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SUMMARY

Full Waveform Inversion (FWI) methods use generally gradient

based method, such as the nonlinear conjugate gradient method

or more recently the l-BFGS quasi-Newton method. Several

authors have already investigated the possibility of accounting

more accurately for the inverse Hessian operator in the mini-

mization scheme through Gauss-Newton or exact Newton algo-

rithms. We propose a general framework for the implementa-

tion of these methods inside a truncated Newton procedure. We

demonstrate that the exact Newton method can outperform the

standard gradient-based methods in a near-surface application

case for recovering high-velocity concrete structures. In this

particular configuration, large amplitude multi-scattered waves

are generated, which are better taken into account using the

exact-Newton method.

INTRODUCTION

Full Waveform Inversion is becoming an efficient tool for quan-

titative high resolution imaging of subsurface parameters (Virieux

and Operto, 2009, for a review). This method is based on the

minimization of the distance between predicted and recorded

datasets. The computation of the predicted datasets is performed

through the resolution of a two-way wave propagation prob-

lem. Recent developments make now possible the application

of FWI to 2D and 3D data in the acoustic case (see for example

Prieux et al., 2011; Plessix et al., 2010) and in the 2D elastic

case (Brossier et al., 2009).

The minimization of the distance between the predicted and the

recorded data amounts to a large scale nonlinear inverse prob-

lem. This problem is generally solved using gradient-based

methods, such as the (preconditioned) nonlinear conjugate gra-

dient method, or more recently the l-BFGS quasi-Newton method.

These methods only require the capability of computing the gra-

dient of the misfit function. This is usually performed through

the adjoint state method (Plessix, 2006). In this case, the com-

putation of the gradient requires the resolution of one forward

problem and one adjoint problem.

However, Pratt et al. (1998) have demonstrated the importance

of accounting for the inverse Hessian operator during the min-

imization process. This operator acts as a filter of the model

update given by the misfit gradient. The inverse Hessian plays

two roles.

• It refocuses the estimation of poorly illuminated param-

eters.

• It compensates the artifacts generated by the multi-scattered

wavefield on the gradient.

Let us remind that the forward problem does account for multi-

ple scattering when induced by the current reconstructed model,

whatever is the minimization scheme. Here, we are interested in

algorithms that better account for the impact of multi-scattered

waves from an optimization point of view. First attempts of

implementing such methods, namely the Gauss-Newton or the

exact Newton method, have been proposed by Epanomeritakis

et al. (2008) and Fichtner and Trampert (2011). In this study we

propose in the first part a general framework for the implemen-

tation of these methods, under the form of the truncated Newton

algorithm. In the second part, we compare the efficiency of the

truncated Newton and Gauss-Newton methods with the l-BFGS

method and the steepest descent on two test cases.

METHOD AND ALGORITHM

Notations

The computation of the incident wavefield consists in solving

the forward problem, denoted by

S(p)u = ϕ, (1)

where p is the set of subsurface parameters, u is the incident

wavefield, S(p) is the two-way wave equation operator. The

FWI method consists in solving the minimization problem

min
p

f (p) =
1

2
‖Ru(p)−d‖2, (2)

where d is the recorded data vector, u(p) is the solution of the

forward problem (1), R is a linear operator mapping the wave-

field u to the receivers location.

Standard methods

A standard numerical method useful to solve the nonlinear prob-

lem (2) relies on the Newton method. This methods consists in

computing a sequence pk from an initial guess p0 such that

pk+1 = pk +αkdk, (3)

with

H(pk)dk = −∇ fk, or equivalently dk = −H(pk)
−1

∇ fk, (4)

where H(p) denotes the Hessian operator and αk is a scaling

factor computed through a globalization method (linesearch,

trust-region). The Hessian operator H(p) can be expressed as

H(p) = R

0

@J†R†RJ +
X

j

[R†(Ru(p)−d)] jH j

1

A , (5)

where J(p) = ∂pu(p) is the Jacobian operator, H j = ∂ 2
ppu j(p)

denotes the second-order derivatives of the jth component of

the wavefield u j(p) and R is the real part operator.
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For large scale problems, direct access to the Hessian operator

or its inverse is prohibitive from a computational cost point of

view. As a consequence, an approximation of H(pk)
−1 is used

instead. While the steepest descent algorithm simply consists

in replacing H(p)−1 by the identity matrix, more sophisticated

method such as the l-BFGS method are based on an approxi-

mation of H(pk)
−1 through finite differences of previous misfit

gradient values ∇ f (pk−1),∇ f (pk−2), . . . .

Another way to compute the descent direction dk and account

for the Hessian operator is to use a “matrix free” iterative lin-

ear solver, such as the conjugate gradient method (Saad, 2003).

This only requires the capability of computing efficiently Hes-

sian vectors products H(p)v for a given vector v in the parame-

ter space. In this context, either the exact Hessian H(p) can be

used, or its Gauss-Newton approximation

B(p) = R

“

J†R†RJ
”

. (6)

This can be performed through second-order adjoint methods.

Computing Hessian vector products

Define the function gv(p) such that

gv(p) = (∇ f (p),v) = R(
“

J†R†(Ru(p)−d),v
”

, (7)

where u(p) is the solution of (1). We have ∇gv(p) = H(p)v. We

define the Lagrangian function associated with the functional

gv(p)

Lv (p,u,α,λ ,µ) = R
`

R†(Ru−d),α
´

+R (S(p)u−ϕ,µ)

+ R

0

@S(p)α +
X

j

v j∂p j
S(p)u,λ

1

A .

(8)

The Lagrangian Lv is composed of three terms: the first one

accounts for the function gv, the second one accounts for the

constraints on the wavefield u, solution of the forward prob-

lem, the third one accounts for the constraints on the first-order

derivatives of the wavefield u with respect to p. For eu and eα

such that

S(p)eu = ϕ, S(p)eα = −
X

j

v j∂p j
S(p)eu, (9)

we have

∇gv(p) = ∂pLv (p, eu, eα,λ ,µ)+∂uLv (p, eu, eα,λ ,µ)∂peu(p)
+ ∂α Lv (p, eu, eα,λ ,µ)∂p eα(p).

(10)

We define eλ and eµ such that

∂uLv

“

p, eu, eα,eλ , eµ
”

= 0, ∂α Lv

“

p, eu, eα,eλ , eµ
”

= 0. (11)

We have
8

<

:

S(p)†
eµ = −R†Reα −

X

j

v j

`

∂p j
S(p)

´†
eλ

S(p)†
eλ = −R†(Reu−d),

(12)

and

(H(p)v)i = R

“

``

∂pi
S(p)

´

eu, eµ
´

+
“

`

∂pi
S(p)

´

eα,eλ
””

+ R

0

@

X

j

v j

“

`

∂p j
∂pi

S(p
´

eu,eλ
”

1

A .

(13)

Note that eλ corresponds to the adjoint state defined for the com-

putation of ∇ f . In addition, it can be proved that the computa-

tion of B(p)v amounts to setting λ to 0 in equations (12) and

(13), which yields

(B(p)v)i = R
``

∂pi
S(p)

´

eu, eµ
´

, with S(p)†
eµ = −R†Reα.

(14)

The computation of one matrix vector product H(p)v or B(p)v
thus requires to solve one additional forward problem for α and

one additional adjoint problem for µ , as reported in Epanomer-

itakis et al. (2008); Fichtner and Trampert (2011).

The truncated Newton method

The truncated Newton method is based on the standard descent

scheme (3). At each nonlinear iteration k, the conjugate gra-

dient algorithm is used to compute an approximate solution of

the equation (4). The term “truncated” refers to the fact that

the linear system (4) is not solved exactly. Instead, only a few

number of linear iterations are performed. An important ques-

tion to address is when to stop the linear iterations. In our im-

plementation we use the Eisenstat stopping criterion (Eisenstat

and Walker, 1994), and stop the linear iterations whenever the

current descent direction dk satisfies

‖∇ f (pk)+H(pk)dk‖ ≤ ηk‖∇ f (pk)‖. (15)

The scalar ηk is known as the forcing term and can be computed

following several formulas for which the convergence of the

truncated Newton procedure is proven. In our implementation,

we define ηk as

ηk =
‖∇ f (pk)−∇ f (xp−1)− γk−1H(pk−1)dk−1‖

‖∇ f (pk−1)‖
. (16)

Two variant of the same algorithms can finally be derived: the

truncated Newton algorithm (trN), which computes dk as an ap-

proximate solution of the linear system (4), and the truncated

Gauss-Newton algorithm (trGN), which computes dk as an ap-

proximate solution of the linear system

B(pk)dk = −∇ f (pk). (17)

We compare these algorithms with the steepest descent and the

l-BFGS procedure on two test cases.

NUMERICAL EXPERIMENTS

Context

We consider the estimation of the pressure wave velocity by

2D frequency domain FWI. We use a fourth-order finite differ-

ence scheme with a compact support (Hustedt et al., 2004). We

add 10 points width Perfectly Matched Layers (PML Berenger,

1994) on each side of the domain. The forward problem (1)

amounts to a linear system, which we solve with the direct

solver MUMPS (parallel LU factorization MUMPS-team, 2009).

The first experiment is based on the Marmousi II pressure wave

velocity model, with a surface acquisition, and smooth initial

model. The second experiment is inspired from a near-surface

application: we aim at recovering two high velocity structures

(4000 m.s−1) in a homogeneous slow background (300 m.s−1)
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with a bottom layer at (500 m.s−1), from surface and well mea-

surements. In each case, we compare the efficiency of the four

algorithms, namely the steepest descent, l-BFGS, trGN, trN.

We use our own implementation of these four algorithms, using

the same linesearch algorithm, based on the Wolfe rules (No-

cedal and Wright, 1999).

The Marmousi II test case

The pressure wave velocity model associated with the Mar-

mousi II test case (Martin et al., 2006) is presented in figure

1. The model is defined on a 3.5 km depth and 16.5 km width

rectangle. The discretization step is set to 25 m. A surface ac-

quisition is used, with 661 receivers each 25 m and 287 sources

each 50 m. We generate 4 synthetic datasets using 4 frequen-

cies: 3 Hz, 5 Hz, 8 Hz, and 12 Hz. We invert simultaneously

these datasets from the initial model presented on figure 1. The

iterations are stopped whenever the following criterion is satis-

fied

f (p)/ f (p0) < 10−3. (18)

The results provided by the 4 algorithms are presented in figure

3. The convergence curves are presented in figure 2. The con-

vergence speed of the algorithms is expressed in terms of the

number of forward problems required to be solved. The four

Figure 1: Marmousi II pressure wave velocity model, exact

(left), initial (right)

estimated models are quasi-similar. However the convergence

speed of the four algorithms is very different. As expected the

steepest descent algorithm converges slowly. Conversely, the

l-BFGS is far more efficient. The trGN and trN algorithms are

also more efficient than the steepest descent, although they are

not as efficient as the l-BFGS method. Note however that pre-

conditioning technics could be used to enhance their conver-

gence speed.

A near-surface application test case

The pressure wave velocity model associated with the near-

surface application test case is presented in figure 4. The model

is defined on a 3.5 m depth and 30 m width rectangle. Two high

velocity structures (4000 m.s−1) are placed in a slow homoge-

neous medium at 300 m.s−1. A layer at 500 m.s−1 is located at

the bottom of the model. The reflections generated by this dis-

continuity illuminate the bottom of the two structures. The dis-

cretization step is set to 0.15 m. Three lines of sources/receivers

are used: one line is located at the surface, another is located

on the left side, the third one is located on the right side. We

generate 9 synthetic datasests, using 9 frequencies from 100

Hz to 300 Hz, each 25 Hz. We invert simultaneously these 9

datasets from the initial model presented in figure 4. The previ-

ous convergence criterion (18) is used. The convergence curves

Figure 2: Convergence speed for the Marmousi II test case:

steepest descent (red), l-BFGS (green), Gauss-Newton (blue),

Newton (purple)

Figure 3: Marmousi II inversion results, steepest descent (top

left), l-BFGS (top right), trGN (bottom left), trN(bottom right)

associated with the 4 algorithms are presented in figure 5. The

corresponding inversion results are presented in figure 6. As

previously, the convergence speed is expressed in terms of the

number of forward problems required to be solved.

Figure 4: Near-surface test case pressure wave velocity models,

exact (left), initial (right)

The four algorithms fail to satisfy the convergence criterion,

and stop on a linesearch failure. The descent direction which is

computed is not accurate enough to yield a subsequent decrease

of the misfit function. However, the steepest descent and the

l-BFGS algortihms stop after few iterations, while the Gauss-

Newton and the Newton method manage to further minimize

the misfit function. Among these two, the Newton method per-

forms better, and reaches f (p)/ f (p0) = 4.52×10−3.



The truncated Newton for FWI

Figure 5: Convergence speed for near-surface application test

case: steepest descent (red), l-BFGS (green), Gauss-Newton

(blue), Newton (purple)

Figure 6: Near-surface test case inversion results, steepest

descent (top left), l-BFGS (top right), trGN (bottom left),

trN(bottom right)

Figure 7: Near-surface test case inversion results with noise (-3

dB), steepest descent (top left), l-BFGS (top right), trGN (bot-

tom left), trN(bottom right)

The models estimated by the four algorithms are very differ-

ent. The models provided by the steepest descent is strongly

blurred out. The l-BFGS method and the Gauss-Newton refo-

calize slightly more the two structures. The best estimation is

provided by the Newton algorithm. Note however that the con-

trast is far from being recovered: the maximum pressure wave

velocity value reached by the Newton estimation is around 600

m.s−1.

In this case, the amplitude of the double-scattered wavefield,

and more generally of the multi-scattered wavefield, is large,

due to high velocity contrasts between the bakcground model

and the two concrete structures. As presented by Pratt et al.

(1998), this generates strong artifacts on the misfit gradient.

The second-order part of the Hessian, which allows to com-

pensate for these artifacts, becomes prominent.

As this part is neglected in the Gauss-Newton approximation of

the Hessian, the Newton inversion scheme provides better re-

sults than the Gauss-Newton one. One can also shows that this

part is responsible for the presence of negative eigenvalues in

the Hessian. Since the l-BFGS approximation of the Hessian

is positive definite (by construction), this also explains why the

l-BFGS method fails to converge on this particular test case.

Conversely, for the Marmousi test case, the amplitude of the

multi-scattered wavefield is lower. Therefore, the l-BFGS ap-

proximation is accurate, and the method is efficient.

In order to investigate the robustness of the Newton method, we

introduce an uncorrelated additive white gaussian noise to each

data set, and perform the same tests. The models presented in

figure 7 are obtained with a noise level of −3 dB. These results

demonstrate that even with with noisy data, the Newton method

still provides a reliable estimation of the model, contrary to the

other methods.

CONCLUSION

Accounting for the inverse Hessian operator in FWI is a cru-

cial issue. In the presence of large amplitude multi-scattered

waves, standard minimization methods such as the steepest de-

scent or the l-BFGS method can fail to converge. In this case,

we demonstrate that the truncated Newton method can provide

better estimations of the subsurface parameters, as it better ac-

counts for the Hessian operator within the minimization scheme.

However, a particular effort must be provided to reduce the

computation costs associated with this method. The general

second-order adjoint state formula we propose allows to com-

pute Hessian vector products at the cost of one extra forward

and one extra adjoint problem, either in the Gauss-Newton ap-

proximation or in the exact Newton framework. The Eisenstat

stopping criterion used for the resolution of the linear system

associated with the computation of the Newton descent direc-

tion prevents from oversolving.
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