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Abstract

Full Waveform Inversion (FWI) applications classically rely on efficient first-order optimization schemes,

as the steepest descent or the nonlinear conjugate gradient optimization. However, second-order infor-

mation provided by the Hessian matrix is proven to give a useful help in the scaling of the FWI problem

and in the speed-up of the optimization. In this study, we propose an efficient matrix-free Hessian-

vector formalism, that should allow to tackle Gauss-Newton (GN) and Exact-Newton (EN) optimization

for large and realistic FWI targets. Our method relies on general second order adjoint formulas, based

on a Lagrangian formalism. These formulas yield the possibility of computing Hessian-vector products

at the cost of 2 forward simulations per shot. In this context, the computational cost (per shot) of one GN

or one EN nonlinear iteration amounts to the resolution of 2 forward simulations for the computation

of the gradient plus 2 forward simulations per inner linear conjugate gradient iteration. A numerical

test is provided, emphasizing the possible improvement of the resolution when accounting for the exact

Hessian in the inversion algorithm.

Introduction

Full Waveform Inversion (FWI) is becoming an efficient tool to derive high resolution quantitative mod-

els of the subsurface parameters. The method relies on the minimization, through an iterative procedure,

of the residual between recorded data and synthetic data computed by solving the two-way wave equa-

tion in a subsurface model. The growth of available computational resources and recent developments

of the method makes now possible applications to 2D and 3D data in the acoustic approximation (see for

example Prieux et al., 2011; Plessix et al., 2010) and even in the elastic approximation (Brossier et al.,

2009).

Most of the FWI applications rely on fast optimization schemes as preconditioned steepest descent or

preconditioned conjugate-gradient methods (PCG). Second-order information provided by the Hessian

is often neglected in FWI, due to the high computational cost to build this matrix and solve the normal

equation system. However, a significant improvement of the results can be obtained using this infor-

mation: Pratt et al. (1998) have shown the improved resolution of Gauss-Newton method compared to

the steepest descent one in a canonical application. Hu et al. (2011) have shown results improvement

provided by a non-diagonal truncated Hessian in PCG. Brossier et al. (2009) have shown the estimated

Hessian’s impact of a quasi-Newton l-BFGS (Nocedal, 1980), on image resolution and convergence

speed compared to PCG. Epanomeritakis et al. (2008); Fichtner and Trampert (2011) have also dis-



cussed the interest of Hessian for inversion and uncertainty estimation, and also the prohibitive cost of

Hessian computation and storage.

In this study, we develop the mathematical framework to propose an efficient matrix-free Hessian-vector

product algorithm for FWI, and give an illustration of the interest of accounting for the exact Hessian in

the inversion process. The final aim is to tackle Gauss-Newton and Full-Newton method for large scale

applications. Our development relies on a general second-order adjoint-state formula, valid either in the

time or in the frequency domain.

Problem statement

We consider the forward problem equation

S(p)u = ϕ, (1)

where p denotes the subsurface parameters (model space), S(p) denotes the linear forward problem

operator corresponding to the two-way wave equation discretization1, ϕ is the source vector, and u is the

wavefield vector. In the following, we consider that p and u have m ∈ N components2. These notations

are general and can be applied either in the time domain or in the frequency domain. The FWI problem

is expressed as the least-square problem

min
p

f (p) =
1

2

Ns

∑
s=1

‖Rsus(p)−ds‖
2
, (2)

where ds and us(p) are respectively the recorded dataset and the solution of the forward problem asso-

ciated with the source ϕs, Ns is the total number of sources in the dataset, and Rs is a restriction operator

that maps the wavefield us to the receivers locations.

The misfit gradient is

∇ f (p) = R

(
Ns

∑
s=1

J†
s R†

s (Rsus(p)−ds)

)
(3)

where Js(p) denotes the Jacobian matrix ∂pus(p). The complex conjugate transpose operator is denoted

by the symbol † and the real part application by R. The Hessian operator is

H(p) = R

(
Ns

∑
s=1

(
J†

s R†
s RsJs +

m

∑
j=1

[R†
s (Rsus(p)−ds)] jHs j

))
, Hs j = ∂ 2

pp(us) j(p), (4)

and its Gauss-Newton approximation is

B(p) = R

(
Ns

∑
s=1

J†
s R†

s RsJs

)
(5)

In our study, the problem (2) is solved using a Newton or a Gauss-Newton algorithm, a local iterative

optimization method that computes a sequence pk from an initial guess p0 using the update formula

pk+1 = pk +αkdk, (6)

where dk is the solution of

H(pk)dk = −∇ f (pk), or B(pk)dk = −∇ f (pk) in the Gauss-Newton approximation, (7)

1Note that the operator S(p) depends non-linearly on p
2This simplification is satisfied whenever u is discretized on the same grid than p. However, the formulas can be straight-

forwardly extended to the situation where p and u do not have the same number of components.
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and αk is computed through a globalization procedure (linesearch or trust region). Explicit computation

and storage of matrices J(p),H(p) and B(p) is prohibitive for large scale problems and realistic FWI

applications. Hence, the equation (7) should be solved using matrix-free linear iterative solvers, as

proposed in Epanomeritakis et al. (2008); Fichtner and Trampert (2011), such as the conjugate gradient

(CG) method. This requires to compute efficiently both the gradient ∇ f (p) and Hessian-vector products

H(p)v or B(p)v for arbitrary vectors v . While the computation of ∇ f (p) can be performed efficiently

through the classical adjoint-state formula (Plessix, 2006)

(∇ f (p))i = R (∂pi
S(p)u(p),λ (p)) , i = 1, . . . ,m (8)

where λ (p) (the adjoint state) is the solution of

S(p)†λ = R†(d −Ru), (9)

we propose general second-order adjoint-state formula for the computation of H(p)v and B(p)v related

to the Lagrangian formalism and the nonlinear constrained optimization theory.

Computing Hessian vector products

For the sake of clarity, we consider in the following that Ns = 1 and we drop index s. Formulas for

Ns > 1 are directly obtained by summation. First, we define the function gv(p) such that

gv(p) = (∇ f (p),v) = R(
(
J†R†(Ru(p)−d),v

)
, (10)

where u(p) is the solution of (1). We have ∇gv(p) = H(p)v. We define the Lagrangian function associ-

ated with the functional gv(p)

Lv (p,u,α,λ ,µ) = R
(
R†(Ru−d),α

)
+R (S(p)u−ϕ,µ)+R

(
S(p)α +

m

∑
j=1

v j∂p j
S(p)u,λ

)
(11)

The Lagrangian Lv is composed of three terms: the first one accounts for the function gv, the second one

accounts for the constraints on the wavefield u, solution of the forward problem, the third one accounts

for the constraints on the first-order derivatives of the wavefield u with respect to p. For ũ and α̃ such

that

S(p)ũ = ϕ, S(p)α̃ = −
m

∑
j=1

v j∂p j
S(p)ũ, (12)

we have

∇gv(p) = ∂pLv (p, ũ, α̃,λ ,µ)+∂uLv (p, ũ, α̃,λ ,µ)∂pũ(p)+∂αLv (p, ũ, α̃,λ ,µ)∂pα̃(p). (13)

We define λ̃ and µ̃ such that

∂uLv

(
p, ũ, α̃, λ̃ , µ̃

)
= 0, ∂αLv

(
p, ũ, α̃, λ̃ , µ̃

)
= 0. (14)

We have

S(p)†µ̃ = −R†Rα̃ −
m

∑
j=1

v j

(
∂p j

S(p)
)†

λ̃ , S(p)†λ̃ = −R†(Rũ−d) (15)

and

(H(p)v)i = R

(
((∂pi

S(p)) ũ, µ̃)+
(
(∂pi

S(p)) α̃, λ̃
)

+
m

∑
j=1

v j

((
∂p j

∂pi
S(p
)

ũ, λ̃
))

, i = 1, . . . ,m. (16)

Note that λ̃ corresponds to the adjoint state defined for the computation of ∇ f . In addition, it can be

proved that the computation of B(p)v amounts to setting λ to 0 in equations (15) and (16).

(B(p)v)i = R (((∂pi
S(p)) ũ, µ̃)) , i = 1, . . . ,m with S(p)†µ̃ = −R†Rα̃, (17)

The computation of one matrix vector product H(p)v (or B(p)v) thus requires to solve one additional

forward problem for α and one additional adjoint problem for µ , as reported in Epanomeritakis et al.

(2008); Fichtner and Trampert (2011). For Ns > 1, the overall computation cost is multiplied by Ns.
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Numerical results

We consider the estimation of the pressure wave velocity vp using a 2D acoustic FWI algorithm in the

frequency domain. The exact model v∗p is composed of a homogeneous background v0
p = 1500 m.s−1

defined on a 2000 m length square, and two inclusions where v∗p = 4500 m.s−1. PML are all around.

The two inclusions are distant only from 40 m (see fig.1). The high velocity contrast generates high

amplitude multi-scattered waves. We use a full acquisition with four lines of 29 sources placed each 50

m on each side of the domain. Each source is associated with four lines of 29 receivers placed each 50

m all around the domain. The model is discretized over a 101× 101 grid with a spatial step of 20 m.

The initial guess is the background v0
p. We use one dataset corresponding to the frequency of 5 Hz. The

associated average wavelength is λ ≃ 300 m. At this frequency, the distance between the two inclusions

is smaller than the expected resolution of classical FWI algorithms based on l-BFGS or Gauss-Newton

approximation. We compare the results obtained performing 50 iterations of the l-BFGS algorithm, 20

iterations of Gauss-Newton inversion and 20 iterations of Exact-Newton inversion3. The corresponding

estimated models are plot in Figure 1.

Figure 1 Acoustic FWI for pressure wave velocity. From left to right, exact model, l-BFGS result,

Gauss-Newton result, Exact-Newton result.

These results emphasize the role of the second-order part of the Hessian, which is neglected in the

Gauss-Newton approximation, and hardly estimated in the l-BFGS approximation. As mentioned by

different authors, this part of the Hessian allows to account for double scattering during the inversion

(Pratt et al., 1998; Virieux and Operto, 2009). An enhancement of the resolution is obtained: only when

using the exact Hessian, the two inclusions are identified. In this case, the normalized misfit is 7×10−4.

In the case of the Gauss-Newton inversion, the final normalized misfit is around 0.25: neglecting the

double scattered waves prevent the optimizer to converge. In the case of the l-BFGS inversion, the final

normalized misfit is around 10−3: the l-BFGS Hessian approximation allows to account for a part of the

scattered wavefield.

Conclusions and perspectives

The preliminary results we have obtained illustrate how accounting for the Hessian effect can improve

the FWI results. The second-order adjoint formula is an efficient tool to implement Gaus-Newton or

Exact-Newton algorithms in a matrix-free fashion. The next step consists now in developing globaliza-

tion methods either based on linesearch or trust region that render the overall method competitive with

the l-BFGS method. Two main problems have to be tackled: the first one is the definition of a proper

criterion to stop the inner conjugate gradient iterations, in order to minimize the computation cost. The

second one is the development of efficient preconditioners to speed-up the convergence of the inner con-

jugate gradient loop. Among several possibilities, we are interested in the Newton Steihaug algorithm

(Steihaug, 1983), based on the trust-region method, that provides naturally a stopping criterion for the

inner iterations. In addition, for each resolution of the inner linear systems, a l-BFGS preconditioner

can be computed simultaneously, which is applied to the inner linear system raised by the next outer

3This corresponds approximately to the same computation cost for 2.5 conjugate gradient inner iterations per Newton

nonlinear iteration
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nonlinear iteration.
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