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shall assume e << 1. For an arbitrary V-periodic integrable function f = f(x) we introduce the 
averaging operator 

1 
6r> = fvf(x) do, 

where dv----dXl dx2dx3. By ui, s~j, ti, we denote the displacements, stresses and boundary 
tractions, respectively. The material properties are described by elastic modulae C~jkt = C,'jkt(X), 
viscous modulae Dijkt = D;m(x) and mass density p = p(x), which are V-periodic functions of x, 
The body forces are denoted by b i and are assumed to be constant. 

2. GOVERNING RELATIONS AND MODELLING HYPOTHESES 

The starting point of the proposed method of modelling is the known governing equations 
of the composite body under consideration, given by the principal of virtual work 

f sijt~u~jdv=~o t i6ulda+f P(b,-ii,)Su~dv, (1) 

which is assumed to hold for every virtual displacement ~U i and the constitutive equation of 
the Voigt material 

Sij = CijklU(k,l) "~ Oijk/t(k,t). (2) 

In micro-periodic composite materials p = p(x), C;jkt = Cijkt(x), Dijkt = Dijkt(X), X e ~, are 
V-periodic functions, where length dimensions of V are very small as compared with those of 
fL Hence the direct description of the composite body, in which no restrictions on displacement 
fields are imposed, leads to the system of partial differential equations for u; with variable 
highly oscillating (V-periodic) coefficients. The analytic form of these equations is not 
convenient for a computational analysis of special problems and that is why we look for certain 
simplified (averaged) mathematical models of the composites under consideration. 

The method of modelling proposed below will be based on that introduced by Wo~haiak [4] 
for the linear elastic composites and generalized by Wierzbicki et al. [5] on the non-linear 
elastodynamics of composite materials. The model introduces two auxiliary concepts and is 
based on certain macro-modelling hypotheses. To make the paper self-consistent the 
foundations of the modelling approach will be recalled below. 

The first auxiliary concept is that of the regular macro function. Denoting by AF the accuracy 
of computations related to the values of a function F(x, t), x ~ f2, t ~ R, we shall refer to this 
function as the macro function, if for each x, y e f2 and every t, such that x - y ~ V, condition 
IF(x, t) - F(y, t)l < AF holds. If F is continuous and has continuous derivatives then it will be 
called the regular macro function provided that similar conditions (with pertinent computation 
accuracies) also hold for all derivatives of F. Roughly speaking, increments of regular V-macro 
functions and their derivatives on an arbitrary cell x + V in the domain of their definition can 
be neglected when compared with values of those functions at x. 

The second auxiliary concept is that of the micro-shape function system. This is a system of 
n, n-> 1, linear independent functions ha(x), a = 1 . . . . .  n which are V-periodic, continuous, 
have piecewise continuous first order derivatives and satisfy conditions: (ha)= 0, (pha)= O, 
ha(x) e O(l) and ha.i(x)e O(1), for every x (i.e. values of ha,~ are independent of the 
microstructure length parameter l). 

The avenue leading from equations (1) and (2) to the proposed macro-description of 
viscoelastic composite materials is based on the following hypotheses. 
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2.1 The kinematic hypothesis 

This hypothesis states that the displacements in the composite body under consideration can 
be expected in the form 

ui(x, t) = Ui(x, t) + ha(x)Va(x, t), x E ~,  t -> 0, (3) 

where U, Va are certain regular macro functions and h a is the system of micro-shape functions, 
postulated in every problem under consideration. 

Functions U~ and Va constitute the new kinematic variables called macro-displacements and 
correctors, respectively. The choice of the micro-shape functions depends on the character of 
the material heterogeneity in the representative volume element V and on the expected 
accuracy of the proposed model. Generally speaking, formulae ui(xo, t )=Ui(xo ,  t ) +  
ha(x)V~(xo, t), x E Xo + V(xo) have to represent a certain discretization of an arbitrary but fixed 
element Xo + V(xo) of the region f£ 

2.2 The virtual work hypothesis 

This hypothesis assumes that the prinicple of virtual work (1) holds for 

~UI(I ) : ~Ui(x ) -~- ha(x)SVa(x), x ~ ~, (4) 

where ~Ui, 6Va a:re arbitrary linear independent regular V-macro functions. Moreover, it is 
assumed that 6ui(x) = 6U/(x) for x ~ 0f£ 

This hypothesis is strictly related to the kinematic hypothesis formulated above. 

2.3 The macro-approximation hypothesis 

This hypothesis states that the following will be neglected: 
(i) Terms O(AF) in formulae involving values of F, where F is an arbitrary regular macro 

function. 
(ii) Terms O(e) in calculations of integrals over ft. 
The above hypothesis takes into account the definition of a macro function and the condition 

e<<l.  

3. REFINED MACRO-MODEL 

Substituting the right-hand side of equation (2) into equation (1), using equations (3) and (4) 
and applying the macro-approximation hypothesis, after rather lengthy calculations which will 
be not presented here, we arrive at the system of equations for the new kinematic variables 
U. Va. This system can be written down in the form of equations of motion 

Sij,j - (p  )Ui  "~- (p )bi = O, 

12 yab ~T b i dr H a = O, ( 5 )  

where j ab_  (phahb)l-2 are inertial modulae (the values of which are independent of the 
microstructure length parameter), natural boundary conditions 

Siynj = si (6) 

and constitutive equations 

Sit = (Cijkl)Uk, l "~- (Ci j lkhak)va  + (Oi]kl)~-]k, l + (Oi]klha, k)('ra, 
(7) 

a a b b Hi = (Cijkth jh ,,)Vk + (Cijkth~,j}Uk,, + (Dqkth~.jhb, jhb,,)(/'b + (Oijklha,])~-]k,I • 

Fields Sij, Ha are called the averaged stresses and microdynamic forces, respectively. After 
substituting the right-hand sides of equations (7) into equations (5) it can be seen that we 
obtain the system of differential equations for ~ ,  V~ with constant coefficients. Hence, the 
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resulting equations represent a certain macro-model of a periodic composite which can be 
applied to the analysis of special engineering problems. Moreover, this system of equations 
involves in the explicit form the microstructure length parameter /. The relations obtained 
describe the microstructure length-scale effect of the body behaviour, which is why equations 
(5)-(7) will represent what will be called the refined macro-model of the composite under 
consideration. The characteristic feature of the model is that the correctors V~ are governed by 
the ordinary differential equations, involving the second and first time derivatives of correctors. 
It means that the correctors are independent of the boundary conditions and can be interpreted 
as certain internal variables. For homogeneous bodies, by virtue of (C~jkth~,k)= C~jkt(h~,k)= O, 
and under homogeneous initial conditions for correctors we obtain VT(x, t) = 0 for every x E ~,  
t -> 0. Hence the correctors describe the effect of the material inhomogeneity on the behaviour 
of the composite. For linear-elastic materials D~jkt = 0 and equations (5) and (7) reduce to the 
form proposed by Wofiaiak [4] and representing the linear refined macro-elastodynamics of 
periodic composites. 

4. LOCAL MACRO-MODEL 

The local macro-model of the composite under consideration can be derived by neglecting 
terms O(l 2) in equations (5). In this case the equations of motion reduce to the form 

S~j,j - (p)l)i + (p)bi = O, (8) 

natural boundary conditions have a form similar to that given by equation (6), the constitutive 
equations are given by 

SO = (Cokt)Uk,t + (Cq~th~,k)V~ + (Diykl)Uk,t + (Dijklh~,k)?~, (9) 

and for correctors V~' we obtain the system of ordinary differential equations 

(Dijkth~hbt) ~ "b + ( Cqkth~.hbt) v b = -(Dol,,h~.)(.lk,t - ( C~jkth~)Uk,,. (10) 

In this case correctors V~ are the internal variables and equation (10) can be referred to as the 
evolution equation. It can be observed that the above local model of viscoelastic composites is 
much simpler and useful to applications than that obtained by the asymptotic homogenization 
approach, cf. [1, 2]. 

Let us observe that for quasi-stationary problems (where inertia forces are neglected) the 
refined and local macro-models of composites coincide. 

At the end of general considerations it has to be noticed that the solution U~, V7 to the 
initial-boundary value problems for equation (5) and (7) as well as for equations (8)-(10) have 
a physical meaning only if Ui, V~ are regular V-macro functions. This condition imposes 
certain restriction on the boundary traction si in equation (6) and is also related to the 
boundary-layer problem for composite materials, cf. [3]. 

5. LAMINATED MATERIALS 

Let us apply the general results of Sections 3 and 4 to the two-constituent periodic laminates. 
The representative layer of these composites is made of two' homogeneous laminae of 
thicknesses 1', l", respectively. Hence l = l' + l" is the microstructure length parameter. We shall 
assume that the xl-axis is normal to the lamina interfaces and introduce one /-periodic 
micro-shape function h = h ~ ( x l )  which in [0,1] satisfies conditions h ( O ) = h ( l ) = l / X / 3 ,  
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and is linear in [O,l'], [l', l], where the coordinate planes xl = O, xl = l', h(l ' )  = - l / V ~  
x 2  = l '  + l" coincide with laminae interfaces. In this case equations (5) reduce to the form 

Soj - (p)O~ + (p)b~ = 0 

12(p)~"i "Jr H i = 0 ( 11 )  

and equations (7) yield 

S# = (Ci]kl)Uk,l + (Ci]lth,l)Vl + (Dqkl)(-]k,l + (O,juh,1)~, 

Hi = (C,,k,(h,,)2)Vk + (Cakth,,)Uk,, + (Dilkl(h,l)2}12k + (Dak,h,1}l[]k,t. (12) 

Under  an extra assumption that every material constitutent is isotropic with the Lam6 modulae 
A, 1. and the viscosity */we obtain 

Cijkl : Aaij~kl "~- g (~ ik~ l  + ~il~jk), 

Dqk, = 2*/( Sik~]t--~ 8i]tSkl), 

where A, 1., 7/ take the values A', 1.', */' and A", 1.", */" in the laminae of thicknesses l' and l", 
respectively. Let c run over A, 1., 7/and define 

l' l" e>=Tc' + 7  c', 

[c] -= c"  - c ' ,  

lc' lc" 
{c}-~-- + - - .  

l' 1" 

For isotropic constituents and under the above denotations the constitutive equations (12) read 

Sn = 2(1*)Uu + (a)(Ul,l +/-/2 2 +/-/3,3) + 2V~ [2t* + A]V1 + 2 ' 3 (*/)(E,l -/5"2,2 - 03,3) + [*/l~, 

$12 = $21 = (1*)(U,.z + V2a) + 2V3 [1.]V2 + (*/)(01,2 + U2,,) + 2X/3 [,/]122, 

Sl 3 = S31 : (1*)(U1. 3 -~- U3,1 ) + 2X/3 [/.1I/3 + (*/)(E,3 + U3a) + 2X/3 [*/193, 

2 . 4~/3 
SEE = 2(1.)U2.2 + (/~)(U1,1 + U2,2 + U3,3) + 2X/3 [ /~]V 1 -~- ~ (*/)(2U=,= - ~/1,1 - 03,3) - - -  [*/]121, 

&3 = &2 = (1.)(u2,3 + u3,2) + (n)(02,3 + 03,2), 

2 7 Ss3 = 2(1.)U3,3 + (a)(Um + U2,2 +/-/3,3/+ 2X/3 [a]Vl + g (*/)(203,3 - 0,,1 - 02,2) - 4___ [*/]121" 

In this case the governing equations for U~, V~ obtained from equations (11) and (12) will take 
the form 

+ ,,  + = + + < .  + + + o,, ,  + + o , , , )  

1 
+ ~ (*/)(02,21 + 03,13) + ~ [41. + 2A]VI,, + X/3 [2/z](V2,z + V3,3) 

+ X/3 [2*/]  Vl,l -t- 122,2 -]- ~r3,3 --  ( p ) U I  = O) 
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( 4 ) 
<2j1£ +/~,)U2,22 -4- (1£)(U2,11 + U2,33 ) + <]d, +/~)(U1,12 + U3,23 ) + ('0) 02,11 + 3  02,22 + 02,33 

+ ~<~>(0,,i, "}- 03,23 ) "]- 2V'3 [jl~]V2, , "Jr 2V'-3 [h]V, 2 + 2V"3 ['q](l?2,, 2 • - ~ v,.2) <p>02 = o, 

<2/, + A)U3.33 + (Iz)(U3,n + U3,22) q- (]A -[-/~)(UI.13 q- U2.23 ) -I- <]j~) •3.,i -l- U3,22 q- ~ 03,33 

1 
"a t- ~ ('0)(L~/,,13 + 02,23 ) -am 2V3 []./,]V3, , + 2V3 [hlV,.3 + 2V'3 [rl](l?3,, + ~ I71,3) - (O)t)'3 = O, 

X/3 [2t* + A]U,,, + X/'3 [Al(U2,2 + U3,3) + ~ V~ [r/l(2U,,, - 02,2 -/-713,3) 

+ 3{4t, + 2a.}v,8{rl}f', + 112<p)9. ' = O, 
2 

vr3 []l£](U1, 2 -]- U2,1) q- V~ [n1(~1,2 -]- 02,1) q- 6{/z}V2 + 6{7/}15"2 + 1 12(p)(22 = O, 
2 

1 2  
V'3 [/*](U,,3 + U3.,) + V~ [,/](/5"1.3 +/)'3,,) + 6{/*}I/2 + 6{,/}15"3 - ~ l (P)?3 = 0. (13) 

The above equations describe the laminate under consideration in the framework of the refined 
model. For the local model we neglect in equations (13) the terms involving the length 
parameter I. 

6. EXAMPLE 

Using the equations derived in Section 5 we shall investigate the length-scale effect on the 
behaviour of the composite body. To this end we shall consider the periodic laminated 
material occupying the region f~= (0, L , ) x  (0, L2)× (0, L3) where the microstructure length 
parameter 1 (the thickness of the repetitive layer) is assumed to be very small compared with 
L-= min{L,, L2, L3}. Let the body be subjected to the extension 6 in the xraxis  direction. 
Hence, the boundary conditions for U, are given by: U, = 0 for x, = 0, U, = 6 for x, = L,, 
U~ = 8L-'x,  for x2 = 0, L2 and for x3 = 0, L3; at the same time U2 =/-/3 = 0 on f~. The initial 
conditions will be assumed in the form Ul(x,O)=Sx,/L, U,(x ,0 )=0 ,  U2(x,0)= U3(x,0)= 
Uz(x, 0) = U3(x, 0) = 0 and V/(x, 0) = V/(x, 0) = 0 for every x e f~. 

Let us define the non-dimensional positive parameter: 

It can be shown that the solution to the aforementioned boundary value problem in the 
framework of the refined model is related to ~: by the following conditions: 

(i) if 0 < ~ < 1 then 

V~ [2~ + ,~] 6 ~ / 1 - V~-- ~ e x p ( - a l t )  + 1 + V1 - ~ e x p ( - ~ 2 t ) -  2 ~ ) 
Iv', = 12 {4/, + 2hi L, V'I - ~¢ ~ ' 

U, = 6 ( L , ) -  ' x , , U2 = U3 = I/2 = 113 = 0 

where 

8{n} ~I a ,  = F-~p), + V 1 -  ~:), 8{7} t l  "2 = l=-~p>, - V l  - O; 
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(ii) if g = 1 then 

where 

(iii) if ~ > 1 the, n 

where 

[21, + A] 8 
{4/, + 2A} L1 

(exp(-at )  + a t  exp(-a t )  - 1), 

UI = 8(LI)-Ixl, U2 = U3 = V2 = 1:3 = 0 

8{hi 
a = 12(p), 

( ° ) V1 - {4/*[21*++2A}a] L,8 exp(-at)cos/3t + ~ exp(-at)sin/3t - 1 

1-11 = 8 ( L , ) - l x l ,  U2 = 1-]3 = 1:2 = 1:3 = 0 

8{rl} 8{rl}V'-~- 1 
a 12(p), /3 12(p) 

The averaged stresses calculated from the first of equations (12) are: 
(i) if 0 < ~ < 1 then 

Sn = C + El exp( -a l t )  + E ~ e x p ( - a 2 t )  

$22 = $33 = D + F1 exp(-oqt) + F12 exp(-a2t  ) 

So=0 for i # j  

where 

( [2/z + a]='~ 8 
C =  (2/*+a) {-~+~-/ /_Tq'  

_ ( - - 16 ~[n]{~}~ 8 1 [2 /*+h]  1 X/1 ~ [ 2 / , + A ] +  
El V f -  g{Ej, + x} 2 ~ /2~p) } L1' 

16 ~:[rl]{rl}" ~ 8 E~ 1 [2/* + a] 1 + V'l - ~: [2/, + a] 
- 1vT~-~{2,o.+a} 2 3 ~ ] L , '  

( [al[2e.+__a]~ 8 
D =  (a) {2/,+a} ] L ~ '  

1 [2t, + A] 1 - V'i- 8 tj[rl]{rl}~, 

1 [2/, + X] ( !  - V1 - ~ [a] + 8 ~:[rll{n}) 8 
F ~ = V I - f { 2 / z + A }  2 3 ~ ]L-7~; 

(ii) if g = 1 then 

&l = C + E~ exp(-a t )  + E ] t  exp(-at) ,  

$22 = $33 = D + F~ exp(-a t )  + F ] t  exp(-at) ,  

So=0 for i ~],  

(14) 

(15) 
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where 

(iii) if ~ > 1 then 

where 

E{ = [2t* + )t] 2 6 
{2/, + )t} L1 ' 

E2 8{7} [2t* + A] ( 32 [r/l{rl}) 3 
- 12(p) {2p. + A} [2t* + A] 3 /27~ ) / L 1 ' 

F2 = [2/z + al[a] 3 
{2/*+a} L1'  

Fz z [2/z + A] ( 16 [r/]{r/}] 6 
{2/* + )t} [)t] + ~ ~ ] L--~; 

S,1 = C + E { e x p ( - a t ) c o s ( f l t )  + E 3 e x p ( - a t ) s i n ( f l t ) ,  

$22 = $33 = D + F 2 e x p ( - a t ) c o s ( f l t )  + F3~ e x p ( - a t ) s i n ( f l t ) ,  

S u = O  for i # j  

E3 = 1 [2/z + A] ( 32 ¢[rtl{r/}] 6 
~V~]-- l{2/z + A} [2/z + A] 3 ~ ] L , '  

1 [2tz + a] ( 16 £[rl]{n}~ 8 
F3 - V~¢ - 1 {2/x + a------~ [A] + 3 12(p) ] L , "  

(16) 

Since ~ depends not only on the material properties of constituents but also on the 
microstructure length parameter then the response of the viscoelastic body in the dynamic 
processes depends on the size of microstructure. Neglecting in equations (13) the terms 
involving the length parameter I and introducing similar boundary and initial conditions (in this 
case initial conditions for V/are not taken into account), we obtain the boundary-value problem 
formulated in the framework of the local macro-model but describing the same physical 
situations. It can be verified that the solution to this problem takes the form 

where 

[2/, + A] 3 
II1 (1 - exp( -  3"t)), 

{4t* + A} L~ 

G = 8 ( L , ) - ' x , ,  I-]2 = lib = V2 = 1/3 = O, 

3{2/z + A} 
3' 4{rt} ' 

for every x ~ f~, t - 0. 
The pertinent averaged stresses are equal to 

where 

all = C -1" N exp( -  3"0, 

522 = S 3 3  ~-- D + R exp(-3'0,  

) 6, 
{2, ,  + a-----] + a] - [,f13' 

R [ 2 / x + h ] (  2 ) 6 
{2/~ + A} [A] + ~ [171y L--7" 

(17) 
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Fig. 1. Diagrams of micro-stresses Sii based on equations (16) and (17) for the length-scale model. 

7. CONCLUSIONS 

In order to show the differences between the proposed length-scale model and the 
homogenized model let us compare the solution (14)-(16) with that given by equations (17). It 
can easily be seen that the formulae for stresses S,j obtained in the framework of the local 
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model cannot be treated even as the first approximation of those related to the refined model. 
For example, the local model is not able to describe the time oscillations of the stress field 
caused by the micro-heterogeneity of the composite. This fact is shown in Figs 1 and 2 where 
the diagrams of macro-stresses $11 based on equations (16) for the length-scale model and on 
equation (17) for the local model are shown. Thus the final conclusion is that the 
microstructure length-scale effect [described by the small terms 12(p)V~ in equations (11)] on the 
averaged stresses in the composite body cannot be neglected. This condition holds true if we 
deal with the dynamic problems. However, in the quasi-stationary problems, where we neglect 
inertia terms (p)U~, 12(p)V~ in equations (11), in the framework of both the models the averaged 
stresses are the same, being described by equations (17). 
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