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Abstract. Reinforced concrete beams are widely employed in civil engineering structures. To reduce 
the maintenance financial cost, structure damages have to be detected early. To this end, one needs 
robust monitoring techniques. The paper deals with the identification of mechanical parameters, 
useful for Structural Health Monitoring, in a 2D beam using inverse modeling technique. The optimal 
control theory is employed. As an example, we aim to identify a reduction of the steel bar 
cross-section and a decrease of the concrete Young modulus in damaged areas. In our strategy, the 
beam is instrumented with strain sensors, and a known dynamic load is applied. In the inverse 
technique, two space discretizations are considered: a fine dicretization (h) to solve the structural 
dynamic problem and a coarse discretization (H) for the beam parameter identification. To get the 
beam parameters, we minimize a classical data misfit functional using a gradient-like algorithm. A 
low-cost computation of the functional gradient is performed using the adjoint equation. The inverse 
problem is solved in a general way using engineer numerical tools: Python scripts and the free finite 
element software Code_Aster. First results show that a local reduction of the steel bar cross-section 
and a local decrease of concrete Young modulus can be detected using this inverse technique. 

Introduction 

Reinforced concrete beams are widely employed in civil engineering structures. The maintenance of 
such structures is a central issue. To reduce maintenance costs, the damaged beams in the structure 
have to be identified early. To this end, the beams should be monitored and non-destructive control 
methods should be used. For the damage detection techniques, we can distinguish model-free 
approaches [1] and inverse modeling techniques. Herein, we deal with the second category. In usual 
civil engineering calculations, one-dimensional models [2, 3] are widely used to simulate non-linear 
behaviors of reinforced concrete structures at a low computation cost. Nevertheless, in the present 
article, we focus on inverse problems based on two-dimensional (2D) beam modelisation and 
dynamic responses. As a matter of fact, by means of 2D modelisation, we can specify the 2D position 
of the sensors and we can precisely describe the geometry and the location of steel bars. Using 
dynamic strain responses, we are interested in identifying a local loss of steel bar cross-section and a 
local decrease of concrete Young modulus. For that, an inverse modeling technique based on the 
optimal control theory [4] is proposed. In the 2D elastodynamics direct problem, the dynamic loading 
is considered known. The inverse problem is solved in a general way using common engineering 
numerical tools: free finite element software Code_Aster [5], Python Numpy library and a Python 
mesh API provided by SALOME platform [6]. On a 2D concrete beam with a single steel bar, we 
show that a 25% local loss of the steel bar cross-section and a 25% local decrease of the concrete 
Young modulus can be detected with the proposed method. It corresponds to a 10% reduction of the 
equivalent flexural rigidity. The article is organized as follows: the inverse method is first presented; 
then, details about the numerical implementation are given and lastly, the inverse method is 
illustrated on a 2D concrete beam with a steel bar.  
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Methodology to identify a reduction of the steel bar cross sections and a local decrease of the 

concrete Young modulus in a 2D concrete beam 

 

We aim at updating the steel bar cross-section Sb(x) and the concrete Young modulus Ec(x) in a 2D 
concrete beam from the knowledge of measured strain such that it minimizes a data misfit functional. 
Note that the dynamic loading applied to the concrete beam is considered known. The minimization 
process is performed in an iterative way using the steepest descent direction (gradient method). At 
each iteration, the main steps are the followings: 

• solve the direct problem (elastodynamics equations forward in time) considering the beam 
parameters Sb(x) and Ec(x)  of the previous iteration; 

• solve the adjoint problem (elastodynamics equations backward in time); 
• compute the functional gradient using the direct and the adjoint states; 
• update the steel bar cross-section Sb(x)  and the concrete Young modulus Ec(x).  

 
Fig. 1 - Concrete beam with a horizontal steel bar - Steel bar Γ decomposed into 5 pieces 

( = ). Lower Concrete part Ωc decomposed into 5 subdomains ( = ).  

 

Definition of the beam parameters. 

To reduce the number of beam parameters to be determined, Sb(x) and Ec(x) are sought under the 
form: 
 

= , 		 ( ) = .  
(1) 

 

where: 
•  (resp. ) is the number of steel bar cross sections (resp. the number of concrete Young 

modulus) to be identified; 
• Sbud(x)  (resp. Ecud(x)) corresponds to the undamaged cross-section of the steel (resp. the 

undamaged Young modulus of the concrete); 
• Šbj  (resp. Ĕcj) represents the jth normalized cross-section of the steel (resp. normalized Young 

modulus of the concrete) associated to the interval Γj (resp. Ωcj), i.e. the area where φj
b(x) 

(resp. φj
c(x)) is non-zero. Šbj and Ĕcj have to be determined using the inverse modeling 

technique; 
• φj

b(x) and φj
c(x) are basis functions on a coarse grid mesh (H). They are a priori known. In 

practice, φj
b(x) (resp. φj

c(x)) is a constant basis function equal to 1 over the interval Γj (resp. 
in the subdomain Ωcj) and equal to 0 elsewhere. 
 

Direct problem. 

In the present study, the shear work and the bending work in the steel bar are neglected. We also 
neglect the quantity of acceleration in rotation in the steel bar. We suppose a perfect adhesion 
between the steel bar and the concrete. We seek the displacement field u such that: ∈ = ∗ ∈ (Ω)	 ∗ = 0	 	 Ω ,	  
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∗ Ω + ∗ Γ + : Κ ∗ Ω + ∗ Γ
− 	 ∗ ∂Ω = 0, ∀ ∗ ∈ . 

 
(2) 

The initial conditions are supposed to vanish.  
Data misfit functional. 

We seek the normalized steel bar cross-section Šbj (j∈ {1,… , }) and the normalized concrete Young 
modulus Ĕcj (j∈ {1,… , }), minimizing the data misfit functional defined as:  
 

, = 12 ( − ) Ω − ( ) ( ) + 2 ( ) − 1 Γ
+ 2 ( ) − 1 Ω. 

 
(3) 

where: 
•  is the number of strain sensors; 
• ( ) ( ) is xx strain measured by sensor i located at ; 
• ( − ) is the spatial weight function associated to sensor i. 

In Eq. 3, one has a classical quadratic data misfit term and regularization terms.  and  are 
normalized regularization parameters.  and  ensure the physical homogeneity of the terms in 
the functional . Herein, we take: = , = 	. (4) 

Adjoint problem, functional gradient and beam parameter update. 

To get the functional gradient at a low computational cost, we use the adjoint state. In this study, the 
adjoint problem corresponds to a backward elastodynamics problem (final conditions vanish). We 
seek the adjoint displacement field  such that: ∈ = ∗ ∈ (Ω)	 ∗ = 0	 	 Ω  

∗ Ω + ∗ Γ + : Κ ∗ Ω + ∗ Γ
− , − Ω − ( ) ( ) − ∗ Ω = 0, 

		∀ ∗ ∈ . 

 
 
 
(5) 

Note that this problem can be solved using classical finite element codes.  
From the direct and the adjoint states, we obtain the gradient of the functional, as follows:  

= − Γ − 	 Γ
+ ( ) − 1 Γ.	 

 
 
(6) 

= − Ω − :Κ Ω
+ − 1 Ω. 

 
 
(7) 

where: = (1 + )(1 − )	, = 2(1 + ). (8) 
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Once we get the functional gradient, several solves of the direct problem are performed to determine 
the optimal descent step and we deduce the new set of beam parameters. 
Numerical implementation 

The inverse problem is solved in a general way using state of the art finite element softwares. A 
synthesis of the numerical steps is given in Fig. 2. From a main Python script, we run the finite 
element software Code_Aster to solve the direct and adjoint problems, which are elastodynamics 
problems. We specify to Code_Aster Python supervisor to serialize, thanks to Python pickle module, 
the fields useful for the gradient computation and to export the strain  computed at the sensor 

location . Note that the loading of the adjoint problem corresponds to a 'xx' internal stress ( ) 		in the vicinity of the ith sensor location. This loading (see Eq. 5) is given by the data misfit : ( ) , = ( ) − ( ) ( ) − , ∈ {1,… , }. (9) 

In practice in Code_Aster, the spatial weight function −  is constant in the patch of elements 
associated to the ith sensor node. To compute the gradient of the data misfit functional according to 
Eq. 6 and Eq. 7, for the direct problem, one needs the acceleration  in the steel bar and the strain  in 
the steel and the concrete parts. Concerning the adjoint problem, one needs the displacement  in the 
steel bar and the strain ̃ in the beam. Using these fields and mesh data, the gradient is computed from 
a python script. Then, to determine the optimal descent step, which minimizes the data misfit 
functional, several resolutions of the direct problem are performed using Code_Aster. Once the 
optimal descent step is obtained, we deduce the new set of beam parameters. The iterative process 
stops when the data misfit  is about the sensor precision. 

 
Fig. 2 – Methodology for beam parameter updating 

Numerical example 

 Definition of the updating problem. 

A 2D concrete beam with a single horizontal steel bar is considered (see Fig. 1 and Fig. 3). Plane 
strain is assumed. A dynamic load is applied to the top of the concrete beam, it is defined as: 

( ) = − 2π , ∈ 0, /20, ∈ /2, 	 .  
 
(10) 

Numerical values: Fmax=104 N/m2, Tc = 2s, T=5s.  

3404 Applied Science, Materials Science and Information Technologies in Industry



 

In this study, the steel bar is decomposed into 5 pieces (nb=5 in Eq. 1). In each piece j, one has a 
constant steel bar cross-section Sbj. Concerning the concrete zone, we only consider a loss of Young 
modulus in the concrete part named Ω  which is under the steel bar. In the same way, the domain Ω  
is decomposed into 5 subdomains (nc=5  in Eq. 1). In each concrete subdomain j, a constant Young 
modulus Ecj is taken. We assume that the steel bar cross-section (resp. the concrete Young modulus) 
is known and undamaged in pieces 1 and 5 (resp. in subdomains 1 and 5): = =  (resp. = = ). As a result, we aim at updating by the inverse modeling technique the normalized 
steel bar cross-sections and the normalized concrete Young modulus  , , , , , 	defined as: = , 	 = 0.04;	 = , 	 = 40 .	 (11) 

To avoid ``inverse crime'', we take as reference the numerical solution obtained with the finite 
element code Freefem++ [7] considering the loading defined in Eq. 10 and the beam parameters: = = = = 0.04, 	 = 0.03= = = = 40 , 	 = 30 .  

(12) 
To solve the elastodynamics problem, we take the inconditionally stable Newmark scheme               ( = , = 1/4). In practice, the data outputs  are measured. Nevertheless, herein,  is 

deduced from the reference numerical solution. We consider 7 strain sensors in the concrete beam, 
there are located at: : 316 , 8 , : 516 , 8 , : 716 , 8 , : 2 , 8 , : 916 , 8 , : 1116 , 8 , : 1316 , 8 . (13) 

 
Fig. 3 - Concrete beam with a horizontal steel bar - Steel bar decomposed into 5 pieces. Each 

piece has a constant cross-section - Lower Concrete part decomposed into 5 subdomains. Each 

subdomain has a constant Young modulus - Beam instrumented with 7 strains sensors. 

Solution of the inverse modeling technique. 

The results of the beam identification are given at each iteration of the inverse modeling technique in 
Table 1. At each iteration of the inverse technique, we evaluate the data misfit δ and its relative error 
Erel defined by: 

= ( ) − ( ) ( ) / , ∈ {1, … , }
= ( ) ( ) / , ∈ {1, … , } . 

 
 
(14) 

	
In Table 1, the value of the maximum data misfit and its associated relative error are given, k 
corresponds to the sensor number which has the highest data misfit.  
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Table 1 - Steel bar cross-sections and concrete Young modulus at each iteration of the inverse 

modeling technique 

 k δk Ek
rel [%] Sb2 Sb3 Sb4 Ec2[GPa] Ec3[GPa] Ec4[GPa] 

It 0 4 2.9.10-7 10.3 0.040 0.040 0.040 40.0 40.0 40.0 
It 1 2 1.7.10-7 36.0 0.040 0.040 0.040 39.6 35.2 39.4 
It 2 2 1.6.10-7 33.7 0.040 0.039 0.040 40.0 34.1 39.4 
It 3 2 1.4.10-7 28.3 0.039 0.035 0.039 40.0 31.7 40.0 
It 4 2 1.4.10-7 28.0 0.040 0.035 0.039 40.0 31.5 40.0 

 
We underline the fact that these results are obtained considering ``small'' regularization parameters ( = 10 , = 10 ). After the third iteration, we note that the data misfit reaches a plateau. It 
corresponds to the error between a numerical solution obtained with FreeFem++ and a numerical 
solution computed with Code_Aster. As a consequence, the inverse technique should be stopped at 
iteration 4. At iteration 4, one has a 28% error between the 'xx' strain measured at sensor 2 and the 
reconstructed strain. This leads to a 5% error on the identification of the concrete Young modulus in 
subdomains 3 and to a 15% error on the identification of the steel bar cross-section in piece 3. We 
recall that the reference values of concrete Young modulus and steel bar cross-sections are given in 
Eq. 12. We note that the inverse modeling technique enables us to detect the damaged subdomain Ωc3 
and the damaged interval Γ3.  
 

Summary 
To identify the beam parameters (steel bar cross-sections and concrete Young modulus), we proposed 
an inverse modeling technique based on 2D elastodynamics model and dynamic strain responses. On 
the 2D concrete beam with a single steel bar, we were able to detect the damaged area. We showed 
that a 25% local loss of the steel bar cross-section and a 25% local decrease of the concrete Young 
modulus could be detected. It corresponds to a 10% reduction of the equivalent flexural rigidity. In 
future works, the inverse modeling technique will be applied to nonlinear dynamics problems. 
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