shall assume e << 1. For an arbitrary V-periodic integrable function f = f(x) we introduce the averaging operator

1 6r> = fvf(x) do,
where dv----dXl dx2dx3. By ui, s~j, ti, we denote the displacements, stresses and boundary tractions, respectively. The material properties are described by elastic modulae C~jkt = C,'jkt(X), viscous modulae Dijkt = D;m(x) and mass density p = p(x), which are V-periodic functions of x,

The body forces are denoted by b i and are assumed to be constant.

GOVERNING RELATIONS AND MODELLING HYPOTHESES

The starting point of the proposed method of modelling is the known governing equations of the composite body under consideration, given by the principal of virtual work f sijt~u~jdv=~o ti6ulda+f P(b,-ii,)Su~dv, [START_REF] Bensoussan | Asymptotic Analysis of Periodic Structures[END_REF] which is assumed to hold for every virtual displacement ~U i and the constitutive equation of the Voigt material Sij = CijklU(k,l) "~ Oijk/t(k,t).

(

In micro-periodic composite materials p = p(x), C;jkt = Cijkt(x), Dijkt = Dijkt(X), X e ~, are V-periodic functions, where length dimensions of V are very small as compared with those of fL Hence the direct description of the composite body, in which no restrictions on displacement fields are imposed, leads to the system of partial differential equations for u; with variable highly oscillating (V-periodic) coefficients. The analytic form of these equations is not convenient for a computational analysis of special problems and that is why we look for certain simplified (averaged) mathematical models of the composites under consideration.

The method of modelling proposed below will be based on that introduced by Wo~haiak [4] for the linear elastic composites and generalized by Wierzbicki et al. [5] on the non-linear elastodynamics of composite materials. The model introduces two auxiliary concepts and is based on certain macro-modelling hypotheses. To make the paper self-consistent the foundations of the modelling approach will be recalled below.

The first auxiliary concept is that of the regular macro function. Denoting by AF the accuracy of computations related to the values of a function F(x, t), x ~ f2, t ~ R, we shall refer to this function as the macro function, if for each x, y e f2 and every t, such that x -y ~ V, condition IF(x, t) -F(y, t)l < AF holds. If F is continuous and has continuous derivatives then it will be called the regular macro function provided that similar conditions (with pertinent computation accuracies) also hold for all derivatives of F. Roughly speaking, increments of regular V-macro functions and their derivatives on an arbitrary cell x + V in the domain of their definition can be neglected when compared with values of those functions at x.

The second auxiliary concept is that of the micro-shape function system. This is a system of n, n-> 1, linear independent functions ha(x), a = 1 ..... n which are V-periodic, continuous, have piecewise continuous first order derivatives and satisfy conditions: (ha)= 0, (pha)= O, ha(x) e O(l) and ha.i(x)e O(1), for every x (i.e. values of ha,~ are independent of the microstructure length parameter l).

The avenue leading from equations ( 1) and ( 2) to the proposed macro-description of viscoelastic composite materials is based on the following hypotheses.

The kinematic hypothesis

This hypothesis states that the displacements in the composite body under consideration can be expected in the form ui(x, t) = Ui(x, t) + ha(x)Va(x, t),

x E ~, t -> 0, (3) 
where U, Va are certain regular macro functions and h a is the system of micro-shape functions, postulated in every problem under consideration. Functions U~ and Va constitute the new kinematic variables called macro-displacements and correctors, respectively. The choice of the micro-shape functions depends on the character of the material heterogeneity in the representative volume element V and on the expected accuracy of the proposed model. Generally speaking, formulae ui(xo, t)=Ui(xo, t)+ ha(x)V~(xo, t), x E Xo + V(xo) have to represent a certain discretization of an arbitrary but fixed element Xo + V(xo) of the region f£

The virtual work hypothesis

This hypothesis assumes that the prinicple of virtual work (1) holds for

~UI(I ) : ~Ui(x ) -~-ha(x)SVa(x), x ~ ~, (4) 
where ~Ui, 6Va a:re arbitrary linear independent regular V-macro functions. Moreover, it is assumed that 6ui(x) = 6U/(x) for x ~ 0f£ This hypothesis is strictly related to the kinematic hypothesis formulated above.

The macro-approximation hypothesis

This hypothesis states that the following will be neglected: (i) Terms O(AF) in formulae involving values of F, where F is an arbitrary regular macro function.

(ii) Terms O(e) in calculations of integrals over ft.

The above hypothesis takes into account the definition of a macro function and the condition e<<l.

REFINED MACRO-MODEL

Substituting the right-hand side of equation (2) into equation (1), using equations ( 3) and ( 4) and applying the macro-approximation hypothesis, after rather lengthy calculations which will be not presented here, we arrive at the system of equations for the new kinematic variables U. Va. This system can be written down in the form of equations of motion 5) it can be seen that we obtain the system of differential equations for ~, V~ with constant coefficients. Hence, the resulting equations represent a certain macro-model of a periodic composite which can be applied to the analysis of special engineering problems. Moreover, this system of equations involves in the explicit form the microstructure length parameter /. The relations obtained describe the microstructure length-scale effect of the body behaviour, which is why equations ( 5)-( 7) will represent what will be called the refined macro-model of the composite under consideration. The characteristic feature of the model is that the correctors V~ are governed by the ordinary differential equations, involving the second and first time derivatives of correctors. It means that the correctors are independent of the boundary conditions and can be interpreted as certain internal variables. For homogeneous bodies, by virtue of (C~jkth~,k)= C~jkt(h~,k)= O, and under homogeneous initial conditions for correctors we obtain VT(x, t) = 0 for every x E ~, t -> 0. Hence the correctors describe the effect of the material inhomogeneity on the behaviour of the composite. For linear-elastic materials D~jkt = 0 and equations ( 5) and (7) reduce to the form proposed by Wofiaiak [4] and representing the linear refined macro-elastodynamics of periodic composites.

Sij,j -(p )Ui "~-(p )bi = O, 12 yab ~T b i dr H a = O,

LOCAL MACRO-MODEL

The local macro-model of the composite under consideration can be derived by neglecting terms O(l 2) in equations (5). In this case the equations of motion reduce to the form

S~j,j -(p)l)i + (p)bi = O, (8) 
natural boundary conditions have a form similar to that given by equation ( 6 

In this case correctors V~ are the internal variables and equation (10) can be referred to as the evolution equation. It can be observed that the above local model of viscoelastic composites is much simpler and useful to applications than that obtained by the asymptotic homogenization approach, cf. [START_REF] Bensoussan | Asymptotic Analysis of Periodic Structures[END_REF][START_REF] Bakhvalov | Osrednienie Processor v Periodiceskich Sredach[END_REF].

Let us observe that for quasi-stationary problems (where inertia forces are neglected) the refined and local macro-models of composites coincide.

At the end of general considerations it has to be noticed that the solution U~, V7 to the initial-boundary value problems for equation ( 5) and (7) as well as for equations (8)-(10) have a physical meaning only if Ui, V~ are regular V-macro functions. This condition imposes certain restriction on the boundary traction si in equation ( 6) and is also related to the boundary-layer problem for composite materials, cf. [START_REF] Sanchez-Palencia | Homogenization Techniques for Composite Media[END_REF].

LAMINATED MATERIALS

Let us apply the general results of Sections 3 and 4 to the two-constituent periodic laminates. The representative layer of these composites is made of two' homogeneous laminae of thicknesses 1', l", respectively. Hence l = l' + l" is the microstructure length parameter. We shall assume that the xl-axis is normal to the lamina interfaces and introduce one /-periodic and equations (7) yield Hi = (C,,k,(h,,)2)Vk + (Cakth,,)Uk,, + (Dilkl(h,l)2}12k + (Dak,h,1}l[]k,t.

S# = (Ci]kl)Uk,l + (Ci]lth,l)Vl + (Dqkl)(-]k,l + (O,juh,1)~,

(12) Under an extra assumption that every material constitutent is isotropic with the Lam6 modulae A, 1. and the viscosity */we obtain Cijkl : Aaij~kl "~-g(~ik~l + ~il~jk),

Dqk, = 2*/( Sik~]t--~ 8i]tSkl),

where A, 1., 7/take the values A', 1.', */' and A", 1.", */" in the laminae of thicknesses l' and l", respectively. Let c run over A, 1., 7/and define l' l"

e>=Tc' +7 c',

[c] -= c" -c', lc' lc" {c}-~--+--. l' 1"
For isotropic constituents and under the above denotations the constitutive equations ( 12 + ~<~>(0,,i, "}-03,23 ) "]-2V'3 [jl~]V2, , "Jr 2V'-3 [h]V, 2 + 2V"3 ['q](l?2,, 2 • -~ v,.2) <p>02 = o, <2/, + A)U3.33 + (Iz)(U3,n + U3,22) q-(]A -[-/~)(UI.13 q-U2.23 ) -I-<]j~) •3.,i -l-U3,22 q-~ 03,33

1 "a t-~ ('0)(L~/,,13 + 02,23 ) -am 2V3 []./,]V3, , + 2V3 [hlV,.3 + 2V'3 [rl](l?3,, + ~ I71,3) -(O)t)'3 = O, X/3 [2t* + A]U,,, + X/'3 [Al(U2,2 + U3,3) + ~ V~ [r/l(2U,,, -02,2 -/-713,3) + 3{4t, + 2a.}v,8{rl}f', + 112<p)9. ' = O, 2 vr3 []l£](U1, 2 -]-U2,1) q-V~ [n1(~1,2 -]-02,1) q-6{/z}V2 + 6{7/}15"2 + 1 12(p)(22 = O, 2 12 V'3 [/*](U,,3 + U3.,) + V~ [,/](/5"1.3 +/)'3,,) + 6{/*}I/2 + 6{,/}15"3 -~ l (P)?3 = 0. ( 13 
)
The above equations describe the laminate under consideration in the framework of the refined model. For the local model we neglect in equations ( 13) the terms involving the length parameter I.

EXAMPLE

Using the equations derived in Section 5 we shall investigate the length-scale effect on the behaviour of the composite body. To this end we shall consider the periodic laminated material occupying the region f~= (0, L,)x (0, L2)× (0, L3) where the microstructure length parameter 1 (the thickness of the repetitive layer) is assumed to be very small compared with L-= min{L,, L2, L3}. Let the body be subjected to the extension 6 in the xraxis direction. Hence, the boundary conditions for U, are given by: U, = 0 for x, = 0, U, = 6 for x, = L,, U~ = 8L-'x, for x2 = 0, L2 and for x3 = 0, L3; at the same time U2 =/-/3 = 0 on f~. The initial conditions will be assumed in the form Ul(x,O)=Sx,/L, U,(x,0)=0, U2(x,0)= U3(x,0)= Uz(x, 0) = U3(x, 0) = 0 and V/(x, 0) = V/(x, 0) = 0 for every x e f~.

Let us define the non-dimensional positive parameter:

It can be shown that the solution to the aforementioned boundary value problem in the framework of the refined model is related to ~: by the following conditions: 

Since ~ depends not only on the material properties of constituents but also on the microstructure length parameter then the response of the viscoelastic body in the dynamic processes depends on the size of microstructure. Neglecting in equations ( 13 

CONCLUSIONS

In order to show the differences between the proposed length-scale model and the homogenized model let us compare the solution ( 14)-( 16) with that given by equations (17). It can easily be seen that the formulae for stresses S,j obtained in the framework of the local 

( 5 )

 5 where jab_ (phahb)l-2 are inertial modulae (the values of which are independent of the microstructure length parameter), natural boundary conditionsSiynj = si(6) and constitutive equations Sit = (Cijkl)Uk, l "~-(Cijlkhak)va + (Oi]kl)~-]k, l + (Oi]klha, k)('ra, Hi = (Cijkth jh ,,)Vk + (Cijkth~,j}Uk,, + (Dqkth~.jhb, jhb,,)(/'b + (Oijklha,])~-]k,I • Fields Sij, Ha are called the averaged stresses and microdynamic forces, respectively. After substituting the right-hand sides of equations (7) into equations (

  ), the constitutive equations are given by SO = (Cokt)Uk,t + (Cq~th~,k)V~ + (Diykl)Uk,t + (Dijklh~,k)?~, (9) and for correctors V~' we obtain the system of ordinary differential equations (Dijkth~hbt) ~ "b + ( Cqkth~.hbt) v b = -(Dol,,h~.)(.lk,t -( C~jkth~)Uk,,.

  micro-shape function h=h~(xl) which in [0,1] satisfies conditions h(O)=h(l)=l/X/3, and is linear in [O,l'], [l', l], where the coordinate planes xl = O, xl = l', h(l') = -l/V~ x2 = l' + l" coincide with laminae interfaces. In this case equations (5) reduce to the form Soj -(p)O~ + (p)b~ = 0 12(p)~"i "Jr H i = 0 (11)

  ) read Sn = 2(1*)Uu + (a)(Ul,l +/-/2 2 +/-/3,3) + 2V~ [2t* + A]V1 + 2 ' 3 (*/)(E,l -/5"2,2 -03,3) + [*/l~, $12 = $21 = (1*)(U,.z + V2a) + 2V3 [1.]V2 + (*/)(01,2 + U2,,) + 2X/3 [,/]122, Sl 3 = S31 : (1*)(U1. 3 -~-U3,1 ) + 2X/3 [/.1I/3 + (*/)(E,3 + U3a) + 2X/3 [*/193, 2 . 4~/3 SEE = 2(1.)U2.2 + (/~)(U1,1 + U2,2 + U3,3) + 2X/3 [/~]V 1 -~-~ (*/)(2U=,= -~/1,1 -03,3) ---[*/]121, U3,3 + (a)(Um + U2,2 +/-/3,3/+ 2X/3 [a]Vl + g (*/)(203,3 -0,,1 -02,2) -4___ [*/]121" In this case the governing equations for U~, V~ obtained from equations (11) and (12*/)(02,21 + 03,13) + ~ [41. + 2A]VI,, + X/3 [2/z](V2,z + V3,3) + X/3 [2*/] Vl,l -t-122,2 -]-~r3,3 --(p)UI = O) ~,)U2,22 -4-(1£)(U2,11 + U2,33 ) + <]d, +/~)(U1,12 + U3,23 ) + ('0) 02,11 +3 02,22 + 02,33

  (i) if 0 < ~ < 1 then V~ [2~ + ,~] 6 ~ / 1 -V~--~exp(-alt) + 1 + V1 -~exp(-~2t)-2 ~ ) Iv', = 12 {4/, + 2hi L, V'I -~¢ ~ ' U, = 6 ( L , )-' x , , U2 = U3 = I/2 = 113 = 0 where 8{n} ~I a, = F-~p), + V1-~:), 8{7} tl "2 = l=-~p>, -Vl -O; 1 [2tz + a] ( 16 £[rl]{n}~ 8 F3 -V~¢ -1 {2/x + a------~ [A] + 3 12(p) ] L,"

  ) the terms involving the length parameter I and introducing similar boundary and initial conditions (in this case initial conditions for V/are not taken into account), we obtain the boundary-value problem formulated in the framework of the local macro-model but describing the same physical situations. It can be verified that the solution to this problem takes the form where [2/, + A] 3 II1 (1 -exp(-3"t)), {4t* + A} L~ G = 8(L,)-'x,, I-]2 = lib = V2 = 1/3 = O, + A} [A] + ~ [171y L--7" (17)

1 .

 1 Diagrams of micro-stresses Sii based on equations (16) and (17) for the length-scale model.

Fig. 2 .

 2 Fig. 2. Diagrams of micro-stresses S;~ for the local model,
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(ii) if g = 1 then &l = C + E~ exp(-at) + E]t exp(-at), $22 = $33 = D + F~ exp(-at) +F]t exp(-at),