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Summary. In this paper a new non-asymptotic method of macro-modelling for dynamics
of micro-periodic heterogeneous bodies is proposed. The obtained equations can be applied
to the problems in which scale and dispersion effects, due to the micro-heterogeneous
structure of a body, have to be taken into account.

1. Introduction. Asymptotic methods of macro-modelling for micro-
periodic materials and structures are based on the assumption that the
macro-behavior of a body is independent of length dimensions of a period-
icity cell, [1-6]. Hence, asymptotic equations are not able to describe scale
and dispersion effects due to the micro-heterogeneity of a composite and
can be applied solely to the problems in which the time-dependent excita-
tions of the structure produce the wavelength much larger than the maximal
characteristic length dimension of a periodicity cell (long-wave approxima-
tion). In this contribution the non-asymptotic method of macro-modelling
is proposed in the framework of which problems of vibration and wave prop-
agation with the wavelength of order of a cell dimension can be described
(short-wave approximation).

Denotations. Indices ¢, 7 run over the sequence 1, 2, 3 and are
related to the orthogonal cartesian coordinates z' in the reference space.
Indices a, 3 also run over 1, 2, 3 but are related to the material coordi-
nates X, The partial differentiation with respect to the material coor-
dinates is denoted by a comma. Subscripts and superscripts a,b,... run
over 1,2,3,...,n. Summation convention holds for all aforementioned in-
dices. An orthonormal vector basis in the reference space will be denoted by
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(e1,e2, e3). For averaging operator we use the notation

1
(1N2) = i F(Z +Y)dor(Y), dvp(Y) = dYidY,dYs,

where Vg = (=11/2,11/2) X (—13/2,1,/2) x (=13/2,15/2) and f(-) is an arbi-
trary integrable function defined on V(Z) = Z + Vg, for some Z € R3.

2. Preliminary concepts. Let f2g be a region occupied by a body (or
by its part) in the known reference configuration. For sake of simplicity we
assume that 2r = |JV(Z), Z € A, where A is a lattice of points in 5
with a basis (l e, lze2,l3e3). Material and inertial properties of the body
will be determined by the strain energy density egr(-, F') and the mass den-
sity pr(+), respectively, where F' is an arbitrary nonsingular 3 X 3 matrix.
The body is assumed to be Vg-periodic, i.e. eg(X, F) = ¢r(X + Lie;, F),
pr(X) = pr(X + lie;) for i = 1,2,3, (no summation with respect to ”"!).
It means that every V(Z), Z € A is a periodicity cell of a body under
consideration and Vg can be treated as a region occupied by a certain rep-
resentative volume element (r.v.e.) of the body. Moreover, we assume that
| = max{ly, 2,3} is sufficiently small compared to the smallest characteris-
tic length dimension of 2g; a body under consideration will be referred to
as a micro-periodic body.

In order to formulate the basic hypothesis for the macro-models of the
micro-periodic body, we shall introduce two leading concepts.

A continuous function F(-) defined on £2r will be called Vg-macro func-
tionif F(X) =~ F(Z) for every X, Z € {2p such that Z — X € Vg. Roughly
speaking, using Vg-macro functions we shall describe the macroscopic be-
havior of the body.

By hq(),a = 1,2,...,n we shall denote a sequence of continuous inde-
pendent functions satisfying conditions: ho(X) = ho(X + li€;), ho(X) =
—ho(X + lie;/2) for i = 1,2,3 (no summation with respect to ”i”) for ev-
ery X € 2g and X + l;e; € 2. We shall also assume that {pgh,) = 0.
Functions h,(-) will be called micro-oscillatory shape functions. The shape
functions have to be postulated a priori in every problem under consider-
ation and play a role similar to that of shape functions used in the known
finite element method. Generally speaking, functions h,(-) describe from the
qualitative point of view the character of micro-oscillations produced by a
micro-heterogeneous structure of a body.

3. Macro-modelling approach. Using aforementioned concepts we
shall formulate the basic hypothesis of the proposed approach. We denote
by z; = pi(X,7), X € {2gr, a position of a point X of the body at a
time instant 7, 7 € [7g, 7¢], and assume that every deformation p;(-,7) can



be represented as a superimposition of micro-oscillations (due to a micro-
heterogencous structure of a body) on a certain macro-deformation.

Macro-modelling hypothesis (MMIH). A motion of a micro-
periodic body under consideration can be described by the formulae
(1) pi(X,T) = pi(X7T0)+ Ui(XaT)+ ha(X)Q?(X7T)7

X € 0p, T1€][10,74],
where U;(-,7), Q%(-,7) are Vg-macro [unctions together with their material
and time derivatives of the first and second order.

Functions U;(-,7) and Q%(-,7) are called macro-displacements and cor-
rectors, respectively. It can be seen that correctors Q¢(-, ) describe micro-
oscillations from the quantitative point of view (the known functions h,()
characterize these oscillations from the qualitative point of view).

The governing equations of the proposed macro-elastodynamics will be
derived applying MMH to the action functional for a hyperelastic body
under consideration

(2) A= [ [2or(X)p(X, 7)is(X, )~ en( X, Vp)
i)

+ Pr(X)b(pi(X,7) = pi( X, 70))| dor(X),

where b; are constant body forces. In the sequel we assume that Vp(-, rp) is
a Vr-macro function and denote Q = (Q',...,Q™). Substituting the right-
hand side of (1) into (2), taking into account that U;(:,7), Q%(-,T) are Vg-
macro functions together with their derivatives and condition (prhy) = 0,
we obtain

A= Y [ [5erOWZ.7) + ha( X)OHZ, 7)) Z,7)
ZeA V(2Z)
+ h(X)QNZ,7)) — er(X,Vp(Z, 1)
+VU(Z,7)+ Vhe(X)®Q*(Z,7)+ ho(X)VQ*(Z,T))
+ pr(X)b(Ui(Z,7) + ho(X)QHZ, 7)) |dvr(X)
= 3 [HoRU(Z,1)0(Z, ) + S {onhahe) 022, 1)U Z,7)

2
Zea

- <5R>(Z’VU(Z’T)7Q(Z7T):VQ(Z’T)) + (PR)biUi(Z7T)]
~ [ [3om X, T(X, 1)+ Slorhahs) G5(X, 7)ONX , 7)
g

—~(er)(X . VU(X,7),Q(X,7),VQ(X, 7)) + (pR)biUi(X,T)J dvr(X).



On the basis of above approximation we shall postulate that under MMH
the dynamics of the micro-periodic body can be described by the action
functional

3) A Zéf [%(PH)ﬁWi + %(pRhahb)Q?Q?
- (ER)(X7VU7Q)VQ) + (/)R)biUi d’l)R.

Functional (3) represents the dynamic system treated as a macro-model of
micro-periodic bodies under consideration.

4. Results. Taking into account that

O(er)  Oerha)  O(er) _ O{erhaa)
0Q%, = 0Uss = 0QF T U,

and denoting

. 9
Tie = T X, VU + Vh, @ Q% + h,VQ?) = a(;R :
O e ten
AP = ARIB(X VU 4 Vh, @ Q° + h,VQ®) = ET TR
i'alV5'0

afler some manipulations we obtain the Lagrange equations for the func-
tional (3),

(AR Ujigp + (A””[’h 18)Q% o + (Afjﬁha)Q?'aﬁ
AT (pn)b' = (pr)U,
(AR hah)Q%rap + (AR hahir 5)Q50 + (AR ha)Ujrap
~(Tfha Yo = (Thara) = (prRaI) QY.

The averages (-) in Eqs (5) involving A};’Jﬁ or T depend on: X, VU(X, ),
Q(X,7), VQ(X, 7). Equations (5) are governing ones of nonlinear macro-
clastodynamics [or micro-periodic heterogeneous composites. The basic kin-
ematic unknowns are macro-displacements U;(+,7) and correctors Q¢(-,7),
T € [0, 7s]. It has to be emphasized that solutions to Eqgs (5) have plysical
sense only il U;(-,7), Q%(-,7) and their material and time derivatives for
every 7 € [T, Ts] are Vr-macro functions.

For homogencous bodies Ti(X,VU(X,7) + Vhe(X) ® Q*(X,7) +
ho( X)VQHX,7)) =~ T (Z,VU(Z,7) + V h(X) @ Q*(Z,7) +
ho(X)VQ*(Z,7)) for every X € V(Z)N 2r, Z € 2p. It follows that
for Q* = 0 we obtain (T hys) = T}{’(ha:a) = 0 and similarly we obtain
(A%9Ph ) = AY7P(h,) = 0. Hence, Eq. (5.2) for homogeneous bodics has



the solution Q® = 0 and Iiq. (5.1) reduces to the well-known equation of
motion of nonlinear elastodynamics.

For heterogeneous hodics the correctors are not equal to zero because
(T ha o) # 0. We assume that the correctors are only due to the heteroge-
neous structure of the body and to initial conditions for Q¢, being indepen-
dent of the boundary conditions. To this end we shall apply Egs (5) solely
to problems for unbounded media assuming that Iiqs (5) hold in the whole
reference space (except at some singular surfaces, lines or points). Under
this assumption we neglect the effect of boundary conditions on the cor-
rector fields. In order to pass to the boundary value problems (for bounded
microperiodic bodies) we shall introduce the extra assumption.

Strain energy approximation (SEA). In the argument
Vp(X,7) = Vp(X,m0) + VU(X,7) + Vho(X) @ Q*(X,7) + ha(X)
-VQ*(X, 1) of the strain energy density ep(X, Vp), the terms involving
h, arc small compared to the ones depending ou VA, and can be neglected.
Hence, we assume that eg = ep(X,Vp(X,m0) + VU(X,7) 4+ Vh(X) ®
QY (X,T)).

The aformentioned assumption is based on the highly oscillating charac-
ter of shape functions h,(-), the values of which are of order O({), while their
derivatives are independent of /. llence, for sufficiently small I, the values of
ha(-) can be treated as small parameters in formulas involving ¢p.

Taking into account SEA, we neglect terms involving A, on the left-hand
sides of Egs (5). Thus, the obtained macro-model of micro-periodic bodies
under consideration will be governed by

@ AR WUires (AR has) Qe+ (Ti) e+ (pn)bs = (pr) Ui
= (Tj hara) = (prliahs)QY,

with denotations of (4). The averages (-) in Iiqs (6) involving A’,‘;m or T
depend on : X, VU(X, 1), Q(X, 7). Equations (6) have to be considered
together with boundary and initial conditions for macro-displacements U;(-)
and initial conditions for correctors Q2(-), no boundary conditions for cor-
rectors QQ¢(-) are required. It has to be remembered that solutions to the
boundary value problems for Eqs (6) have physical sense only if U;(-,7) and
Q2(-,7), T € [10,T/] together with their derivatives are Vr-macro functions.
Let us obscrve that Tqs (6) have the relatively simple form which do not
involve material derivatives of correctors. In this case the micro-oscillations
heQ? depend exclusively on heterogeneous structure of the body and initial
conditions for (}7. The method of macro-modelling based on both MMH and
SEA can be referred to as the semi-asymptotic one. In the case of asymp-
totic macro-modelling (based on assumption that { — 0), Eq. (6.2) reduces



to the form (T%?ha,) = 0; this condition represents the system of algebraic
equations for correctors {¢(-). This special model has been proposed in (3]
and developed in a series of papers, e.g. [4-7].

5. Concluding remarks. It has to be emphasized that averages (-)
in Eqs (5), (6) which depend on AP Ti® are Vz-macro functions of
X, X € g, and (pr), (prhohs) are constants. Thus, the aforementioned
equations do not involve in an explicit form any highly oscillating function
(like pr(-), er(-, F')). Hence, the obtained macro-models constitute a proper
tool for numerical analysis of engineering problems for micro-periodic clastic
composites.

The characteristic feature of the obtained equations of macro-elasto-
dynamics (Eqgs (5) for unbounded media as well as Eqs (6) with the per-
tinent boundary conditions) is that inertial properties of a body are de-
scribed not only by the averaged mass density (pr) but also by the micro-
module (prhyhy). These micro-modules depend on length dimensions of
r.v.e.; hence, the proposed elastodynamics of micro-periodic composites
makes it possible to investigate the scale and dispersion cffects on the macro-
behavior of the body. The main drawback of the proposed method of macro-
modelling is an unprecise choice of shape functions h,(-) which is often based
on the intuition of the researcher. Examples of application of Eqs (5), (6)
are given in [8]. The incremental and linear form of the proposed macro-
elastodynamics will be presented in separate papers.
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