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On a quasi-stationary model of debonding processes in layered composites 

Z. 5~aniewicz and Cz. Wo~niak, Warszawa 

Summary: The main aim of this contribution is to propose a mathematical model of layered composites 
in which the interlaminar bonding material is assumed to sustain only restricted values of the interl~minar 
stresses. It is shown that the boundary value problems for the quasi-stationary debonding processes lead to 
certain sequences o~ hemi-vari~tional inequalities. The existence theorem is established. 

t~ber ein quasi-statieniires Modell der Sehiehtentrennung in Verbundwerkstoffen 

~bersieht: In diesem Aufsatz sehlagen wir ein mathematisches Modell yon Verbundwerkstoffen, die nnr 
begrenzte Belastungen fibertragen, vor. Es wird bewiesen, dab die Randwertprobleme zur gewissen 
Semi- Variations-Ungleichungen ffihren. 

1 Introduction 

Throughout the paper we deal with composites made of a finite number of sheets (laminae) 
consisting of parallel fibres embedded in a matrix. I t  is assumed that every sheet is modelled as 
a transversely isotropic linear elastic material [1]. The sheets are bonded together by very thin 
layers of the bonding material. These bonding layers are modelled as surfaces, i.e., their thickness 
is neglected. The proposed approach is based on the assumptions that  the bonding material can 
sustain only restricted values of the interlaminar tractions, and that it behaves elastic prior to 
possible delamination. Hence during the deformation discontinuities in displacement between 
the layers can occur. The objective of the contribution is to propose and discuss a mathematical 
model of debonding processes under the assumption of small displacement and velocity gradients. 
We show that  the displacement jumps across the interlaminar surfaces can be related to the 
interlaminar stresses by means of some multivalued nonmonotone operators derived from the 
non-smooth and non-convex strain energy function via the concept of Clarke's generalized 
gradient [2]. 

At the same time the irreversibility of the debonding process is taken into account. I t  is also 
proved that the pertinent boundary value problems lead to certain hemi-variational inequalities. 
In the general case the governing relations are non-local in time. I t  is shown that after time 
discretization ~he debonding process is described by the sequence of hemi-variational inequalities 
and the succesive problems can be treated as time independent. The existence of solutions is 
established by making use of the theory of generalized pseudo-monotone set valued mappings 
introduced by Browder and Hess [3]. The obtained results can be used as the basis for the for- 
mulation of homogenized models for debonding problems in layered composites. The proposed 
approach is an alternative to that given in [4]. 

2 Mathematical tools 

Throughout the paper we use some concepts of the functional analysis which are summarized 
below; for particulars the reader is referred to [5]. We define ~ ~-]P, u { t e o} u {--~} and 
~,+ ~ ll(+ v {0} t~ (~-~}. Let ~: W --> ]l( be a convex lowersemicontinuous function defined on a 

28 



404 ingenieur-Archiv 58 (1988) 

linear topological space W and let W* be a dual of W, i.e., the space of all linear continuous 
functionals defined on W. The value of w* E W* on the element w E W is denoted by  (w, w*) 
and the bilinear form (-, .): W •  W* --~ ~ determines a dual pairing between W and W*. The set 
of all w* E W*, such tha t  

(v - w, w*) <= ~(v) - ~(w), V v c W,  

and ~(w) ~ + ~ ,  is a subdifferential of r at  w E W and is denoted by  ~ (w) .  I f  D is a closed 
convex set in W, then the indicator funct ion of D given by  

indD(w) ---- [ 0 if w E  J), 
t + ~  if w E  W \ D  

is an example of a convex lowersemicontinnous funct ion defined on W. In  the paper we deal 
also with Lipschitz continuous functions j :  W - ~  X which m a y  be neither differentiable nor 
convex and are defined on the Hilbert  space W. For  such functions we use the concept of the 
generalized Clarke's gradient  [2]. To this aid we define first the generalized Clarke's directional 
differential ]~ v) of ]: W --> R at w E W and in the direction v E W by  means of 

i(w + h + ;~v) - j(w + h) 
j~ ; v) ~ lira sup 

h-->0 /~ 
~'~0 

Then the generalized gradient  ~(w) of j(.) a t  w E W is defined as 

~i(w) ~ {~ ~ W: j0(w; v) >= (v, ~), V v E WI 

where (., .) denotes the scalar product  in the Hilbert  space W. As it is known [2] ~](w) coinci- 
des with the subdifferentia] ~](w) of ](.) at  w E W, if ](-) is convex. The funct ion ](.) is said to be 
regular in the sense of Clarke, if 

j0(w; v) = i '(w; v) 

holds for every w E W, v E W with 

i'(w; v) : lim ](w + ,~v) - -  i(w) 

as the one-sided directional differential of j(.) a t  w E W in the direction v E W. 

3 Basic assumptions and the general statement of the problem 

Let  ~2 be the regular region in ]R 3 occupied by  the undeformed composite which is assumed to be 
made of S disjointed sheets (laminae). Hence D = u AK ( g  = 1 , . . . ,  •),  A z being the region 
occupied by  the K- th  undeformed sheet, see Fig. 1. Thus the interlaminar surfaces separating 
the adjacent  undeformed sheets are given by  HK = (OA~: n ~AK+I) \ ~D where K = 1 . . . . .  S - -  1. 
We use the notat ions 

S S--1 
A =-- U AK, H ~ U IlK 

K=I K=I  

for the parts  of the undeformed composite D occupied by  the sheets and their interfaces, respec- 
tively. To every z E IlK (K = 1, ..., S --  1) we assign the unit  normal  N(z) outward to AK and 
hence inward to AK+I. The unit  outward normal  to ~2 at x E ~.C2 is denoted by  n(x), see Fig. 1. 
For  an arbi t rary  vector field w:  I l  -+ R 3 we introduce the notat ion 

w ~ ( z )  ~ w ( z )  �9 N ( z ) ,  z ~ I l .  

Moreover, let ~: A -+]K n be a field such tha t  every ~IAK for K = 1 . . . . .  S (which is a field obtained 
from ~ by  restricting its domain to AK) has well defined t races  on ~AK. ~or  an arbi t rary  z E / /  
we have also z E IIK for some K = 1, ..., S --  1, and hence the  jump of ~p across / / a t  z E / 7  
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Fig. 1, Scheme of the undeformed composite 

will be defined by 

[ ~  (z) -~ ~§ - ~ - (z ) ,  z ~ / I  

where ~o+(z), ~o-(z) are the values of traces of ~OlAg+~, ~]A,~, respectively, at z E Hx ~ H.  
The deformations of the composite are analysed in the time interval [0, v I] with the initial 

t ime instant related to the undeformed (and unstressed) body. We assume that  for every 3 E [0, 3z] 
the body forces (per mass density) b(x, 3) at x C A and the surface tractions p(x, v) at x ~ F 
are known where F is the corresponding par t  of the boundary ~D. We assume also tha t  on 
F0 ------- 0D \ F the traces u0(x, r), x E Fo, of the displacement fields u(., ~) : A ~ IR a are know~ for 
every r ~ [0, Tz] and mes(Fo) > 0. By T(x, T) we denote the Cauchy stress tensor at x ~ A, 
3 E [0, @, and by t(z, T) the interlaminar stress vectors at z ~ H, 3 E [0, D] which for z E HK c:: H 
are acting on the K- th  sheet AK across the interface HK. Every  sheet is assumed to be modelled 
as linear-elastic homogeneous material. By e(x), C(x), we denote the known mass density and the 
tensor of elastic moduli at  x E A, respectively, which are constartt in every Ax (K = 1 . . . . .  S). 
We introduce the strain tensor 

E(u) ~ .  (Vu + Vur)/2 

with V(.) as the gradient operator and (.)~ for transposition. Under the assumptions that  in all 
problems the inertia terms can be neglected and that  no external forces are applied to the inter- 
faces between the sheets we have 

DivT(x,  3 ) + 0 ( x ) b ( x , r ) ~ 0  at x E A ,  

T(x, 3) = C(x) E(u(x, 3)) at x ~ A,  

T(x, r) n(x) = p(x, 3) s t  x ~ F ,  �9 ~ [0, TI] 

n(x, 3 ) = U o ( X ,  3) at X C P o ,  

T+(z, 3) I~(z) - -  T (z, r) :N(z) = t(z, 3) at z C H .  

(1) 

The Eqs. (1) have to be considered together with the interrelation between the interlaminar 
displacement jumps [ u ]  (z, v) and the interlaminae stresses t(z, v) where z E H, v C [0, 3f], Here 
this interrelation will be based on the following physical assumptions: 

1. The interlaminar bonding material (which in the undeformed state is modelled by the 
surface H = u ] /g (K ~-1 . . . . .  S -  1) posseses linear elastic properties before possibly de- 
bonding, 

2. The local debonding conditions (i.e. the debonding conditions for the fixed z E H) are 
based on the fact that  the interlaminar bonding materiM can sustain only restricted values of 
interlaminar stress. 

3. After debonding only unilateral contact between the adjacent sheets can be realized; for 
the sake of simplicity we neglect the effect of friction. 
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In order to specify the aforementioned assumptions and to establish the pertinent inter- 
laminar relation we introduce the decomposition 

t(z, v) = s(z, ~) + r(z, v), r(z, z) : N(z) r~(z, v) for z C H (2) 

where s(z, v) represents the interlaminar stress (before the local debonding of sheets) which is due 
to the elastic properties of the bonding material and where r(z, T) : N(z) ru(z, v) is the reaction 
due to the impenetrability of the adjacent sheets. The impenetrability condition has the form of 
the uniteral constraints [ u ~  (z, ~) ~ 0 (z E / / ,  v E [0, vl]), and [u ]  (z, v) : 0 implies rx(z, ~) ~ 0 
as well as ~u]]~ (z, v) > 0 implies r~(z, v) : 0. I t  can be easily veryfied that the aforementioned 
conditions can be written in the simple form 

r~(z, 3) E e ind~+([U]N (z, v)) for z E / / ,  v E [0, vii 

which also follows immediately from the general constraint approach [6]. Setting 

we assume that before possible debonding the strain energy function of the bonding materialfor 
every z E/7  is given by the function n o : H • R a ~ R defined as 

1 1 
no(Z, [u ] )  = + - 

where YN, YT, ~ are positive constants. Here y~, YT can be treated as moduli (longitudinal and 
shear, respectively) which characterize the properties of the bonding material. The constant 
characterizes the local debonding condition which is postulated in the form 

~z0(z, [u]] (z, z)) : 0  for z E / 7 ,  v~[0,~i]  (3) 

provided that  the inequality n0(z, ~-u]l (z, 0)) < 0 holds for every o C [0, v). After the debonding 
only the unilateral contact between the layers can be realized and the strain energy of the bonding 
is assumed to be equal to zero. Thus in the modelling of the interlaminar relation the irrever- 
sibility of the debonding process has to be taken into account. To this aid we introduce the 
function n : / 7  • If( ~ --> ]l( given by 

n ( z , w ) ~ ~  if no(Z,w)<O,  
[o if no(Z,W) ~ 0 

and the functionals 

0 (z ,v (o) )~  {~ if ~ ( z , v ( o ) ) < 0  for every o E [0, v), 
0=<a<~ if ~(z,v(o)) ---- 0 for some o E [0, v) 

defined for every z E / / ,  �9 E (0, vZ] on the set of (sufficiently regular) functions v : [0, v) -+ ]l( 3. 
Now setting 

0 ( z , ~ ) = O ( z , [ u ] ( z , o ) )  for z C a ,  (4) 
0 < 0 < 3  

we observe that  for an arbitrary time instant v E [0, vii and in an arbitrary deformation process 
the strain energy of the interlaminar bonding is determined by the function fl: H X ~  a X {0, 1} 
-+ R,  given by 

(z, 0(z, 3)) n(z, in-1 (z, v)) 0(z, 

with n(.) and 0(.) as introduced above. The functions fl(z,., 0(z, T)) defined o n  R 3 are non-smooth 
and non-convex but for every z s H, 0(z, z) E {0, 1} are regular in the sense of Clark (Sect. 2). 
The local debonding takes place, if 0(z, z) = 1 and ~u]] (z, 3) satisfies (3) ; in any other case tile 
functions fl(z,., 0(z, z)) are smooth and the values of s(z, 3) can be derived from fl(z,., 0(z, v)) 
as the derivatives with respect to ~'u] (z, 3). However, using the concept of the generalized Clarke's 
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gradient  of fi(z,.,  O(z, ~)) we also obtain the general interrelat ion between s(z, T) and [ u ]  (z, ~): 

s(z, ~) ~ @(z, [u~ (z, 3), O(z, ~)); (5) 

here and in the sequel the  operator  ~ is taken  with respect to ~-u]] (z, ~) for fixed z E / 7  and 
0(z, z) E {0, 1}. The parameter  0(z, v) is determined by  (4) which describes the irreversibility of 
the debonding process. I t  has to be emphasized tha t  for the local debonding condition (given 
by  (3) with 0(z, ~) = 1) the values of s(z, z) are not  uniquely determined by  (5). 

The formulae (1)--(5) represent the general governing relations of the debonding process for 
the composites under  consideration. The basic unknown is u : A X [0, vl] -+ ]pa. The problem 
of finding u(x, ~) for x E A, ~ E [0, v~], such tha t  (1)--(5) hold, can t reated as quasi-stat ionary 
since no t ime derivatives enter  into the governing relation. However,  the general s ta tement  of 
the debonding problems given above is non-local in t ime and hence ra ther  complicated to be 
the basis for more detailed discussion. Tha t  is why we propose in the next  section the time-local 
approximat ion  of the foregoing s ta tement  of the debonding problem. 

4 Time-local approximation 

Now we are showing tha t  af ter  t ime discretization of the governing relations (1)--(5) we arrive 
at  some formulat ion of the t ime-nonlocal debonding problem which, from the formal point  of 
view, can be t rea ted  as a sequence of time-local problems. Sett ing Zo ~ 0, v~ ~ T I where M is 
a sufficiently large positive integer, and introducing the finite sequence ~o, ~1 . . . .  ,3M of t ime 
instants  such tha t  ~o < ~ < ... < ZM, we assume tha t  the general relations (1)--(5) presented 
in Sect. 3 have to hold only for 3 E {v0, ~1 . . . . .  VM}. Le t  us define 

1 if ~r(z, [u~ (z, ~)) < 0 for every ~ ~ {Vo ~1,. . . ,  Tm--1} (6) 
0(z, Vm_,) ~- 0 if z(z, I n ]  (z, a)) = 0 for some a E {To, r, , . . . ,  Tm_l}' 

for every  z C H and for m = 1, ..., M. Taking into account  the definit ion of the functionals 
O(z, [u~ (z, .)) in (4) it is easy to see tha t  after  the t ime diseretization the functions 0(., ~m) have 
to be replaced by  the functions 0(., ~m-~) where m = 1, ..., M. Thus the t ime discretization 
implies the approximat ion 

O(z, zm)~-~O(z, 3~_l) with m = l , . . . , M  and z E / / .  

Hence (1)--(3) and (5) take the form 

D i v T ( x , ~ m ) + O ( x ) b ( x , , ~ ) = O  for x C A ,  

T(x, vm) = C(x) E(u(x, ~m)) for x E A, 

T(x, ~m) n(x) = p(x, vm) for x E F ,  

u(x, ~ )  = Uo(X, ~,~) for x E 17o, 
(7) 

T+(z, 3~) I~(z) --  T-(z,  ~m) N(z) --  t(z, ~m) for Z E /7,  

t(z, 3~) = S(Z, Zm) + r(z, z~), r(z, z~o) = ~'(z) ra(z, zm) for z E /7, 

r~(z, Vm) C Oind~§ (z, vm )) for z C/7 ,  

s(z, zm) E ~fl(z, ~'u]] (z, Zm), 0(z, vm-x)) for z C/7  

and (4) has to be replaced by  (6). All aforementioned relations have to hold for m = 1 ,2  . . . . .  M.  
Now observe tha t  for m = 1 we have 0(z, 3,,-i) = 0(z, 0) = 1 for z E/7,  and the basic un- 

known in (7) is the displacement field u(., zl). Assume tha t  u(., ~1) has been obtained as a specific 
solution of (7) (in Sect. 6 we shall prove tha t  such solution exists) ; then from (6) we can calculate 
the funct ion 0(., vl). Hence for m = 2 the basic unknown in (7) is the displacement field u(-, v2) 
since now 0(-, ~ )  is the known function. Using this procedure we can calculate u(., Tin) for 
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m = 1, 2 . . . . .  M by  finding the successive solutions to (7) (provided t ha t  such solutions exist) 
and using successively (6). All these problems can be t reated,  from the formal  point  of view, as 
t ime-local problems.  Moreover,  in every  such problem the t ime  ins tan t  ~ p lays  the  role of ~he 
parameter .  

5 Variational formulation 

Taking into account  the results of Sect. 4 we restrict  ourselves to an a rb i t ra ry  but  fixed t ime 
ins tan t  z = vm and we assume tha t  0(z, ~ _ , )  for z ~ H ,  has been calculated previously.  Then,  
f rom the formal  point  of view, (7) for v = z~ can be t rea ted  as the governing relations of some 
t ime  independent  p rob lem for the funct ion u(., vm) : A --~ ]R a. For  the  sake of s implici ty  we omit  
the  a rgument  ~,~ in (7) and write fi(z, [u~  (z), 0(z)) instead of fi(z, ~-u~ (z, zm), 0(z, ~m-1)). 

Le t  V be the space of the sufficiently regular test  functions v: A --~ ]R 3 such t ha t  every  vlA~ 
(K = 1, .. . ,  S) has well defined traces o n  OA K and v(x) = 0 for x E/~0. We assume also tha t  for 
every  v E V the  divergence theorem can be applied to  v(x) �9 Div  T(x), x E A. Taking  into account  
the  possible discont inui ty  of v(.) across H = u HE (K = 1 . . . . .  S --  1) we obtain  

f v(x). Div T(x) dV = - - f  tr [Vv(x)T(x)] dV + f v(x). T(x) n(x) dA 
A A F 

S- -1  

+ E f [v-(z) �9 T-(z)  - -  v+(z) �9 T+(z)] N(z) dA 
K = I  HK 

where we have  used the  notat ions  introduced in See. 3. Then it can be shown t h a t  (7) for ~ = v~, 
in the  simplified nota t ion  int roduced above,  is equivalent  to the equations 

f tr  [T(x) Vv(x)] dV + f t(z).  I v ]  (z) dA = f Q(x) b(x) .  v(x) dV 
A H A 

+ f p(x) �9 v(x) dA for V v E V, (8) 
F 

T(x) = C(x) E(u(x)) x C A, 

t(z) = N(z) r~(z) + s(z) z ~ / / ,  

and the conditions 

z c g (9) 

s(z) (z), 

I n  this section we are to show tha t  under  proper  regular i ty  conditions (8), (9) lead to some hemi-  
variat ional  inequal i ty  [5]. We  bear  in mind tha t  ~(x), C(x) are constant  in e v e r y A a  (K = 1, .., S), 
and we assume tha t  b C (L~(sg)) a. p C (Le(I')) ~. Using the known notat ions  for the  Sobolev spaces 

we define 

V - -  {v C (L~(~))~: VIA~ C (HI(A~)) ~ (K = 1 . . . . .  S); ~oV = 0} 

where yov is the  trace of v on To, and 

ZK ~ {T E (L~(AK))ax3: Div T C (L2(AK)) a (K = 1 . . . . .  S)} 

(for an a rb i t r a ry  set  M the symbol  M ~ x 3 s tand for a set  of all 3 X 3 symmet r i c  ma t r ix  elements  
which belong to M). In  order to s implify the analysis,  f rom now on we assume tha t  uo(x, ~) = 0 
for x E/ '0 ,  T C [0, ~I] (cf. (1)). Then the displacement  field u(.) in (8) can be t reated as an e lement  
of the space V and [u~  E (H1/~(H)) a. Moreover,  we a s s u m e  tha t  T[A~ E Z~ for K =  1 . . . . .  S ;  
then  t E (L~(//)) a. Hence  all integrals in the  variat ional  condit ion (8) have  a well defined sense. 
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Denoting by (., .} the bilinear form defined on V X V* and setting 

< . ,  v ) - -  f tr [r(~(~))C(~)E(u(x))] dr,  
A 

(v,/} ~ f e(x) b(x). v(x) dV § f p(x). v(x) dA, 
A F 

v E V  

<v, ~*) ~ f s(z). [v3 (z) dA, 
]7 

(,V, r*} ~- f r~(z) ~V]]N (Z) dA 
/ /  

we obtain from (8) the variational condition 

~(u, v) + (v, s*) + (v, ~*) = (v,/) for V v ~ V 00) 

in which the functionals s*, r* E V* have to be interrelated with the displacement field u C V 
by means of the conditions (9). 

In order to interrelate the functional r* with the displacement field u(.) we introduce the 
closed convex set ~7 in V by means of 

IN: ~- {v E V: ~-v]]~ (z) > 0 for aimost every z E H}. 
Then 

.r* C ~ind~(u)  (nn) 

implies that  the first condition from (9) holds almost everywhere on H. 
Now we have to establish the interrelation between the functional s* and the displacement 

u(.), such that the second condition from (9) holds. To this aim we define the functional 

+ ( v ) = f ~ ( z , ~ q ( z ) , ~ ( ~ ) ) d V ,  v~  v 
]7 

bearing in mind that  J(v) depends also on the function 0(.). Taking into account the definition of 
fl(.) we conclude that  J(.) is Lipschitz continuous on V and is regular in the sense of Clarke 
(Sects. 2 and 3). The interrelation between s* and u(.) that  we are going to esta.blish will be 
determined by the 

Lemma. Let s* E ~J(u). Then there exists s C (L2(//)) a such that  

(i) <v, ~*> = f s(z). [ q  (z) dA for V v C V, 
H 

(ii) s(z) E @(z, [ u ]  (z), ~(z)) for almost every z ~ 1t. 

Pro@ Let us assume that  for the fixed 0(.) the function fi: H XIRS-+ IR given by fl(z, w) 
fl(z, w, O(z)) has the properties 

1. fl(., w) is measurable for any w E IR 3, 
2. fl(., 0) E El(//), 
3. Ifl(z, wl) -- fl(z, w2)l < k(z) []wl -- w~ll, k(z) > 0, for every wl, w~ E IR 3, z E / I  with k(-) 

L2(H). 

Under the conditions 1.--3. the functional 2:  (L2(H)) 3 -+ ]R given by 

J(w) = : f  fi(z, w(z))dA, w E (L2(T/)) a 

is Lipschitzian and has the generalized gradient (Sect. 2) 

~J(w) ~ {s E (L~(//))8: OT~ v) > (v, w) for every v E (L2(H)) 3} 

where (., .) is a scalar product in (L2(II)) a and 

] (w + h + ~v) - Y(w + h) 
J~ v) = lira sup 

h~0 2 
,I'X0 
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is Clarke 's  directional differential  a t  w and in the direction v. I r i s  known [5] tha t ,  if s E ~J(w), 
then  

s(z) C ~fl(z,w(z)) for z E 

and hence 

s(z) c (z), 0(z)) 

for a lmost  every  z E / / .  On the  other hand the condition s* E ~J(u) implies the  existence of 
s E (H1/2(II)3) * with 

(V, 8}B~ : (~'V'~, S)1/2 

where (., ")1/2 is the  bil inear form de termined  b y  the  per t inen t  dual pairing. Since the  space 
H1/2(1I) is dense in L2(II), it is possible to ex tend  the funct ional  s* defined on (HI/2(//)) s onto 
(L2(H)) a in such a way  tha t  

s c 

By vi r tue  of the meaning  of ~J(.), the  aforement ioned condition leads to the  conditions (i)--(ii) 
of the  L e m m a  which ends the proof. 

Now making  use of (10), (11) and the  L e m m a  formula ted  above we obta in  

a(u, v - -  u) - -  (v - -  u, ]} ~- indK(v  ) - i n d ~ ( u ) ~ - J ~  V v E  V (12) 

where u E V, / E V*. Taking  into account  t ha t  the  functional  J( . )  depends on 0(7) : / / - - >  {0, 1}, 
J (v)  -~ J (v ;  0), and t ha t  u ----u(7~), / ----/(7m), 0 = 0(~-1)  we arr ive a t  the sequence of in- 
equalities 

a(u(vm) ,  v - -  u(vm)) - -  (v  - -  u ( v m ) , / ( 7 m ) )  (13)  

+ ind,(v)  -- ind~(u(vm)) ~- g~ v - -  U(vm); O(Tm-~)) ~ 0 

for every  v E V, u(Tm) E V, m = 1, 2, .. . ,  M ;  this represents  the var ia t ional  form of the  governing 
relations (7) with 0 (7m-1 ) -  0(', 7m-1) defined by  (6) and no(x, 7m)= 0 for every  x E Fo and 
m = 0, 1 . . . .  , M. Let/(Tin) (m = 1, 2 . . . .  , M) be known. Then the successive solutions u(vm) of 
the  inequalit ies (13) for m = 1, 2 . . . . .  M (provided tha t  they  exist) can be obta ined from the 
sequence of the  t ime-local problems for n(7~), since for every v ~ 7m the funct ion 0(V~-l) --~ 6(., 
7m-1) has been previously  calculated af ter  having  solved the p rob lem for v = 7m-1 (cf. the  com- 
ments  a t  the end of Sect. 4). Hence  for every  7 = 7,, (m --~ 1, 2, . . . ,  M) in the prob lem of finding 
the displacement  field u(7~) = u(-, 7m) f rom (13) we assume tha t  the  functional  J(., O(Vm-1)): 
V -~ ]R is known. Since fl(z, [ui] (z, 7m), 0(z, 7m-,)) ~-- a(Z, [nil (Z, 7m)) 0(Z, ~m--1), t he  aforemen- 
t ioned functional  is defined by  

J(V; 0(7,.-1) ) ~. f Yl(g, ~-V'~ (Z))0(Z, 7m_1)di 
H 

for every  v E V and m = 1, 2 , . . . ,  M. The functional  J ( . ;  0(v~_l) ) will be referred to as the  super- 
potent ia l  of the in ter laminar  bonding tractions.  Due  to the  t ime  irreversibi l i ty of the  process it 
depends on the  a rgumen t  0(V=-l) given by  (6). The  var ia t ional  formula  (13) const i tutes  the  hemi- 
var ia t ional  inequal i ty  [5] for the  displacement  field u(v,,) E V. This fact  makes  it possible to 
establish the existence of solutions to the problems under  consideration which will be done in 
the following section of the  paper.  Le t  us r emark  tha t  af ter  replacing in (13) u(7=) ~nd 0(7~-1) by  
u(7) and 0(7), respectively,  we obtain  the var ia t ional  form of the  general governing relations 
(1)--(5) (for u0 0) which has to hold for every  v E [0, 7]]. 

6 E x i s t e n c e  

We restr ict  ourselves to the  p rob lem of existence of a solution u(v,~) to the  hemi-var ia t ional  
inequal i ty  (13) for an a rb i t r a ry  but  fixed m E {1, 2 . . . . .  M} under  assumpt ion  t ha t  the  funct ion 
O(vm_l) has been previously calculated. Hence  the  superpotent ia l  J( .)  = J(-,  0(7m_1) ) is assumed 
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to be known and the  p rob lem is governed b y  the  hemi-var ia t ional  inequal i ty  of the  form (12) 
where for the  sake of s impl ic i ty  we have  neglected the  t ime p a r a m e t e r  vm and the  dependence of 
the  superpotent ia l  J on the a rgumen t  0(., v,~-l). The  analysis is carried out  under  the  ex t ra  
assumpt ion  t ha t  mes(Fo r, ~AK) > 0 for K --~ 1 . . . . .  S and is based on some facts f rom the theory  
of generalized pseudo-monotone  set valued mappings  in t roduced in [3]. The  reader  who is not  
familiar with this theory  can pass now to the theorem formula ted  a t  the  end of this section. 

Le t  us introduce the Lamd opera tor  A : V -> V* by  means  of 

(v, Au) = a(u, v), u, v E V. 

I t  is easy  to see t ha t  the hemi-var ia t ional  inequal i ty  (12) is equivalent  to the mul t iequat ion 

/ E Au + ~J(u) + ~indK(u ). (14) 

Thus  in order to p rove  t ha t  for every / E V* there exist the displacement  field u E V such tha t  
(14) holds, it suffices to show- t h a t  

Range(A + ~J + ~indK) : V*. (15) 

Firs t  we establish for this purpose the  pseudo-monotonic i ty  of the mul t iopera tor  ~ J  and then  we 
app ly  the  known theorem on the range of the  generalized regular pseudo-monotone  mappings  
[3]. Using the  results of [3] we show tha t  the  following three  conditions hold: 

(i) ~J(v) is a non-empty ,  closed, convex and bounded set  for every  v E V; 
(ii) ~J is an  upper  semi-continuous mapp ing  f rom the strong topology on V to the  weak topology 
on V* ; 
(iii) if (vn) is a sequence in V weakly  converging to v, v n E }J(vn) and  lira sup (v~ - -  v, v*) ~ 0, 
then  for any  w E V there exists v*(w) E ~J(v) with lim inf (v, - -  w, v*) >_ (v - -  w, v*(w)). 

I t  is known t h a t  the  generalized gradient  of a Lipschitz  funct ion satisfies (i) and  (ii) [3]. 
To get  (iii) we use the  me thod  proposed in [3]. Le t  (v,) converge weakly  to v and let  v* E ~J(v~). 
F r o m  the es t imat ion  

[J(v) - -  J(w)I _--< IIkHL~(,, H[v-n - -  Iwi]]Jv,n), ~ c I[v - ,v]iv, 

wi th  k E L2(H) and c as a posi t ive constant  we obtain  

i+.v  - v .  _-< i i k i l . . , . ,  II[v   - 

Since the  t race  operators  YK: (HI(AK)) a -+ (L~(~AK)) a ( g  = 1 . . . .  , S - -  1) are compact ,  the  j u m p  
opera tor  [ - ] :  V -+ (Le(H)) s is compac t  as well. Thus ~-vnl] converges s t rongly to [v~ in (L:(//))3 and 
consequent ly  

lira (v, - -  v, v*) = 0. (16) 

Fur ther ,  we show tha t  every  weak l imit  of (v*) lies in ~J(v). Wi thou t  losing general i ty  we m a y  
assume tha t  (v*) converges weakly  to v*. F rom the regular i ty  of fl(z,., 0(z)) (cf. the  definit ion of 
J (v)  in Sect. 5) we deduce 

J~  v) : J ' ( u ,  v) : d ' (~u] ,  iv]]) : 2~ ivY) 

for any  u, v E V. Hence  

Y~ Iw~) >_- (w, v*), ~ / w  ~ V. 

Taking  in to  account  the semi-cont inui ty  of j0(. ,  .) [3] we obtain,  by  passing to the  limit,  

d~ w) = Y~ [[w~) _>-- (w, v*), ~ / w  E V 

which means  t ha t  v* E ~J(u). Together  with (16) it follows tha t  

lira inf (v,, - -  w, v*) - -  l im inf (v - -  w, v*) = (v - -  w, v*(w)) 

for some v*(w) E ~J(v) which ends the proof  of (iii). 



412 Ingenieur-Archiv 58 (1988) 

The generalized gradient ~J  being pseudo-monotone satisfies the condition 

(v, v*) __> - c  IIv]lv, v* E ~J(v) ,  v E V 

with a constant c, since J(.) is Lipschitzian on V. Thus, in the terminology of [3], ~J(.) is a genera- 
lized regular pseudo-monotone operator. On the other hand, it is obvious that  

0 E Domain  (A -Jr ~ indK) .  

Thus A -+ ~ind K ~- ~J is generalized regular pseudo-monotone [3]. The coercivness of A on V 
follows from Korn 's  inequality, from the assumption that  mes(F o n ~AK) ~ 0 for K = i . . . . .  S, 
and from the strong ellipticity of the tensor of elastic moduli C(x), x E A. I t  implies the coercivness 
of A + ~ i n d ~  + ~J  and by the theorem given in [3] we arrive at (15). The obtained result can 
be summarized in the form of the 

Theorem. Under the regularity conditions introduced in Sect. 5 and the condition mes(F o n AK) > 0 

for K ~- 1, . . . ,  S ,  the hemi-variational inequality (12) posseses at least one solution for an arbi- 
t ra ry  / E V*. 

7 Final remarks 

The quasi-stationary model of debonding processes in layered linear-elastic composites, given 
by  the sequence of hemi-variational inequalities (13) and by the conditions (6), constitutes 
the starting point for further approximations rather than for the direct analysis of special 
problems and numerical solutions. As a rule, the layered composites are made of a great number 
of sheets. Hence the great number of interfaces IIK (K z 1 . . . . .  S - -  1), across which the dis- 
placement field may  suffer discontinuity, argues against the introduced model from the point of 
view of engineering applications. However, the mathematical  model of debonding processes 
proposed in this paper can serve as a foundation for the derivation of some homogenized models, 
e.g., those based on the microlocal modelling approach [7]. The derivation of such models will 
be performed in a forthcoming paper. On the other hand the governing relations obtained in 
this paper can be generalized by introducing in (7) the inertia forces and by interpreting the 
conditions (5) as the constraints imposed on s(z, ~). On this way, using the method of constraints 
[6], it is possible to formulate the evolutionM nlode]s of the debonding processes [4]. Let  us 
remark that  the general line of approach to the debonding problems proposed in this paper can 
be applied also to layered composites made of inelastic materials. 
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