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Frozen Boolean partial co-clones

Gustav Nordh∗ Bruno Zanuttini†

Abstract

We introduce and investigate the concept of frozen par-

tial co-clones. Our main motivation for studying frozen par-

tial co-clones is that they have important applications in

complexity analysis of constraints. The frozen partial co-

clones lie between the co-clones and partial co-clones in

the sense that the partial co-clone lattice is a refinement of

the frozen partial co-clone lattice, which in turn is a refine-

ment of the co-clone lattice. We concentrate on the Boolean

domain and determine large parts of the frozen partial co-

clone lattice.

1 Introduction

A clone is a composition closed set of operations con-

taining all projections. An operation f preserves a relation

R (or is a polymorphism of R) if f applied coordinate-wise

to any tuples from R gives a tuple in R. Given a set of

relations Γ, Pol(Γ) is the set of operations preserving all

relations in Γ. Pol(Γ) is always a clone and any clone can

be defined as Pol(Γ) for a set of relations Γ. Inv(F ) is the

set of relations that are preserved by (invariant under) all the

operations in F .

An n-ary relation R has a primitive positive (p.p.) defi-

nition (also called an implementation) in a set of relations Γ
if R is the set of models of an existentially quantified con-

junction of atomic formulas over Γ ∪ {=} (also called a

Γ-formula), i.e., R(x1, . . . , xn) ≡ ∃X
∧

i Ri(xi1, . . . , xit)
where each Ri ∈ Γ ∪ {=}. Sets of relations closed under

p.p. definability are called co-clones and the least co-clone

containing Γ is denoted by 〈Γ〉. There is a Galois connec-

tion between clones and sets of relations closed under p.p.

definability (i.e., co-clones). In particular, given two sets

of relations Γ1 and Γ2, then 〈Γ1〉 ⊆ 〈Γ2〉 if and only if

Pol(Γ2) ⊆ Pol(Γ1), and for any set of relations Γ we have

〈Γ〉 = Inv(Pol(Γ)). For more information on clones, co-
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clones, and the aforementioned Galois connection, we refer

the reader to the books [14, 16].

The CSP(Γ) problem, where Γ is a set of relations (also

called a constraint language), is the problem of deciding if

a given set of variables subject to a set of constraints (given

by atomic formulas over Γ) is satisfiable. The problem of

classifying the computational complexity of CSP(Γ) with

respect to Γ is an important open problem. The (so far) most

successful approach to attack this problem is an algebraic

approach which heavily relies on the following result.

Theorem 1 ([11, 12]) If Γ1 is finite and 〈Γ1〉 ⊆ 〈Γ2〉, then

CSP(Γ1) is polynomial-time reducible to CSP(Γ2).

Note that because of the Galois connection between clones

and co-clones this result can be reformulated into: If

Γ1 is finite and Pol(Γ2) ⊆ Pol(Γ1), then CSP(Γ1) is

polynomial-time reducible to CSP(Γ2). To illustrate the

power of this result, note that Schaefer’s [18] seminal com-

plexity classification (separating the cases in P from the

NP-complete cases) for CSP(Γ) over the Boolean domain

follows trivially from this result and Post’s classification of

Boolean clones [15] (i.e., Post’s lattice). For more infor-

mation on the connection between clones, co-clones, and

the CSP(Γ) problem, we refer the reader to the survey arti-

cles [3, 4, 13].

This result is not so useful for more fine grained com-

plexity analysis of CSP(Γ) (and similar) problems. The rea-

son is that it does not preserve the size of the problem in-

stances (in terms of the number of variables). The crux is

that in order for the proof of Theorem 1 to work, the exis-

tential quantifiers in p.p. definitions are eliminated by intro-

ducing new variables. So the reduction in Theorem 1 maps

a conjunction of m constraints on n variables to a conjunc-

tion of bm constraints on n + am variables, where a and b
are constants which depend on the languages Γ1 and Γ2.

As an example of a problem for which this is too coarse a

reduction, compare 3-SAT (i.e., CSP(Γ3SAT ) where Γ3SAT

consists of the relations corresponding to clauses on at

most three variables) with 1-in-3-SAT (i.e., CSP(Γ1/3)

where Γ1/3 consists of the relation {001, 010, 100}). By

Post’s lattice it is easy to verify that 〈Γ1/3〉 = 〈Γ3SAT 〉
and hence, CSP(Γ3SAT ) is polynomial-time equivalent to



CSP(Γ1/3) according to Theorem 1. Despite this, 3-SAT

(solvable in time O(1.473n) [1, 7]) seems to be a much

harder problem than 1-in-3-SAT which can be solved in

time O(1.1003n) [2] (where n is the number of variables).

Hence, it is clear that to get a better understanding of the

complexity of CSP(Γ) (and similar) problems, we need re-

ductions/implementations/tools where the blow-up in in-

stance size can be controlled.

With this in mind we consider partial co-clones instead.

A partial clone is a composition closed set of partial func-

tions containing all (total) projections. A partial operation f
preserves a relation R (or is a partial polymorphism of R) if

f applied coordinate-wise to any tuples from R gives a tuple

in R whenever f is defined on all the arguments. pPol(Γ)
is the set of (partial) operations preserving all relations in

Γ. Partial co-clones can be defined as the sets of relations

that are closed under p.p. definitions not using existential

quantification, and the least partial co-clone containing Γ is

denoted by 〈Γ〉p. There is also a Galois connection between

partial co-clones and partial polymorphisms, in particular

we have the following result.

Theorem 2 ([9, 8, 17]) Let Γ1 and Γ2 be sets of relations.

Then 〈Γ1〉p ⊆ 〈Γ2〉p if and only if pPol(Γ2) ⊆ pPol(Γ1).

For formal definitions and more information on partial

clones and partial co-clones we refer the reader to [14].

Since partial co-clones do not utilize existential quan-

tification, it can be verified that if we replace co-clones by

partial co-clones in Theorem 1 then the reductions are size-

preserving (in terms of the number of variables). Hence, if

〈Γ1〉p ⊆ 〈Γ2〉p and Γ1 is finite then CSP(Γ1) is solvable

in time O(f(n)) if CSP(Γ2) is solvable in time O(f(n))
(where n is the number of variables). This result seems

more useful than what it is since the structure of partial co-

clones is very complicated and only small portions of the

lattice are known even for the Boolean domain [10]. We

remark in passing that there are other applications of partial

clones in complexity analysis of CSP(Γ) problems [19].

What we would like to have is a concept that combines

the good features of partial co-clones (e.g., size-preserving

reductions for CSP(Γ)) and the good features of co-clones

(e.g., simpler structure especially over the Boolean do-

main). In this paper we propose and investigate such a

concept that we call frozen partial co-clones. Frozen par-

tial co-clones can be defined as the sets of relations that

are closed under p.p. definitions where only the variables

that take the same value in every model of the p.p. defini-

tion/formula (so called frozen variables) can be existentially

quantified. The least frozen partial co-clone containing Γ is

denoted 〈Γ〉fr. Hence, the frozen partial co-clones lie be-

tween the co-clones and partial co-clones in the sense that

the partial co-clone lattice is a refinement of the frozen par-

tial co-clone lattice, which in turn is a refinement of the co-

clone lattice. Moreover, if we replace co-clones by frozen

partial co-clones in Theorem 1 then it can be verified that

if 〈Γ1〉fr ⊆ 〈Γ2〉fr and Γ1 is finite then CSP(Γ1) is solv-

able in time O(f(n + |D|)) if CSP(Γ2) is solvable in time

O(f(n)) (where D is the domain). The point is that all the

variables that are frozen to the same domain element can be

replaced by a single variable, and hence, at most |D| extra

variables need to be introduced when eliminating the exis-

tential quantifiers.

In this paper we focus exclusively on the Boolean do-

main. As expected, there is a connection between frozen

partial co-clones and partial polymorphisms that we sketch

(for the Boolean domain) in Section 2. In Sections 3 and 4

we determine large portions of the frozen (Boolean) partial

co-clone lattice which indeed is significantly simpler than

the partial co-clone lattice.

2 Frozen partial co-clones and partial poly-

morphisms

In this section we give some definitions and preliminary

remarks before sketching the connection between frozen

(Boolean) partial co-clones and frozen (Boolean) partial

polymorphisms. If ϕ is a formula, then V ars(ϕ) denotes

the set of variables occurring in it, and M(ϕ) denotes the

set of all assignments to V ars(ϕ) which satisfy ϕ (i.e., the

models of ϕ). The relations {0} and {1} are denoted by F
and T , respectively. Atomic formulas are sometimes writ-

ten in prefix notation (e.g., R(x1, . . . , xn)), or infix notation

(e.g., x1 6= x2), depending on the context. Given a function

f , dom(f) denotes the domain of f (i.e., the set of tuples

ti for which f(ti) is defined), and f is a subfunction of g if

dom(f) ⊆ dom(g) and f(ti) = g(ti) for all ti ∈ dom(f).

Definition 3 (frozen variable) Let ϕ be a formula and let

x ∈ V ars(ϕ). Then x is said to be frozen in ϕ if ϕ |=
T (x) or ϕ |= F (x). In other words, x is frozen in ϕ if it is

assigned the same value by all its models.

Definition 4 (frozen implementation) Let Γ be a set of re-

lations and R an n-ary relation. Then Γ freezingly im-

plement R if there is a p.p. definition R(x1, . . . , xn) ≡
∃Xϕ such that ϕ is a conjunction of atomic formulas over

Γ ∪ {=}, V ars(ϕ) ⊆ X∪{x1, . . . , xn}, and every variable

in X is frozen in ϕ.

Note that frozen implementations are slightly less general

than so-called faithful implementations [5, page 34]. But

the latter are not suitable for our purposes since they blow

up instance sizes.

Definition 5 (frozen partial co-clone) Let Γ be a set of re-

lations. The frozen partial co-clone generated by Γ, written
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〈Γ〉fr, is the set of all relations that can be freezingly im-

plemented by Γ. Γ is also called a frozen basis of 〈Γ〉fr.

It is easy to see that frozen implementations compose to-

gether, in the sense that if Γ freezingly implements every

relation in Γ′ and Γ′ freezingly implements R, then Γ freez-

ingly implements R. It is also easy to see that frozen partial

co-clones ordered by set inclusion form a lattice.

Example 6 The relation R′ = {00, 10} is in 〈{R, T}〉fr

with R = {000, 001, 110} and T = {1}. This is because

R′(x1, x2) ≡ ∃x3R(x2, x2, x3) ∧ R(x2, x2, x1) ∧ T (x3)
where x3 is frozen to 1.

As another example, consider the relations R1 =
{01, 10} and R2 = {0100, 0110, 1000, 1111}. Then

R′ = {010, 011, 100} is in 〈{R1, R2}〉fr, as shown by

R′(x1, x2, x3) ≡ ∃x4R1(x1, x2) ∧ R2(x1, x2, x3, x4) (x4

is frozen to 0 by the conjunction).

Definition 7 (determined) If Γ is a set of relations such

that there is a Γ-formula ϕ in which x is frozen to d ∈
{0, 1}, then we say that d is determined in Γ.

Proposition 8 Let Γ be a set of relations. Then d ∈ {0, 1}
is determined in Γ if and only if {d} ∈ 〈Γ〉fr.

Proof: Without loss of generality assume d = 1. If 1 is

determined in Γ, then there is a Γ-formula ϕ and a variable

xT ∈ V ars(ϕ) such that ∃Xϕ |= T (xT ) and thus ϕ |=
T (xT ). Let m be a model of ϕ with a maximum number of

variables being assigned 1. Identify all variables in ϕ that

are assigned 1 by m to xT , resulting in ϕ′. If V ars(ϕ′) =
{xT }, then T (xT ) ≡ ϕ′, and thus T ∈ 〈Γ〉fr. Otherwise,

there is a variable xF ∈ V ars(ϕ′) \ {xT }. Identify all

variables in V ars(ϕ′) \ {xT } to xF , resulting in ϕ′′. Then,

T (xT ) ≡ ∃xF ϕ′′, and T ∈ 〈Γ〉fr since xF is frozen in ϕ′′.

The converse follows directly from the definition of de-

termined constants. ✷

Definition 9 (frozen partial polymorphisms) A k-ary

(partial) function f ∈ pPol(Γ) is said to be frozen if it

is defined on every all-d-tuple (of length k) for which d
is determined in Γ and f(d, d, . . . , d) = d. We define

frPol(Γ) = {f ∈ pPol(Γ) | f is frozen}, and say that

frPol(Γ) are the frozen polymorphisms of Γ.

Note that if no d is determined in Γ, then pPol(Γ) =
frPol(Γ) and 〈Γ〉p = 〈Γ〉fr.

Lemma 10 Let Γ be a frozen partial co-clone, then any k-

ary (partial) function f ∈ pPol(Γ) is a subfunction of a

k-ary (partial) function g ∈ frPol(Γ).

Proof: It is sufficient to prove that if Γ is a frozen partial

co-clone such that d ∈ {0, 1} is determined in Γ, then any

f ∈ pPol(Γ) is a subfunction of a g ∈ pPol(Γ) such that

d = (d, d, . . . , d) ∈ dom(g) and g(d, d, . . . , d) = d. Note

that there can be no f ∈ pPol(Γ) such that f(d, . . . , d) 6= d
since this contradicts the fact (observed in Proposition 8)

that {d} ∈ Γ.

Let f ∈ pPol(Γ) be a k-ary function with dom(f) =
{t1, . . . , tj} such that the k-tuple d = (d, . . . , d) is not

in dom(f). We define the function fd with dom(fd) =
dom(f) ∪ {d} such that fd(d) = d with the goal

of showing that fd ∈ pPol(Γ). Assume to the con-

trary that there is a relation Rd ∈ Γ such that Rd

is not preserved by fd. This means that there are k
(not necessarily distinct) tuples t1, . . . , tk ∈ Rd such

that (fd(t1[1], . . . , tk[1]), . . . , fd(t1[m], . . . , tk[m])) /∈ Rd

where m is the arity of Rd. By the definition of fd and

the fact that f ∈ pPol(Γ) we know that at least one of the

tuples (t1[j], . . . , tk[j]) = d. We can without loss of gener-

ality assume an Rd such that (t1[1], . . . , tk[1]) = d and all

other (t1[j], . . . , tk[j]) 6= d.

Since {d} ∈ Γ we have that R(y1, . . . , ym−1) ≡
∃xRd(x, y1, . . . , ym−1) ∧ (x = d) is in Γ and thus

is preserved by f . As a consequence, we have

(f(t1[2], . . . , tk[2]), . . . , f(t1[m], . . . , tk[m])) ∈ R and

hence, (d, f(t1[2], . . . , tk[2]), . . . , f(t1[m], . . . , tk[m])) =
(fd(t1[1], . . . , tk[1]), . . . , fd(t1[m], . . . , tk[m])) ∈ Rd and

we have a contradiction. Thus, fd ∈ pPol(Γ). ✷

Proposition 11 Given a set of relations Γ, then

frPol(Γ) = frPol(〈Γ〉fr)

Proof: Since Γ ⊆ 〈Γ〉fr we obviously have

frPol(〈Γ〉fr) ⊆ frPol(Γ). For the other direction, as-

sume towards contradiction that f ∈ frPol(Γ) but f /∈
frPol(〈Γ〉fr). Then there is a relation R ∈ 〈Γ〉fr such that

f /∈ frPol(R) and a Γ-formula ϕ such that R ≡ ∃Xϕ
where the variables X are frozen in ϕ. This is a contradic-

tion since f ∈ frPol(Γ) implies that f ∈ frPol(M(ϕ))
and hence f ∈ frPol(R) (since f is frozen). ✷

Theorem 12 Let Γ1 and Γ2 be sets of relations, then

〈Γ1〉fr ⊆ 〈Γ2〉fr if and only if frPol(Γ2) ⊆ frPol(Γ1).

Proof: If there is a (partial) function f such that f ∈
frPol(Γ2) and f /∈ frPol(Γ1), then assume (with the aim

of reaching a contradiction) that 〈Γ1〉fr ⊆ 〈Γ2〉fr. From

the fact that f ∈ frPol(Γ2) and f /∈ frPol(Γ1) we get

that there is a relation R ∈ Γ1 such that R /∈ Γ2 and

f /∈ pPol(R). By assumption 〈Γ1〉fr ⊆ 〈Γ2〉fr, and hence

there is a frozen implementation of R using the relations in

Γ2. So, there is a Γ2-formula ϕ such that R ≡ ∃Xϕ where

the variables in X are frozen in ϕ. But ϕ is a Γ2-formula

3
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Figure 1. The lattice of Boolean co-clones.

and f ∈ frPol(Γ2), so f ∈ pPol(M(ϕ)). Moreover, as

a frozen polymorphism of Γ2, f is defined on all columns

of M(ϕ) corresponding to variables X (Proposition 8), and

finally f ∈ pPol(R).
Now we continue with the other direction. If 〈Γ1〉fr 6⊆

〈Γ2〉fr, then since obviously 〈〈Γ〉fr〉p = 〈Γ〉fr for any

language Γ, we have 〈〈Γ1〉fr〉p 6⊆ 〈〈Γ2〉fr〉p. Hence, by

Theorem 2 there exists a (partial) function f ′ such that

f ′ ∈ pPol(〈Γ2〉fr) and f ′ /∈ pPol(〈Γ1〉fr). By Lemma 10,

we have that f ′ is a subfunction of a (partial) function

f ∈ frPol(〈Γ2〉fr). It is clear that f /∈ frPol(〈Γ1〉fr)
since not even the subfunction f ′ is in pPol(〈Γ1〉fr).
Hence, by Proposition 11, we get f ∈ frPol(Γ2) and

f /∈ frPol(Γ1). ✷

Corollary 13 Let Γ be a set of relations. Then

Inv(frPol(Γ)) = 〈Γ〉fr.

3 Co-clones covered by a single frozen partial

co-clone

In this section we study Boolean co-clones C such that

for any set of relations Γ with 〈Γ〉 = C we have C = 〈Γ〉fr.

We say that such a co-clone is covered by a single frozen

partial co-clone. We show that a large number of co-clones

are covered by a single frozen partial co-clone, and hence a

large part of the lattice of frozen partial co-clones is identi-

cal to the corresponding part of the lattice of co-clones. The

lattice of Boolean co-clones is visualised in Figure 1, where

the co-clones colored grey are covered by a single frozen

partial co-clone. For explanations of the notation1 used in

the lattice, we refer the reader to [3, 4].

We define the most relevant co-clones here. A ma-

jority operation is a ternary operation maj satisfying

maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x for

all x, y ∈ {0, 1}. Similarly a minority operation is

a ternary operation minor satisfying minor(x, x, y) =
minor(x, y, x) = minor(y, x, x) = y for all x, y ∈
{0, 1}. The binary operations max and min return the

maximum and minimum of their arguments, respectively.

The co-clones ID2, ID1, and IM2 are defined as follows:

ID2 = Inv({maj}), ID1 = Inv({maj,minor}), and

IM2 = Inv({max, min}).

In [10] it is proved that there are 25 partial co-clones2

pC such that pC ⊆ IM2 = Inv({max, min}), and

there are 33 partial co-clones pC such that pC ⊆ ID1 =
Inv({maj,minor}). Since all co-clones C such that C ⊆
IM2 or C ⊆ ID1 are covered by a single frozen partial co-

clone, there are only 8 frozen partial co-clones fC ⊆ IM2

and 6 frozen partial co-clones fC ⊆ ID1. This suggests

that the lattice of frozen partial co-clones is significantly

less complex than the partial co-clone lattice. Neverthe-

less, as expected the frozen partial co-clone lattice is more

complex than the ordinary co-clone lattice. In particular we

show in Section 4 that the co-clone ID2 splits into 13 frozen

partial co-clones. Moreover, it seems that none of the white

co-clones in Figure 1 is covered by a single frozen partial

co-clone.

The covering proofs make heavy use of the results in [6]

which for every Boolean co-clone C gives a set of relations

Γ such that 〈Γ〉p = C. In particular, it is shown in [6] that

ID1 = 〈{6=, T, F}〉p. The covering proofs are numerous

so due to space constraints we can only present a single

illustrative case.

Proposition 14 ID1 = Inv({maj,minor}) =
〈{6=, T, F}〉p is covered by a single frozen partial co-

clone.

Proof: Let Γ ⊆ ID1 with Γ 6⊆ ID and Γ 6⊆ IR2 (i.e.,

〈Γ〉 = ID1), where ID = 〈6=〉 and IR2 = 〈{F, T}〉. First

note that since 〈Γ〉 = ID1 = 〈{6=, T, F}〉, we trivially

have that F and T are determined in Γ. Thus, according to

Proposition 8 we have {T, F} ⊆ 〈Γ〉fr.

Now, since Γ 6⊆ IR2 there is a relation R ∈ Γ such that

1The notation used is different from Post’s notation, but is now standard

in the Boolean CSP area.
2The results in [10] are presented in terms of partial clones.
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R /∈ IR2. Then there is ϕ ≡ R of the form:

∧

i∈I

(xi 6= yi) ∧
∧

j∈J

F (xj) ∧
∧

k∈K

T (xk)

Assume no j and no k is in I , which can be ensured by

propagating unary constraints. From R /∈ IR2 we know

that R is nonempty and I 6= ∅. Let m ∈ R, that is, a model

of ϕ, and let P = {xi | i ∈ I, m(xi) = 1} ∪ {yi | i ∈
I, m(yi) = 1} and N = {xi | i ∈ I, m(xi) = 0} ∪ {yi |
i ∈ I, m(yi) = 0}. Because I 6= ∅ we have at least one

{6=}-constraint and so, P,N 6= ∅. Moreover, obviously

every {6=}-constraint in ϕ is between a variable in P and

one in N . Now identify all the variables in P to a single

variable p and all those in N to n. Then clearly the resulting

formula is logically equivalent to (p 6= n) ∧
∧

j∈J F (xj) ∧∧
k∈K T (xk), and we get a frozen implementation of 6= by

existentially quantifying over every xj and xk (j ∈ J, k ∈
K).

Finally, {6=, T, F} ⊆ 〈Γ〉fr and so, 〈Γ〉fr = ID1. ✷

Theorem 15 Each co-clone colored grey in Figure 1 is cov-

ered by a single frozen partial co-clone.

4 Structure of ID2

We begin by introducing the basic relations and the 13
frozen partial co-clones in ID2 = Inv({maj}) (i.e., the

frozen partial co-clones 〈Γ〉fr such that 〈Γ〉fr ⊆ ID2 and

〈Γ〉 = ID2). We then prove that these 13 frozen partial co-

clones cover ID2 (i.e., 〈Γ〉fr equals one of these 13 frozen

partial co-clones for any Γ such that 〈Γ〉 = ID2). Finally,

we prove that these 13 frozen partial co-clones are all dis-

tinct. We remark that the lattice of partial co-clones in ID2

has not yet been classified [10]. Hence, the results in this

section can also be seen as a step towards such a classifica-

tion.

Definition 16 (relations in ID2) Rp
2

is the relation defined

by (x1 ∨ x2) (2 stands for binary and p for positive). Simi-

larly, Rn
2

is the relation defined by (¬x1 ∨ ¬x2), Ri
2

is the

relation defined by (¬x1∨x2) (i stands for implicative), and

R 6=
2

is the relation defined by x1 6= x2. Rp
3

is the relation

defined by (x1 ∨ x2) ∧ (x1 6= x3) and Rn
3

that defined by

(¬x1∨¬x2)∧(x1 6= x3). Finally, Rp
4

is the relation defined

by (x1 ∨ x2) ∧ (x1 6= x3) ∧ (x2 6= x4).

Definition 17 [frozen partial co-clones in ID2] We define

the following frozen partial co-clones:

• Γp
4

= 〈Rp
4
〉fr,

• Γp
3

= 〈Rp
3
〉fr, Γn

3
= 〈Rn

3
〉fr,
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Figure 2. Frozen partial co-clones in ID2.

• Γnp
3

= 〈Rn
3
, Rp

3
〉fr,

• Γn 6=
2

= 〈Rn
2
, R 6=

2
〉fr, Γp6=

2
= 〈Rp

2
, R 6=

2
〉fr,

• Γi 6=
2

= 〈Ri
2
, R 6=

2
〉fr, Γnp

2
= 〈Rn

2
, Rp

2
〉fr,

• Γnp
23

= 〈Rn
2
, Rp

3
〉fr, Γpn

23
= 〈Rp

2
, Rn

3
〉fr,

• Γn 6=i
2

= 〈Rn
2
, R 6=

2
, Ri

2
〉fr, Γp6=i

2
= 〈Rp

2
, R 6=

2
, Ri

2
〉fr,

• Γnpi
2

= 〈Rn
2
, Rp

2
, Ri

2
〉fr. 3

The inclusion structure among these frozen partial co-

clones is given in Figure 2. Most of the inclusions are ob-

vious. The main difficulty is to show that they cover all of

ID2. Due to space constraints and the fact that all the cov-

ering proofs are quite similar, we only present one of them.

Note that the proof is similar in spirit to the constructions

in [19].

Proposition 18 (Γp
4
) Let R be a relation in Γp

4
\ ID1. Then

R freezingly implements Rp
4
.

Proof: Given a relation R ≡ M(ϕ), then R|{xi,...,xj} de-

notes the projection of R onto the coordinates correspond-

ing to the variables {xi, . . . , xj} in ϕ.

From R ∈ Γp
4

it follows that R has a p.p. definition of

the form ∃X,
∧

i∈I Rp
4
(xi1, . . . , xi4) where the variables in

3The mnemonics are: subscripts represent the arities of the relations

in the basis, and superscripts represent the nature of these relations, in the

same order (p stands for positive, etc.).
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X are frozen. Write Ri for R|{xi1,...,xi4} and Rp
4
(Xi) for

Rp
4
(xi1, . . . , xi4). We claim that there is an i0 ∈ I such that

Ri0 = Rp
4
(Xi0) and all xi0j’s are pairwise different.

Assume to the contrary that for all i, Ri 6= Rp
4
(Xi).

By construction it follows Ri ⊂ Rp
4
(Xi) (since at least the

{Rp
4
}-constraint acts on xi1, . . . , xi4). But a case study on

the tuples in Rp
4
(Xi) \Ri shows that this entails Ri ∈ ID1.

Since from the definition of R it follows R ≡ ∃X,
∧

i∈I Ri,

we get R ∈ ID1, a contradiction.

Now consider the relation obtained from R by applying

the following transformations maximally while preserving

Ri0 = Rp
4
(Xi0) = {0110, 1001, 1100}:

1. identify x′ to x for some x ∈ {xi01, . . . , xi04},

x′ /∈ {xi01, . . . , xi04}; e.g., if R|{xi01,...,xi04,x′} =
{01100, 01101, 10011, 11001}, identify x′ to xi01;

2. freeze x′ /∈ {xi01, . . . , xi04} to 0 or 1 (us-

ing F or T with Proposition 8) and existen-

tially quantify over it, e.g., if R|{xi01,...,xi04,x′} =
{01100, 01101, 10010, 11000}, freeze x′ to 0 and ex-

istentially quantify over it.

When none of these operations can be applied any more, it

is easily verified that all remaining x′ /∈ {xi01, . . . , xi04}
satisfy R|{xi01,...,xi04,x′} = {01101, 10011, 11000} or

R|{xi01,...,xi04,x′} = {01100, 10010, 11001}. But this is

a contradiction, since then R|{xi01,...,xi04,x′} is not closed

under ternary majority, and so R /∈ ID2. Thus the transfor-

mations end with R = Rp
4
(Xi0) (no other xj can be left).

To conclude, from R we freezingly implemented Rp
4
, and

we are done. ✷

Theorem 19 Given any set of relations Γ such that 〈Γ〉 =
ID2, then 〈Γ〉fr equals one of the 13 frozen partial co-

clones in Definition 17.

It is easy to prove that the 13 frozen partial co-clones in

Definition 17 are all distinct. Given two sets of relations Γ1

and Γ2 such that 〈Γ1〉 = 〈Γ2〉 = ID2, then to prove that

〈Γ1〉fr 6= 〈Γ2〉fr it is sufficient (according to Theorem 12)

to show that frPol(Γ2) 6= frPol(Γ1).
The operations that we use to separate the different

frozen partial co-clones are all ternary minority operations

that are undefined on certain tuples. We denote these mi-

nority operations by mU(t1, . . . , tn) where t1, . . . , tn are

the tuples on which the minority operation is undefined. For

example, Γp
4
6= Γp

3
since mU(010, 001) ∈ frPol(Rp

4
) =

frPol(Γp
4
) but mU(010, 001) /∈ frPol(Rp

3
), and

Γp
3

6= Γp6=
2

since mU(100, 010, 001) ∈ frPol(Rp
3
) =

frPol(Γp
3
) but mU(100, 010, 001) /∈ frPol(Rp

2
).

Proposition 20 The 13 frozen partial co-clones in Defini-

tion 17 are all distinct.
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