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A lower bound on the barrier parameter

of barriers on convex cones

Roland Hildebrand ∗

February 17, 2012

Abstract

Let K ⊂ R
n be a regular convex cone, let e1, . . . , en ∈ ∂K be linearly independent points on

the boundary of a compact affine section of the cone, and let x∗ ∈ Ko be a point in the relative
interior of this section. For k = 1, . . . , n, let lk be the line through the points ek and x∗, let yk be
the intersection point of lk with ∂K opposite to ek, and let zk be the intersection point of lk with
the linear subspace spanned by all points el, l = 1, . . . , n except ek. We give a lower bound on
the barrier parameter ν of logarithmically homogeneous self-concordant barriers F : Ko → R on
K in terms of the projective cross-ratios qk = (ek, x∗; yk, zk). Previously known lower bounds by
Nesterov and Nemirovski can be obtained from our result as a special case. As an application, we
construct an optimal barrier for the epigraph of the || · ||∞-norm in R

n and compute lower bounds
on the barrier parameter for the power cone and the epigraph of the || · ||p-norm in R

2.

1 Introduction

In modern convex optimization, interior point methods are the primary tool to solve conic programs.
A central role in solution algorithms for conic programs over some regular (with nonempty interior,
containing no lines) convex cone K is assigned to a smooth real-valued convex function F : Ko → R

on the interior of the cone, the barrier. In order to be useful for optimization, the barrier has to satisfy
certain properties [4, Section 2.3]. The second and third derivative have to satisfy the self-concordance
relation

F ′′′(x)[h, h, h] ≤ 2(F ′′(x)[h, h])3/2 ∀ x ∈ Ko, h ∈ TxKo, (1)

with h running through the tangent space at x. The function F has to tend to infinity as its argument
tends to the boundary of the cone,

lim
x→∂K

F (x) = +∞, (2)

and it has to satisfy the logarithmic homogeneity condition

F (αx) = −ν log α + F (x) ∀ α > 0, x ∈ Ko. (3)

A smooth function F : Ko → R satisfying conditions (1,2,3) is called a logarithmically homogeneous
self-concordant barrier for the cone K. The real constant ν is called the barrier parameter of the barrier
F .

The lower the barrier parameter of a barrier, the faster are the interior point algorithms based on
this barrier. For conic optimization problems over a cone K, it is therefore desirable to have barriers on
K with a barrier parameter as small as possible. We call a logarithmically homogeneous self-concordant
barrier on K optimal if it has the lowest possible barrier parameter.

Optimality of a barrier F is proven by verifying properties (1,2,3) and showing that the barrier
parameter ν of F is equal to a lower bound ν∗ on this parameter for the given cone. For general cones,
all lower bounds on the barrier parameter which are available today are based on a result of Nesterov

∗LJK, Université Grenoble 1 / CNRS, 51 rue des Mathématiques, BP53, 38041 Grenoble cedex 09, France
(roland.hildebrand@imag.fr).
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and Nemirovski [4, Sect. 2.3.4]. Namely, if for some boundary point z ∈ ∂K of the cone there exists
a neighbourhood U of z and affine half-spaces A1, . . . , Ak ⊂ R

n with z ∈ ∂Aj, j = 1, . . . , k, such that
the normals to the half-spaces at z are linearly independent and the intersection U ∩ K equals the
intersection U ∩ A1 ∩ · · · ∩ Ak

1, then a lower bound on the barrier parameter of any self-concordant
barrier on K is given by ν∗ = k. Based on this result, Güler and Tunçel proved that the minimum
over the Carathéodory numbers of all points in the interior of K also is a lower bound on the barrier
parameter [2, Prop. 4.1]. In this way, the standard barriers for the symmetric cones used in linear,
conic quadratic, and semi-definite programming are shown to be optimal. Optimal barriers can be
constructed also for general homogeneous cones, with the barrier parameter equal to the rank of the
cone [2, Theorem 4.1].

In this contribution, we provide a new lower bound on the barrier parameter of barriers on a general
cone (Theorems 4.4, 5.4). For n-dimensional cones, this lower bound is contained in the interval [2, n]
(Corollary 3.2 and Theorem 5.7). From our result, a slightly stronger bound than that in [4, Sect.
2.3.4] follows as special case (Theorem 6.1). In contrast to the previously known bounds, our results
are non-trivial also for ”round” cones, i.e., cones with a smooth boundary. The bound is a function of
the projective cross-ratio of geometric objects that are constructed from n boundary points of the cone
in general position and an interior point. As an application, we compute lower bounds on the barrier
parameter for the epigraph of the || · ||∞-norm (Corollary 6.2), the power cone (Corollary 7.1), and the
epigraph of the || · ||p-norm in R

2 (Corollary 7.2).
The remainder of the paper is structured as follows. In the next section we introduce the projective

cross-ratio and consider some of its elementary properties. In Section 3 we prove an auxiliary result,
which essentially applies to 2-dimensional cones. In Section 4 we deduce the lower bound on the barrier
parameter of barriers on general cones and in the subsequent section we investigate its properties. In
Section 6 we deduce the bounds in [4, Sect. 2.3.4] from our result, and in the last section we apply our
results to the power cone and the epigraph of the || · ||p-norm. Finally, in the appendix we construct
an optimal barrier for the epigraph of the || · ||∞-norm.

2 The projective cross-ratio

Let x1, x2, x3, x4 ∈ R∪{∞} be four distinct points in the 1-point compactification of the real line. The
projective cross-ratio of the quadruple (x1, x2, x3, x4) is defined as the number

(x1, x2; x3, x4) =
(x1 − x3)(x2 − x4)

(x1 − x4)(x2 − x3)
∈ R,

where the differences containing the value ∞ are cancelled in the event that one of the points in the
quadruple is ∞. This function can be extended continuously to a (R ∪ {∞})-valued function on the
set of quadruples of points in R ∪ {∞} of which no three coincide.

The projective cross-ratio is invariant under projective transformations of R∪ {∞}, and can hence
also be considered as a (R ∪ {∞})-valued function on quadruples of points on the real projective line
RP 1. Alternatively, it can be considered as a (R∪{∞})-valued function on quadruples of 1-dimensional
linear subspaces of R

2, as the set of such subspaces is isomorphic to RP 1.
As can be easily checked, the projective cross-ratio possesses the symmetry

(x1, x2; x3, x4) =
1

(x2, x1; x3, x4)
, (4)

with the values 0 and ∞ being considered as reciprocal.
In the next two sections we consider the projective cross-ratio as defined on quadruples of coplanar

lines through the origin, while in the example sections it will be more convenient to consider projective
cross-ratios of quadruples of collinear points.

1Actually, in [4, Prop. 2.3.6] it is required that K is polyhedral, but this is not used in the proof.
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3 2-dimensional linear sections

In this section we prove an auxiliary result which essentially provides a construction of the optimal
barrier on a 2-dimensional convex cone under the condition that the direction of the gradient of the
barrier at some interior point of the cone is fixed to some value.

Let K ⊂ R
n, n ≥ 2, be a regular convex cone, x∗ ∈ Ko a point in the interior of K, l a line

containing x∗ and intersecting the boundary ∂K of the cone in the points e, y. Denote by L the 2-
dimensional linear hull of l and by lx∗ , le, ly the 1-dimensional linear subspaces spanned by the vectors
x∗, e, y, respectively. Let F : Ko → R be a logarithmically homogeneous self-concordant barrier on K
with barrier parameter ν, and define p∗ = −F ′(x∗). Note that p∗ is a linear functional on R

n, located
in the interior of the dual cone K∗. The kernel of p∗ is an n−1-dimensional linear subspace Lp∗ ⊂ R

n,
which intersects K in the origin. Denote the 1-dimensional intersection of Lp∗ with the 2-dimensional
subspace L by lp∗ . Then lx∗ , le, ly, lp∗ are four mutually distinct coplanar lines, and we can define their
projective cross-ratio r = (le, ly; lx∗ , lp∗). The arrangement of the lines implies that −∞ < r < 0.

Lemma 3.1. Assume above notations. Then ν is bounded from below by ν∗ = 2

1+ |r+1|
r−1

= 1 +

max(−r,−r−1).

Proof. Let KL = K ∩L and let FL be the restriction of F on the interior Ko
L of KL. Then FL is a self-

concordant barrier for the 2-dimensional cone KL with the same barrier parameter ν as K. Moreover,
the linear functional p∗L = −F ′

L(x∗) is the restriction of the linear functional p∗ on L, and hence its
kernel coincides with lp∗ . The assertion of the lemma for the cone K thus reduces to the assertion for
the cone KL.

In order to avoid unnecessary notations, we shall assume without restriction of generality that n = 2

and hence K = KL. Let γ∗ = ν∗−2√
ν∗−1

= |r+1|√
−r

and let λ∗
± = −γ∗

2 ±
√

γ2
∗

4 + 1 be the roots of the quadratic

equation λ2 + γ∗λ− 1 = 0. Then −rγ2
∗ = (r +1)2 and hence r = −γ2

∗+2
2 ± γ∗

√

γ2
∗

4 + 1 = −(λ∗
∓)2. Since

γ∗ ≥ 0, we have λ∗
− ≤ −1 and 0 < λ∗

+ ≤ 1. Therefore r = −(λ∗
−)2 if r ≤ −1 and r = −(λ∗

+)2 if r ≥ −1.
Note that in the former case we have (ly, le; lx∗ , lp∗) = r−1 = −(λ∗

+)2 by (4).
Let us now introduce a coordinate system in R

2 such that the lines lx∗ , lp∗ are parallel to the
basis vectors (1, 0)T , (0, 1)T , respectively. Let further the lines le, ly be parallel to the vectors (1, λ∗

±)T ,
respectively, if r ≥ −1, and to the vectors (1, λ∗

∓)T , respectively, if r < −1. This is always possible
because

(λ∗
+, λ∗

−; 0,∞) =
(λ∗

+ − 0)(λ∗
− −∞)

(λ∗
− − 0)(λ∗

+ −∞)
=

λ∗
+

λ∗
−

= −(λ∗
+)2 =

{

(ly, le; lx∗ , lp∗), r < −1;
(le, ly; lx∗ , lp∗), r ≥ −1,

and the projective cross-ratio of a quadruple of distinct lines through the origin of a plane is the only
invariant of the quadruple with respect to the general linear group of this plane. Let us further scale
the coordinates by a homothety such that x∗ = (1, 0)T . In this coordinate system the cone K is given
by the set {x = (x1, x2)

T |x1 ≥ 0, λ∗
−x1 ≤ x2 ≤ λ∗

+x1}, and p∗ = −F ′(x∗) = (ν, 0)T due to the identity
〈p∗, x∗〉 = ν [4, eq. (2.3.13)].

Consider the 1-dimensional Lie group A(t) = exp(t · a) =

(

1 0
t 1

)

generated by the Lie algebra

element a =

(

0 0
1 0

)

. Let x(t) = A(t)x∗ = (1, t)T and consider the scalar f(t) = ν−1F (x(t)). We

shall now establish a differential inequality which is satisfied by the function f(t). Formulas [4, eq.
(2.3.12–14)] and its derivatives yield the relations F ′(x)[x] = −ν, F ′′(x)[x, ·] = −F ′(x), F ′′′(x)[x, ·, ·] =
−2F ′′(x). At x(t) = A(t)x∗ we thus have

F ′ = νAT (−t)

(

−1
α

)

, F ′′ = νAT (−t)

(

1 −α
−α β

)

A(−t),

F ′′′[A(t)h, ·, ·] = −2νAT (−t)

[(

1 −α
−α β

)

h1 +

(

−α β
β µ

)

h2

]

A(−t) (5)
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for some α, β, µ ∈ R. Here β > α2, because F ′′ ≻ 0, and h = (h1, h2)
T ∈ R

2 is an arbitrary vector.
Condition (1), applied to the vector A(t)h, then yields

−h3
1 + 3αh2

1h2 − 3βh1h
2
2 − µh3

2 ≤ √
ν(h2

1 − 2αh1h2 + βh2
2)

3/2.

Setting h = (α −
√

β−α2

ν−1 , 1)T , we obtain after some calculations

−(α3 + 3α(β − α2) + µ) ≤ γ(β − α2)3/2, (6)

where γ = ν−2√
ν−1

. Let us compute the derivatives of f(t). By (5) and using the fact that ẋ = (0, 1)T is

constant, we have

ḟ = ν−1F ′(x)[ax] = α, f̈ = ν−1F ′′(x)[ax, ax] = β, f (3) = ν−1F ′′′(x)[ax, ax, ax] = −2µ.

Inserting this into (6), we get

4ḟ3 − 6ḟ f̈ + f (3) ≤ 2γ(f̈ − ḟ2)3/2. (7)

We would like to bound the function f(t) by the solution of the differential equation which is
obtained when one assumes equality in (7). This is accomplished by introducing the variables q± =

−
√

f̈−ḟ2

λ∓
− ḟ , where λ± = −γ

2 ±
√

γ2

4 + 1 are the roots of the quadratic equation λ2 + γλ − 1 = 0.

These variables satisfy the relation q+ > q− and ḟ , f̈ can be recovered from them by the formula

ḟ = − λ+

λ+ − λ−
q− +

λ−
λ+ − λ−

q+, f̈ =
λ+

λ+ − λ−
q2
− − λ−

λ+ − λ−
q2
+. (8)

We have f̈ − ḟ2 = (q+−q−)2

γ2+4 , and hence (f̈ − ḟ2)3/2 = (q+−q−)3

(γ2+4)3/2 . A simple calculus then shows that

2γ(f̈ − ḟ2)3/2 − 4ḟ3 + 6ḟ f̈ = − 2λ+

λ+−λ−
q3
− + 2λ−

λ+−λ−
q3
+ and hence by (7)

f (3) ≤ − 2λ+

λ+ − λ−
q3
− +

2λ−
λ+ − λ−

q3
+. (9)

Recall that p∗ = (ν, 0)T and hence ḟ(0) = 0. Hence by (8) we have

λ+q−(0) = λ−q+(0). (10)

Differentiating the first relation in (8) with respect to t and expressing f̈ by the second relation,
we obtain

λ+

λ+ − λ−
(q2

− + q̇−) − λ−
λ+ − λ−

(q2
+ + q̇+) = 0. (11)

Differentiating the second relation in (8) and inserting into (9) yields the inequality

λ+

λ+ − λ−
q−(q2

− + q̇−) − λ−
λ+ − λ−

q+(q2
+ + q̇+) ≤ 0. (12)

Combining (11) with (12) yields

λ+

λ+ − λ−
(q− − q+)(q2

− + q̇−) ≤ 0,
λ−

λ+ − λ−
(q− − q+)(q2

+ + q̇+) ≤ 0,

which by the relation q+ > q− gives

q2
− + q̇− ≥ 0, q2

+ + q̇+ ≤ 0. (13)

The solution of the differential equation q2 + q̇ = 0 is given by q(t) = 1
t+q−1(0) . The differential

inequalities (13) then yield the bounds

q−(t) ≥ 1

t + q−1
− (0)

, t ≥ 0; q+(t) ≥ 1

t + q−1
+ (0)

, t ≤ 0. (14)

4



By (10) and the condition q+ > q− we have q−(0) < 0 and q+(0) > 0. Note that limt→λ∗
+

f(t) = +∞,

hence by convexity of f we have limt→λ∗
+

ḟ(t) = +∞ and limt→λ∗
+

q−(t) = −∞. The right-hand

side in the first relation in (14) tends to −∞ for t → −q−1
− (0), and hence λ∗

+ ≥ −q−1
− (0). Likewise,

limt→λ∗
−

f(t) = +∞, hence limt→λ∗
−

ḟ(t) = −∞ and limt→λ∗
−

q+(t) = +∞. The right-hand side in the

second relation in (14) tends to +∞ for t → −q−1
+ (0), and hence λ∗

− ≥ −q−1
+ (0).

We thus get
λ∗
+

λ+
≥ − 1

λ+q−(0) , −
λ∗
−

λ−
≥ 1

λ−q+(0) . Combining with (10), this yields
λ∗
+

λ+
≥ λ∗

−

λ−
. Finally,

inserting the values λ− = −
√

ν − 1, λ+ = 1√
ν−1

, λ∗
− = −√

ν∗ − 1, λ∗
+ = 1√

ν∗−1
, we arrive at the desired

conclusion.

Corollary 3.2. Let K ⊂ R
n, n ≥ 2, be a regular convex cone, and F : Ko → R a logarithmically

homogeneous self-concordant barrier on K with barrier parameter ν. Then ν ≥ 2.

If n = 2 and the bound on the barrier parameter given by Lemma 3.1 is saturated, then λ∗
+ = λ+ =

−q−1
− (0) and λ∗

− = λ− = −q−1
+ (0). Inequalities (14) must be saturated too and ḟ(t) = − λ+

λ+−λ−

1
t−λ+

+
λ−

λ+−λ−

1
t−λ−

. This can be integrated, yielding f(t) = − λ+

λ+−λ−
log(t−λ+)+ λ−

λ+−λ−
log(t−λ−)+ const,

thus determining the barrier F up to an additive constant. It is not hard to check that F is invariant

under the action of the Lie group exp(t · a) generated by the Lie algebra element a =

(

0 1
1 −γ

)

.

This group acts transitively on the set of rays constituting the interior of the cone K, and hence the
expression ν∗ in Lemma 3.1 is independent of the choice of the interior point x∗ in this case.

4 Main result

In this section a lower bound on the barrier parameter ν for a logarithmically homogeneous self-
concordant barrier F : Ko → R on a given regular convex cone K ⊂ R

n is obtained from Lemma 3.1
by the following consideration. Let x∗ ∈ Ko be an interior point of K, denote p∗ = −F ′(x∗), and let
L1, . . . , Lm be 2-dimensional linear subspaces containing x∗. For fixed p∗ and for each i = 1, . . . , m,
application of Lemma 3.1 to the intersection KLi = Li∩K gives rise to a lower bound ν∗

i (p∗) on ν, and
hence ν ≥ maxi=1,...,m ν∗

i (p∗). If m is smaller than the dimension n of the cone K, then for subspaces
L1, . . . , Lm in general position p∗ can be chosen such that maxi=1,...,m ν∗

i (p∗) = 2, and no information
is gained with respect to Corollary 3.2. If, however, m ≥ n, then minp∗ maxi=1,...,m ν∗

i (p∗) > 2 in
general, except in the case that K is the Lorentz cone. The goal of this section is to solve the minimax
problem minp∗ maxi=1,...,m ν∗

i (p∗) for the case m = n. We will work under the following assumption.

Assumption 4.1. Let K ⊂ R
n be a regular convex cone, let x∗ = (x∗

1, . . . , x
∗
n)T ∈ Ko, and let

L1, . . . , Ln ⊂ R
n be 2-dimensional linear subspaces containing x∗. Assume that there exist linearly

independent vectors ei ∈ Li ∩ ∂K, i = 1, . . . , n, and let yi ∈ Li ∩ ∂K be such that Li = span{ei, yi},
i = 1, . . . , n. Let lk be the line through the points ek and yk, and let zk be the intersection point of lk
with the (n − 1)-dimensional linear subspace L̂k spanned by all points el, l = 1, . . . , n except ek. Let
lek

, lyk
, lzk

, and lx∗ be the linear hulls of ek, yk, zk, and x∗, respectively. Then for each k = 1, . . . , n
the 4 lines lek

, lyk
, lzk

, lx∗ are in Lk and hence coplanar, and no three of them are identical. Let
qk = [lek

, lx∗ ; lyk
, lzk

] be their projective cross-ratio.

Now let F : Ko → R be a logarithmically homogeneous self-concordant barrier with parameter ν,
set p∗ = −F ′(x∗), and let lp∗

k
be the 1-dimensional intersection of the plane Lk with the kernel of the

linear functional p∗. We shall express the projective cross-ratio rk = [lek
, lyk

; lx∗ , lp∗
k
], which determines

the bound ν∗
k(p∗) from Lemma 3.1, in terms of the projective cross-ratios qk and the linear functional

p∗.
Introduce a coordinate system in R

n with basis vectors equal to ek. Let p∗k be the elements of p∗

in these coordinates. Note that p∗ is in the interior of the dual cone K∗, and hence 〈p∗, ek〉 = p∗k > 0
for all k = 1, . . . , n.

In each of the planes Lk, consider the affine line l̃k through x∗ which is parallel to lek
. Introduce

a real parameter λ on l̃k, putting the number λ in correspondence with the point x∗ + λek. Then
the intersection point of l̃k with lek

is the infinitely remote point and can be assigned the parameter

5



λ = +∞. The intersection point of l̃k with lx∗ has parameter value λ = 0. The coordinate vector of the
intersection point of l̃k with lzk

has a zero at its k-th entry and thus has parameter value λ = −x∗
k. Let

λk be the parameter value corresponding to the intersection point of l̃k with lyk
. Since the segment of

l̃k corresponding to the parameter values λ ∈ [0,∞) lies in the interior of K, we have λk < 0. Finally,
the intersection point of l̃k with lp∗

k
is given by the equation 〈p∗, x∗ + λek〉 = 0, which yields the value

λ̂k = − 〈p∗,x∗〉
p∗

k
for the parameter of this intersection point. Note that λ̂k < λk, because p∗ has to be

positive on yk. We then obtain the projective cross-ratios

qk = [lek
, lx∗ ; lyk

, lzk
] =

(∞− λk)(0 − (−x∗
k))

(∞− (−x∗
k))(0 − λk)

= −x∗
k

λk
, (15)

rk = [lek
, lyk

; lx∗ , lp∗
k
] =

(∞− 0)(λk − λ̂k)

(∞− λ̂k)(λk − 0)
= 1 − λ̂k

λk
= 1 +

〈p∗, x∗〉
p∗kλk

, (16)

from which we get
rk + 1

rk − 1
= 1 +

2p∗kλk

〈p∗, x∗〉 . (17)

Lemma 4.2. The relation
∑

k : qk>0 qk > 1 holds.

Proof. Let I+ = {k | qk > 0} and Q+ =
∑

k∈I+
qk.

If I+ = ∅, then x∗ is in the nonpositive orthant by (15). Thus −x∗ is also in K as a linear
combination of the basis vectors ek with nonnegative coefficients. This contradicts the regularity of K.

Hence I+ 6= ∅. For every k, x∗ + λkek is a positive multiple of yk and hence equals a nonzero

vector in ∂K. Consider the point s =
∑

k∈I+
qk(x∗ +λkek) = (Q+ −1)x∗ +

(

x∗ −∑k∈I+
x∗

kek

)

, where

the second relation comes from (15). As a linear combination of nonzero elements in K, with positive
coefficients, the point s is also a nonzero vector in K. The vector x∗−∑k∈I+

x∗
kek has only nonpositive

components and is hence in −K. It follows that (Q+ − 1)x∗ = s −
(

x∗ −∑k∈I+
x∗

kek

)

is a nonzero

vector in K, which implies Q+ > 1 and proves the lemma.

By Lemma 3.1, the barrier parameter ν of the barrier F is bounded from below by the expression
maxk=1,...,n

2

1−
∣

∣

∣

rk+1

rk−1

∣

∣

∣

. This bound still depends on the negative gradient p∗ of F at x∗. A lower bound

on the barrier parameter of an arbitrary logarithmically homogeneous self-concordant barrier on K is
then given by

ν∗ = min
p∗

max
k

2

1 −
∣

∣

∣

rk+1
rk−1

∣

∣

∣

=
2

1 − minp∗ maxk

∣

∣

∣

rk+1
rk−1

∣

∣

∣

, (18)

where p∗ is subject to the constraints 〈p∗, ek〉 > 0, 〈p∗, yk〉 > 0 for all k = 1, . . . , n. By (17) this
transforms into

ν∗ =
2

1 − minp∗ maxk

∣

∣

∣
1 +

2p∗
kλk

〈p∗,x∗〉

∣

∣

∣

, (19)

where the components of p∗ have to satisfy the requirements p∗k > 0 and − 〈p∗,x∗〉
p∗

k
= λ̂k < λk. Equiva-

lently, 0 <
p∗

k

〈p∗,x∗〉 < − 1
λk

.

Introduce variables αk = 1 +
2p∗

kλk

〈p∗,x∗〉 ∈ (−1, 1). These variables have to satisfy the additional

requirement
∑n

k=1
αk−1
2λk

x∗
k = 1, which by (15) is equivalent to

∑n
k=1

1−αk

2 qk = 1. We shall now solve
the minimax problem

min

{

max
k

|αk|
∣

∣

∣

∣

∣

αk ∈ (−1, 1),
n
∑

k=1

1 − αk

2
qk = 1

}

. (20)

Lemma 4.3. The value of problem (20) is given by
|∑k qk−2|
∑

k |qk| < 1.
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Proof. First note that
∑

k |qk| ≥
∑

k qk and hence
∑

k qk −2 <
∑

k |qk|. On the other hand, by Lemma

4.2 we have
∑

k(qk + |qk|) > 2 and hence 2 −∑k qk <
∑

k |qk|. It follows that
|∑k qk−2|
∑

k |qk| ∈ [0, 1). It is

easily checked that this value is attained by the solution αk = α∗
k =

∑

l ql−2
∑

l |ql| sgn qk ∈ (−1, 1).

On the other hand, every feasible vector α = (α1, . . . , αn)T has to satisfy the constraint
∑

k αkqk =
∑

k qk − 2. It follows that (maxk |αk|)
∑

k |qk| ≥
∑

k |αk||qk| ≥ |∑k qk − 2|, which yields maxk |αk| ≥
|∑k qk−2|
∑

k |qk| and thus proves optimality of the solution αk = α∗
k.

Inserting the optimal value of (20) into (19), we obtain the following theorem.

Theorem 4.4. Under Assumption 4.1, the barrier parameter ν of any logarithmically homogeneous
self-concordant barrier F on the cone K is bounded from below by the quantity

ν∗ =
2

1 − |∑k qk−2|
∑

k |qk|

.

5 Properties of the lower bound

In this section we will consider the bound given by Theorem 4.4 in more detail.

Lemma 5.1. Assume the conditions of Assumption 4.1. Let I ⊂ {1, . . . , n} be such that the vectors in
the set {yk | k ∈ I}∪ {ek | k 6∈ I} are linearly independent. Then the bound in Theorem 4.4 is invariant
under an interchange of the points ek and yk for all k ∈ I.

Proof. The exchange of yk and ek leaves the subspace Lk and the line lp∗
k

invariant and hence by (4)

leads to the transformation rk 7→ r−1
k in (16). This in turn leads to the transformation rk+1

rk−1 7→ − rk+1
rk−1 .

The set of constraints 〈p∗, ek〉 > 0, 〈p∗, yk〉 > 0 is also left invariant, and hence by (18) the value of ν∗
is left unchanged.

Remark 5.2. The assertion of Lemma 5.1 cannot be easily inferred directly from the explicit expression
of the bound ν∗ in Theorem 4.4, because the exchange of ek and yk for one index k changes the lines
lzl

for all l 6= k and hence all projective cross-ratios ql in (15) are changed.

Lemma 5.3. Assume the conditions of Assumption 4.1. There exists a subset I ⊂ {1, . . . , n} of indices
with complement Ī such that the set {ek | k ∈ Ī}∪{yk | k ∈ I} is linearly independent, and x∗ is a linear
combination of the vectors in this set with nonnegative coefficients.

Proof. The assertion of the lemma will follow from the statement that we can render all entries of x∗

nonnegative by exchanging the vectors ek and yk for a number of indices k and adapting the coordinate
system accordingly. Let us prove this statement.

Suppose there exists an index k such that x∗
k < 0. Recall that zk is the unique point on lk situated

in the linear subspace L̂k spanned by all el except ek. Therefore, linear dependence of the vectors
e1, . . . , ek−1, yk, ek+1, . . . , en is equivalent to the relation zk = yk. Since x∗

k < 0, the line lx∗ intersects
lk in a point opposite to ek with respect to zk. But yk is opposite to ek with respect to lx∗ in Lk, hence
zk 6= yk. This proves that we can exchange the roles of ek and yk without violating the condition of
linear independence of the points el.

Assume without restriction of generality that x∗ is situated on the line segment between ek and
yk. This is equivalent to multiplication of x∗ by a positive constant and does not change the signs

of the entries x∗
k. We have the explicit expression zk =

x∗−x∗
kek

1−x∗
k

, deriving from the condition that

zk is the affine combination of ek and x∗ whose k-th entry vanishes. On the other hand, we have
yk = x∗+λkek

1+λk
, deriving from the condition that yk is the affine combination of ek and x∗ which is a

multiple of x∗ + λkek. It follows that

x∗ =
x∗

k(1 + λk)

λk + x∗
k

yk +
λk(1 − x∗

k)

λk + x∗
k

zk =
x∗

k(1 + λk)

λk + x∗
k

yk +
λk

λk + x∗
k

(x∗ − x∗
kek). (21)
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Note that x∗ − x∗
kek is a linear combination of the points e1, . . . , ek−1, ek+1, . . . , en, with coefficients

being equal to the corresponding entries of x∗. From (21) it then follows that the coefficients x̃∗
l of x∗,

when expressed as a linear combination of the vectors e1, . . . , ek−1, yk, ek+1, . . . , en, are given by

x̃∗
k =

x∗
k(1 + λk)

λk + x∗
k

, x̃∗
l =

λk

λk + x∗
k

x∗
l , l 6= k.

Since x∗ is situated between yk and zk on the line lk and is different from these points, we have by

(21) that
x∗

k(1+λk)
λk+x∗

k
> 0,

λk(1−x∗
k)

λk+x∗
k

> 0, and hence also λk

λk+x∗
k

> 0. Therefore the sign of x̃∗
l equals that

of x∗
l for l 6= k, while x̃∗

k is positive.
As a consequence, exchanging ek and yk has lead to a decrease in the number of negative entries of

x∗ by one. Repeating this process, we can eliminate all negative entries of x∗.

Theorem 5.4. In addition to Assumption 4.1, suppose that x∗ is contained in the simplicial cone
generated by the vectors ek. Then the lower bound in Theorem 4.4 is given by

ν∗ =

{
∑

k qk
∑

k qk−1 ,
∑

k qk ≤ 2;
∑

k qk,
∑

k qk ≥ 2.
(22)

Proof. Choose a coordinate system in R
n with basis vectors ek, k = 1, . . . , n. Then by assumption of

the theorem all entries of x∗ are nonnegative, and by (15) all projective cross-ratios qk are nonnegative.
Then the bound in Theorem 4.4 simplifies to (22).

We now consider the situation when qk = 0 for some k. In this case x∗ = zk is contained in the
(n − 1)-dimensional linear subspace L̂k ⊂ R

n spanned by all el except ek. For every l 6= k, since both
el, x

∗ are in L̂k, we also have yl ∈ L̂k. We can then apply the construction of the previous section
to the n − 1 2-dimensional subspaces L1, . . . , Lk−1, Lk+1, . . . , Ln of the n − 1-dimensional cone K̃ =
K ∩ L̂k. Since all ql, l 6= k, retain their values in the lower-dimensional space, and

∑n
l=1 ql =

∑

l 6=k ql,
∑n

l=1 |ql| =
∑

l 6=k |ql| by qk = 0, Theorem 4.4 will yield the same bound ν∗ for the cone K̃ as it has
for the cone K. In other words, in the case qk = 0 the bound given by Theorem 4.4 for the cone K
is essentially a consequence of a similar bound for the cone K̃, which is a linear section of K with
codimension 1.

Lemma 5.5. Assume the conditions of Theorem 5.4. Then for all k = 1, . . . , n we have qk ≤ 1, and
for all index sets I ⊂ {1, . . . , n} of cardinality n − 1 we have

∑

k∈I qk ≥ 1.

Proof. Assume the notations of the previous section. Since the simplicial cone KS generated by the
vectors ek is contained in K, the interval IS = lk ∩ KS is contained in the interval IK = lk ∩ K for
every k = 1, . . . , n. Note that yk is the endpoint of IK opposite to ek, while zk is the endpoint of IS

opposite to ek. Hence yk is situated on lk opposite to ek with respect to zk (but it may coincide with
zk). Recall that the parameter of the intersection point of lek

with l̃k was λ = +∞, the intersection
point of lzk

with l̃k had parameter λ = −x∗
k, and the intersection point of lyk

with l̃k had parameter
λ = λk. Therefore λk ≤ −x∗

k, which by (15) yields qk ≤ 1.
Let us prove the second part by contradiction. Suppose there exists a subset I ⊂ {1, . . . , n} of n−1

indices such that
∑

k∈I qk < 1. For l ∈ I, define al = ql

1−
∑

k∈I qk
≥ 0. We then have

x∗ +
∑

l∈I

al(1 + λl)yl = x∗ +
∑

l∈I

ql

1 −∑k∈I qk
(x∗ + λlel) =

1

1 −∑k∈I qk

(

x∗ −
∑

l∈I

x∗
l el

)

,

where for the second equality we used (15). The leftmost side is the sum of an interior point of K and
boundary points of K and is hence also an interior point of K. On the other hand, the rightmost side
is proportional to ek̂, where k̂ is the index missing in I, and is hence a boundary point of K. This
leads to a contradiction, thus proving the lemma.
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Corollary 5.6. Assume the conditions of Theorem 5.4. Then the bound given in Theorem 4.4 satisfies
ν∗ ≤ n. The equality ν∗ = n holds if and only if K is either a simplicial cone with generators e1, . . . , en,
or a simplicial cone with generators y1, . . . , yn.

Proof. By (22) the first assertion of the corollary is equivalent to the inequalities

n

n − 1
≤
∑

k

qk ≤ n.

These can be obtained by summing the inequalities qk ≤ 1,
∑

k∈I qk ≥ 1 from Lemma 5.5 over all
indices k or all index sets I of cardinality n − 1, respectively.

Assume now that ν∗ = n. By (22) we then have either
∑

k qk = n
n−1 or

∑

k qk = n.

Let us consider the first case. By Lemma 5.5 we have qk = 1
n−1 for all k, and hence λk = −(n−1)x∗

k.
Note that yk is a positive multiple of the point x∗ + λkek, hence yk = βk(x∗ − (n− 1)x∗

kek), βk > 0 for

all k. Let k̂ ∈ {1, . . . , n} and I = {1, . . . , n} \ {k̂}. Then we have
∑

k∈I

β−1
k yk =

∑

k∈I

(x∗ − (n − 1)x∗
kek) = (n − 1)x∗

k̂
ek̂,

and ek̂ is contained in the relative interior of the convex cone generated by the set {yk | k ∈ I}. But

ek̂ ∈ ∂K, which implies that this cone is entirely contained in ∂K. Repeating this argument for all k̂,
we see that the boundary of the simplicial cone generated by the yk is contained in ∂K. On the other
hand,

∑n
k=1 β−1

k yk =
∑n

k=1(x
∗− (n−1)x∗

kek) = x∗ ∈ Ko, which implies that the points yk are linearly
independent and that K equals the cone generated by the yk.

We now pass to the case
∑

k qk = n. By Lemma 5.5 we have qk = 1 for all k. This is equivalent
to the relations yk = zk, and yk is contained in the cone generated by the set {el | l 6= k} for all k.
Moreover, it follows that zk ∈ ∂K and hence zk 6= x∗, which implies x∗

k > 0 for all k. By λk = −x∗
k

we then have that yk is a positive multiple of x∗ − x∗
kek =

∑

l 6=k x∗
l el, and yk is in the relative interior

of the cone generated by the set {el | l 6= k}. As in the previous paragraph, this whole cone must then
be in ∂K for all k, and ∂K contains the boundary of the simplicial cone generated by the ek. Thus K
equals this simplicial cone. This proves one direction of the equivalence asserted in the second part of
the corollary.

Let us prove the opposite direction. Assume that K is a simplicial cone generated by either the
vectors ek or the vectors yk. By possibly exchanging the roles of ek and yk for all k, we by virtue
of Lemma 5.1 can assume that K is generated by the ek. The line lk intersects ∂K in ek and in the
face opposite to ek, which implies that the second intersection point yk coincides with zk. But then
λk = −x∗

k and qk = 1 for all k, which by (22) yields the assertion to be proven.

Theorem 5.7. Assume the conditions of Assumption 4.1. The lower bound ν∗ given in Theorem 4.4
cannot exceed the dimension n of the cone K. The equality ν∗ = n holds if and only if K is a simplicial
cone with generators ẽ1, . . . , ẽn such that ẽk ∈ {ek, yk} for every k = 1, . . . , n.

Proof. The theorem is a consequence of Lemmas 5.1, 5.3, and Corollary 5.6.

6 Relation with Nesterovs and Nemirovskis bound

In this section we deduce the lower bound of Nesterov and Nemirovski, applied to convex cones, from
our result. Proposition 2.3.6 in [4] states that if C ⊂ R

n is a convex polytope and en ∈ ∂C is a
boundary point belonging to exactly k (n − 1)-dimensional faces of C, such that the normal vectors
to these faces are linearly independent, then k is a lower bound on the barrier parameter of any self-
concordant barrier on C. We are interested in the situation when C is a cone and prove the following
slightly stronger result for this case.

Theorem 6.1. Let K ⊂ R
n, n ≥ 3, be a regular polyhedral convex cone, let ek+1 ∈ ∂K be a nonzero

boundary point belonging to exactly k (n − 1)-dimensional faces of K, 2 ≤ k ≤ n − 1, such that the
normals to these faces are linearly independent. Then ν∗ = k + 1 is a lower bound on the barrier
parameter of any logarithmically homogeneous self-concordant barrier on K.
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Proof. By an appropriate choice of coordinates, we can assume that ek+1 = (1, 0, . . . , 0)T , the set
{x = (x0, . . . , xn−1)

T ∈ K |x0 = 1} is a compact section of K, and there exists a neighbourhood U of
ek+1 such that x ∈ U ∩K if and only if x ∈ U and xj ≤ 0, j = 1, . . . , k. Let us further assume without
restriction of generality that k = n − 1, otherwise we replace the cone K by the (k + 1)-dimensional
intersection K∩L, where L ⊂ R

n is the (k+1)-dimensional linear subspace determined by the equations
xk+1 = · · · = xn−1 = 0.

Set x∗ = (1,−ε, . . . ,−ε)T , ej = (1,−ε, . . . ,−ε, 0,−ε, . . . ,−ε)T , j = 1, . . . , n − 1, where the zero
is located at position j. For small enough ε > 0 we then have x∗ ∈ Ko, ej ∈ ∂K, j = 1, . . . , n.
Let further lj be the line through x∗ and ej and let yj be the intersection point of lj with ∂K
opposite to ej, j = 1, . . . , n. We then have yj = (1,−ε, . . . ,−ε,−αj,−ε, . . . ,−ε)T for j = 1, . . . , n− 1,

yn = (1,−αn, . . . ,−αn)T , and limε→0 αj > 0 for all j = 1, . . . , n. For i ∈ {1, . . . , n}, denote by L̂i ⊂ R
n

the (n−1)-dimensional linear subspace spanned by all ej except ei, and let zi be the intersection point

of L̂i with the line li. It is not hard to check that zi = (1,−ε, . . . ,−ε,−βi,−ε, . . . ,−ε)T , i = 1, . . . , n−1,
zn = (1,−βn, . . . ,−βn)T with βi = εn−2

n−3 , i = 1, . . . , n − 1, and βn = εn−2
n−1 . For n = 3 the line li does

not intersect Li, i = 1, 2, and we set β1 = β2 = ∞ in this case.
The projective cross-ratios (15) are then given by

qj = [0,−ε;−αj,−ε
n− 2

n− 3
] =

αj

(n − 2)(αj − ε)
, j = 1, . . . , n − 1;

qn = [0,−ε;−αn,−ε
n − 2

n − 1
] =

−αn

(n − 2)(αn − ε)
.

Theorem 4.4 then yields the lower bound

ν∗ =
2

1 −
|(∑n−1

j=1

αj
αj−ε )− αn

αn−ε−2(n−2)|
∑

n
j=1

αj
αj−ε

on the barrier parameter of any logarithmically homogeneous self-concordant barrier on K. The relation
limε→0 ν∗ = n completes the proof.

Corollary 6.2. Let n ≥ 3. The epigraph of the || · ||∞-norm in R
n−1,

Kn,∞ = {(x0, . . . , xn−1)
T |x0 ≥ |xk| ∀ k = 1, . . . , n − 1} ⊂ R

n, (23)

cannot have a logarithmically homogeneous self-concordant barrier with barrier parameter less than
ν∗ = n.

An optimal barrier for the cone Kn,∞ is given by

F (x0, . . . , xn−1) = −
n−1
∑

k=1

log(x2
0 − x2

k) + (n − 2) log x0. (24)

For a proof see the appendix.
Note that since every convex quadrangle is projectively equivalent to a square, the barrier (24) for

n = 3 yields an optimal barrier also for an arbitrary regular polyhedral cone K ⊂ R
3 which is generated

by 4 extreme rays.

7 Further examples

7.1 Power cone

The power cone is a 3-dimensional regular convex cone defined by

Kp = {(u, v, w)T |u ≥ 0, v ≥ 0, u1/pv1/q ≥ |w|}, (25)

where p ∈ (2,∞) is a parameter and 1
p + 1

q = 1. In [3] Nesterov proposed a logarithmically homogeneous

self-concordant barrier with barrier parameter ν = 4 for this cone. In [1] a logarithmically homogeneous
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self-concordant barrier with barrier parameter ν = 3 was proposed and a logarithmically homogeneous
function with homogeneity parameter ν = 3 − 2

p was conjectured to be self-concordant. We shall
now give a lower bound on the barrier parameter of any logarithmically homogeneous self-concordant
barrier on Kp.

Consider the compact section D = {(u, v, w)T ∈ Kp |u + v = 1} of Kp. Introducing the variable
ρ = u−v ∈ [−1, 1], we can parameterize D by (ρ, w)T . Inserting the relations u = 1+ρ

2 , v = 1−ρ
2 into the

inequality defining the cone Kp, we see that D is given by the set {(ρ, w)T | |ρ| ≤ 1, (1+ρ)1/p(1−ρ)1/q ≥
2|w|}.

Let now γ > 0 be the unique positive root of the transcendent equation

q(1 + γ−1/q) = p(1 + γ−1/p). (26)

Choose ρ2, ρ3 ∈ (−1, 1) such that ρ2 < ρ3 and γ = (1−ρ3)(1+ρ2)
(1+ρ3)(1−ρ2) . Then ρ3 can be expressed as a function

of ρ2 by ρ3 = 1+ρ2−γ(1−ρ2)
1+ρ2+γ(1−ρ2)

. Define further wk = 1
2 (1 + ρk)1/p(1 − ρk)1/q, k = 2, 3.

Set e1 = (1, 0)T , y1 = (−1, 0)T , e2 = (ρ2, w2)
T , y2 = (ρ3,−w3)

T , e3 = (ρ2,−w2)
T , y3 = (ρ3, w3)

T .
All these 6 points are located on the boundary of D, and the lines lk through ek, yk, k = 1, 2, 3, intersect
in the common point x∗ = (ρ2w3+ρ3w2

w2+w3
, 0)T , which lies in the interior of the triangle formed by the ek.

The line l1 intersects the line through e2, e3 in the point z1 = (ρ2, 0)T , while l3 intersects the line
through e1, e2 in the point

z3 =
1

(1 − ρ2)(w2 + w3) + w2(ρ3 − ρ2)

(

ρ2w3(1 − ρ2) + w2(2ρ3 − ρ2ρ3 − ρ2)
w2(w2(1 − ρ3) + w3(1 − ρ2))

)

.

From this we readily compute the projective cross-ratios

q1 =
2w2(ρ3 − ρ2)

(1 − ρ2)(w2(1 + ρ3) + w3(1 + ρ2))
, (27)

q2 = q3 =
w2(1 − ρ3) + w3(1 − ρ2)

2w3(1 − ρ2)
, (28)

and hence
3
∑

k=1

qk − 1 =
w2(1 + ρ3)(w2(1 − ρ3) + w3(1 − ρ2))

w3(1 − ρ2)(w2(1 + ρ3) + w3(1 + ρ2))
=

1 + γ1/p

1 + γ1/q
> 1.

By (22) we then obtain

ν∗ = q1 + q2 + q3 = 1 +
1 + γ1/p

1 + γ1/q
. (29)

Corollary 7.1. Let Kp ⊂ R
3 be the power cone given by (25) with parameter p ≥ (2, +∞). If F is

a logarithmically homogeneous self-concordant barrier on Kp, then its barrier parameter satisfies the

inequality ν ≥ 1 + 1+γ1/p

1+γ1/q , where γ is given by (26) and 1
p + 1

q = 1.

In Fig. 1 the lower bound ν∗ as a function of p is depicted along with the barrier parameters of the
barriers proposed in [3] and [1]2.

7.2 Epigraph of the || · ||p norm

Next we consider the epigraph of the || · ||p-norm in R
2 for 1 ≤ p ≤ ∞, i.e., the 3-dimensional cone

K3,p = {(x0, x1, x2)
T |x0 ≥ (|x1|p + |x2|p)1/p}. (30)

In [3] Nesterov proposed a method to construct a logarithmically homogeneous self-concordant barrier
with barrier parameter ν = 2ν̃ for this cone if a logarithmically homogeneous self-concordant barrier
for the corresponding power cone Kp is available which has barrier parameter ν̃. In [1] the universal
barrier [4, Sect. 2.5] for K3,p was computed and a barrier parameter ν = 3p

p+1 (p ≥ 2) for this barrier

2As noted by an anonymous referee, expression (29) can be rewritten as 2 + (1 − q/p)γ1/p.
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Figure 1: Barrier parameters of barriers for the power cone and lower bound

was conjectured on the basis of randomized numerical experiments. We shall now give a lower bound
on the barrier parameter for any logarithmically homogeneous self-concordant barrier on K3,p.

For p = 2, K3,p is the 3-dimensional Lorentz cone, whose optimal barrier parameter is 2. For p = 1
and p = ∞ K3,p is a polyhedral cone with 4 extreme rays. This case was considered in the previous
section, where it was established that the optimal barrier parameter equals 3.

Let us consider the case 2 < p < ∞. Let γ ∈ (0, 1) be the unique solution of the equation
(1− 2

p )γ1−1/p +(1− 1
p )γ1−2/p − 1

p = 0. Note that this definition coincides with (26). For δ ∈ (0, 1), set

ρ2 = 1 − δ, ρ3 = 1 − γδ, w2 = (1 − ρp
2)

1/p, w3 = (1 − ρp
3)

1/p. (31)

Consider the compact section D = {(ρ, w)T | (1, ρ, w)T ∈ K3,p} of the cone K3,p and let e1, e2, e3 ∈ ∂D,
x∗ ∈ Do be as in the previous subsection. Then the projective cross-ratios qk will be given by the same
formulas (27), and

q1 + q2 + q3 = 2 +
w2

2(1 − ρ2
3) − w2

3(1 − ρ2
2)

w3(1 − ρ2)(w3(1 + ρ2) + w2(1 + ρ3))
. (32)

Now note that 1−x2

(1−xp)2/p is a strictly monotonely decreasing function for x ∈ (0, 1), hence
1−ρ2

3

w2
3

<
1−ρ2

2

w2
2

and q1 + q2 + q3 < 2. By (22) we then get the lower bound

ν∗ =
q1 + q2 + q3

q1 + q2 + q3 − 1
= 2 +

w2
3(1 − ρ2

2) − w2
2(1 − ρ2

3)

w2(1 + ρ3)[w3(1 − ρ2) + w2(1 − ρ3)]
= 2 +

(w3/w2)
2(2 − δ) − γ(2 − γδ)

(2 − γδ)(w3/w2 + γ)
.

We have

lim
δ→0

w3

w2
=

(

lim
δ→0

1 − (1 − γδ)p

1 − (1 − δ)p

)1/p

=

(

lim
δ→0

γ(1 − γδ)p−1

(1 − δ)p−1

)1/p

= γ1/p, (33)
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and therefore

lim
δ→0

ν∗ = 2 +
γ2/p − γ

γ1/p + γ
= 2 +

γ1/p − γ1−1/p

1 + γ1−1/p
,

which, remarkably, coincides with (29).
Let us now consider the case 1 < p < 2. Let γ ∈ (0, 1) be the unique solution of the equation

( 2
p − 1)γ1/p + 1

pγ2/p−1 − (1− 1
p ) = 0. For δ ∈ (0, 1), define ρ2, ρ3, w2, w3 by (31) and let e1, e2, e3 ∈ ∂D,

x∗ ∈ Do be again as in the previous subsection. Then we again obtain (32), but 1−x2

(1−xp)2/p is now a

strictly monotonely increasing function for x ∈ (0, 1). Hence
1−ρ2

3

w2
3

>
1−ρ2

2

w2
2

and q1 + q2 + q3 > 2. By

(22) we then get the lower bound

ν∗ = q1 + q2 + q3 = 2 +
(w2/w3)

2(2 − γδ)γ − (2 − δ)

(2 − δ) + w2/w3(2 − γδ)
.

As in (33) we get limδ→0
w2

w3
= γ−1/p, which yields

lim
δ→0

ν∗ = 2 +
γ1−2/p − 1

1 + γ−1/p
= 2 +

γ1−1/p − γ1/p

1 + γ1/p
.

Note that this again coincides with (29), but with p and q interchanged.
Combining these results, we get the following lower bound.

Corollary 7.2. Let K3,p ⊂ R
3 be the epigraph of the || · ||p-norm given by (30) with parameter

p ∈ [1,∞]. Set c = min( 1
p , 1− 1

p ) ∈ [0, 1
2 ] and let γ ∈ [0, 1) be a solution of the equation (1− 2c)γ1−c +

(1 − c)γ1−2c − c = 0. If F is a logarithmically homogeneous self-concordant barrier on K3,p, then its

barrier parameter satisfies the inequality ν ≥ 1 + 1+γc

1+γ1−c .
As already noted, as functions of p the lower bounds given in Corollaries 7.1 and 7.2 coincide.

Remark 7.3. The choices of the points ek and x∗ in Subsections 7.1 and 7.2 are optimal, i.e., the bounds
in Corollaries 7.1 and 7.2 are the best possible which can be obtained with our method.
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[2] Osman Güler and Levent Tunçel. Characterization of the barrier parameter of homogeneous convex
cones. Math. Prog., 81(1):55–76, 1998.

[3] Yuri Nesterov. Towards nonsymmetric conic optimization. Discussion paper 2006/28, CORE,
Louvain-la-Neuve, URL http://www.core.ucl.ac.be/services/psfiles/dp06/dp2006 28.pdf,
2006.

[4] Yuri Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex programming,
Vol. 13 of SIAM Stud. Appl. Math., SIAM, Philadelphia, 1994.

A Self-concordance of function (24)

In this section it is proven that the function F given by (24) is a self-concordant barrier for the
cone Kn,∞ defined in (23). The proof is due to an anonymous reviewer. It replaces the much more
complicated proof from the first version of the paper.

Consider the positive orthant R
n−1
+ with its optimal barrier F

R
n−1

+

(y) = −∑n−1
k=1 log yk. As a

homogeneous cone, it has rank n − 1. From this cone we construct [2, Sect. 3] (see also [4, pp. 165–
166]) a homogeneous cone of rank n and dimension 2n − 1,

SC(Rn−1
+ , B) =

{

(y, x, x0) ∈ R
n−1 × R

n−1 × R |x0 ≥ 0, x0y − B(x) ∈ R
n−1
+

}

,
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where B : R
n−1 → R

n−1
+ is a symmetric vector-valued bilinear form given by B(x) = (x2

1, . . . , x
2
n−1)

T .

An optimal barrier for the cone SC(Rn−1
+ , B) with barrier parameter n is given by [2, Theorem 4.1]

FSC(Rn−1

+
,B)(y, x, x0) = F

R
n−1

+

(

y − x−1
0 B(x)

)

− log x0 = −
n−1
∑

k=1

log(x0yk − x2
k) + (n − 2) log x0.

Now the intersection of the cone SC(Rn−1
+ , B) with the linear subspace given by x0 = y1 = · · · = yn−1

is isomorphic to the cone Kn,∞, and the restriction of the barrier FSC(Rn−1

+
,B) to this intersection

induces the function F on Kn,∞. This proves that F is actually a self-concordant barrier.
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