X [m] y [m] z[m]
P, 0 0 0
P, 1 0 0
Py 0 1 0
Ps 1 1 1
Table 2
Coordinates of the free nodes, case Q ; = 1 [daN/m].
[daN/m] Node x [m] y [m] z [m]
q,=0 FDM 3 0.5 0.25 0.125
5 0.5 0.75 0.375
q,=1 nl-FDM 3 0.5 0.25 —0.381649
5 0.5 0.75 -0.202515
P-FDM 3 0.5 0.25 —-0.402939
5 0.5 0.75 —-0.223149
C-FDM 3 0.5 0.25 —0.348097
5 0.5 0.75 -0.161213
q,=15 nl-FDM 3 0.5 0.25 —0.983278
5 0.5 0.75 —0.868457
P-FDM 3 0.5 0.25 -1.11243
5 0.5 0.75 —0.996926
C-FDM 3 0.5 0.25 —0.693050
5 0.5 0.75 —0.542846




attached to the ith node and, as done previously, indicate by z’: A'Xi —X_ Dy
ki = ||P; — Pj|| the length of the segment joining the element ends. =t xb
The forces acting at the ith extremity of the cable have the com- rYi—Yi
ponents H, K, V. Recalling that A = |/Hoex + Koey||, and using the _ZAJ I Dyis
expressions for the shear found previously (Eqs. (64), (55), (47) = ! (65)
for the straight cable approximation, parabolic approximation, ex- Zr:_ P (gzLo); +f Zi — % P
act catenary respectively), the cartesian projection of the equilib- j=1 2 Tk =
rium equations of the ith node are Vilo),
Oa=1 [daN/m] Ox=1 [daN/m]

T

-3t = nl — FDM i -3t === nl — FDM
— P — FDM — P — FDM
C - FDM C - FDM
~bo 0.5 1.0 15 ~bo 0.5 1.0 15
self weight ¢, [daN] self weight ¢, [daN]

(a) (b)

Fig. 5. Z-coordinate respectively of node-3 (a) and of node-5 (b) for increasing self weight of the cables.
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Fig. 6. Values of f; for each cable, in the case of nl-FDM (a), P-FDM (b), ad C-FDM (c). Q4 = 1 [daN/m], = q,/(2Q ), see Fig. 7.




where the force f; is shown in Fig. 4 and is given for the truss, par-
abolic and catenary elements, respectively, by

kj kj kj COShmj]
fh*AJT]y fj,,*AJTj> ij*AJTj’?jW (66)
and in the truss approximation the self weight is omitted (5, = 0 for
the truss, 6. = 1 otherwise).

In Eq. (65) there appear two force density quantities, the ratio
Q4= % and the ratio Qy = % that by means of definitions (66) is
given for the truss, parabolic and catenary element, respectively,
by

_ 4 4 4 Cosh(z;]
ij,t - IJ ) QVj,p - I] ) QVJ-.C - l] 77] Slnh—[]”]] . (67)

(c)

In this way we get three versions of the FDM. The truss approx-

imation is the standard FDM in which the length Ly = k = V/ P+ h,
and the self weight is neglected. In the case of small but finite self
weight, we obtain the (P-FDM) parabolic form of the force density
method in which the length Ly can assume any of the forms (60) or
(61). In these two force density methods appear only one kind of
force density. Finally in the case of the catenary force density
method (C-FDM), we have a new kind of force density, that con-
tains the dimensionless parameter #.

The standard linear FDM. In the linear FDM we assign the force

densities Q4 :% and let q,=0 everywhere; in this manner the
Eqgs. (65) reduce to a set of linear equations

(d)

Fig. 7. Graphics representation of the configuration of a 5-cables net obtained for a self weight q; =1 [daN/m], j=1,2,n; in (a) is plotted the solution of the linear force
density method, (FDM), in (b) is plotted the solution of the non linear force density method, (nIFDM), in (c) is plotted the solution of the parabolic force density method, (P-

FDM) and in (d) is plotted the solution of the catenary force density method, (C-FDM).



Table 3
Forces and length of the cable for g, = 1 and g, = 1.5 [daN/m], case Q,, = 1{daN/m)].

EL fldaN] ‘H [daN] K [daN] Vo [daN] V(Lp) [daN] A [daN] Lo [m]
q, = 0 [daN/m] FDM 1 0.572822 0.5 0.25 0.125 - 0.559017 0.572822
2 0.572822 -0.5 0.25 0.125 - 0.559017 0.572822
3 0.559017 0.0 -0.50 -0.250 - 0.500000 0.559017
4 0.673146 0.5 -0.25 0.375 - 0.559017 0.673146
5 0.838525 -0.5 -0.25 -0.625 - 0.559017 0.838525
q, = 1 [daN/m] nl-FDM 1 0.676872 0.5 0.25 —0.720085 - 0.559017 0.676872
2 0.676872 -0.5 0.25 —0.720085 - 0.559017 0.676872
3 0.531121 0.0 -0.50 —0.444695 - 0.500000 0531121
4 0.594569 0.5 -0.25 —0.499799 - 0.559017 0.594569
5 1.326100 -0.5 -0.25 —1.86556 - 0.559017 1.326100
P-FDM 1 0.689101 0.5 0.25 —0.757741 —0.036493 0.559017 0.709604
2 0.689101 -0.5 0.25 —0.757741 —0.036493 0.559017 0.709604
3 0.531342 0.0 -0.50 —0.455852 0.103040 0.500000 0552125
4 0.601910 0.5 -0.25 —0.535596 0.097506 0.559017 0.624894
5 1.344840 -0.5 -0.25 -1.901150 -0.535086 0.559017 1.356000
C-FDM 1 0.712522 0.5 0.25 —0.715969 —0.037296 0.559017 0.678673
2 0.712522 -0.5 0.25 —0.715969 —0.037296 0.559017 0.678673
3 0.577542 0.0 -0.5 —0.479001 0.074592 0.500000 0.553594
4 0.629492 0.5 -0.25 —0.476676 0.127819 0.559017 0.604496
5 1.394410 -0.5 -0.25 -1.905990 —0.606821 0.559017 1.299170
q, = 1.5 [daN/m| nl-FDM 1 1.131080 0.5 0.25 —1.831590 - 0.559017 1.131080
2 1.131080 -0.5 0.25 -1.831590 - 0.559017 1.131080
3 0.513014 0.0 -0.5 —0.499581 - 0.500000 0513014
4 1.032820 0.5 -0.25 —1.643070 - 0.559017 1.032820
5 1.950290 -0.5 -0.25 -3.33118 - 0.559017 1.950290
P-FDM 1 1.244987 0.5 0.25 —2.070830 —0.125399 0.559017 1.277870
2 1.244987 -0.5 0.25 —2.070830 —0.125399 0.559017 1.277870
3 0.513167 0.0 -0.5 —0.539051 0.318595 0.500000 0.564733
4 1.142962 0.5 -0.25 —1.880560 —0.083488 0.559017 1.178180
5 2.073696 -0.5 -0.25 —3.568090 —0.405560 0.559017 2.094890
C-FDM 1 1.051410 0.5 0.25 -1.512270 —0.124474 0.559017 0.921960
2 1.051410 -0.5 0.25 -1.512270 —0.124474 0.559017 0.921960
3 0.616478 0.0 -0.5 —0.603676 0.248948 0.500000 0.568410
4 0.920121 0.5 -0.25 —-1.255070 —0.026944 0.559017 0.818750
5 1.937730 -0.5 -0.25 —3.066693 —0.576732 0.559017 1.660130
r 2 2 2
Z;QA] (Xi - X]) = Dxis Loj - lj + hj (7])
jr with auxiliary conditions on the force densities
jZ;QAj O/i - y]) = py.iv (68) A
Q=7 (72)
r ]

ZQAJ (Z,' - Z]) = Dz

j=1
Note that in this case the cable reduces to a truss element, so that

R

T T g (%)

Solving the Egs. (68) we obtain for each free node j an initial po-
sition {Xo,Yo,2o}/™™", from which is possible to define the linear
length L{™ of each cables. An usual strategy adopted is to choose
Q 4, constant everywhere except in the boundary cables, where it is
chosen one order of magnitude larger.

The nonlinear standard FDM. The previous solution can be used
to initialize the non linear force density method (nlFDM) defined
by the equations

M-

A;
l__j(xi - Xj) = D>
J

.
I
—_

-

4;

T i —¥) =Dy (70)

<.
I
—_

qz] LOj /1] -
- P a-5) = P

M-

j=1

where the conditions on the lengths are defined only by the relative
positions of the free nodes by means of the relations

We have 3j + 2n equations in 3j + 2n variables, the 3j equilibrium
equations, with the n conditions on the length and n conditions
on the force densities Q4 in the 3j independent variables
{X,¥;,z}, the n independent variables {L;} and the n variables
{4;}. We adopt a Newton-Raphson strategy to solve these equa-
tions, in which the initial solution is represented by the LFDM-solu-
tion. The solution of the nlFDM is represented by the set of values
{st}/j7zj}n’FDM7 {Loj}anDM and {Aj}anDM.

The (non linear) parabolic FDM. The parabolic force density
method is defined by the equilibrium equations (70) in which
the length of the element coincides with the length of the parabola
(61); then we have the equilibrium equations

Table 4
Fixed node.
x [m] y [m] z [m]
P, 0 0 0
P, 0.5 0 0
Py 0 1 0
P 1 1 1




(a)

Fig. 8. C-FDM vs I-FDM. (a): form obtained with the C-FDM; (b) form obtained with the I-FDM plus incremental analysis.

Table 5
C-FDM and incremental analysis.
C-FDM Incr. Anal.
A [daN] n Qy [daN/m] A [daN] Q, [daN/m)]
Cable 1 0.400195 0.25 1.020750 0.957653 2.271180
Cable 2 0.312500 0.25 1.020750 0.511282 1.516510
Cable 3 0.515388 0.50 1.081980 1.149480 2.183010
Cable 4 0.503891 0.25 1.020750 1.023470 1.823050
Cable 5 0.615554 0.25 1.081980 1.509320 2.795330
A
J
27 (Xi = %) = Py
=14
T A;
2T Wi =) =Py (73)
=14
Er: qszOj Aj

2 +Tj(zi 72]) = Dz

.
Il
N

the auxiliary equations on the length (here written in an alternative
form to (61))

VAL A + (lg.Lo— 204 (g1, h
(-2

i 8q,Lo A 1

A l

i1 | h quo | h quO
TR {Smh (T— 2/1) — Sinh (T+ 1 (74)

VAL + (lg.Lo + 2hAY [Loq, _ h
+ ( 242 —)
quLO

and the expressions of the force densities

A
Qi =7

= (75)

We have 3j + 2n equations in 3j + 2n variables, the 3j equilibrium
equations, with the n conditions on the force densities QAJ_ and n

(b)

Table 6
Coordinates of the free nodes, case 4 = 1 [daN/m].
[daN/m] n Node x [m] y [m] z [m]
q,=1 0.125 3 0.5 0.25 0.014154
5 0.5 0.75 0.250837
0.25 3 0.5 0.25 —0.097443
5 0.5 0.75 0.123501
0.5 3 0.5 0.25 —0.348097
5 0.5 0.75 -0.161213
1 3 0.5 0.25 —1.242040
5 0.5 0.75 —1.130390

conditions on the length {Lg}, in the 3j independent variables
{%,¥;,z}, the n independent variables {4;} and n variables {L}.
We adopt a Newton-Raphson strategy to solve these equations.
The solution of the P-FDM is represented by the set of values
{x;,y;, %" ™" with {4;}"™" and the length {Lo, }" ™".

The (non linear) catenary FDM. The equilibrium equations for the
catenary elements are:

r Xi — Xi

]
ZA}' L. Dx.is
j=1 )

Zr:/ljyi =Y

j=1 lj

r qZ,Loj
> <_ 12 + QV\ (zi — Zj)) =Dzi>

= Dyis (76)

j=1

where the length is given by the condition

e
2= 11%2 Sinh®[ig;) + b’ (77)

and the force densities are

A;  Coshln;] g, Coshiy]
Qv = =

3 =7 "l Sinh{y,] ~ 2 Sinhfy]" (78)
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Fig. 9. Dependency of the form from the parameter 7 (C-FDM for q; = 1).In (a) are plotted the coordinates z; (box-markers) and zs (triangle-markers) with respect to #; in (b)
are plotted the different configurations of the net for the values of # considered in Table 6.

Table 7
Forces and length of the cable for 4, =1 [daN/m].
EL IIf || [daN] ‘H [daN] K [daN] Vo [daN] V(Lp) [daN] A [daN] Ly [m]
q, =1 [daN/m] n=0.125 1 2.248420 2.0 1.0 —0.223415 0.337237 2.236070 0.560653
2 2.248420 -2.0 1.0 —0.223415 0.337237 2.236070 0.560653
3 2.224270 0.0 -2.0 —1.228840 —0.674475 2.0 0.554368
4 2.463610 2.0 -1.0 0.701548 1.315590 2.236070 0.614044
5 3.758430 -2.0 -1.0 —3.480050 —2.544430 2.236070 0.935615
n=0.25 1 1.158440 1.0 0.5 —0.485530 0.087672 1.118030 0.573202
2 1.158440 -1.0 0.5 —0.485530 0.087672 1.118030 0.573202
3 1.115960 0.0 -1.0 —0.726768 —0.175344 1.0 0.551424
4 1.168750 1.0 -0.5 —0.036974 0.541228 1.118030 0.578202
5 2.122320 -1.0 -0.5 —2.310740 —1.268000 1.118030 1.042740
n=05 1 0.712522 0.5 0.25 —0.715969 —0.037296 0.559017 0.678673
2 0.712522 -0.5 0.25 —0.715969 —0.037296 0.559017 0.678673
3 0.577542 0.0 -0.50 —0.479001 0.0745926 0.5 0.553594
4 0.629492 0.5 -0.25 —0.476676 0.127819 0.559017 0.604496
5 1.394410 -0.5 -0.25 —1.905990 —0.606821 0.559017 1.299170
n=1 1 0.894205 0.25 0.125 -1.51796 —0.11288 0.279508 1.405080
2 0.894205 -0.25 0.125 —-1.51796 —0.11288 0.279508 1.405080
3 0.336343 0.0 -0.25 —-0.372354 0.225759 0.25 0.598113
4 0.827913 0.25 -0.125 —1.39584 —0.088407 0.279508 1.307430
5 1.44599 -0.25 -0.125 —2.51333 —0.283947 0.279508 2.229390




Egs. (76) can be cast in the dimensionless form:

Dxii
=X
jz% ] ’11 qref
N YJ pyt
12; /] ;7] qref (79)
r Cosh(r;] D
il Lo, + e (@ — =2-=
jzzl/j < Smh[”lﬂ ( ]) qref
where y; = "” is the ratio between the unit weight of each cable and

a reference umt weight (for instance, the unit weight of the lightest

0 qzl
ZQA 45"

We assign the dimen510nless parameters 7;, that can be chosen
on the basis of the desired slackness of the cables as pointed out at
the end of Section 4.1. Then, using either Egs. (76) or (79), we have
3j + n equations in 3j + n variables, the 3j equilibrium equations,
with the n conditions on the length {Ly,}, in the 3j independent
variables {¥;,y;,z} and the n independent {Lo,}.

cable adopted) and 7; =

(a)

Fig. 10. Initial and converged shape of the net for the example of Section 6.2.
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We adopt a Newton-Raphson strategy for solving these equa-
tions. The initial guess is given by the solution of the linearized
expressions of problem (79) obtained disregarding the weight of
the cables, i.e. disregarding the term Lo, in the third of Eq. (79).

X] px.i .yj Py,,'

1 =24 , ALY

jzl /j ’11 qref ]EI /j 1/]] qref
r, Cosh(n] 5 Pai (80)

Zi—zj) =2—",
Jj= /j Slnh[i’” ( j) qref
The C-FDM solution yields an exact distribution of the nodal
forces accounting for the geometric non linearity that can be
directly used in the analysis of the net subjected to variable
loads.

6. Numerical examples

In this section we present some simple examples in order to
illustrate the form finding method proposed for slack cable nets

(b)

sum of the spans of the cables
5 . . .
2.345 1

2.340 1

2335 ¢ 1

2325 1

2.320 ¢ 1

2315 1

step

(b)

Fig. 11. URS strategy: (a) Convergence of the thrusts to the common value. (b) Minimization of the sum of the horizontal spans of the cables.



and to compare it with the methods based on the truss
approximation.

6.1. A simple 3D 5-cable net

We examine a simple 3D net composed by five undeformable
cables (EA — ~o) as shown in Fig. 7(a), considering the weight of
each cable varying in the range from zero to the value q, =2
[daN/m]. The free nodes are denoted by P5; and Ps, while the other
nodes are fixed, their coordinates are reported in Table 1.

The problem has been solved using the force density methods
exposed in Section 5, using Q, = 1 [daN/m], and the C-FDM, set-
ting for # the value 1 =q,/(2Q,).

The solution for the coordinates of the free nodes in the case
q, =1 and q, = 1.5 [daN/m] are listed in Table 2 for the three case
of the truss, parabola and catenary FDM, and the forms found for
the case q, = 1 [daN/m] are plotted in Fig. 7(a) and (b), Fig. 7(c)
and (d) respectively.

In Fig. 5(a) and (b) the vertical coordinates of the free nodes as a
function of the self weight of the cables are plotted. We observe
that for nl-FDM and P-FDM there exists an asymptotic point in
the solution associated to the value of the self weight q, =2
[daN/m]. This asymptotic trend appears also in the plot of the
effective axial forces f; of the cables, see Fig. 6. This trend means
that, in this case, the class of solutions having a fixed values of
the force densities Q, = 1 [daN/m] is unable to generate equili-
brated solution for self weight g, = 2.

The form finding method based on the choice of the parameter 7,
instead, yields reasonable forms for all values of the weight exam-
ined. Indeed, in this case, while the force density that appears in
the horizontal equilibrium equations Q , remains constant, the ver-
tical force density Q,, adjusts according to the weight. As can be seen
from Figs. 5 and 6, for high values of the weight the proposed meth-
od leads to a less slack net with respect to the methods based on the
truss approximation, and also the forces in the elements are smaller.

Table 3 reports for every cable the length and the relevant static
quantities for the initial case q, = 0, for the caseq, = 1and q, = 1.5
[daN/m]. In the first column are listed the values of the quantity f;.
The results show that with the C-FDM the coordinates of the nodes
and the static quantities differ from the other cases the more the
greater the weight of the cables. This is also true for the parabolic
solution, that in Deng et al. (2005) has been suggested as a valid
alternative to the linear form finding method for slack structures.

6.2. A net with cables of different weight

The next example concern a 5 cables net having two free nodes
and initial positions of the fixed nodes slightly different than in the
previous case, as listed in Table 4.

The weight of the cables has been set to q, = 0.5 [daN/m] for
cables 1,2,4andto g, = 1[daN/m] for cables 3 and 5. We have found
an initial form with the C-FDM fixing # = q,/(2Q ), with Q, =1
[daN/m)] for all cables. Then we have compared it with the form ob-
tained using a different procedure. Namely, first it has been found an
initial form with the linear FDM, that is, using the truss approxima-
tion. Then it has been performed a non linear incremental analysis
for imposing the self weight of the cables, using catenary elements
with fixed lengths. They have been determined as the lengths of
the catenary elements having the prescribed weight and the
coordinates of the nodes obtained with the initial form finding.

The two procedures clearly yield different results (Fig. 8(a) and
(b)); the C-FDM, maintaining constant the parameter #, keeps con-
stant the geometric stiffness and respects the required sags of the
cables. In the second procedure, during he incremental steps the
force density increases, and the effect can be significant for very
heavy cables.

In Table 5 are compared the thrusts found in the cables with
both procedures. The non linear incremental procedure leads to
much higher thrusts than the C-FDM. Also the final value of the
force densities Q , increase with respect to the initial value, while
in the C-FDM they remain constant. In the table also the values
of the parameter Q, are reported, that represent the geometric
stiffness of the catenary.

In this case either the vertical and the horizontal coordinates of
the free nodes are different using the different procedures examined.

6.3. Dependency of the form from the parameter n

We consider the 5-cables net of Fig. 7, for which each cable has
the same self weight, then y; = 1, j = 1,2,...,n, and solve the form
finding problem for the cases 1; = 0.125, 1, = 0.25, n; = 0.5 and
N = 1.

(b)

Fig. 12. Initial form. The plan view of the initial net configuration with the fixed
points is shown in (a); an axonometric view of the initial net configuration is shown
in (b).

Table 8
Fixed nodes.
x [m] y [m] z [m]

P, -32 -9.5 0
P, -27 -16.5 -5
P; -16 -24.5 10
P, 0 -28 5
Ps -8 0 0
Pg -19 5.5 0
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Fig. 13. Final form. In this figure we show various view for the final equilibrium form obtained by C-FDM; the plan view in (a), the front view in (b) an axonometric view (c).

Convergence, starting from the solution of system (80) is very
fast. The results for the chosen values of the ratios #; are presented
in Table 6 and graphically plotted in Fig. 9. The relevant static quan-
tities are reported in Table 7 with the same symbols of Table 3.

From the results reported in Tables 6 and 7 it is clear that
assigning the values of the self weight 4, and of the #; is equivalent
to assign the values of the trust A; for each cable.

6.4. Form finding for assigned thrusts

In this section it is shown how it is possible to implement an
iterative strategy for obtaining a net with thrusts everywhere equal
using the procedure based on catenary elements. The strategy is the
same as the one proposed by Bletzinger and Ramm (1999), that is,
an initial value of # is selected for the cables, and a first form is ob-
tained. Then it has been evaluated the average of the thrusts,

LA
AM:%, and the parameters # have been updated as

q. 1l . .
n}‘” = zjfu;, and the procedure has been iterated till convergence.

The method is applied to the same net used in the previous sec-
tion. In Fig. 10 the initial and the converged shaped of the net are
reported. Fig. 11(a) shows how the thrusts 4; converge for the var-
ious cables of the net, and in Fig. 11(b) the sum of the horizontal
projections of the cables [; is reported, clearly showing that the
method yields a net for which the latter sum is minimal. This geo-
metric property, that generalizes an analogous properties of nets
with equal axial forces, can be easily proved examining the equilib-
rium Eq. (79).

6.5. Form finding of a complex net with the C-FDM

In this case we consider a large span membrane roof having a
complex form. The membrane is modelled by a catenary cable
net. The initial non equilibrated starting geometry is shown in
Fig. 12 where the fixed points are indicated by a circle. The coordi-
nates of the fixed point are listed in the Table 8.

We consider for the internal cables a mean value of q, =02
[daN/m] while for the boundary cables we consider q; = 0.3
[daN/m]. We have set for each internal cable #,,, = 0.3.

With reference to the Fig. 12(a), for the back boundary cables
we adopt 7, , = 0.015, 1,5 = 1134, = 0.03, for the front central cable
15, = 0.002 while for the up lateral front cable 745 = 0.01, while
for the lateral boundary cable #, = 0.02.

The final catenary form of the net is compared in the Fig. 13
with the initial starting form.

7. Conclusions

The paper has shown an improvement of the force density
method for form finding of an heavy cable net. The method em-
ploys the catenary element, so that equilibrium is exactly satisfied,
and it can be easily extended to deformable cables.

The proposed method leads to an initial form that preserves the
value of a dimensionless parameter, that takes the place of the
force density, and that is related to the sag and to the geometric
stiffness of the catenary. The example proposed in Section 6 have
shown the difference between the present method and the form
finding procedure that uses the truss FDM followed by a non linear
analysis able to account for the weight of the cables.

In the paper has also been proposed an iterative procedure for
obtaining a net with uniform thrusts. Similar procedures are also
possible for imposing other constraints to the equilibrium form
of the net, or for assigning constraints on the axial forces acting
on the cables, that can be employed for optimizing the total weight
of the net.
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