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Abstract This paper focuses on the challenging issue of designing exponential algo-

rithms for scheduling problems. Despite a growing literature dealing with such algo-

rithms for other combinatorial optimization problems, it is still a recent research area

in scheduling theory and few results are known. An exponential algorithm solves opti-

maly an NP-hard optimization problem with a worst-case time, or space, complexity

that can be established and, which is lower than the one of a brute-force search. By

the way, an exponential algorithm provides information about the complexity in the

worst-case of solving a given NP-hard problem.

In this paper, we provide a survey of the few results known on scheduling problems as

well as some techniques for deriving exponential algorithms. In a second part, we focus

on some basic scheduling problems for which we propose exponential algorithms. For

instance, we give for the problem of scheduling n jobs on 2 identical parallel machines

to minimize the weighted number of tardy jobs, an exponential algorithm running in

O∗( 3
√
9n) time in the worst-case.
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1 Introduction and Issues of Exponential Algorithms

Scheduling consists in determining the optimal allocation of a set of jobs (or tasks)

to machines (or resources) over time. Since the mid 50’s, scheduling problems have

been the matter of numerous researches which have yield today to a well-defined the-

ory at the crossroad of several research fields like operations research and combinato-

rial optimization, computer science and industrial engineering. Most of the scheduling

problems dealt with in the literature are intractable problems, i.e. NP-hard problems.

Consequently, an optimal solution of such problems can only be computed by super

polynomial time algorithms (unless P = NP). Usually, the evaluation of the efficiency

of such algorithms is conducted through extensive computational experiments and the

challenge is to solve instances of size as high as possible. But, theoretically speaking,

several fundamental questions remain open: for exponential-time algorithms can we

establish stronger conclusions than their non polynomiality in time? For instance, is it

possible to derive upper bounds on their average complexity or their worst-case com-

plexity? This is a task which is usually performed for polynomially solvable problems:

when we provide an exact polynomial-time algorithm we usually also provide informa-

tion about the number of steps it requires to compute an optimal solution. Why not

for NP-hard problems and exponential-time algorithms?

The interest in studying the worst-case, or even average, time complexity of such al-

gorithms is beyond the simple interest of counting a number of steps. It is related to

establishing properties of NP-hard problems: assume we deal with a NP-hard opti-

misation problem for which a brute-force search requires n! steps, with n the size of

the input, to compute an optimal solution. The question is: can this problem admit

an exponential algorithm with a worst-case time complexity lower than that of this

enumeration algorithm? Can we solve it using, for instance, 2n steps? Such a property

would give an indication on the expected difficulty of a problem, and also challenge

the design of efficient optimal algorithms: their efficiency should be still evaluated via

computational experiments, but they would have also to not exceed the upper bound

on the worst-case complexity established on the problem.

It also has to be noted that fixed-parameter tractable algorithms are strongly related to

exponential-time algorithms: the former are capable of solving to optimality NP-hard
problems within a time complexity bounded by a function exponential in a parameter

k of the instances. Fixed-parameter tractable algorithms are out of the scope of this

paper, and the interested reader is kindly referred to Niedermeier [2006], among others.

In this paper, we make use of the notation O∗ for worst-case complexities: an ex-

ponential algorithm is said to have a O∗(αn) worst-case complexity iff there exists

a polynomial p such that the algorithm is in O(p(n).αn). The study of exponential-

time algorithms solving NP-hard optimisation problems has been the matter of a re-

cently growing scientific interest. The first exponential-time algorithms date back from

the sixties and seventies. Most well-known algorithms are Davis-Putnam’s and Davis-

Logemann-Loveland’s algorithms for deciding the satisfiability of a given CNF-SAT

instance, i.e. a propositional logic formulae being in conjunctive normal form (Davis

and Putnam [1960], Davis et al [1962]). Algorithms solving restricted versions of SAT

have also attracted a lot of attention, e.g. the best-known randomized algorithm solves

3-SAT in time O∗(1.3210n) (Hertli et al [2011]). Exponential-time algorithms for NP-
hard graph problems have been also established. The Traveling Salesman Problem can

be solved trivially in O∗(n!) time by enumerating all possible permutations of the n
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cities. Based on a dynamic programming approach, Held and Karp gave in 1962 an

O∗(2n) time algorithm for solving the problem on arbitrary graphs. Then, the problem

has been studied for bounded-degree graphs (see e.g. Björklund et al [2008], Iwama and

Nakashima [2007]). However, up to 2010, no improvement has been done for arbitrary

graphs. An attempt is due to Björklund [2010] who presented a Monte Carlo algo-

rithm deciding the existence of an Hamiltonian circuit in a graph in O∗(1.657n) time.

Another well-studied graph problem is called the maximum independent set problem:

given a graph G = (V,E), it asks to compute a maximum-size subset S ⊆ V such that

no two vertices in S are adjacent. The problem can be solved in O∗(2n) by enumerat-

ing all possible subset of vertices. Tarjan and Trojanowski [1977] gave an O∗(1.2599n)
time algorithm which has been improved by a sequence of papers. By now, the best

known algorithm is due to Bourgeois et al [2011] and has a worst-case running time

of O∗(1.2114n). To complete this short list of graph problems, we mention the prob-

lem of coloring a graph with a minimum number of colors such that adjacent vertices

have different colors. Lawler [1976] showed that the problem can be solved in time

O(2.4423n) and a major improvement has been achieved by Björklund et al [2009].

Thanks to an inclusion-exclusion formula approach, they proposed an O∗(2n) time al-

gorithm. Finally, we mention the knapsack problem: Horowitz and Sahni [1974] gave

an O∗(1.4142n) time algorithm based on an approach called Sort & Search. In the last

decade, the design and analysis of exponential-time algorithms saw a growing inter-

est. Several books and surveys are devoted to the subject (Fomin and Kratsch [2010],

Woeginger [2003, 2004]).

For problems involving graphs, the relevant size measure is typically a cardinality,

such as the number of vertices or edges in the instance. The scheduling problems

studied in the present paper are more complicated in the sense that their instances

involve cardinalities (the number of jobs to schedule and/or the number of machines)

and values (like processing times of jobs). Intuitively, it seems less easy to correlate

the worst-case complexity of an exponential-time algorithm only to the size of the

instances. In this paper we consider a set of basic scheduling problems which share the

following definition. A set of n jobs has to be scheduled on a set of m machines. Each

job i is made up of, at most, two ordered operations specified by processing times pi,1
and pi,2. More particularly, we study several configurations:

– Single machine problems for which m = 1 and each job i has one operation of

processing time pi (the second index is omitted),

– Parallel machine problems for which m is arbitrary and each job i has one operation

of processing time pi. This operation can be processed by any machine,

– Interval scheduling problems for which m is arbitrary, each job i has one operation

and can be only processed by a given subset of machines. These problems have the

particularity that each job i is only available during a time interval Ii = [ri, d̃i]

with pi = d̃i − ri,

– 2-machine Flowshop problems for which 2 machines are available and each job i

has two ordered operations. For each job, the first operation is processed on the

first machine before the second operation is processed on the second machine. Be-

sides, without loss of optimality for the considered problems, we assume that the

sequence of jobs on the first machine is the same than on the second machine.
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The aim of these scheduling problems is to allocate optimally the jobs to the machines

in order to minimize a given criterion and, possibly, under additional constraints. Let

us define by Ci(s) the completion time of the last operation of job i in a given schedule

s. Besides, let us refer to fi as the cost function associated to job i and depending

on the value of Ci(s). It can be interesting to minimize two general cost functions

fmax(s) = max1≤i≤n(fi(Ci(s))) or
∑

fi(s) =
∑n

i=1 fi(Ci(s)). Notice, that from now

on the mention of schedule s in the completion time notation will be omitted for sim-

plicity purposes, except when it will be unavoidable in the text.

Particular cases of the maximum cost function fmax are the makespan criterion de-

fined by Cmax = max1≤i≤n(Ci), the maximum tardiness criterion defined by Tmax =

max1≤i≤n(max(0;Ci − di)) and the maximum lateness criterion defined by Lmax =

max1≤i≤n(Ci − di). The data di is the due date of job i. Similarly, particular cases

of the total cost function
∑

fi are the total weighted completion time defined by
∑

wiCi, the total weighted tardiness defined by
∑

wiTi =
∑

wi max(0;Ci − di) and

the total weighted number of late jobs defined by
∑

wiUi with Ui = 1 if Ci > di
and Ui = 0 otherwise. The data wi is the tardiness penalty of job i. For the tackled

interval scheduling problem the aim is not to minimize one of these criteria but only to

decide of its feasibility. The above particular cases of fmax and
∑

fi criteria share the

implicite property that the fi’s are non-decreasing functions of the completion times

Ci(s). There exists other particular cases for which this property does not hold as for

instance the total earliness criterion defined by
∑

Ei =
∑

max(0; di − Ci).

The scheduling problems dealt with in this paper are referred using the classic 3-field

notation α|β|γ introduced by Graham et al [1979], with α containing the definition of

the machine configuration, β containing additional constraints or data and γ the cri-

terion which is minimized. For instance, the notation 1|di|
∑

wiUi refers to the single

machine problem where each job is additionally defined by a due date di and for which

we want to minimize the total weighted number of late jobs
∑

wiUi. The particular

interval scheduling problem tackled in this paper will be only referred to as IntSched.

For more information about scheduling theory, the reader is kindly referred to basic

books on the field (see Brucker [2007] and Pinedo [2008] among others).

Before synthesing the results that are provided in this paper, we need to introduce an

additional property of some scheduling problems.

Definition 1 A schedule s on a single machine is said to be decomposable iff Cmax(s) =
∑

i∈s pi.

Definition 2 A schedule s on parallel machines is said to be decomposable iff Cmax(sj) =
∑

i∈sj pi, ∀j = 1, . . . ,m, with sj the sub-schedule of s on machine j.

The class of decomposable schedules is dominant for several scheduling problems, as for

instance the 1|di|Tmax problem. This means that, for such problems, there always exist

at least one optimal schedule which answers the decomposability property. Examples

of problems for which this is not the case, are scheduling problems with jobs having

distinct release dates. When dealing with problems for which we explicitely restrict the

search for optimal solutions to decomposable schedules, we mention in the β-field of

the problem notation the word dec.

Another important motivation of this paper is related to the novelty of the study:

up to now, the establishment of worst-case complexities for NP-hard scheduling prob-

lems has been the matter of few studies in the literature. Woeginger [2003] presented
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a pioneer work (also given in the book of Fomin and Kratsch [2010]) on a single ma-

chine scheduling problem with precedence constraints, referred to as 1|prec|
∑

wiCi.

He gave a dynamic programming algorithm running in O∗(2n) and suggested that such

dynamic programming also enables to derive a O∗(2n) exponential-time algorithms for

the 1|di|
∑

wiUi and 1|di|
∑

Ti problems, and a O∗(3n) exponential-time algorithm

for the 1|ri, prec|
∑

Ci. Later on Cygan et al [2011] provided, for the 1|prec|
∑

Ci

problem, an exponential algorithm in O∗((2− 10−10)n) time.

Table 1 presents a synthesis of the results proved later on in this paper and the results

established by Woeginger [2003] and recently by Fomin and Kratsch [2010]. The first

column contains the problem notation for which is indicated in the second column the

worst-case complexity of the brute-force search algorithm. The third column shows

the worst-case complexities of proposed exponential-time algorithms and the fourth

column refers to the publication or section of this paper which contains the proofs of

the results.

As the 1|dec|
∑

fi problem generalizes the 1|di|
∑

wiTi and 1|d̃i|
∑

wiCi problems,

they can be solved in O∗(2n). When turning to the problems with parallel machines

the same generalizations can be established.

Problem Enumeration Exp. Time Alg. Reference

1|dec|fmax O∗(n!) O∗(2n) Fomin and Kratsch [2010]
Sect. 4.1

1|dec|∑ fi O∗(n!) O∗(2n) Fomin and Kratsch [2010]
Sect. 4.1

1|prec|∑Ci O∗(n!) O∗((2− 10−10)n) Cygan et al [2011]
1|prec|∑wiCi O∗(n!) O∗(2n) Woeginger [2003]

Sect. 2
1|di|

∑
wiUi O∗(n!) O∗(2n) Woeginger [2003]

Sect. 2

O∗(
√
2
n
) Sect. 4.2

1|di|
∑

Ti O∗(n!) O∗(2n) Woeginger [2003]
Sect. 2

1|ri, prec|
∑

wiCi O∗(n!) O∗(3n) Woeginger [2003]
Sect. 2

IntSched O∗(2n log(m)) O∗(1.2132nm) Sect. 3
O∗(2n)

O∗(2(m+1) log2(n))
P |dec|fmax O∗(mnn!) O∗(3n) Sect. 5.1
P |dec|∑ fi O∗(mnn!) O∗(3n) Sect. 5.1

P4||Cmax O∗(4n) O∗((1 +
√
2)n) Sect. 5.5

P3||Cmax O∗(3n) O∗( 3
√
9n) Sect. 5.4

P2||Cmax O∗(2n) O∗(
√
2
n
) Sect. 5.2

P2|di|
∑

wiUi O∗(3n) O∗( 3
√
9n) Sect. 5.3

F2||Ck
max O∗(2n) O∗(

√
2
n
) Sect. 6

Table 1 Synthesis of the best known worst-case complexities

The remainder is organized as follows. Section 2 introduces some of the classic

techniques used in the literature to compute worst-case complexities for NP-hard
problems. In section 3 we start with the study of a multiskilled interval scheduling

problem which is a very particular scheduling problem. In sections 4 and 5 we focus
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on basic single machine and parallel machine scheduling problems. Section 6 ends up

the study of scheduling problems by focusing on a particular but complex 2-machine

flowshop problem. Conclusions and future research lines are next provided.

2 Some Techniques Used to Derive Worst-Case Complexities

The design and analysis of exponential-time algorithms has been recently the subject of

a comprehensive monograph (Fomin and Kratsch [2010]). To design exponential-time

algorithms, two possibilities are offered to us: find a problem-specific decomposition

scheme to break the problem into smaller subproblems, or apply a known general de-

composition scheme (technique). For some of the scheduling problems considered in

this paper we have proposed exponential-time algorithms based on dedicated decom-

position schemes. But we also have succesfully applied some known techniques which

are mainly Dynamic Programming and Sort & Search.

This section intends to provide the reader with an overview of some classic tech-

niques focusing on the two mostly used in the remainder of the paper.

As outlined by Fomin and Kratsch [2010], one common way to derive exponential-time

algorithms is to consider branching-based algorithms. A typical example, largely used

in the literature, are Branch-and-Bound algorithms which provide optimal solutions

with exponential time and, most of the time, polynomial space. But, one of the dif-

ficulty induced by such algorithms is to derive a worst-case time complexity better

than the brute-force search : this is due, at least, by the bouding mechanism which

makes intractable the analysis of their time complexity. A more used technique, called

Branch-and-Reduce, has been successfuly used to derive exponential-time algorithms.

It shares with Branch-and-Bound algorithms the feature of branching to decompose

the problem into subproblems. But a Branch-and-Reduce algorithm has no bounding

mechanism and does not use dominance conditions. It rather uses a reduction proce-

dure at each node. The underlying idea of such a procedure, for a given node, is to

decrease in polynomial time the length of the instance of the subproblem to solve at

this node. Consequently, we may be able to analyse that, in the worst case, the size of

the search tree is lower than if no reduction procedure was used. Thus, this leads to

a decreased worst-case time complexity than that of the brute-force search. An illus-

tration is given in figure 1 in which is pictured the effect of the reduction procedure

at a node π. In this figure π∗ refers to the “best” node in the subtree T that can

be attained from node π. Besides, node π′ is on the path from π to π∗ in the search

tree. Therefore, the reduction procedure is equivalent to “jump” in polynomial time

from π to π′. Replacing π by π′ yields to save nodes in the search for π∗ and if, for

the worst instances, the reduction procedure always applies then the worst-case time

complexity of the corresponding Branch-and-Reduce algorithm is lower than that of

the brute-force search.

Fig. 1 Illustration of the reduction procedure in a Branch-and-Reduce algorithm
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Regarding the literature scheduling problem, Branch-and-Bound algorithms have

been often used to efficiently solve them in practice. So, it could appear almost easy

to derive from them Branch-and-Reduce algorithms and to analyse their running time.

The design of a reduction procedure is far from trivial.

Another way of decomposing the problem to solve consists in applying Dynamic

programming. The dynamic programming paradigm is based on breaking down an in-

stance into subproblems. The key idea is to compute only once for each subproblem an

optimal solution, to store this solution into a table and to retrieve it each time the cor-

responding subproblem has to be solved. Dynamic programming has been extensively

used in the literature to derive polynomial-time algorithms, pseudo-polynomial time

algorithms, polynomial-time approximation schemes (PTAS and FPTAS), . . . , and it

can be also applied to derive exponential algorithms. Typically, exponential algorithms

based on dynamic programming require both exponential time and exponential space

in the worst case, which is not the case for Branch-and-Reduce algorithms (they usu-

ally only require exponential time).

As mentionned by Woeginger [2003], dynamic programming accross the subsets en-

ables to derive exponential algorithms. For permutation problems it typically yields

to O∗(2n) time algorithms against O∗(n!) for the brute-force search. Dynamic pro-

gramming accross the subsets has been successfully applied by Woeginger on the

1|prec|
∑

wiCi problem to build an O∗(2n) time and space exponential algorithm.

Let S be a subset of the ground set {1, . . . , n} such that ∀j ∈ S if there exists a prece-

dence relation i → j, then i ∈ S. Let us defined by Last(S) ⊆ S the subset of jobs

with no sucessor in S. The recurrence function Opt[S] is then defined by:
{

Opt[∅] = 0,

Opt[S] = mint∈Last(S){Opt[S − {t}] + wtP (S)} with P (S) =
∑

i∈S pi.

It follows that enumerating all subsets S from the ground set {1, . . . , n} yields a time

and space complexity in O∗(2n). Woeginger [2003] also states that this algorithm can

be applied to the 1|di|
∑

wiUi and and 1|di|
∑

wiTi problems with the same complex-

ity. According to Woeginger, the 1|ri, prec|
∑

Ci problem can be solved in O∗(3n) time

using dynamic programming.

Another category of techniques for designing exponential algorithms is based on

splitting instances at the cost of an increase in the data. In this category, called Split

and List by Fomin and Kratsch [2010], an interesting technique is Sort & Search which

has been first proposed by Horowitz and Sahni [1974] to solve the discrete knapsack

problem in O∗(
√
2
n
) time and space. The underlying idea is to create a partition, let’s

say I1 and I2, of a given instance I. Then, by enumerating all possible partial solutions

from I1 and I2 we may be able to compute the optimal solution corresponding to the

instance I. We illustrate this technique on the discrete knapsack problem defined as

follows. Let O = {o1, . . . , on} be a set of n objects, each one being defined by a value

v(oi) and a weight w(oi), 1 ≤ i ≤ n. We are also given a positive integer capacity W

for the knapsack. The goal is to find a subset O′ ⊆ O such that
∑

o∈O′ w(o) ≤W and
∑

o∈O′ v(o) is maximum.

The Sort & Search technique suggests to partition O into O1 = {o1, . . . , o⌈n/2⌉} and

O2 = {o⌈n/2⌉+1, . . . , on}. A first table T1 is built from O1 by enumerating all subsets

O′j ⊆ O1: a column j of T1 corresponds to O′j and is associated with the values

w(O′j) =
∑

i∈O′j w(oi) and v(O′j) =
∑

i∈O′j v(oi). A second table T2 is build in the
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same way starting from subset O2. These two tables have O(2
n
2 ) columns. Before

searching for the optimal solution we perform a sort step on table T2: columns j of

T2 are sorted by increasing values of w(O′j). For each column in position k after that

sorting, we store the index ℓk ≤ k of the column with maximum v(O′ℓk ) value i.e.

ℓk = argmaxu≤k(v(O
′
u)). This processing, which can be achieved by means of a classic

sorting procedure, requires O∗(2
n
2 log(2

n
2 )) = O∗(

√
2
n
) time. Then, a search step is

applied to find an optimal solution: for each column j of table T1, we look for the

column k of table T2 such that w(O′j) +w(O′k) ≤W and v(O′j) + v(O′k) is maximum.

For a given column j, this is achieved by means of a binary search in table T2 to find

column k such that k = argmaxu∈T2
(w(O′j) + w(O′u) ≤ W ). Then, v(O′j) + v(O′ℓk ) is

the maximum value of the objectif function when objects of O′j are put in the knapsack

but objects in O1\O′j are not put in the knapsack. The examination of all O′j enables to

compute the optimal solution of the problem. The overall search step can be achieved

in O∗(2
n
2 log(2

n
2 )) = O∗(

√
2
n
) time. Therefore, this Sort & Search algorithm requires

O∗(
√
2
n
) time and space. We provide below a numerical example with n = 6 objects,

O = {a, b, c, d, e, f} and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d, e, f}

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
v 0 3 4 2 7 5 6 9
w 0 4 2 1 6 5 3 7

T2 ∅ {e} {d} {f} {d, e} {e, f} {d, f} {d, e, f}
v 0 1 5 3 6 4 8 9
w 0 2 3 5 5 7 8 10
ℓk 1 2 3 3 5 5 7 8

The table below presents the result of the search step: for each column j of T1 we indicate
the column k of T2 such that k = argmaxu∈T2

(w(O′j) + w(O′u) ≤W ).

j ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
k {d, f} {d, e} {e, f} {d, f} {d} {d} {d, e} {e}

w(O′j) + w(O′
k
) 8 9 9 9 9 8 8 9

v(O′j) + v(O′
ℓk
) 8 9 10 10 12 10 12 10

Consequently, the optimal solution value is equal to 12 and can be obtained by putting into

the knapsack objects {a, b, d} or {b, c, d, e}.

The Sort & Search technique is very powerful to design exponential algorithms and

can be applied to a lot of NP-hard optimisation problems. Informally speaking, such

problems must have the properties that: (1) two partial solutions can be combined in

polynomial time to build a complete solution of the initial instance, (2) we must be

able to set up a sorting step which enables to perform the searching step in no more

time than the building of the tables.

Other techniques, and their analysis, can be found in Fomin and Kratsch [2010].

3 An Introductory Case: The Multiskilled Interval Scheduling Problem

Let us first consider a simple scheduling problem, referred to as IntSched, which serves

to introduce several ways for establishing exponential algorithms. IntSched can be
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stated as follows. Consider a set of n jobs to be processed by m machines. Each job i

is defined by a processing interval Ii = [ri, d̃i], i.e. starts at time ri and completes at

time d̃i and, without loss of generality, we assume that d̃1 ≤ d̃2 ≤ . . . ≤ d̃n. Besides,

machines do not all have the same skills or capabilities which implies that to each job

i is defined a subset Mi of machines on which it can be processed. The aim of the

problem is then to find a feasible assignment of jobs to machines. It is an NP-hard
problem also referred to as a Fixed Job Scheduling Problem in the literature (Kolen

et al [2007], Kovalyov et al [2007]). Notice that when all machines are identical, i.e.

∀i, j,Mi = Mj , the problem can be solved in polynomial time since it reduces to a

coloring problem in an interval graph.

Let Enum be the algorithm which solves the problem IntSched by a brute-force

search of all possible assignments. This can be achieved in O∗(mn)=O∗(2n log2(m))

time. The question is now whether it is possible or not to provide a smaller complexity

for the problem IntSched.

First, consider the dynamic programming algorithm, referred to as DynPro, defined as

follows:















Opt[i, l1, l2, . . . , lm] =True If there exists an assignment of machines to jobs in

{1, . . . , i} such that ∀j = 1, . . . ,m, there is no job

k ∈ {1, . . . , i} assigned to machine j with d̃k > lj .

Opt[i, l1, l2, . . . , lm] =False otherwise.

In Opt the lj ’s are upper bounds on the completion times of the last jobs from {1, . . . , i}
scheduled on the machines. If we denote byMR

i = {j ∈Mi | lj ≥ d̃i}, then the recur-

rence function can be rewritten as:

{

Opt[i, l1, . . . , lm] = ∨u∈MR
i
Opt[i− 1, l1, . . . , lu = ri, . . . , lm] ∀i = 1, . . . , n

Opt[0, l1, . . . , lm] =True ∀l1, . . . , lm

with ∨u∈MR
i
Opt[i− 1, l1, . . . , lu = ri, . . . , lm] = False if MR

i = ∅.
DynPro first calculates all relevant tuples (l1, . . . , lm) in a recursive way. Starting with

lj = d̃max = max1≤i≤n(d̃i), ∀j = 1, . . . ,m, all tuples (l1, . . . , lu = rn, . . . , lm), ∀u ∈
MR

n are calculated. Recursively, for each of these tuples we iterate with MR
n−1,. . . ,

MR
1 . DynPro next builds n tables containing the values of Opt: table i contains the

values for the set of jobs {1, . . . , i} and is build once table (i − 1) is known. Be-

sides, the columns of table i are the tuples generated at the (n − i)th recursion. if

Opt[n, d̃max, . . . , d̃max] is true then there exists a feasible assignment of jobs to ma-

chines, which can be calculated in polynomial time by a backward procedure as usual

in dynamic programming.

Lemma 1 DynPro has a worst-case complexity in O∗(2(m+1) log2(n)).

Proof To calcule the tables containing the values of Opt[i, l1, . . . , lm] we need to con-

sider the set of possible values for the parameters. Each parameter can take at most

n values which implies that there are at most nm+1 values of the recurrence fonc-

tion to calculate. Besides, for any given value Opt[i, l1, . . . , lm] we need to evaluate

∨u∈MR
i
Opt[i − 1, l1, . . . , lu = ri, . . . , lm] which is done by accessing to, at most, m
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values Opt[i − 1, l1, . . . , lu = ri, . . . , lm] already evaluated. Thus, the time complexity

is, at worst, in O(m×n(m+1))=O∗(n(m+1))=O∗(2(m+1) log2(n)). This is also the space

complexity of the algorithm.

From lemma 1 we can see that: (i) whenever m is fixed, the IntSched problem

becomes polynomialy solvable, (ii) DynPro algorithm offers a better complexity than

Enum, whenever n > m.

In order to derive exponential algorithms for IntSched, we can also reduce it to

known graph problems. Consider the following algorithm, referred to as StaDom, which

first transforms an instance of the IntSched problem into a graph. Let G = (V,E) be an

undirected graph in which each vertex vi ∈ V represents a couple (Ij , ℓ) with ℓ ∈Mj .

Therefore, for a given job we create as much vertices as machines capable of processing

it. We create an edge ek ∈ E between two nodes vi = (Ij , ℓ) and vp = (Iq, ℓ
′) iff

Ij ∩ Iq 6= ∅ and ℓ = ℓ′. We also create an edge between two vertices associated to the

same job. This yields a graph G with at most N = nm vertices and M = n2m2 edges.

On this graph, StaDom applies the exact algorithm for the Maximum Independent

Set problem in O∗(1.2132N ) (Kneis et al [2009]). The example provided in figure 2

illustrates the reduction of the IntSched problem to the search of an independent set

S of maximum size in the graph G.

Fig. 2 Reduction of IntSched to the search of a independent set of maximum size in a graph:
a 4-job and 3-machine example

Lemma 2 StaDom solves the IntSched problem with a worst-case time complexity in

O∗(1.2132nm) and polynomial space.

Proof We first show that if there exists an independent set S of cardinality n in the

graph G then there exists a feasible solution to the associated instance of the IntSched

problem. For each vertex vi ∈ S, let (Ij , ℓ) be the associated time interval of job j and

the machine ℓ ∈ Mj . By construction of the graph, there is no other vertex vk ∈ S

associated to the couple (Iu, ℓ
′) such that one of the two conditions holds:

1. u = j,

2. u 6= j, ℓ = ℓ′ and Iu ∩ Ij 6= ∅.

Both conditions lead to a contradiction with the fact that S is an independent set of

maximum size since there is an edge between vi and vk. Consequently, as there are n

vertices in S, one for each job of IntSched and with each machine assigned to a single

job at the same time, then S can be easily translated into a feasible assignment for the

IntSched problem.

By applying the same argument we can easily show that if there does not exist an

independent set S of cardinality n on graph G, there does not exist a feasible solution

to the associated IntSched problem.

Now, we establish another result by considering another reduction of the IntSched

problem to a graph problem. Consider the following algorithm, referred to as LisCol,
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which first transforms an instance of the IntSched problem into a graph. LetG = (V,E)

be an undirected graph in which each vertex vi ∈ V represents a job i and is associated

with a set of colors Ci: color ℓ ∈ Ci iff machine ℓ ∈ Mi. We create an edge ek ∈ E

between two nodes vi and vp iff Ij ∩ Iq 6= ∅. This yields a graph G with N = n vertices

and at most M = n2 edges. On this graph, LisCol applies the algorithm for the list-

coloring problem with worst-case complexity in O∗(2N ) (Björklund et al [2009]). The

example provided in figure 3 illustrates the reduction of the IntSched problem to the

search of a list-coloring L in the graph G. This reduction leads to the result of lemma

3.

Fig. 3 Reduction of IntSched to the search of a list-coloring in a graph: a 4-job and 3-machine
example

Lemma 3 LisCol solves the IntSched problem with a worst-case complexity in O∗(2n).

The question is now whether one of these four algorithms outperforms, in terms of com-

plexity, the others or not: Enum is in O∗(2n log2(m)), DynPro is in O∗(2(m+1) log2(n)),

StaDom is in O∗(1.2132nm) = O∗(2
nm

log2(1.2132) ) and LisCol is in O∗(2n). From these

complexities we can note that:

• LisCol has a lower worst-case complexity than Enum,

• For m ≤ 3, the worst-case running time of StaDom is better than LisCol,

• For m ≤ 13, the worst-case running time of StaDom is better than Enum.

It follows that, among Enum, StaDom and LisCol, the latter has the lowest com-

plexity for values of m higher than 3 whilst StaDom is better for m lower than 3.

DynPro has a complexity which can be better than the one of LisCol, depending on

the size of the instances: for example, this is the case for any instance with m ≤ 10

and n ≥ 1000. But, on the other hand, for any instance with n ≤ 60 and m ≥ 10, the

worst-case running time of LisCol is better than DynPro.

In this section we provided an illustration of the notion of worst-case complexity

and we showed complexity results by exploiting, for IntSched, strong links with graph

problems. Unfortunately, most often this manner to show complexity results does not

hold since NP-hard scheduling problem, in general, involve data related to duration

or date (processing times, due dates, . . . ). This makes them harder than classical

unweighted graph problems.

4 Single Machine Scheduling Problems

4.1 A General Result for Decomposable Problems

Consider n jobs to be scheduled without preemption on a single machine available

from time 0 onwards. Each job i is defined by a processing time pi and completes

at time Ci(s) in a given schedule s (whenever there is no ambiguity we omit s in
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the notation). Additionnaly, to each job is associated a cost function fi. We also

assume that the decomposability property of definition 1 holds. The aim is to cal-

culate a schedule s (a sequence of jobs) which minimizes either criterion fmax(s) =

max1≤i≤n(fi(Ci(s))) or criterion
∑

fi(s) =
∑n

i=1 fi(Ci(s)). We assume that for any

given schedule s these criteria can be evaluated in polynomial time. These two prob-

lems, which are referred to as 1|dec|fmax and 1|dec|
∑

fi, generalize a set of basic

NP-hard scheduling problems like the 1|d̃i|
∑

wiCi, 1|di|
∑

wiTi, 1|di, d̃i|
∑

wiTi,

1|di|
∑

wiUi, 1|di, d̃i|
∑

wiUi, 1|di, dec|
∑

wiEi and 1|di, d̃i, dec|
∑

wiEi problems.

First, consider the algorithm Enum which solves the problems 1|dec|fmax or

1|dec|
∑

fi by a brute-force search of all possible schedules. As the number of such

schedules (sequences of n jobs) is equal to n! the Enum algorithm has a worst-case

complexity in O∗(n!) time. It is possible to establish better bounds by means of a

dynamic programming algorithm, denoted by DynPro and introduced by Fomin and

Kratsch [2010].

For the 1|dec|
∑

fi problem, DynPro works as follows. Let be S ⊆ {1, . . . , n} and

Opt[S] the recurrence function calculated on set S: Opt[S] is equal to the minimal

value of criterion
∑

fi for the jobs in S. We have:
{

Opt[∅] = 0,

Opt[S] = mint∈S{Opt[S − {t}] + ft(P (S))} with P (S) =
∑

i∈S pi.

Notice that in the presence of additional constraints, like deadlines d̃i, the above for-

mulation must be slightly changed as follows: when computing the minimum value

over t ∈ S, only jobs satisfying these additional constraints must be considered. In the

case of deadlines, only jobs t with d̃t ≥ P (S) have to be considered. DynPro has a

worst-case time and space complexity in O∗(2n). It can be easily adapted to solve the

1|dec|fmax problem.

In the next section, we refine the worst-case complexity of a particular single ma-

chine decomposable problem.

4.2 The Problem of Minimizing the Weighted Number of Late Jobs

Consider that each job i is defined by a processing time pi, a due date di and a

tardiness penalty wi. The aim is to compute an optimal schedule s which minimizes

the weighted number of late jobs denoted by
∑

wiUi with Ui = 1 if Ci(s) > di and

Ui = 0, otherwise. This problem, which is referred to as 1|di|
∑

wiUi, has been shown

NP-hard in the weak sense (Karp [1972] and Lawler and Moore [1969]). We first show

some simple properties.

Lemma 4 Let E be a set of desired early jobs, i.e. jobs that we would like to complete

before their due date di. Either there is no feasible schedule s in which all jobs in E

are early, either there exists an optimal schedule in which all jobs in E are sequenced

by increasing value of their due date di (Earliest Due Date rule, EDD).

Proof The EDD rule has been shown to optimaly solve the 1|di|Lmax problem (Jack-

son [1955]). Let sEDD be the schedule of jobs obtained by sequencing the jobs in E

according to the EDD rule. Since there is no other schedule s′ of E with Lmax(s
′) <
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Lmax(sEDD), if Lmax(sEDD) > 0 there is no feasible schedule s in which all jobs in

E are early. Otherwise, by concatenating sEDD with any sequence sR of jobs not in

E, we obtain a schedule s = sEDD//sR which is optimal for the problem of scheduling

early the jobs in E.

Lemma 5 Let sEDD be the schedule obtained by the EDD rule on a set of early jobs

E, with Lmax(sEDD) ≤ 0. There exists a feasible schedule of all jobs in E starting at

time t iff Lmax(sEDD) + t ≤ 0.

Proof In sEDD the first job starts at time t = 0 and we have Lmax(sEDD) =

maxi∈sEDD
(Ci(sEDD)− di). Now, assume that the first early job of E starts at time

t > 0. Then, due to the optimality of the EDD rule there exists a feasible schedule in

which all jobs in E remain early and start after time t iff Ci(sEDD) + t ≤ di, ∀i ∈ E

which is equivalent to Lmax(sEDD) + t ≤ 0.

First, consider the Enum algorithm which solves the problem by a brute-force

search of all schedules. From lemma 4 we can deduce that Enum has only to enumerate

all the sets E of possible early jobs and, for each set E, calculate in polynomial time

as suggested in the proof of that theorem an associated schedule s. By keeping the

schedule s with the minimal value of
∑

wiUi, Enum can solve optimally the problem.

As there are 2n sets of possible early jobs, Enum has a worst-case complexity in O∗(2n)
time. This complexity can also be deduced from the DynPro algorithm proposed in

section 4.1. The question is whether it is possible or not to establish a better bound.

To that purpose we apply the Sort & Search approach to derive the following optimal

algorithm, referred to as SorSea. Without loss of generality, jobs are assumed to be

numbered by increasing order of their due date, i.e. d1 ≤ d2 ≤ . . . ≤ dn. Let be

I1 = {1, . . . , ⌊n2 ⌋} and I2 = {⌊n2 ⌋+1, . . . , n} a partition of the initial instance to solve.

Starting from set I1, algorithm SorSea builds a sequence of early jobs scheduled first,

whilst starting from set I2 it builds a sequence of desired early jobs scheduled right

after the early jobs of I1. Let s
j
1 ⊆ I1 (resp. sk2 ⊆ I2) be a sequence of early jobs sorted

by the EDD rule, and s̄j1 = I1 − sj1 (resp. s̄k2 = I2 − sk2) be the sequence of tardy jobs

(in any order). The decomposition of a schedule s computed by SorSea in presented

in figure 4. We also define P (A) =
∑

i∈A pi for any set of jobs A. We have:
∑n

i=1 wiUi(s) =
∑

i∈s̄j1
wi +

∑

i∈s̄k2 wi.

Fig. 4 Decomposition of a schedule s for the 1|di|
∑

wiUi problem

SorSea builds a table T1 in which each column j is associated with a sequence

sj1 ⊆ I1 of at most n
2 jobs. Therefore, table T1 contains at most 2

n
2 columns. To each

column j we store the values P (sj1) and
∑

i∈s̄j1
wi. SorSea also builds a table T2 in

which column k is associated with a sequence sk2 ⊆ I2 of at most n
2 jobs. In table T2

the 2
n
2 columns are sorted by decreasing values of Lmax(s

k
2). For each column k we

store the values Lmax(s
k
2),

∑

i∈s̄k2 wi and wUmin(s
k
2) = minℓ≥k(

∑

i∈s̄ℓ2 wi).

For a given column j of T1, i.e. with associated partial sequences sj1 and s̄j1, SorSea

searches in O(n) time in T2 the column k such that:
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k = argmin(u ∈ T2 | P (sj1) + Lmax(s
u
2 ) ≤ 0).

From lemma 5, we can deduce that all columns ℓ ≥ k in table T2 correspond to all the

partial schedules sk2 with no tardy job if they are scheduled after sj1. The value of the

smallest
∑

wiUi(s) value in a schedule s starting by the partial sequence sj1 of early

jobs and with jobs in s̄j1 tardy is then given by:
∑

wiUi(s) =
∑

i∈s̄j1
wiUi + wUmin(s

k
2).

By computing for each column j of T1 the above value, SorSea computes the optimal

solution of the 1|di|
∑

wiUi problem.

Theorem 1 SorSea solves the 1|di|
∑

wiUi problem with a worst-case time and space

complexity in O∗(
√
2
n
).

Proof First, SorSea builds table T1, thus requiring O∗(
√
2
n
) time and space. Next, it

builds table T2 also in O∗(
√
2
n
) time and space since the sorting of the columns is done

in O∗(2
n
2 × log(2

n
2 )) = O∗(

√
2
n
) time. The main part of SorSea algorithm consists

in searching for each column j of T1 the column k in T2 such that k = argmin(u ∈
T2/P (sj1) + Lmax(s

u
2 ) ≤ 0). By a binary search, whenever j is given, the value of k

can be computed in O∗(log(2
n
2 )) = O(n) time, i.e. in polynomial time. As there are

2
n
2 columns in table T1, the search for the optimal solution in tables T1 and T2 can be

achieved in O∗(
√
2
n
) time and space.

5 Parallel Machine Scheduling Problems

5.1 A General Result for Decomposable Problems

Consider n jobs to be scheduled without preemption on m identical parallel machines

available from time 0 onwards. Each job i is defined by a processing time pi and com-

pletes at time Ci(s) on the machine j which processes it in a given schedule s. To

each job is associated a cost function fi. We also assume that the decomposability

property of definition 2 holds. The aim is to calculate a schedule s (sequences of jobs

on the machines) which minimizes either criterion fmax(s) of criterion
∑

fi(s). The

two problems tackled in this section, referred to as P |dec|fmax and P |dec|
∑

fi, gen-

eralize that of section 4.1 and are strongly NP-hard. They also generalize some basic

scheduling problems like the P ||Cmax, P |di|Tmax, P |di|Lmax, P ||
∑

wiCi, P |di|
∑

Ti,

P |di|
∑

wiTi, P |di|
∑

wiUi, P |di, dec|
∑

wiEi problems and their variant with dead-

lines.

First, consider the algorithm Enum which solves the problems P |dec|fmax or

P |dec|
∑

fi by a brute-force search of all possible schedules. A schedule is defined

by sets of nj jobs on machines j, each set leading to nj ! permutations in the worst-

case. For a given assignment of jobs to machines, the number of schedules is given by
∏m

j=1 nj ! which is lower than n!. Besides, there are mn possible assignments of n jobs

to m machines thus leading to a worst-case time complexity of Enum in O∗(mnn!).

Notice that this complexity is an upper bound on its exact complexity which, to be

established, would require to compute the partition of a number n into k numbers

with 1 ≤ k ≤ m, as defined in number theory. There does not exist, to the best of our

knowledge, a general formulae giving the number of such partitions.
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We now show that it is possible to provide a strongly reduced bound, by means of

a dynamic programming algorithm and a suitable decomposition of the problem. The

resulting algorithm is denoted by DecDP and is presented for the P |dec|
∑

fi problem.

However, it can be easily adapted to the P |dec|fmax problem.

The main line of DecPD is to separate recursively the set of machines into two

“equal-size” subsets, thus leading to O(log2(m)) subproblems (Pt) to deal with. This

decomposition is illustrated in figure 5 in the case of m = 8 machines. If m is not a

power of 2 then for some subproblems there is an odd number of machines and in (P1)

there is a single machine. However, this does not change the functioning of DecPD.

Fig. 5 Illustration of the recursive decomposition of problems P |dec|∑ fi and P |dec|fmax

We present this algorithm in the case where m is a power of 2. Let us denote by

Xk the set of sets of k jobs among n and let be X = ∪1≤k≤nX
k. We define (Pt) as

the problem of scheduling a set S of jobs on 2t machines and we denote by Ft[S] the

optimal value of
∑

fi for the jobs in S.

First, DecPD solves the problem (P0) which involves a single machine and is denoted

by 1|dec|
∑

fi. The latter can be solved in O∗(2n) by DynPro presented in section 4.1.

This algorithm computes the optimal solution of
∑

fi criterion for all subsets S ∈ X:

let be σS the optimal sequence associated to subset S, ∀S ∈ X, then F0[S] =
∑

fi(σS)

can be computed in O(1) time after running of DynPro.

Next, for each value t from 1 to log2(m), we have to compute Ft[S], ∀S ∈ X. This is

done by computing Ft[S] = minS′⊆S(Ft−1[S
′]+Ft−1[SrS′]). For instance, for problem

(P1) and a given S ∈ X, F1[S] is computed by trying all possible assignments of jobs in

S on machines 1 and 2 and by using the values F0 computed by DynPro. Similarly, for

problem (P2) and a given S ∈ X, F2[S] is computed by trying all possible assignments

of jobs in S on the couples (machine 1, machine 2) and (machine 3, machine 4) and by

using the values F1 previously computed. This process is repeated until we are able to

compute Flog2(m)[{1, . . . , n}].

Theorem 2 DecPD solves the P |dec|
∑

fi problem with a worst-case time complexity

in O∗(3n) and a worst-case space complexity in O∗(2n).

Proof First, DecPD computes sets Xk and X which can be achieved in O∗(2n) time

and space. This is also the case of DynPro algorithm used to compute F0[S], ∀S ∈ X.

For a given problem (Pt), all Ft[S] values can be computed in O∗(3n) time: for a given

set S there are 2|S| subsets S′ and as there are

(

n

k

)

sets of cardinality k, we have

to access O(
∑n

k=0

(

n

k

)

2k) times to Ft−1 (each access is done in O(1) time). By

using the Newton’s binomial formula,
∑n

k=0

(

n

k

)

2k can be rewritten as 3n, thus

leading to a time complexity in O(3n) for computing Ft[S], ∀S ∈ X. The memory

space required is in O(2n).

As there are log2(m) problems (Pt) to consider, they are all solved in O∗(log2(m)3n) =

O∗(3n) time. Consequently, DecPD requires O∗(3n) time and O∗(2n) space.
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In the case where m is not a power of 2, there are ⌈ log2(m)⌉ problems (Pt) to solve

and the problem (P1) involves a single machine. Then, it is solved by the DynPro

algorithm presented in section 4.1 and no problem (P0) has to be solved. For values t

from 2 to ⌈ log2(m)⌉ the reccurence function Ft[S] does not change.

The same result can be established for the P |dec|fmax problem by slightly changing

the definition of Ft[S] by Ft[S] = minS′⊆S(max(Ft−1[S
′], Ft−1[S r S′])).

5.2 The Two Machine Problem with Makespan Minimization

In this section we focus on a sub-problem of the P |dec|fmax problem which is referred

to as P2||Cmax and defined as follows. Consider n jobs to be scheduled without pre-

emption on two parallel identical machines available from time 0 onwards. Each job i

is defined by a processing time pi and completes at time Ci(s) on the machine j which

processes it in a given schedule s. The aim is to calculate a schedule s (an assignment of

jobs on the two machines) which minimizes the makespan Cmax. This problem, which

has been shown NP-hard in the weak sense (Lenstra et al [1977]), can be also modeled

as a SUBSET SUM problem (Garey and Johnson [1979]).

First, consider the algorithm Enum which solves the problem P2||Cmax by a brute-

force search of all possible schedules. A schedule is defined by a partition of the set of

jobs into 2 sets, one for each machine. Therefore, there are at most O(2n) partitions

and Enum requires O∗(2n) time. This bound is lower than that of given for the more

general P |dec|fmax problem. However, we show that it is possible to provide a reduced

bound by application of the Sort & Search method in a similar way than already done

by Horowitz and Sahni [1974] for the SUBSET SUM problem.

SorSea works as follows. Let I1 = {1, . . . , ⌊n2 ⌋} and I2 = {⌊n2 ⌋ + 1, . . . , n} be a

decomposition of the instance. Starting from I1 it build an assignment of jobs at the

beginning on machine 1 and on machine 2, whilst from set I2 it build and assignment

of jobs at the end of the schedule. Given a set sj1 ⊆ I1 (resp. sk2 ⊆ I2) of jobs assigned

on machine 1 we note s̄j1 = I1 − sj1 (resp. s̄k2 = I2 − sk2) the set of jobs assigned on

machine 2 (figure 6). We also define P (A) =
∑

i∈A pi for any set of jobs A, and we

have:

Cmax(s) = max(P (sj1) + P (sk2), P (s̄j1) + P (s̄k2)).

Fig. 6 Decomposition of a schedule for the P2||Cmax problem

SorSea builds a table T1 in which each column j is associated with an assignment

sj1 ⊆ I1 of at most n
2 jobs. To each column j are associated the values of P (sj1) and

P (s̄j1). Next, SorSeach builds a table T2 in which each column n is associated with

an assignment sk2 ⊆ I2 of at most n
2 jobs. These one are sorted by non increasing

values of (P (s̄k2) − P (sk2)). To each column k are associated the values P (sk2), P (s̄k2),
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P d
min(s

k
2) = minℓ≥k(P (sℓ2)) and P g

min(s
k
2) = minℓ≤k(P (s̄ℓ2)).

For a given column j from T1, i.e. assignments sj1 and s̄j1, SorSea searches in table T2
the indexes k and ℓ such that:

k = argmin(u ∈ T2 | P (sj1)− P (s̄j1) ≥ P (s̄u2 )− P (su2 )),

ℓ = argmax(u ∈ T2 | P (sj1)− P (s̄j1) ≤ P (s̄u2 )− P (su2 )).

Then, SorSea deduces the smallest value of Cmax(s) in a schedule starting by sj1 on

machine 1 and by s̄j1 on machine 2:

Cmax(s) = min(P (sj1) + P d
min(s

k
2), P (s̄j1) + P g

min(s
ℓ
2)).

The optimal value of Cmax is obtained by applying the above search into table T2 for

each column j from table T1 and by keeping the smallest value Cmax found.

Theorem 3 SorSea solves the P2||Cmax problem with a worst-case time and space

complexity in O∗(
√
2
n
).

Proof First, SorSea builds table T1, thus requiring O∗(
√
2
n
) time and space. Next,

it builds table T2 also in O∗(
√
2
n
) time and space since the sorting of the columns

is done in O∗(2
n
2 × log(2

n
2 )) = O∗(

√
2
n
) time. The main part of SorSea algorithm

consists in searching for each column j of T1 the columns k and ℓ in T2 such that

k = argmin(u ∈ T2 | P (sj1) − P (s̄j1) ≥ P (s̄u2 ) − P (su2 )) and ℓ = argmax(u ∈ T2 |
P (sj1)− P (s̄j1) ≤ P (s̄u2 )− P (su2 )). By a binary search, whenever j is given, the values

of k and ℓ can be computed in O∗(log(2
n
2 )) = O(n) time. As there are 2

n
2 columns in

table T1, the search for the optimal solution in tables T1 and T2 can be achieved in

O∗(
√
2
n
) time.

5.3 The Two Machine Problem with the Weighted Number of Late Jobs

In this section we focus on a sub-problem of the P |dec|
∑

fi problem which is referred

to as P2|di|
∑

wiUi and defined as follows. Consider n jobs to be scheduled without

preemption on two identical parallel machines available from time 0 onwards. Each job

i is defined by a processing time pi, a due date di, a tardiness penalty wi, and completes

at time Ci(s) on the machine j which processes it in a given schedule s. Without loss of

generality, we assume that jobs are indexed such that p1 ≤ p2 ≤ . . . ≤ pn. The aim is

to calculate a schedule s (an assignment of jobs on the two machines) which minimizes

the weighted number of late jobs
∑

wiUi. This problem has been shown NP-hard in

the weak sense (Graham et al [1979]), even in the case wi = 1, ∀i = 1, . . . , n.

First, we concentrate on some properties of the problem and the brute-force search

Enum algorithm. Lemma 4 (section 4.2) still holds on each one of the machines as far

as the sets of early jobs they process are known. From theorem 4 we can deduce that

Enum has only to enumerate all the sets of possible early jobs on each machine and, for

each set Ej of early jobs on machine j, to calculate in polynomial time an associated

schedule s (schedule on any machine, at the end, the tardy jobs). By keeping the

schedule s with the minimal value of
∑

wiUi, Enum can solve optimally the problem.

As each job can be either early on machine 1, early on machine 2 or tardy, there are 3n

sets of possible early jobs and Enum is in O∗(3n) time. This complexity is also that of

the DynPro algorithm proposed in section 4.1. The question is whether it is possible
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or not to establish a smaller bound.

We now state a result which extends lemma 5.

Lemma 6 Let E1 (resp. E2) be a set of early jobs assigned on machine 1 (resp. ma-

chine 2) and sEDD be the schedule obtained by applying the EDD rule on each machine

to sequence E1 and E2. We have Lmax(sEDD) ≤ 0. There exists a feasible schedule of

all jobs in E1 and E2 starting at time t iff Lmax(sEDD) + t ≤ 0.

Proof Follows directly from lemma 5.

As for the 1|di|
∑

wiUi problem, we propose a Sort & Search approach, referred

to as SorSea. Let be I1 = {1, . . . , n1} and I2 = {n1 + 1, . . . , n} a decomposition

of the initial instance (we note n2 = |I2|). Starting from I1 we build a sequence of

jobs “first” on machines 1 and 2, whilst starting from I2 we build a sequence of jobs

“second” on that machines. For a given sj1 ⊆ I1 (resp. sk2 ⊆ I2), i.e. a sequence of early

jobs assigned “first” (resp. “second”) either on machine 1 or machine 2, we denote by

s̄j1 = I1− sj1 (resp. s̄k2 = I2− sk2) the set of tardy jobs assigned “first” (resp. “second”)

either on machine 1 or machine 2. This decomposition of a schedule is illustrated in

figure 7. Notice that, with respect to the optimization criterion, we do not care about

the position or the machine which processes the tardy jobs: so, they can be scheduled

anywhere in a schedule, but after sj1 and sk2 . We have:

∑

wiUi(s) =
∑

i∈s̄j1
wi +

∑

i∈s̄k2 wi.

Fig. 7 Decomposition of a schedule for the P2|di|
∑

wiUi

In addition to the above decomposition scheme, SorSea exploits the symetry in-

duced by the fact that the two machines are identical. Figure 8 shows that, when the

partial schedule sj1 is fixed, we can switch in the partial schedule sk2 the sequences

on machines 1 and 2 to build two schedules. This enables to derive a simple condi-

tion to check that there exists a feasible schedule starting with sj1 and ending with

sk2 in which all jobs are early. We make use of the following additional notations:

∀ℓ = 1, 2, sj,1ℓ (resp. sj,2ℓ ) refers to the sequence of jobs from sjℓ assigned on ma-

chine 1 (resp. machine 2). We also define P (A) =
∑

i∈A pi, for any given set A,

Cmin(s
j
1) = min(P (sj,11 ), P (sj,21 )), Cmax(s

j
1) = max(P (sj,11 ), P (sj,21 )), Lmin(s

k
2) =

min(max
i∈sk,1

2
(Ci − di);max

i∈sk,2
2

(Ci − di)) and Lmax(s
k
2) = max(max

i∈sk,1
2

(Ci −
di);max

i∈sk,2
2

(Ci − di)).

Fig. 8 Partial sequences fitting
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Theorem 4 Let be sj1 (resp. sk2) a partial schedule of early jobs. There exists a feasible

schedule starting with sj1 and ending with sk2 iff the following system holds:

{

−Lmax(s
k
2) ≥ Cmin(s

j
1)

−Lmin(s
k
2) ≥ Cmax(s

j
1)

(A)

Proof Without loss of generality, we assume that Cmin(s
j
1) = P (sj,21 ) and Lmax(s

k
2) =

max
i∈sk,2

2
(Ci − di) (if this does not hold, by symetry, sk,12 and sk,22 can be switched).

Lemma 5 applied on machine 2 states that there exists a feasible schedule of early

jobs on that machine iff Cmin(s
j
1) + Lmax(s

k
2) ≤ 0. Similarly, there exists a feasible

schedule of early jobs on machine 1 iff P (sj,11 )+min
i∈sk,1

2
(Ci−di) ≤ 0, i.e. Cmax(s

j
1)+

Lmin(s
k
2) ≤ 0. This gives system (A).

The current theorem is true since if there is no feasible schedule, a permutation of sk,12

and sk,22 does not lead to a schedule in which all jobs are early.

SorSea works in a different way than the classic 2-table approach already used in

this paper. To the best of our knowledge, this approach does work for the P2|di|
∑

wiUi

problem due to the presence of two inequalities in system (A) and which have to hold

during the search step. Consequently, we provide an extension of the Sort & Search

technique by using two tables but one being double indexed.

SorSea first builds a table T1 in which each column j is associated with a partial

schedule sj1 ⊆ I1 of at most n1 early jobs. There are at most 3n1 columns since

each job i ∈ I1 can be either early on machine 1, early on machine 2 or tardy. To

each column j are associated the values of Cmax(s
j
1), Cmin(s

j
1) and

∑

i∈s̄j1
wi. Next,

SorSeach algorithm builds two double-entry tables TS
2 and TP

2 as follows (figure 9).

Notice that there are 3n2 partial schedules sk2 . Now, all values −Lmin(s
k
2) are sorted

by increasing values and let L
[t]
min be the t-th value in this order. Similarly, all values

−Lmax(s
k
2) are sorted by increasing values and let L

[t]
max be the t-th value in this order.

We define initial values inside these two tables as follows, ∀t, t′ = 1, . . . , 3n2 :



















TS
2 [t, t′] =

∑

i∈s̄k2 wi and TP
2 [t, t′] = sk2 , if there exists sk2 such that

L
[t]
min = −Lmin(s

k
2) and

L
[t′]
max = −Lmax(s

k
2),

TS
2 [t, t′] = +∞ and TP

2 [t, t′] = ∅ Otherwise.

Fig. 9 Illustration of the initial tables TS
2 and TP

2

Notice that in case there are several partial schedules sk2 with the same −Lmin(s
k
2)

and −Lmax(s
k
2) values, then we only store the one with the minimal

∑

i∈s̄2k wi value.

SorSea next updates tables TS
2 and TP

2 in order to guarantee that ∀t, t′, TS
2 [t, t′] con-

tains the lowest
∑

i∈s̄k2 wi value of a schedule sk2 appearing in TP
2 [u, v], with u ≥ t

and v ≥ t′. This update is done according to the algorithm given in figure 10. An

illustration of the updated tables is given in figure 11.
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/* TS
2 [t, t′] = +∞, ∀t or t′ > 3n2 */

For t=3n2 downto 1 Do
For t’=3n2 downto 1 Do

If (TP
2 [t, t′] = ∅) Then

If (TS
2 [t+ 1, t′] ≤ TS

2 [t, t′ + 1]) Then
TP
2 [t, t′] = TP

2 [t+ 1, t′]
TS
2 [t, t′] = TS

2 [t+ 1, t′]
Else

TP
2 [t, t′] = TP

2 [t, t′ + 1]
TS
2 [t, t′] = TS

2 [t, t′ + 1]
EndIf

EndIf
EndFor

EndFor

Fig. 10 Update of the tables TS
2 and TP

2

Fig. 11 Illustration of the updated tables TS
2 and TP

2

To find an optimal solution for the P2|di|
∑

wiUi problem, SorSea calculates, for

each column j of table T1,
∑

wiUi =
∑

i∈s̄j1
wi + TP

2 [t, t′] with t and t′ the lowest

indexes such that L
[t]
max ≥ Cmin(s

j
1) and L

[t′]
min ≥ Cmax(s

j
1). The smallest

∑

wiUi

value found among all columns of T1 is the optimal
∑

wiUi value.

Theorem 5 SorSea solves the P2|di|
∑

wiUi problem with a worst-case time and

space complexity in O∗( 3
√
9n) ≈ O∗(2.0801n).

Proof The worst-case complexity of SorSea depends on the values of n1 and n2. The

building of table T1 requires O∗(3n1) time and space. The building of the initial tables

TS
2 and TP

2 requires O∗(32n2) time and space. The update procedure given in figure

10 also requires O∗(32n2) time. At last, the time spent by SorSea algorithm to find the

optimal
∑

wiUi value is at worst in O∗(3n1). Therefore, the overall worst-case time

and space complexities are in O∗(3n1 + 32n2) with the constraint that n1 + n2 = n.

We conclude that the lowest complexity for SortSea is achieved when n1 = 2n/3, thus

leading to a final O∗( 3
√
9n) time and space complexity.

5.4 The Three Machine Problem with Makespan Minimization

In this section we focus on a scheduling problem involving three identical parallel ma-

chines and referred to as P3||Cmax. This problem, which is similar to the one tackled

in section 5.2 can be defined as follows. Consider n jobs to be scheduled without pre-

emption on three identical parallel machines available from time 0 onwards. Each job

i is defined by a processing time pi and completes at time Ci(s) on the machine j

which processes it in a given schedule s. Without loss of generality, we assume that

jobs are indexed such that p1 ≤ p2 ≤ . . . ≤ pn. The aim is to calculate a schedule s

(an assignment of jobs on the three machines) which minimizes the makespan defined

by Cmax = max1≤i≤n(Ci). This problem has been shown NP-hard in the weak sense
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(Lenstra et al [1977]).

Consider the algorithm Enum which solves the problem P3||Cmax by a brute-force

search of all possible schedules. A schedule is defined by a partition of the set of jobs

into 3 sets, one for each machine. Therefore, there are at most O(3n) partitions and

the algorithm Enum requires O∗(3n) time. This bound is equal to that of obtained for

the more general P |dec|fmax problem. However, we show that it is possible to provide

a reduced bound by application of the Sort & Search method.

SorSea, which is very similar to the one proposed for the P2|di|
∑

wiUi problem

(section 5.3), works as follows. Let I1 = {1, . . . , n1} and I2 = {n1 + 1, . . . , n} be

a decomposition of the instance (we note n2 = |I2|). Starting from I1 it builds an

assignment of jobs at the beginning on machine 1, machine 2 and machine 3, whilst

from set I2 it build and assignment of jobs at the end of the schedule. Given a set

sj1 = I1 (resp. sk2 = I2), we refer to sj,ℓ1 (resp. sk,ℓ2 ) as the sub-set of jobs from sj1
(resp. sk2) assigned to machine ℓ (figure 12). We have

⋂3
ℓ=1 s

j,ℓ
1 =

⋂3
ℓ=1 s

k,ℓ
2 = ∅,

⋃3
ℓ=1 s

j,ℓ
1 = sj1 and

⋃3
ℓ=1 s

k,ℓ
2 = sk2 . We also define P (A) =

∑

i∈A pi for any given set

A, and we have:

Cmax(s) = Cmax(s
j
1, s

k
2) = max(P (sj,11 )+P (sk,12 ), P (sj,21 )+P (sk,22 ), P (sj,31 )+P (sk,32 )).

Fig. 12 Decomposition of a schedule for the P3||Cmax problem

As the three machines are identical, without loss of optimality, SorSea restricts to

the schedules s in which Cmax(s) = P (sj,31 )+P (sk,32 ), i.e. the makespan value is given

by the jobs scheduled on machine 3. These schedules are characterized by the following

inequalities:

{

P (sj,11 ) + P (sk,12 ) ≤ P (sj,31 ) + P (sk,32 )

P (sj,21 ) + P (sk,22 ) ≤ P (sj,31 ) + P (sk,32 )
⇔

{

P (sk,12 )− P (sk,32 ) ≤ P (sj,31 )− P (sj,11 )

P (sk,22 )− P (sk,32 ) ≤ P (sj,31 )− P (sj,21 )

⇔
{

δ1,3(s
k
2) ≥ −δ1,3(sj1)

δ2,3(s
k
2) ≥ −δ2,3(sj1)

(A)

with δα,β(s
v
u) = P (sv,βu )− P (sv,αu ).

By using δα,β , we can rewrite P (sk,32 ) = 1
3 (P (sk2) + δ1,3(s

k
2) + δ2,3(s

k
2)).

Theorem 6 Let sj1 be a partial schedule of jobs in I1 on the three machines and let

O2(s
j
1) = {su2 ⊆ I2/δ1,3(s

u
2 ) ≥ −δ1,3(sj1) and δ2,3(s

u
2 ) ≥ −δ2,3(sj1)} be the set of

partial schedules su2 built from I2 such that Cmax(s
j
1, s

k
2) = P (sj,31 ) + P (sk,32 ). Let be

sk2 ∈ O2(s
j
1) such that δ1,3(s

k
2) + δ2,3(s

k
2) = min

su2∈O2(s
j
1)
{δ1,3(su2 ) + δ2,3(s

u
2 )} for any

given sj1. We have that Cmax(s
j
1, s

k
2) is minimal among all schedules starting with sj1.
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Proof As sk2 ∈ O2(s
j
1), for a given sj1, the constraints of system (A) are answered and

the schedule s obtained by appending sk2 after sj1 is such that Cmax(s) = P (sj,31 ) +

P (sk,32 ).

We now have to show that Cmax(s) is minimal. Using the rewritten form of P (sk,32 )

given above, we can write that:

Cmax(s) = P (sj,31 ) + 1
3 (P (sk2) + δ1,3(s

k
2) + δ2,3(s

k
2)).

As P (sk2) is a constant and P (sj,31 ) is fixed, Cmax(s) is minimal iff δ1,3(s
k
2) + δ2,3(s

k
2)

is minimal. This is the case as we have chosen sk2 such that δ1,3(s
k
2) + δ2,3(s

k
2) =

min
su2∈O2(s

j
1)
{δ1,3(su2 ) + δ2,3(s

u
2 )}.

SorSea for the P3||Cmax problem follows the same scheme than the one proposed

for the P2|di|
∑

wiUi problem and relies on a 2-table approach but with one table

being double indexed.

First, it builds a table T1 in which each column j is associated with a partial schedule

sj1 of jobs in I1 and there are at most 3n1 columns. To each column j are associated

the values of δ1,3(s
j
1) and δ2,3(s

j
1). Next, SorSeach algorithm builds two double-entry

tables TS
2 and TP

2 as for the P2|di|
∑

wiUi except that:

1. Rows are sorted by increasing values of δ1,3(s
k
2) and let δ

[t]
1,3 be the t-th value in

this order,

2. Columns are sorted by increasing values of δ2,3(s
k
2) and let δ

[t′]
2,3 be the t′-th value

in this order,

3. Each cell of table TS
2 contains a (δ

[t]
1,3 + δ

[t′]
2,3) value if there exists sk2 such that

δ
[t]
1,3 = δ1,3(s

k
2) and δ

[t′]
2,3 = δ2,3(s

k
2).

SorSea next updates tables TS
2 and TP

2 in order to guarantee that ∀t, t′, TS
2 [t, t′]

contains the lowest (δ
[t]
1,3+δ

[t′]
2,3) value of a schedule sk2 appearing in TP

2 [u, v], with u ≥ t

and v ≥ t′. This update is done according to the same algorithm than the one for the

P2|di|
∑

wiUi problem given in figure 10.

To find an optimal solution for the P3||Cmax problem, SorSea calculates, for each

column j of table T1, Cmax(s
j
1, T

P
2 [t, t′]) = P (sj1) +

1
3 (P (sk2) + TS

2 [t, t′]) with t and

t′ the lowest indexes such that δ
[t]
1,3 ≥ −δ1,3(sj1) and δ

[t′]
2,3 ≥ −δ2,3(sj1). The smallest

Cmax value found among all columns of T1 is the optimal Cmax value.

Theorem 7 SorSea solves the P3||Cmax problem with a worst-case time and space

complexity in O∗( 3
√
9n) ≈ O∗(2.0801n).

Proof Similar to that of theorem 5.

5.5 The Four Machine Problem with Makespan Minimization

In this section we focus on a scheduling problem involving four identical parallel ma-

chines and referred to as P4||Cmax. This problem, which is similar to the one tackled

in section 5.4 can be defined as follows. Consider n jobs to be scheduled without pre-

emption on four identical parallel machines available from time 0 onwards. Each job

i is defined by a processing time pi and completes at time Ci(s) on the machine j
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which processes it in a given schedule s. Without loss of generality, we assume that

jobs are indexed such that p1 ≤ p2 ≤ . . . ≤ pn. The aim is to calculate a schedule s (an

assignment of jobs on the four machines) which minimizes the makespan Cmax. This

problem has been shown NP-hard in the ordinary sense (Lenstra et al [1977]).

Consider the algorithm Enum which solves the problem P4||Cmax by a brute-

force search of all possible schedules. A schedule is defined by a partition of the set of

jobs into 4 sets, one for each machine. Therefore, there are at most O(4n) partitions

and Enum requires O∗(4n) time. This bound is worse to that of obtained for the more

general P |dec|fmax problem and we show that it is possible to provide a reduced bound

by application of a dedicated decomposition algorithm, referred to as DecTS.

It is based on a dichotomic decomposition of the problem: letM1 be the set of machines

1 and 2, and M2 be the set o machines 3 and 4. The DecTS algorithm solves the two

2-machine problems by enumerating all possible assignments of the n jobs on these two

sets of machines.

Theorem 8 DecTS solves the P4||Cmax problem with a worst-case time and space

complexity in O∗((1 +
√
2)n).

Proof DecTS makes an extensive use of the SorSea algorithm proposed in section 5.2

for the P2||Cmax problem which requires O∗(
√
2
n
) time and space in the worst case.

As there are
∑n

k=0

(

n

k

)

assignments of jobs on setsM1 andM2, each requiring to

run SorSea algorithm, the overall worst-case time complexity of DecTS algorithm is

in:

O∗(
∑n

k=0

(

n

k

)

(
√
2
k
+
√
2
n−k

)).

By using the Newton’s binomial formula, the above complexity can be rewritten as

O∗((1 +
√
2)n).

The dichotomic decomposition over the set of machines used in DecTS can be

generalized to the P ||Cmax problem in a recurvise way. This leads to a worst-case time

complexity in O∗((
√
2 + ⌈ log2(m)⌉ − 1)n). Unfortunately, as far as m ≥ 5, this bound

is worse than the bound of O∗(3n) obtained on the more general P |dec|fmax problem.

6 A Flowshop Scheduling Problem

In this section we consider an intriguing particular 2-machine flowshop scheduling prob-

lem, referred to as F2||Ck
max and defined as follows. Consider n jobs to be scheduled

without preemption on two machines and all of them have first to be processed on

machine 1 before being processed by machine 2. Each job i is defined by a processing

time on machine j, denoted by pi,j and let 1 ≤ k ≤ n be a given value. The aim is to

sequence jobs in order to minimize the makespan value of the k-th job in the schedule,

referred to as Ck
max. Clearly, if k = n, the problem is polynomialy solvable as it is

exactly the F2||Cmax problem solved by the so-called Johnson’s algorithm (Johnson

[1954]). However, for any arbitrary value k, the F2||Ck
max problem can be shown to be

NP-hard in the weak sense (T’kindt et al [2007]). This problem can be nicely refor-

mulated as a scheduling problem with common due date assignment and minimization
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of the number of late jobs, referred to as F2|di = d, d unknown,
∑

Ui = ǫ|d with

ǫ = n − k. Then, all jobs are assumed to share a common due date which value has

to be minimized under the condition that exactly (n− k) jobs complete after this due

date. This reformulation facilitates the presentation of exponential algorithms and will

be used hereafter.

First, consider the Enum algorithm which solves the F2|di = d, d unknown,
∑

Ui =

ǫ|d problem by a brute-force search of all possible schedules. For each job we have either

to decide whether it is early or late, thus leading to a set of 2n solutions, each of these

ones having a value of the common due date d equal to the makespan of the early jobs

(the late jobs are scheduled after the early jobs). Therefore, Enum has a worst-case

time complexity in O∗(2n). We now provide two exponential-time algorithms with im-

proved worst-case complexities. The first one, referred to as BraRed, is an application

of the Branch & Reduce method, whilst the second one, referred to as SorSea, is an

application of the Sort & Search method.

BraRed calculates an optimal solution by exploring a binary search tree: for each

node, two child nodes are created by assigning a job i early, and by assigning it late.

Besides, each node such that the number of late jobs exceed the value of ǫ is pruned.

Let us refer to T (n, ǫ) as the time complexity of BraRed to solve the problem with n

jobs among which ǫ are late. Due to the branching scheme, we have:

T (n, ǫ) = T (n− 1, ǫ) + T (n− 1, ǫ− 1) =

(

n

ǫ

)

.

Due to the problem definition, we can assume that ǫ = λn with λ ∈ [0; 1] and we state

the following result.

Theorem 9 BraRed solves the problem with a worst-case time complexity in

O∗([( 1λ )
λ( 1

1−λ )
1−λ]n), i.e. O∗(c(λ)n) with c(λ) = ( 1λ )

λ( 1
1−λ )

1−λ, and polynomial

space.

Proof This result can be shown by using the well-known Stirling’s formula which en-

ables to approximate k! by (ke )
k
√
2πk. We have:

n!
ǫ!(n−ǫ)!

∼ (n
e )

n√
2πn

(λn
e )λn√

2πλn
(

(1−λ)n
e

)(1−λ)n√
2π(1−λ)n

∼ (n
e )

n√
2πn√

2πλ(1−λ)nλλn(1−λ)(1−λ)n
√
2πn(n

e )
λn(n

e )
(1−λ)n .

Therefore, the worst-case time complexity is inO∗(c(λ)n) with c(λ) = ( 1λ )
λ( 1

1−λ )
1−λ.

In table 2 we provide the worst-case bounds for different values of λ. The function

c(λ) is symetric around λ = 0.5 which implies that the values of c(λ), for λ > 0.5, can

be deduced from that table.

Notice that whatever the value of λ, BraRed has a lower worst-case case time com-

plexity than Enum , and both require polynomial space to run. At last, BraRed has

the particularity to use only a branching scheme but no reduction rules, as usual in a

Branch & Reduce method. Despite our efforts, we have not been able to find reduction

rules useful to decrease the worst-case time complexity: the available dominance con-

ditions for the F2|di = d, d unknown,
∑

Ui = ǫ|d problem (T’kindt et al [2007]) can

always be made ineffective on pathological instances.

We now turn to the SorSea which we show to be more effective than BraRed

algorithm for most of the values of ǫ. We first focus on properties of the problem. It is
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1
λ

λ c(λ) Worst-case bound

2 0.50 2 O∗(2n)
3 0.33 1.8898 O∗(1.8898n)
4 0.25 1.7547 O∗(1.7547n)
5 0.20 1.6493 O∗(1.6493n)
6 0.16 1.5691 O∗(1.5691n)
7 0.14 1.5069 O∗(1.5069n)
8 0.12 1.4575 O∗(1.4575n)
9 0.11 1.4174 O∗(1.4174n)
10 0.10 1.3841 O∗(1.3841n)

Table 2 Worst-case bounds of BraRed algorithm for different values of λ

well-known that, given a set of jobs E, the optimal makespan is given in O(|E| log(|E|))
time by the so-called Johnson’s algorithm (Johnson [1954]). Besides, it can be easily

shown (e.g. T’kindt et al [2007]) that, if sE denotes the schedule obtained by applying

Johnson’s algorithm on set E, for any E′ ⊆ E, sE′ can be obtained by removing from

sE the jobs in E\E′. So, without loss of generality, we assume in the remainder that

all jobs are numbered according to Johnson’s order, i.e. their position in the schedule

given by the Johnson’s algorithm.

Let be P1(s) =
∑

i∈s pi,1 and P2(s) =
∑

i∈s pi,2. We have the following general result.

Lemma 7 Let s1 and s2 be two partial sequences of jobs and s = s1//s2 is assumed to

be sorted according to Johnson’s order. We have Cmax(s) = max(P1(s1) + Cmax(s2);

Cmax(s1) + P2(s2)).

Proof Let n1 be the number of jobs in sequence s1. Without loss of generality, we can

renumber the jobs in s1 from 1 to n1 and jobs in s2 from n1 +1 to n, in their order of

apparition in the two sequences.

We have:

Cmax(s) = max1≤u≤n

(
∑u

i=1 pi,1 +
∑n

i=u pi,2
)

Cmax(s) = max
(

max1≤u≤n1

(
∑u

i=1 pi,1 +
∑n

i=u pi,2
)

;

maxn1+1≤u≤n

(
∑u

i=1 pi,1 +
∑n

i=u pi,2
)

)

Cmax(s) = max
(

max1≤u≤n1
(
∑u

i=1 pi,1 +
∑n1

i=u pi,2) + P2(s2);

P1(s1) + maxn1+1≤u≤n(
∑u

i=n1+1 pi,1 +
∑n

i=u pi,2)
)

Cmax(s) = max
(

Cmax(s1) + P2(s2);P1(s1) + Cmax(s2)
)

.

Let be I1 = {1, . . . , ⌊n2 ⌋} and I2 = {⌊n2 ⌋ + 1, . . . , n} a partition into two jobs sets

of the initial instance to solve. Starting from set I1, SorSea builds a sequence sj1 of

(n − ǫ1) early jobs scheduled first, whilst starting from set I2 it builds a sequence sk2
of (n− ǫ2) early jobs scheduled right after the early jobs of I1, with ǫ1 + ǫ2 = ǫ (figure

13). The sequence s = sj1//s
k
2 of early jobs necessarily follows Johnson’s order and,

thus, the value of the common due date can be set to d = Cmax(s).

SorSea builds a table T1 in which each column j is associated with a partial schedule

of early jobs sj1 and a partial schedule of ǫ1 late jobs s̄j1. There are at most 2
n
2 columns

since each job in I1 can be set either early or late. To each column j are associated
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Fig. 13 Decomposition of a schedule for the F2|di = d, d unknown,
∑

Ui = ǫ|d problem

the values of P1(s
j
1), P2(s

j
1) and Cmax(s

j
1). Next, SorSea builds a table T2 in which

each column k is associated with a partial schedule of early jobs sk2 and a partial

schedule of ǫ2 late jobs. As for table T1, there are at most 2
n
2 columns, which are in

table T2 sorted by non decreasing value of (Cmax(s
k
2)− P2(s

k
2)). To each column k is

associated the values of P1(s
k
2), P2(s

k
2), Cmax(s

k
2), C

min
max(s

k
2) = minℓ≥k Cmax(s

ℓ
2) and

Pmin
2 (sk2) = minℓ≤k P2(s

ℓ
2).

For a given column j of T1, i.e. partial schedules s
j
1 and s̄j1, SorSea searches in T2 the

indexes k and ℓ:

k = argmin(u ∈ T2 | Cmax(s
u
2 )− P2(s

u
2 ) ≥ Cmax(s

j
1)− P1(s

j
1)),

ℓ = argmax(u ∈ T2 | Cmax(s
u
2 )− P2(s

u
2 ) ≤ Cmax(s

j
1)− P1(s

j
1)).

Notice that ℓ is either equal to k or (k − 1). Then, SorSea deduces the smallest value

of the common due date d(sj1) in a schedule of ǫ late jobs starting by sj1 as follows:

d(sj1) = min(P1(s
j
1) + Cmin

max(s
k
2), Cmax(s

j
1) + Pmin

2 (sℓ2)).

The optimal value of the common due date d is obtained by applying the above search

into table T2 for each column j from table T1 and by keeping the smallest value d(sj1)

found.

Theorem 10 SorSea solves the F2|di = d, d unknown,
∑

Ui = ǫ|d problem with a

worst-case time and space complexity in O∗(
√
2
n
).

Proof First, SorSea builds table T1, thus requiring O∗(
√
2
n
) time and space. Next,

it builds table T2 also in O∗(
√
2
n
) time and space since the sorting of the columns

is done in O∗(2
n
2 × log(2

n
2 )) = O∗(

√
2
n
) time. The main part of SorSea consists in

searching for each column j of T1 the columns k and ℓ such that k = argmin(u ∈
T2/Cmax(s

u
2 ) − P2(s

u
2 ) ≥ Cmax(s

j
1) − P1(s

j
1)) and ℓ = argmax(u ∈ T2/Cmax(s

u
2 ) −

P2(s
u
2 ) ≤ Cmax(s

j
1) − P1(s

j
1)). By a binary search, whenever j is given, the values of

k and ℓ can be computed in O∗(log(2
n
2 )) = O(n) time. As there are 2

n
2 columns in

table T1, the search for the optimal solution in tables T1 and T2 can be achieved in

O∗(
√
2
n
) time and space.

Now, we can establish which algorithm has a lower worst-case time bound among

SorSea and BraRed. It is clear that in terms of space requirement, BraRed outper-

forms SorSea since it requires polynomial space in the worst-case.

Lemma 8 SorSea has a lower worst-case time complexity than BraRed for any value
ǫ
n ∈ [0.110027; 0.889973].

Proof The worst-case time bound of SorSea algorithm is equal to
√
2
n

whilst that

of BraRed is equal to c(λ)n with c(λ) = ( 1λ )
λ( 1

1−λ )
1−λ (theorem 9). The values of

λ = ǫ
n such that c(λ) <

√
2
n
can be computed by means of a mathematical software

like SCILAB (SCILAB [2011]), thus leading to the given result.
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Figure 14 presents a summary of the worst-case time bounds for Enum, SorSea

and BraRed: the hardest problems for which BraRed reaches the complexity of Enum

are those with ǫ = n
2 . It is interesting to notice that the branch-and-bound algorithm

proposed by T’kindt et al [2007] for solving the F2|di = d, d unknown,
∑

Ui =

ǫ|d problem relies on the same branching scheme than BraRed algorithm. Therefore,

this branch-and-bound algorithm has the same worst-case time bound than BraRed

(theorem 9).

Fig. 14 Positionning of the worst-case time bounds of Enum, SorSea and BraRed algorithms

7 Conclusions and Future Research Lines

In this paper we have investigated the worst-case time and space complexities of some

scheduling problems for which we have proposed exact exponential-time algorithms.

The study of such algorithms for NP-hard optimisation problems has been the matter

of recently growing scientific interest, excluding scheduling problems for which almost

no exponential-time algorithms were known.

Exact exponential-time algorithms are exact algorithms designe to have an upper

bound on their time (and maybe, space) complexity in the worst-case better dans

a brute-force search. By the way, we establish the property that the related NP-hard
problems can be solved within at most a known bounded number of steps. This is an

important result since we get some information on the difficulty of these problems.

To the best of our knowledge few result were known in scheduling theory. In this

paper, we have presented worst-case time complexities for 15 scheduling problems (ta-

ble 1) including the 1|prec|fmax, 1|prec|
∑

fi, P |prec|fmax and P |prec|
∑

fi problems

which cover a large set of basic scheduling problems. For 8 of them the presented com-

plexities are new. The first conclusion that can be derived from this paper, relies on the

method used to build exponential-time algorithms. One which applied well is the Sort

& Search method, leading often to worst-case time and space complexities in O∗(
√
2
n
).

Surprisingly, the Branch & Reduce method which resembles a branch-and-bound algo-

rithm did not enable, for most of the tackled problems, to derive an exponential-time

algorithm with a worst-case time complexity better than that of the brute-force search

algorithm. This is related to the reduction rules used in the Branch & Reduce method

which are really hard to establish for scheduling problems. Dynamic programming has

been also successfully applied to derive complexities. Beyond these, more or less, clas-

sic methods we have also derived exponential-time algorithms by proposing dedicated

decomposition algorithms, as for the P |dec|fmax and P |dec|
∑

fi problems.

The second contribution of this paper relies on the fact that all the proposed

exponential-time algorithms, whatever the method applied, are based on specific de-

composition schemes of schedules that enable to break down the complexity. The ques-

tion, now open, is whether it is possible or not to use these decomposition schemes
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in exact algorithms which would be more efficient in practice than known exact algo-

rithms. Notice that the latter do not necessarily have a better worst-case time bound

than that of the brute-force search of solutions.
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