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Refined macro-dynamics of periodic structures (*)

CZ. WOZNIAK (WARSZAWA)

IN THIS CONTRIBUTION a certain non-asymptotic approach to the macro-dynamic modelling of micro-
periodic composites is proposed. The obtained equations of macro-dynamics describe phenomena
related to the micro-heterogeneity of materials, e.g. dispersion and scale effects. An example of appli-
cations t':) micro-vibration and wave propagation problems illustrates the usefulness of the proposed
approach.

1. Introduction

AS IT IS KNOWN, by micromechanics of composite materials we mean a study of com-
posite material behaviour wherein the effects of the constituent materials are detected only
as averaged apparent properties of the composite, |1]. For periodic material structures
which are made of a large number of repetitive micro-heterogeneous cells, the basis
for averaging is a certain representative volume element (r.v.e.) of the structure. The
equations of macro-mechanics can be obtained by the known asymptotic approaches to
the macro-modelling of micro-heterogeneous materials, cf. [2-8], where inertial proper-
ties of a composite are uniquely determined by the averaged mass density. Hence, the
asymptotic equations of macro-dynamics can be applied solely to problems in which the
time-dependent excitations of the structure produce the wave-lengths much larger than
the maximum length dimension of r.v.e. In order to eliminate this drawback, a certain
non-asymptotic method of macro-modelling for dynamics of periodic structures will be
proposed. The result of this approach will be referred to as a refined macro-dynamics of
periodic material structures. The equations of refined macro-dynamics can also describe
vibration and wave propagation problems with the wave-lengths of an order of the cell
length dimensions.

The analysis will be restricted to the small displacement gradient theory and to the
linear-elastic materials. The equations of refined macro-dynamics investigated in this
paper will be obtained by simple calculations of averages and do not require any solution
to boundary value problem on r.v.e. Hence, the proposed approach can be effectively
applied to engineering problems.

Notations

Throughout the paper subscripts ¢, j, k, ! run over the sequence 1, 2, 3 and are
related to the Cartesian orthogonal coordinate system in the reference space. Indices a,
b run over 1,...,n. The summation convention holds for i, 7, k, { as well as for «, b
unless otherwise stated. Points in the reference space R3 are denoted by x, points in the
region V = (—1;/2,1,/2) x (=1,/2,1,/2) x (—15/2,15/2) by y. For any differentiable

(*) The research was supported by the Scientific Research Committee, Warsaw, under grant No. 3 3310 92
03.



function f(x) we denote f; = df/0z;. Symbol & denotes an approximation admissible
from a computational viewpoint. The time coordinate is denoted by 7, T € [y, 4] and
@(-,7) = Ju/07. For an arbitrary integrable function ¢(-) defined almost everywhere in
the region {2 in R? we introduce the well-known averaging operator

(11 (D0 = s [ o+ Do),
|4

for every x € (2, where 2y = {z € R*: V(z) C 2} and dv(y) = dy,dydy;.

2. Preliminary concepts

Let the heterogeneous periodic material structure under consideration in its unde-
formed configuration occupy region {2 in the reference space, and V C {2 can be
taken as a certain r.v.e. of the periodic structure under consideration. We assume that
[ = max{l, l5,15} is sufficiently small as compared to the minimum characteristic length
dimension of f2. Hence, we shall deal with a certain micro-periodic composite structure.
Every element V(x) = x + V, such that V(x) C {2, will be referred to as a cell of this
structure. For the sake of simplicity we assume that 2 = UV (z), z € A, where A is the
lattice of points in 2 which are centers of mutually disjoined cells V (z).

In order to formulate basic hypotheses leading to macromodels of the micro-periodic
body, we shall introduce two auxiliary concepts. The first of them is that of a V-macro
function. A continuous function F'(-) defined on {2 which, for every x,z € 2 andz—x €
V, satisfies condition F'(x) = F(z) is called a continuous V-macro function. Similarly, a
continuous function F'(-) having continuous derivatives up to k-th order, is called V-macro
function if F'(-), together with its derivatives up to k-th order, are continuous V-macro
functions. Moreover, for every continuous V-macro function defined on (2 and for every
integrable function f(-) defined on {2 we assume

2.1) (fF)Yx) = () ®F(x)

for every x € (2. If (f)(-) is a continuous V -macro function defined on (2 and F(-) is
V-macro function defined on {2 such that F(x) & (f)(x),x € {2, then

(2.2) [ fGdv= S (N@G@vol(V) = [ FGdv
n n

z€A

holds for an arbitrary continuous V-macro function G defined on 2. Generally speaking,
V-macro functions describe the macroscopic behaviour of the body.

The second auxiliary concept we are to introduce is that of a micro-shape function. We
assume that the phenomena related to heterogeneous micro-periodic material structure,
from the qualitative point of view, will be described by means of independent continuous
functions h,(-), a = 1,...,n, defined on R? (which have physical sense only for x € 2),
satisfying the conditions:

(i) ha(x) = ho(x+lie;), ¢ = 1,2,3 (no summation with respect to ) for every x € R3,
where e; is a versor of z;-axis,

(ii) (ha)(x) = 0, (hq,i)(x) = 0, for every x € R?,

(iii) (oh,)(x) = O for every x € {2, where g(-) is a mass density function defined
almost everywhere on (2.



Condition (i) is equivalent to the statement that h,(-) are V-periodic. Functions h,(-)
will be called micro-oscillatory shape functions. The choice of these shape functions has to
be postulated a priori in every special problem and depends on the character of micro-
oscillations which we are going to analyze. As a simple example of functions h,(-) we
can take trigonometric functions sin(2rax;/l;), ¢ = 1,2,3,a¢ = 1,...,n (no summation
over ).

3. Basic assumptions

The proposed method of macro-modelling for micro-periodic composite body under
consideration will be based on two fundamental assumptions. The first of them takes into
account the physically reasonable hypotheses that the motion of micro-periodic structure
can be obtained by a superimposition of micro-oscillations on a certain macro-motion.
This macro-motion is represented by a V-macro field U;(-, 7). The micro-oscillations
will be described by means of the micro-oscillatory shape functions h,(-) and by certain
arbitrary fields Q¢(-, 7). Denoting by u;(-,7) a displacement field at a time instant 7
from the undeformed configuration of the body, the first of the basic assumptions will be
referred to as:

Micro-macro localization hypothesis

Every motion of a micro-periodic body under consideration can be represented in the
form

61y ui(x,7) = Ui(x, 7) + ha X)Q{ (x,7), x€E 82, TE][m,7/],

where U;(-, 7), Q¢ (-, T) are arbitrary continuous V-macro fields together with their first
and second order space and time derivatives, and h,(-) are postulated a priori linear
independent micro-shape functions.

Fields U;(-,7) and Q¢(-, 7) will be called macro-displacements and correctors, respec-
tively.

The second basic assumption takes into account the fact that in displacement gradients
u; ;(x, 7) which can be obtained from Eq. (3.1) the terms involving h,(x) are small as
compared to terms involving h, ;(x). Hence, denoting by €;;(x, 7) the linearized strain
tensor, we formulate the following assumption:

Micro-strain assumption

For the micro-periodic body under consideration the components ¢;;(x, 7) of the lin-
earized strain tensor will be assumed in the form

(3.2)  &i(x, Ty = U, p(x, 7) + ho G()QH(X,T), x€ 2, T E€[T,74].

Denoting by ¢;;(x, ) components of the stress tensor and by A;;x;(x) components of
the tensor of elastic moduli, the stress-strain relations for a micro-periodic body are:

(3.3) 0ij(x,7) = Aijri(X)Uk,(x, 7) + ha_(k(x)Q‘,‘)(x, 7)), x€82, 7T€lmn,Ty].

It has to be remembered that the tensor of elastic moduli A;;x(-) as well as the mass
density o(-) are V -periodic fields having the periods /; along z;-axes, respectively.



4. Analysis

The macro-modelling approach of the composite structure under consideration will be
based on the assumptions formulated in Sec. 3, on the properties of V-macro functions
(2.1), (2.2) and on the well-known principle of virtual work:

4.1) f 0;;0¢;;dv =f pibu;da + [ (0b; — oti;)bu;dv ,
- 7] a8 7]

where p;, b; are surface tractions and body forces, respectively. Condition (4.1) has to hold
for every admissible virtual strain field é<;; and every virtual displacement field ;. In the
sequel we assume that body forces are constant and that du; = 0 on the boundary 0f2. By
means of Eqs. (3.1) and (3.2) we obtain du; = 6U; + h0Q%, b5 = Ui jy+ hayj 6Q§‘),
where 8U;, 6Q)¢ are arbitrary sufficiently regular '-macro functions defined on 2, such
that 6U; = 0, 6Q¢ = 0 on the boundary 02. Using Eqs. (2.1) and (2.2), the left-hand
side of Eq. (4.1) can be transformed as follows:

f 0ijbeijdv = Z[ 0i5)(@, T)6Ui,j)(2) + (aijha ) (2, T)0Q{@)] vol(V).
z€A

From Eq. (3.3) and (2.1) it follows that (0;;)(-, ) and (@;;h, ;)(-, T) are V-macro fields
defined on §2,. Hence, there exist V-macro fields S;;(-, ), Hgi(-, 7) defined on §2 such
that

(42) Sij(x7 T) = <0ij>(xa T)? Hai(xv T) = <Uijha-,j>(x7 T)s X € Q() .
By means of Eq. (2.2) we conclude that
4.3) f 0;jbeidv = j (5:;0UG.jy + HaibQF)dv.

i i

For the right-hand side of Eq. (4.1), using Eqgs. (2.1), (2.2) and bearing in mind that
éu; = 0 on d42, we obtain

(4.4) f pibu;da + f (ob; — oii;)oudv
o

f [(0)b: = ()U)8U: — (0hahs)Q; 6Q1Ndv .

V-macro fields S;;(-,7) and Hg;(-, ) w1ll be called macro-stresses and structural forces,
respectively, and they represent an averaged state of stress in a micro-periodic body under
consideration. On the basis of formulae (4.1), (4.3), (4.4) we shall postulate the following:

Macro-approximation of virtual work principle

Macro-stress field S;;(-, 7) and structural force fields H,;(-, 7) are interrelated with
macro-displacement field U;(-, 7) and corrector fields ¢ (-, 7) by means of condition

(4.5) f (5:;6UG 5y + Ha:6Q%)dv = f [((0)b; — (0)U:)6U; — (0hahs)Q76Q%)dv,
2

which has to hold for arbitrary continuous (with their first derivatives) V'-macro fields
8U;(+), 6Q¢(-) definéd on {2, such that §U; = 0, 6Q¢ = 0 on the boundary J2.



Under the assumption that fields éU;(-), 6@Q?(-) are independent, from Eq. (4.5), we
obtain )

f (8.5 + (0)bi — (0)U)éUdv = 0,
(4.6) "

[ (Hai + (0hahs)018Q2 dv = 0,
n

for every (sufficiently regular) V-macro fields 6U/;, §Q¢, which are equal to zero on the
boundary @f2. It can be shown that the restriction of virtual fields §U;, Q¢ to V-macro
fields in Eqgs. (4.6) is irrelevant. Hence, using the du Bois-Reymond lemma, conditions
(4.6) are equivalent to

Si3,5(%, ) + ()b — (o) Ui(x, 7) = 0,

-

(4.7)

w b
Ha.i(xv T) + (Qhﬂ-hb>Qi(x3 T) = 03 X € 'Q’ TE [T()? Tf] .

It can be easily observed that from Egs. (4.2), (3.3) and using Eq. (2.1) we can assume
fields Si;(-, ), Hyi(-,7) in the form
Sii(%, 7) = (Ai) U (% 7) + (Aijitha 6) QT (x, 7)),
Haix ) = (Aijitha, i) U 3 7) + (Aijatha, iho 1) Qh(x,T),
where x € (2 and 7 € [y, T¢]. Equations (4.7), (4.8) involve exclusively V -macro fields
and constitute the final result of the foregoing analysis. The proposed method of macro-
modelling in its part related to the modelling of the inertial properties of the body does not
involve any asymptotic approximation. At the same time the material macro-properties of
the body are obtained by using micro-strain assumption (3.2) where terms of order O(!)

were neglected, i.e. we have applied here an asymptotic approximation. That is why the
proposed method can be referred to as a semi-asymptotic method of macro-modelling.

(4.8)

5. Conclusions

The macro-modelling approach introduced in Secs. 3 and 4 describes a certain general-
ized elastic continuum governed by the field equations (4.7) and constitutive relations (4.8).
It is easy to see that the form of Eqgs. (4.7) is independent of the material properties of the
body under consideration, hence, Eqgs. (4.7) will be called the equations of motion. Simi-
larly, Eqgs. (4.8) will be referred to as macro-constitutive equations. Combining Eqs. (4.7)
and (4.8) we obtain the system of equations for macro-displacement and corrector fields

(A Uk, (%, 7) + (Aijriha, )QF ;(x.7) + (0)bi = (0)Ui(x, 7),

(0hahs)Qi(x,T) + (Aijkiha ) Q5 (x, 7) = —(Aijkiha ) Uk (%, 7),
X € .Q,T € [T()’Tf]'

These equations describe on the matro-level a micro-periodic material structure, the in-
ertial properties of which are specified not only by the averaged mass density {g) but also
by micro-inertial moduli (ohghs). It has to be emphasized that the micro-inertial mod-
uli (gh,hs) involve the length dimension of the r.v.e. Hence, Eqgs. (5.1) can be a basis
for investigations of scale effects in micro-periodic composites. Moreover, the obtained
equations allow to analyze micro-vibrations and propagation of micro-waves in composite

(5.1)



materials, what takes into account the dispersion effects due to the micro-heterogeneity
of the medium. The aforementioned problems can not be investigated by means of the
asymptotic homogenized continuum, cf. [2-8]; that is why we shall consider Eqs. (4.7), (4.8)
and (5.1) as equations of the refined macro-dynamics of micro-periodic elastic composites.

The form of the derived equations depends on the choice and number of micro-shape
functions h,(-), @ = 1,...,n. Let us observe that on the micro-level (inside every cell
V(x), x € £2)) the model is described by a proper choice of micro-shape functions; in
such a manner we can obtain more or less exact descriptions of a problem. Let us also
observe that the corrector fields Q¢ are governed by the second of Egs. (5.1) which are
ordinary differential equations involving only time derivatives of correctors.

In every special problem governing equations (5.1) have to be considered together
with the boundary conditions for macro-displacements U; and with initial conditions for
macro displacement U; and correctors 2. The form of these conditions depends on the
physical character of the problem and takes into account Egs. (3.1) or (3.3); it has to
be emphasized that the solutions to the boundary value problem for Egs. (5.1) have a
physical sense only if the obtained solutions U;, ¢, together with their first and second
order derivatives, are continuous V -macro fields.

The refined macro-dynamics constitutes a certain generalization of the macro-model-
ling approach proposed in [5] and developed in [6-8], where the micro-inertial moduli
were not taken into account. Disregarding in Egs. (5.1) the terms involving (phghs)
as small of order O({?), we obtain the asymptotic model of micro-periodic composites
described in [S-8] and given by

(A Ui 5%, 7) + (Aijriha )Q% 5%, T) + (0)bi = (0)Ui(x,7),
(Aijktha,iho)QR(%,T) = —(Aijriha ) Ui a(x, 7),x € 2,7 € [10,Ts].

In this asymptotic case correctors Q¢ are governed by a system of 3n linear algebraic
equations and can be eliminated from the foregoing system of equations. Such situation
does not hold for Egs. (5.1) of refined macro-dynamics, where correctors are governed
by a system of ordinary difterential equations, involving second-order time derivatives of
correctors.

It has to be emphasized that for the homogeneous material structures we obtain
(Aijrihay) = Aijki(hay) = 0 and hence, Eqs. (5.1) yields two independent systems
of equations

AijkiUkui(x, 7) + 0bi = oUi(x,7),
o(hahs)O (. 7) + Aijir(ha by )Qh(x, T) = 0.

Under initial conditions Q%(x, 7y) = 0, Q?(x, ) = 0, x € 2, we obtain Q¢ (x, 7) = 0 for
T € [, 7], x € §2. Hence, we conclude that the oscillatory terms in Egs. (3.1) are due
to the micro-heterogeneity of a material composite structure.

An illustrative example of applications of the refined dynamics will be given in Sec. 6.

6. Applications

The proposed model of the refined macro-dynamics will now be applied to the problem
of a straight micro-periodic linear-elastic bar treated as a uniaxial structure. The repre-
sentative element is now given by the interval (—{/2,1/2) of the 2-axis, where z = z;. We



assume that the Young modulus E'(2) and the mass density p(x) are piecewise constant
periodic functions in (—a/2, ¢/2) are equal to E|, p;, and in (={/2,1/2)/(—a/2,a/2) are
equal to 3, p;, respectively. For the sake of simplicity we introduce only one micro-shape
function h(x) = hy(2), € R, which is continuous, linear in (-//2, —a/2), (—a/2,a/2),
(¢/2,1/2), and in [-1/2,1/2] takes the values h(—1/2) = h(0) = h(l/2) = 0, h(—~a/2) =
1, h(a/2) = ~1, and has the period {. By U(-, ), Q(-, T) we denote macro-displacement
and corrector fields, respectively, defined on a certain interval (—L, L) of the a-axis,
where L >> I. The derivatives of F'(-) with respect to @ = 2 will be denoted by F’(-),
and the averaging operator (-) will now be related to a segment (—[/2,1/2) of the x-axis.
From Eqs. (5.1), neglecting the body forces, we obtain

(EYU"(z,7) + (EN)Q'(2,7) = () Uz, 7),
(ohh)Q(z,T) + (EW'RYQ(z,7) = —(ERW)YU'(x,T).
Setting ¢ = a/l, ¢ = (I — @)/l we obtain
(0) = ¢rov + 202, (E) =1 Ex + 92Es,
(EWY = 2E) - Ey), (ENNY=4(E /¢ + Fafd2),
(ohh) = I}[3x (o) = I*/3 - (101 + $202) -
The aim of the following section is to analyze the problems of free vibrations and wave

propagation related to the micro-periodic bar under consideration. The analysis will be
based on Eqgs. (6.1).

(6.1)

6.1. Vibrations

Let 2 € (~L/2,L/2) where L > [ and T € (—00,00). It can be observed that
Egs. (6.1) have a solution of the form
U(z,m)=0, Q(2,7)= Acospur + Bsinur,

where A, B are arbitrary constants and u* = (Eh'h')/{ohh). The positive constant j
will be referred to as the free micro-vibration frequency, and will play an important role
in the subsequent analysis.

First we shall look for the solution of Eqs. (6.1) in the form U (z, T) = Uy(z) exp(iwT),
Q(z,7) = Qy(z) exp(iwT). Hence .

(EYU) (2) + (0)w?Up(z) + (ER)Qi(x) =
((th)wz — (ERL)Qu(x) = (ER') Up(x) =
2
L) () Er o) Ex)1 (e 1)

(Eh'h')
and introducing the micro-vibration frequency p we obtain

(6.3) [% - (%)2] U (<?>w2[1 - (‘iﬂ Up(z) = 0

a similar equation we obtain also for Qy(2).

(6.2)

after simple manipulations, defining £ = (F)~

REMARK. The effective modulus E*!f introduced above makes it possible in the asymp-
totic approximation (I — 0), to represent the first equation of Eq. (4.1) in the form
EfU"(z,7) = (0)U(x, 7). Let us also observe that E<T/(E) < 1.



From Eq. (6.3) it follows that (A, B are arbitrary constants):

(i) if (w/p)? < E¥/(E) or (w/u)? > 1 then there exist sinusoidal vibrations Uy(z)
Acoskz, Qu(z) = Bsinkz;

(i) if Ef/(E) < (w/um)* < 1 then there exist exponential vibrations Uy(z) =
Acoshkz, Qy(z) = Bsinhkz;

(iii) if (w/p)? = 1 or (w/p)* = E®/(E) then we arrive at the degenerate or trivial
case, respectively.

This classification holds if (E'h') # 0; if (Eh’) = 0 then only sinusoidal vibrations are
possible.

In the case (i) of sinusoidal waves, by substituting Uy(z) = A cos kz, Qy(z) = Bsin kz
into Egs. (4.2) we obtain nontrivial solutions (A # 0, B # 0) only if

w?(p) - k¥ E) k(ER')
K(ER')  w?(ohh) — (EA'R')

=0.

Introducing the micro-vibration frequency y defined above we obtain finally

(6.4) w? = ij;’kz + (wz _ %)kz) (%’)2

The second term on the RHS of Eq. (6.4) describes the dispersion effect due to the micro-
heterogeneous structure of the bar, i.e. the nonlinear interrelation between w and k. For
a homogeneous bar E°f = (E) and Eq. (6.4) yields w?(p) = (E)k%,(E) = E. Ifl - 0
then 4 — oo and the dispersion effect disappears. It has to be emphasized that Uy(-),
Qo(-) have to be V-macro fields (cf. Sec. 2), where now V reduces to the line segment
(=1/2,1/2). Hence, for sinusoidal waves the obtained results have a physical sense only
if [k < 1. Treating [k as a small parameter we can derive from Eq. (6.4) the formula
2 _ B 2[ 1 ,z(Eh')z] 272
w (Q)k 1 3(lk) (EWRY + o(k°l%),

which represents w? in the explicit form.

In the case (ii) of exponential waves, after substituting Uy(z) = A coshkz, Qu(z) =
B sinh kz into Egs. (6.2), we obtain nontrivial solutions only if

w2() + kX(E) k(ER')
“K(ERY " w¥(ohh) — (Eh'R)

=0.

Hence, after introducing u, we obtain

e R R

It has to be emphasized that Eq. (6.5) has a physical sense only for micro-heterogeneous
bars, because in the case of homogeneity E*T/(E) = 1 and there are no exponential
vibrations. '

Summing up we conclude that the micro-periodic heterogeneity of bars leads to the
dispersion effects and to the exponential vibrations which can not be treated on the basis
of the asymptotic homogenized models of periodic structures.




6.2. Wave propagation

At the end of this example the wave propagation problem in a infinite micro-hetero-
geneous bar will be discussed. To this end we look for a solution of Egs. (6.1) in the form
U(z,7) = F(z — c1), Q(z,7) = G(2 — cT), where c is the wave propagation velocity.
Setting ( = z — c7 we shall use the notation F’ = dF/d(, G' = dG/d(. Then from
Egs. (6.1) after manipulations, we obtain

2
(6.6) (E) - <p>c2)c—2F” + (BT — (p)AF =0,

and a similar equatlon for G. Eq. (6.6) 1mp11es the following special cases of wave propa-
gation in a micro-periodic bar:

(i) sinusoidal waves if ¢* < (E<1/(0)) or ¢2"> ({(E)/{0));

(ii) exponential waves if Ee“/(g > ¢t < (E)/{o);

(iii) degenerate case if ¢ = E*/(p) or ¢Z = (E)/(p).

Conditions (i)—(iii) hold if (EA') # 0; for (Eh') = 0, ¢ = (E)/(p). In the case (i),
substituting U(z, T) = Asink(z — ¢7), Q(z,7) = Beosk(z — c¢1), k = 27 /L, where L
is the wavelength and A, B are arbitrary constants, into-Eqs. (6.1) we obtain nontrivial
solutions only if

. c2k?
(6.7) (o) = E¥"+ ()¢’ - (E ))—

The second term on the RHS (6.7) describes the effect of dispersion. The obtained result
has a physical sense only if [k = 27//L < 1 because functions U (-, 7), Q(+, 7) have to
be V-macro functions, cf. Sec. 2. Treating k! as a small parameter and bearing in mind
that 2 = (Eh'h')/{ohh) = 3(ER'R')/1*(g) from Eq. (6.7) we obtain
foefl 1 (ER')?

2= 11— Skt |+ o(KP).

“ =3 ] )
It can be seen that for kI — 0 the dispersion effect disappears.

Summing up we see that the micro-heterogeneity of a bar implies the existence of
exponential waves and dispersion. These effects can not be investigated on a basis of
asymptotic homogenization equations (for [ — 0), i.e. for the known homogenized models
of a bar.

7. Final remarks

The example given in Sec. 6 illustrates the fact that the refined macro-dynamics can
be successfully applied to dynamic problems for micro-periodic structures. Among the
advantages of the proposed macro-modelling approach we can mention the relatively
simple form of the resulting equations (5.1). Moreover, the governing equations of refined
macro-dynamics (4.7) and (4.8) can be obtained without any solution to a boundary value
problem on the r.v.e. The main drawback lies in an imprecise choice of the micro-shape
_ functions h,(-) based often on the intuition of the researcher. Different applications of
the proposed method of modelling as well as the possible generalization of this approach
are now under consideration and will be presented separately,
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