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A lower bound on the barrier parameter of barriers on convex cones

Let K ⊂ R n be a regular convex cone, let e1, . . . , en ∈ ∂K be linearly independent points on the boundary of a compact affine section of the cone, and let x * ∈ K o be a point in the relative interior of this section. For k = 1, . . . , n, let l k be the line through the points e k and x * , let y k be the intersection point of l k with ∂K opposite to e k , and let z k be the intersection point of l k with the linear subspace spanned by all points e l , l = 1, . . . , n except e k . We give a lower bound on the barrier parameter ν of logarithmically homogeneous self-concordant barriers F : K o → R on K in terms of the projective cross-ratios q k = (e k , x * ; y k , z k ). Previously known lower bounds by Nesterov and Nemirovski can be obtained from our result as a special case. As an application, we construct an optimal barrier for the epigraph of the || • ||∞-norm in R n and compute lower bounds on the barrier parameter for the power cone and the epigraph of the || • ||p-norm in R 2 .

Introduction

In modern convex optimization, interior point methods are the primary tool to solve conic programs. A central role in solution algorithms for conic programs over some regular (with nonempty interior, containing no lines) convex cone K is assigned to a smooth real-valued convex function F : K o → R on the interior of the cone, the barrier. In order to be useful for optimization, the barrier has to satisfy certain properties [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF]Section 2.3]. The second and third derivative have to satisfy the self-concordance relation

F ′′′ (x)[h, h, h] ≤ 2(F ′′ (x)[h, h]) 3/2 ∀ x ∈ K o , h ∈ T x K o , (1) 
with h running through the tangent space at x. The function F has to tend to infinity as its argument tends to the boundary of the cone, lim

x→∂K F (x) = +∞, (2) 
and it has to satisfy the logarithmic homogeneity condition

F (αx) = -ν log α + F (x) ∀ α > 0, x ∈ K o . (3) 
A smooth function F : K o → R satisfying conditions (1,2,3) is called a logarithmically homogeneous self-concordant barrier for the cone K. The real constant ν is called the barrier parameter of the barrier F .

The lower the barrier parameter of a barrier, the faster are the interior point algorithms based on this barrier. For conic optimization problems over a cone K, it is therefore desirable to have barriers on K with a barrier parameter as small as possible. We call a logarithmically homogeneous self-concordant barrier on K optimal if it has the lowest possible barrier parameter.

Optimality of a barrier F is proven by verifying properties [START_REF] Chares | Cones and Interior-Point Algorithms for Structured Convex Optimization involving Powers and Exponentials[END_REF][START_REF] Güler | Characterization of the barrier parameter of homogeneous convex cones[END_REF][START_REF] Nesterov | Towards nonsymmetric conic optimization[END_REF] and showing that the barrier parameter ν of F is equal to a lower bound ν * on this parameter for the given cone. For general cones, all lower bounds on the barrier parameter which are available today are based on a result of Nesterov and Nemirovski [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF]Sect. 2.3.4]. Namely, if for some boundary point z ∈ ∂K of the cone there exists a neighbourhood U of z and affine half-spaces A 1 , . . . , A k ⊂ R n with z ∈ ∂A j , j = 1, . . . , k, such that the normals to the half-spaces at z are linearly independent and the intersection U ∩ K equals the intersection

U ∩ A 1 ∩ • • • ∩ A k 1
, then a lower bound on the barrier parameter of any self-concordant barrier on K is given by ν * = k. Based on this result, Güler and Tunçel proved that the minimum over the Carathéodory numbers of all points in the interior of K also is a lower bound on the barrier parameter [START_REF] Güler | Characterization of the barrier parameter of homogeneous convex cones[END_REF]Prop. 4.1]. In this way, the standard barriers for the symmetric cones used in linear, conic quadratic, and semi-definite programming are shown to be optimal. Optimal barriers can be constructed also for general homogeneous cones, with the barrier parameter equal to the rank of the cone [START_REF] Güler | Characterization of the barrier parameter of homogeneous convex cones[END_REF]Theorem 4.1].

In this contribution, we provide a new lower bound on the barrier parameter of barriers on a general cone (Theorems 4.4, 5.4). For n-dimensional cones, this lower bound is contained in the interval [2, n] (Corollary 3.2 and Theorem 5.7). From our result, a slightly stronger bound than that in [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF]Sect. 2.3.4] follows as special case (Theorem 6.1). In contrast to the previously known bounds, our results are non-trivial also for "round" cones, i.e., cones with a smooth boundary. The bound is a function of the projective cross-ratio of geometric objects that are constructed from n boundary points of the cone in general position and an interior point. As an application, we compute lower bounds on the barrier parameter for the epigraph of the || • || ∞ -norm (Corollary 6.2), the power cone (Corollary 7.1), and the epigraph of the

|| • || p -norm in R 2 (Corollary 7.2).
The remainder of the paper is structured as follows. In the next section we introduce the projective cross-ratio and consider some of its elementary properties. In Section 3 we prove an auxiliary result, which essentially applies to 2-dimensional cones. In Section 4 we deduce the lower bound on the barrier parameter of barriers on general cones and in the subsequent section we investigate its properties. In Section 6 we deduce the bounds in [4, Sect. 2.3.4] from our result, and in the last section we apply our results to the power cone and the epigraph of the || • || p -norm. Finally, in the appendix we construct an optimal barrier for the epigraph of the || • || ∞ -norm.

The projective cross-ratio

Let x 1 , x 2 , x 3 , x 4 ∈ R ∪ {∞} be four distinct points in the 1-point compactification of the real line. The projective cross-ratio of the quadruple (x 1 , x 2 , x 3 , x 4 ) is defined as the number

(x 1 , x 2 ; x 3 , x 4 ) = (x 1 -x 3 )(x 2 -x 4 ) (x 1 -x 4 )(x 2 -x 3 ) ∈ R,
where the differences containing the value ∞ are cancelled in the event that one of the points in the quadruple is ∞. This function can be extended continuously to a (R ∪ {∞})-valued function on the set of quadruples of points in R ∪ {∞} of which no three coincide. The projective cross-ratio is invariant under projective transformations of R ∪ {∞}, and can hence also be considered as a (R ∪ {∞})-valued function on quadruples of points on the real projective line RP1 . Alternatively, it can be considered as a (R∪{∞})-valued function on quadruples of 1-dimensional linear subspaces of R 2 , as the set of such subspaces is isomorphic to RP 1 .

As can be easily checked, the projective cross-ratio possesses the symmetry

(x 1 , x 2 ; x 3 , x 4 ) = 1 (x 2 , x 1 ; x 3 , x 4 ) , (4) 
with the values 0 and ∞ being considered as reciprocal.

In the next two sections we consider the projective cross-ratio as defined on quadruples of coplanar lines through the origin, while in the example sections it will be more convenient to consider projective cross-ratios of quadruples of collinear points.

2-dimensional linear sections

In this section we prove an auxiliary result which essentially provides a construction of the optimal barrier on a 2-dimensional convex cone under the condition that the direction of the gradient of the barrier at some interior point of the cone is fixed to some value.

Let K ⊂ R n , n ≥ 2, be a regular convex cone, x * ∈ K o a point in the interior of K, l a line containing x * and intersecting the boundary ∂K of the cone in the points e, y. Denote by L the 2dimensional linear hull of l and by l x * , l e , l y the 1-dimensional linear subspaces spanned by the vectors x * , e, y, respectively. Let F : K o → R be a logarithmically homogeneous self-concordant barrier on K with barrier parameter ν, and define p * = -F ′ (x * ). Note that p * is a linear functional on R n , located in the interior of the dual cone K * . The kernel of p * is an n -1-dimensional linear subspace L p * ⊂ R n , which intersects K in the origin. Denote the 1-dimensional intersection of L p * with the 2-dimensional subspace L by l p * . Then l x * , l e , l y , l p * are four mutually distinct coplanar lines, and we can define their projective cross-ratio r = (l e , l y ; l x * , l p * ). The arrangement of the lines implies that -∞ < r < 0. Proof. Let K L = K ∩ L and let F L be the restriction of F on the interior K o L of K L . Then F L is a selfconcordant barrier for the 2-dimensional cone K L with the same barrier parameter ν as K. Moreover, the linear functional p * L = -F ′ L (x * ) is the restriction of the linear functional p * on L, and hence its kernel coincides with l p * . The assertion of the lemma for the cone K thus reduces to the assertion for the cone K L .

In order to avoid unnecessary notations, we shall assume without restriction of generality that n = 2

and hence K = K L . Let γ * = ν * -2 √ ν * -1 = |r+1| √ -r and let λ * ± = -γ * 2 ± γ 2 *
4 + 1 be the roots of the quadratic equation λ 2 + γ * λ -1 = 0. Then -rγ 2 * = (r + 1) 2 and hence r = -

γ 2 * +2 2 ± γ * γ 2 * 4 + 1 = -(λ * ∓ ) 2 . Since γ * ≥ 0, we have λ * -≤ -1 and 0 < λ * + ≤ 1. Therefore r = -(λ * -) 2 if r ≤ -1 and r = -(λ * + ) 2 if r ≥ -1.
Note that in the former case we have (l y , l e ; l x * , l p * ) = r -1 = -(λ * + ) 2 by (4). Let us now introduce a coordinate system in R 2 such that the lines l x * , l p * are parallel to the basis vectors (1, 0) T , (0, 1) T , respectively. Let further the lines l e , l y be parallel to the vectors (1, λ * ± ) T , respectively, if r ≥ -1, and to the vectors (1, λ * ∓ ) T , respectively, if r < -1. This is always possible because

(λ * + , λ * -; 0, ∞) = (λ * + -0)(λ * --∞) (λ * --0)(λ * + -∞) = λ * + λ * - = -(λ * + ) 2 = (l y , l e ; l x * , l p * ), r < -1; (l e , l y ; l x * , l p * ), r ≥ -1,
and the projective cross-ratio of a quadruple of distinct lines through the origin of a plane is the only invariant of the quadruple with respect to the general linear group of this plane. Let us further scale the coordinates by a homothety such that x * = (1, 0) T . In this coordinate system the cone K is given by the set {x = (

x 1 , x 2 ) T | x 1 ≥ 0, λ * -x 1 ≤ x 2 ≤ λ * + x 1 }, and p * = -F ′ (x * ) = (ν, 0) T due to the identity p * , x * = ν [4, eq. (2.3.13)].
Consider the 1-dimensional Lie group A(t) = exp(t • a) = 1 0 t 1 generated by the Lie algebra element a = 0 0 1 0 . Let x(t) = A(t)x * = (1, t) T and consider the scalar f (t) = ν -1 F (x(t)). We shall now establish a differential inequality which is satisfied by the function f (t). Formulas [4, eq.

(2.3.12-14)] and its derivatives yield the relations

F ′ (x)[x] = -ν, F ′′ (x)[x, •] = -F ′ (x), F ′′′ (x)[x, •, •] = -2F ′′ (x). At x(t) = A(t)
x * we thus have

F ′ = νA T (-t) -1 α , F ′′ = νA T (-t) 1 -α -α β A(-t), F ′′′ [A(t)h, •, •] = -2νA T (-t) 1 -α -α β h 1 + -α β β µ h 2 A(-t) (5) 
for some α, β, µ ∈ R. Here β > α 2 , because F ′′ ≻ 0, and h = (h 1 , h 2 ) T ∈ R 2 is an arbitrary vector. Condition (1), applied to the vector A(t)h, then yields

-h 3 1 + 3αh 2 1 h 2 -3βh 1 h 2 2 -µh 3 2 ≤ √ ν(h 2 1 -2αh 1 h 2 + βh 2 2 ) 3/2 .
Setting h = (α -β-α 2 ν-1 , 1) T , we obtain after some calculations

-(α 3 + 3α(β -α 2 ) + µ) ≤ γ(β -α 2 ) 3/2 , (6) 
where

γ = ν-2 √ ν-1 .
Let us compute the derivatives of f (t). By (5) and using the fact that ẋ = (0, 1) T is constant, we have

ḟ = ν -1 F ′ (x)[ax] = α, f = ν -1 F ′′ (x)[ax, ax] = β, f (3) = ν -1 F ′′′ (x)[ax, ax, ax] = -2µ.
Inserting this into (6), we get

4 ḟ 3 -6 ḟ f + f (3) ≤ 2γ( f -ḟ 2 ) 3/2 . ( 7 
)
We would like to bound the function f (t) by the solution of the differential equation which is obtained when one assumes equality in (7). This is accomplished by introducing the variables

q ± = - √ f -ḟ 2 λ∓ -ḟ , where λ ± = -γ 2 ± γ 2
4 + 1 are the roots of the quadratic equation λ 2 + γλ -1 = 0. These variables satisfy the relation q + > q -and ḟ , f can be recovered from them by the formula

ḟ = - λ + λ + -λ - q -+ λ - λ + -λ - q + , f = λ + λ + -λ - q 2 -- λ - λ + -λ - q 2 + . (8) 
We have fḟ 2 = (q+-q-) 2 γ 2 +4 , and hence ( f

-ḟ 2 ) 3/2 = (q+-q-) 3 (γ 2 +4) 3/2 . A simple calculus then shows that 2γ( f -ḟ 2 ) 3/2 -4 ḟ 3 + 6 ḟ f = -2λ+ λ+-λ-q 3 -+ 2λ- λ+-λ-q 3
+ and hence by ( 7)

f (3) ≤ - 2λ + λ + -λ - q 3 -+ 2λ - λ + -λ - q 3 + . (9) 
Recall that p * = (ν, 0) T and hence ḟ (0) = 0. Hence by (8) we have

λ + q -(0) = λ -q + (0). ( 10 
)
Differentiating the first relation in (8) with respect to t and expressing f by the second relation, we obtain

λ + λ + -λ - (q 2 -+ q-) - λ - λ + -λ - (q 2 + + q+ ) = 0. ( 11 
)
Differentiating the second relation in ( 8) and inserting into (9) yields the inequality

λ + λ + -λ - q -(q 2 -+ q-) - λ - λ + -λ - q + (q 2 + + q+ ) ≤ 0. ( 12 
)
Combining ( 11) with (12) yields

λ + λ + -λ - (q --q + )(q 2 -+ q-) ≤ 0, λ - λ + -λ - (q --q + )(q 2 + + q+ ) ≤ 0,
which by the relation q + > q -gives q 2 -+ q-≥ 0,

q 2 + + q+ ≤ 0. ( 13 
)
The solution of the differential equation q 2 + q = 0 is given by q(t) = 1 t+q -1 (0) . The differential inequalities (13) then yield the bounds

q -(t) ≥ 1 t + q -1 -(0) , t ≥ 0; q + (t) ≥ 1 t + q -1 + (0) , t ≤ 0. ( 14 
)
By (10) and the condition q + > q -we have q -(0) < 0 and q + (0) > 0. Note that lim t→λ * + f (t) = +∞, hence by convexity of f we have lim t→λ * + ḟ (t) = +∞ and lim t→λ * + q -(t) = -∞. The right-hand side in the first relation in ( 14) tends to -∞ for t → -q -1 -(0), and hence λ * + ≥ -q -1 -(0). Likewise, lim t→λ * -f (t) = +∞, hence lim t→λ * -ḟ (t) = -∞ and lim t→λ * -q + (t) = +∞. The right-hand side in the second relation in ( 14) tends to +∞ for t → -q -1 + (0), and hence λ * -≥ -q -1 + (0). We thus get

λ * + λ+ ≥ -1 λ+q-(0) , - λ * - λ-≥ 1 λ-q+(0)
. Combining with (10), this yields

λ * + λ+ ≥ λ * - λ-. Finally, inserting the values λ -= - √ ν -1, λ + = 1 √ ν-1 , λ * -= - √ ν * -1, λ * + = 1 √ ν * -1
, we arrive at the desired conclusion.

Corollary 3.2. Let K ⊂ R n , n ≥ 2, be a regular convex cone, and F : K o → R a logarithmically homogeneous self-concordant barrier on K with barrier parameter ν. Then ν ≥ 2.

If n = 2 and the bound on the barrier parameter given by Lemma 3.1 is saturated, then λ * + = λ + = -q -1 -(0) and λ * -= λ -= -q -1 + (0). Inequalities ( 14) must be saturated too and ḟ (t) = -λ+ λ+-λ- This group acts transitively on the set of rays constituting the interior of the cone K, and hence the expression ν * in Lemma 3.1 is independent of the choice of the interior point x * in this case.

1 t-λ+ + λ- λ+-λ- 1 t-λ-. This can be integrated, yielding f (t) = -λ+ λ+-λ-log(t -λ + ) + λ- λ+-λ-log(t -λ -) + const,

Main result

In this section a lower bound on the barrier parameter ν for a logarithmically homogeneous selfconcordant barrier F : K o → R on a given regular convex cone K ⊂ R n is obtained from Lemma 3.1 by the following consideration. Let x * ∈ K o be an interior point of K, denote p * = -F ′ (x * ), and let L 1 , . . . , L m be 2-dimensional linear subspaces containing x * . For fixed p * and for each i = 1, . . . , m, application of Lemma 3.1 to the intersection K Li = L i ∩ K gives rise to a lower bound ν * i (p * ) on ν, and hence ν ≥ max i=1,...,m ν * i (p * ). If m is smaller than the dimension n of the cone K, then for subspaces L 1 , . . . , L m in general position p * can be chosen such that max i=1,...,m ν * i (p * ) = 2, and no information is gained with respect to Corollary 3.2. If, however, m ≥ n, then min p * max i=1,...,m ν * i (p * ) > 2 in general, except in the case that K is the Lorentz cone. The goal of this section is to solve the minimax problem min p * max i=1,...,m ν * i (p * ) for the case m = n. We will work under the following assumption.

Assumption 4.1. Let K ⊂ R n be a regular convex cone, let x * = (x * 1 , . . . , x * n ) T ∈ K o , and let L 1 , . . . , L n ⊂ R n be 2-dimensional linear subspaces containing x * . Assume that there exist linearly independent vectors e i ∈ L i ∩ ∂K, i = 1, . . . , n, and let y i ∈ L i ∩ ∂K be such that L i = span{e i , y i }, i = 1, . . . , n. Let l k be the line through the points e k and y k , and let z k be the intersection point of l k with the (n -1)-dimensional linear subspace Lk spanned by all points e l , l = 1, . . . , n except e k . Let l e k , l y k , l z k , and l x * be the linear hulls of e k , y k , z k , and x * , respectively. Then for each k = 1, . . . , n the 4 lines l e k , l y k , l z k , l x * are in L k and hence coplanar, and no three of them are identical. Let q k = [l e k , l x * ; l y k , l z k ] be their projective cross-ratio. Now let F : K o → R be a logarithmically homogeneous self-concordant barrier with parameter ν, set p * = -F ′ (x * ), and let l p * k be the 1-dimensional intersection of the plane L k with the kernel of the linear functional p * . We shall express the projective cross-ratio r k = [l e k , l y k ; l x * , l p * k ], which determines the bound ν * k (p * ) from Lemma 3.1, in terms of the projective cross-ratios q k and the linear functional p * . Introduce a coordinate system in R n with basis vectors equal to e k . Let p * k be the elements of p * in these coordinates. Note that p * is in the interior of the dual cone K * , and hence p * , e k = p * k > 0 for all k = 1, . . . , n.

In each of the planes L k , consider the affine line lk through x * which is parallel to l e k . Introduce a real parameter λ on lk , putting the number λ in correspondence with the point x * + λe k . Then the intersection point of lk with l e k is the infinitely remote point and can be assigned the parameter λ = +∞. The intersection point of lk with l x * has parameter value λ = 0. The coordinate vector of the intersection point of lk with l z k has a zero at its k-th entry and thus has parameter value λ = -x * k . Let λ k be the parameter value corresponding to the intersection point of lk with l y k . Since the segment of lk corresponding to the parameter values λ ∈ [0, ∞) lies in the interior of K, we have λ k < 0. Finally, the intersection point of lk with l p * k is given by the equation p * , x * + λe k = 0, which yields the value λk = -p * ,x * p * k for the parameter of this intersection point. Note that λk < λ k , because p * has to be positive on y k . We then obtain the projective cross-ratios

q k = [l e k , l x * ; l y k , l z k ] = (∞ -λ k )(0 -(-x * k )) (∞ -(-x * k ))(0 -λ k ) = - x * k λ k , (15) 
r k = [l e k , l y k ; l x * , l p * k ] = (∞ -0)(λ k -λk ) (∞ -λk )(λ k -0) = 1 - λk λ k = 1 + p * , x * p * k λ k , (16) 
from which we get

r k + 1 r k -1 = 1 + 2p * k λ k p * , x * . ( 17 
)
Lemma 4.2. The relation k : q k >0 q k > 1 holds.

Proof. Let I + = {k | q k > 0} and Q + = k∈I+ q k . If I + = ∅, then x * is in the nonpositive orthant by (15). Thus -x * is also in K as a linear combination of the basis vectors e k with nonnegative coefficients. This contradicts the regularity of K.

Hence I + = ∅. For every k, x * + λ k e k is a positive multiple of y k and hence equals a nonzero vector in ∂K. Consider the point s

= k∈I+ q k (x * + λ k e k ) = (Q + -1)x * + x * -k∈I+ x * k e k
, where the second relation comes from (15). As a linear combination of nonzero elements in K, with positive coefficients, the point s is also a nonzero vector in K. The vector x * -k∈I+ x * k e k has only nonpositive components and is hence in -K. It follows that (Q + -1)x * = sx * -k∈I+ x * k e k is a nonzero vector in K, which implies Q + > 1 and proves the lemma. By Lemma 3.1, the barrier parameter ν of the barrier F is bounded from below by the expression max k=1,...,n

2 1- r k +1 r k -1
. This bound still depends on the negative gradient p * of F at x * . A lower bound on the barrier parameter of an arbitrary logarithmically homogeneous self-concordant barrier on K is then given by

ν * = min p * max k 2 1 -r k +1 r k -1 = 2 1 -min p * max k r k +1 r k -1 , (18) 
where p * is subject to the constraints p * , e k > 0, p * , y k > 0 for all k = 1, . . . , n. By (17) this transforms into

ν * = 2 1 -min p * max k 1 + 2p * k λ k p * ,x * , ( 19 
)
where the components of p * have to satisfy the requirements p * k > 0 and

-p * ,x * p * k = λk < λ k . Equiva- lently, 0 < p * k p * ,x * < -1 λ k . Introduce variables α k = 1 + 2p * k λ k p * ,x * ∈ (-1, 1
). These variables have to satisfy the additional requirement

n k=1 α k -1 2λ k x * k = 1, which by (15) is equivalent to n k=1 1-α k 2 q k = 1.
We shall now solve the minimax problem min max

k |α k | α k ∈ (-1, 1), n k=1 1 -α k 2 q k = 1 . ( 20 
)
Lemma 4.3. The value of problem (20) is given by

| k q k -2| k |q k | < 1.
Proof. First note that k |q k | ≥ k q k and hence k q k -2 < k |q k |. On the other hand, by Lemma ). It is easily checked that this value is attained by the solution α k = α * k = l q l -2 l |q l | sgn q k ∈ (-1, 1). On the other hand, every feasible vector α = (α 1 , . . . , α n ) T has to satisfy the constraint Inserting the optimal value of (20) into (19), we obtain the following theorem.

we have

k (q k + |q k |) > 2 and hence 2 -k q k < k |q k |. It follows that | k q k -2| k |q k | ∈ [0, 1
k α k q k = k q k -2. It follows that (max k |α k |) k |q k | ≥ k |α k ||q k | ≥ | k q k -2|, which yields max k |α k | ≥ | k q k -2|
Theorem 4.4. Under Assumption 4.1, the barrier parameter ν of any logarithmically homogeneous self-concordant barrier F on the cone K is bounded from below by the quantity

ν * = 2 1 - | k q k -2| k |q k |
.

Properties of the lower bound

In this section we will consider the bound given by Theorem 4.4 in more detail. Proof. The exchange of y k and e k leaves the subspace L k and the line l p * k invariant and hence by (4) leads to the transformation r k → r -1 k in (16). This in turn leads to the transformation r k +1 r k -1 → -r k +1 r k -1 . The set of constraints p * , e k > 0, p * , y k > 0 is also left invariant, and hence by (18) the value of ν * is left unchanged.

Remark 5.2. The assertion of Lemma 5.1 cannot be easily inferred directly from the explicit expression of the bound ν * in Theorem 4.4, because the exchange of e k and y k for one index k changes the lines l z l for all l = k and hence all projective cross-ratios q l in (15) are changed.

Lemma 5.3. Assume the conditions of Assumption 4.1. There exists a subset I ⊂ {1, . . . , n} of indices with complement Ī such that the set {e k | k ∈ Ī} ∪ {y k | k ∈ I} is linearly independent, and x * is a linear combination of the vectors in this set with nonnegative coefficients.

Proof. The assertion of the lemma will follow from the statement that we can render all entries of x * nonnegative by exchanging the vectors e k and y k for a number of indices k and adapting the coordinate system accordingly. Let us prove this statement.

Suppose there exists an index k such that x * k < 0. Recall that z k is the unique point on l k situated in the linear subspace Lk spanned by all e l except e k . Therefore, linear dependence of the vectors e 1 , . . . , e k-1 , y k , e k+1 , . . . , e n is equivalent to the relation z k = y k . Since x * k < 0, the line l x * intersects l k in a point opposite to e k with respect to z k . But y k is opposite to e k with respect to l x * in L k , hence z k = y k . This proves that we can exchange the roles of e k and y k without violating the condition of linear independence of the points e l .

Assume without restriction of generality that x * is situated on the line segment between e k and y k . This is equivalent to multiplication of x * by a positive constant and does not change the signs of the entries x * k . We have the explicit expression

z k = x * -x * k e k 1-x * k
, deriving from the condition that z k is the affine combination of e k and x * whose k-th entry vanishes. On the other hand, we have

y k = x * +λ k e k
1+λ k , deriving from the condition that y k is the affine combination of e k and x * which is a multiple of x * + λ k e k . It follows that

x * = x * k (1 + λ k ) λ k + x * k y k + λ k (1 -x * k ) λ k + x * k z k = x * k (1 + λ k ) λ k + x * k y k + λ k λ k + x * k (x * -x * k e k ). (21) 
Note that x *x * k e k is a linear combination of the points e 1 , . . . , e k-1 , e k+1 , . . . , e n , with coefficients being equal to the corresponding entries of x * . From (21) it then follows that the coefficients x * l of x * , when expressed as a linear combination of the vectors e 1 , . . . , e k-1 , y k , e k+1 , . . . , e n , are given by

x * k = x * k (1 + λ k ) λ k + x * k , x * l = λ k λ k + x * k x * l , l = k.
Since x * is situated between y k and z k on the line l k and is different from these points, we have by ( 21) that 

x * k (1+λ k ) λ k +x * k > 0, λ k (1-x * k ) λ k +x * k > 0,
ν * = k q k k q k -1 , k q k ≤ 2; k q k , k q k ≥ 2. ( 22 
)
Proof. Choose a coordinate system in R n with basis vectors e k , k = 1, . . . , n. Then by assumption of the theorem all entries of x * are nonnegative, and by (15) all projective cross-ratios q k are nonnegative. Then the bound in Theorem 4.4 simplifies to (22).

We now consider the situation when q k = 0 for some k. In this case x * = z k is contained in the (n -1)-dimensional linear subspace Lk ⊂ R n spanned by all e l except e k . For every l = k, since both e l , x * are in Lk , we also have y l ∈ Lk . We can then apply the construction of the previous section to the n -1 2-dimensional subspaces L 1 , . . . , L k-1 , L k+1 , . . . , L n of the n -1-dimensional cone K = K ∩ Lk . Since all q l , l = k, retain their values in the lower-dimensional space, and n l=1 q l = l =k q l , n l=1 |q l | = l =k |q l | by q k = 0, Theorem 4.4 will yield the same bound ν * for the cone K as it has for the cone K. In other words, in the case q k = 0 the bound given by Theorem 4.4 for the cone K is essentially a consequence of a similar bound for the cone K, which is a linear section of K with codimension 1.

Lemma 5.5. Assume the conditions of Theorem 5.4. Then for all k = 1, . . . , n we have q k ≤ 1, and for all index sets I ⊂ {1, . . . , n} of cardinality n -1 we have k∈I q k ≥ 1.

Proof. Assume the notations of the previous section. Since the simplicial cone K S generated by the vectors e k is contained in K, the interval I S = l k ∩ K S is contained in the interval I K = l k ∩ K for every k = 1, . . . , n. Note that y k is the endpoint of I K opposite to e k , while z k is the endpoint of I S opposite to e k . Hence y k is situated on l k opposite to e k with respect to z k (but it may coincide with z k ). Recall that the parameter of the intersection point of l e k with lk was λ = +∞, the intersection point of l z k with lk had parameter λ = -x * k , and the intersection point of l y k with lk had parameter λ = λ k . Therefore λ k ≤ -x * k , which by (15) yields q k ≤ 1. Let us prove the second part by contradiction. Suppose there exists a subset I ⊂ {1, . . . , n} of n -1 indices such that k∈I q k < 1. For l ∈ I, define a l = q l 1-k∈I q k ≥ 0. We then have

x * + l∈I a l (1 + λ l )y l = x * + l∈I q l 1 -k∈I q k (x * + λ l e l ) = 1 1 -k∈I q k x * - l∈I x * l e l ,
where for the second equality we used (15). The leftmost side is the sum of an interior point of K and boundary points of K and is hence also an interior point of K. On the other hand, the rightmost side is proportional to e k, where k is the index missing in I, and is hence a boundary point of K. This leads to a contradiction, thus proving the lemma.

Corollary 5.6. Assume the conditions of Theorem 5.4. Then the bound given in Theorem 4.4 satisfies ν * ≤ n. The equality ν * = n holds if and only if K is either a simplicial cone with generators e 1 , . . . , e n , or a simplicial cone with generators y 1 , . . . , y n .

Proof. By (22) the first assertion of the corollary is equivalent to the inequalities

n n -1 ≤ k q k ≤ n.
These can be obtained by summing the inequalities q k ≤ 1, k∈I q k ≥ 1 from Lemma 5.5 over all indices k or all index sets I of cardinality n -1, respectively. Assume now that ν * = n. By (22) we then have either k q k = n n-1 or k q k = n. Let us consider the first case. By Lemma 5.5 we have q k = 1 n-1 for all k, and hence

λ k = -(n-1)x * k . Note that y k is a positive multiple of the point x * + λ k e k , hence y k = β k (x * -(n -1)x * k e k ), β k > 0 for all k. Let k ∈ {1, . . . , n} and I = {1, . . . , n} \ { k}. Then we have k∈I β -1 k y k = k∈I (x * -(n -1)x * k e k ) = (n -1)x * ke k,
and e k is contained in the relative interior of the convex cone generated by the set {y k | k ∈ I}. But e k ∈ ∂K, which implies that this cone is entirely contained in ∂K. Repeating this argument for all k, we see that the boundary of the simplicial cone generated by the y k is contained in ∂K. On the other hand,

n k=1 β -1 k y k = n k=1 (x * -(n -1)x * k e k ) = x * ∈ K o ,
which implies that the points y k are linearly independent and that K equals the cone generated by the y k .

We now pass to the case k q k = n. By Lemma 5.5 we have q k = 1 for all k. This is equivalent to the relations y k = z k , and y k is contained in the cone generated by the set {e l | l = k} for all k. Moreover, it follows that z k ∈ ∂K and hence z k = x * , which implies x * k > 0 for all k. By λ k = -x * k we then have that y k is a positive multiple of x *x * k e k = l =k x * l e l , and y k is in the relative interior of the cone generated by the set {e l | l = k}. As in the previous paragraph, this whole cone must then be in ∂K for all k, and ∂K contains the boundary of the simplicial cone generated by the e k . Thus K equals this simplicial cone. This proves one direction of the equivalence asserted in the second part of the corollary.

Let us prove the opposite direction. Assume that K is a simplicial cone generated by either the vectors e k or the vectors y k . By possibly exchanging the roles of e k and y k for all k, we by virtue of Lemma 5.1 can assume that K is generated by the e k . The line l k intersects ∂K in e k and in the face opposite to e k , which implies that the second intersection point y k coincides with z k . But then λ k = -x * k and q k = 1 for all k, which by (22) yields the assertion to be proven. Theorem 5.7. Assume the conditions of Assumption 4.1. The lower bound ν * given in Theorem 4.4 cannot exceed the dimension n of the cone K. The equality ν * = n holds if and only if K is a simplicial cone with generators ẽ1 , . . . , ẽn such that ẽk ∈ {e k , y k } for every k = 1, . . . , n.

Proof. The theorem is a consequence of Lemmas 5.1, 5.3, and Corollary 5.6.

Relation with Nesterovs and Nemirovskis bound

In this section we deduce the lower bound of Nesterov and Nemirovski, applied to convex cones, from our result. Proposition 2.3.6 in [START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] states that if C ⊂ R n is a convex polytope and e n ∈ ∂C is a boundary point belonging to exactly k (n -1)-dimensional faces of C, such that the normal vectors to these faces are linearly independent, then k is a lower bound on the barrier parameter of any selfconcordant barrier on C. We are interested in the situation when C is a cone and prove the following slightly stronger result for this case. Theorem 6.1. Let K ⊂ R n , n ≥ 3, be a regular polyhedral convex cone, let e k+1 ∈ ∂K be a nonzero boundary point belonging to exactly k (n -1)-dimensional faces of K, 2 ≤ k ≤ n -1, such that the normals to these faces are linearly independent. Then ν * = k + 1 is a lower bound on the barrier parameter of any logarithmically homogeneous self-concordant barrier on K.

Proof. By an appropriate choice of coordinates, we can assume that e k+1 = (1, 0, . . . , 0) T , the set {x = (x 0 , . . . , x n-1 ) T ∈ K | x 0 = 1} is a compact section of K, and there exists a neighbourhood U of e k+1 such that x ∈ U ∩ K if and only if x ∈ U and x j ≤ 0, j = 1, . . . , k. Let us further assume without restriction of generality that k = n -1, otherwise we replace the cone K by the (k + 1)-dimensional intersection K ∩L, where L ⊂ R n is the (k+1)-dimensional linear subspace determined by the equations

x k+1 = • • • = x n-1 = 0.
Set x * = (1, -ε, . . . , -ε) T , e j = (1, -ε, . . . , -ε, 0, -ε, . . . , -ε) T , j = 1, . . . , n -1, where the zero is located at position j. For small enough ε > 0 we then have x * ∈ K o , e j ∈ ∂K, j = 1, . . . , n. Let further l j be the line through x * and e j and let y j be the intersection point of l j with ∂K opposite to e j , j = 1, . . . , n. We then have y j = (1, -ε, . . . , -ε, -α j , -ε, . . . , -ε) T for j = 1, . . . , n -1, y n = (1, -α n , . . . , -α n ) T , and lim ε→0 α j > 0 for all j = 1, . . . , n. For i ∈ {1, . . . , n}, denote by Li ⊂ R n the (n -1)-dimensional linear subspace spanned by all e j except e i , and let z i be the intersection point of Li with the line l i . It is not hard to check that z

i = (1, -ε, . . . , -ε, -β i , -ε, . . . , -ε) T , i = 1, . . . , n-1, z n = (1, -β n , . . . , -β n ) T with β i = ε n-2 n-3 , i = 1, . . . , n -1, and β n = ε n-2 n-1 .
For n = 3 the line l i does not intersect L i , i = 1, 2, and we set β 1 = β 2 = ∞ in this case.

The projective cross-ratios (15) are then given by

q j = [0, -ε; -α j , -ε n -2 n -3 ] = α j (n -2)(α j -ε) , j = 1, . . . , n -1; q n = [0, -ε; -α n , -ε n -2 n -1 ] = -α n (n -2)(α n -ε) .
Theorem 4.4 then yields the lower bound

ν * = 2 1 - |( n-1 j=1 α j α j -ε )-αn αn -ε -2(n-2)| n j=1 α j α j -ε
on the barrier parameter of any logarithmically homogeneous self-concordant barrier on K. The relation lim ε→0 ν * = n completes the proof.

Corollary 6.2. Let n ≥ 3. The epigraph of the || • || ∞ -norm in R n-1 , K n,∞ = {(x 0 , . . . , x n-1 ) T | x 0 ≥ |x k | ∀ k = 1, . . . , n -1} ⊂ R n , (23) 
cannot have a logarithmically homogeneous self-concordant barrier with barrier parameter less than ν * = n. An optimal barrier for the cone K n,∞ is given by

F (x 0 , . . . , x n-1 ) = - n-1 k=1 log(x 2 0 -x 2 k ) + (n -2) log x 0 . (24) 
For a proof see the appendix. Note that since every convex quadrangle is projectively equivalent to a square, the barrier (24) for n = 3 yields an optimal barrier also for an arbitrary regular polyhedral cone K ⊂ R 3 which is generated by 4 extreme rays.

7 Further examples

Power cone

The power cone is a 3-dimensional regular convex cone defined by

K p = {(u, v, w) T | u ≥ 0, v ≥ 0, u 1/p v 1/q ≥ |w|}, (25) 
where p ∈ (2, ∞) is a parameter and 1 p + 1 q = 1. In [START_REF] Nesterov | Towards nonsymmetric conic optimization[END_REF] Nesterov proposed a logarithmically homogeneous self-concordant barrier with barrier parameter ν = 4 for this cone. In [START_REF] Chares | Cones and Interior-Point Algorithms for Structured Convex Optimization involving Powers and Exponentials[END_REF] a logarithmically homogeneous For p = 2, K 3,p is the 3-dimensional Lorentz cone, whose optimal barrier parameter is 2. For p = 1 and p = ∞ K 3,p is a polyhedral cone with 4 extreme rays. This case was considered in the previous section, where it was established that the optimal barrier parameter equals 3.

Let us consider the case 2 < p < ∞. Let γ ∈ (0, 1) be the unique solution of the equation (1 -2 p )γ 1-1/p + (1 -1 p )γ 1-2/p -1 p = 0. Note that this definition coincides with (26). For δ ∈ (0, 1), set

ρ 2 = 1 -δ, ρ 3 = 1 -γδ, w 2 = (1 -ρ p 2 ) 1/p , w 3 = (1 -ρ p 3 ) 1/p . (31) 
Consider the compact section D = {(ρ, w) T | (1, ρ, w) T ∈ K 3,p } of the cone K 3,p and let e 1 , e 2 , e 3 ∈ ∂D, x * ∈ D o be as in the previous subsection. Then the projective cross-ratios q k will be given by the same formulas (27), and

q 1 + q 2 + q 3 = 2 + w 2 2 (1 -ρ 2 3 ) -w 2 3 (1 -ρ 2 2 ) w 3 (1 -ρ 2 )(w 3 (1 + ρ 2 ) + w 2 (1 + ρ 3 )) . ( 32 
)
Now note that 1-x 2 (1-x p ) 2/p is a strictly monotonely decreasing function for x ∈ (0, 1), hence and q 1 + q 2 + q 3 < 2. By (22) we then get the lower bound ν * = q 1 + q 2 + q 3 q 1 + q 2 + q 3 -1 = 2 + w 

and therefore lim δ→0 ν * = 2 + γ 2/pγ γ 1/p + γ = 2 + γ 1/pγ 1-1/p 1 + γ 1-1/p , which, remarkably, coincides with (29).

Let us now consider the case 1 < p < 2. Let γ ∈ (0, 1) be the unique solution of the equation ( 2p -1)γ 1/p + 1 p γ 2/p-1 -(1 -1 p ) = 0. For δ ∈ (0, 1), define ρ 2 , ρ 3 , w 2 , w 3 by (31) and let e 1 , e 2 , e 3 ∈ ∂D, x * ∈ D o be again as in the previous subsection. Then we again obtain (32), but 1-x 2

(1-x p ) 2/p is now a strictly monotonely increasing function for x ∈ (0, 1). Hence and q 1 + q 2 + q 3 > 2. By (22) we then get the lower bound ν * = q 1 + q 2 + q 3 = 2 + (w 2 /w 3 ) 2 (2γδ)γ -(2δ) (2δ) + w 2 /w 3 (2γδ) .

As in (33) we get lim δ→0 w2 w3 = γ -1/p , which yields lim δ→0 ν * = 2 + γ 1-2/p -1 1 + γ -1/p = 2 + γ 1-1/pγ 1/p 1 + γ 1/p .

Note that this again coincides with (29), but with p and q interchanged. Combining these results, we get the following lower bound. ) ∈ [0, 1 2 ] and let γ ∈ [0, 1) be a solution of the equation (1 -2c)γ 1-c + (1c)γ 1-2cc = 0. If F is a logarithmically homogeneous self-concordant barrier on K 3,p , then its barrier parameter satisfies the inequality ν ≥ 1 + 1+γ c 1+γ 1-c . As already noted, as functions of p the lower bounds given in Corollaries 7.1 and 7.2 coincide.

Remark 7.3. The choices of the points e k and x * in Subsections 7.1 and 7.2 are optimal, i.e., the bounds in Corollaries 7.1 and 7.2 are the best possible which can be obtained with our method.

Lemma 3 . 1 .

 31 Assume above notations. Then ν is bounded from below by ν * = r, -r -1 ).

  thus determining the barrier F up to an additive constant. It is not hard to check that F is invariant under the action of the Lie group exp(t • a) generated by the Lie algebra element a = 0 1 1 -γ .

k

  |q k | and thus proves optimality of the solution α k = α * k .
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 1 Assume the conditions of Assumption 4.1. Let I ⊂ {1, . . . , n} be such that the vectors in the set {y k | k ∈ I} ∪ {e k | k ∈ I} are linearly independent. Then the bound in Theorem 4.4 is invariant under an interchange of the points e k and y k for all k ∈ I.

  and hence also λ k λ k +x * k > 0. Therefore the sign of x * l equals that of x * l for l = k, while x * k is positive. As a consequence, exchanging e k and y k has lead to a decrease in the number of negative entries of x * by one. Repeating this process, we can eliminate all negative entries of x * .Theorem 5.4. In addition to Assumption 4.1, suppose that x * is contained in the simplicial cone generated by the vectors e k . Then the lower bound in Theorem 4.4 is given by
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 2 Let K 3,p ⊂ R 3 be the epigraph of the || • || p -norm given by (30) with parameter p ∈ [1, ∞]. Set c = min( 1 p , 1 -1 p

Actually, in[START_REF] Nesterov | Interior-point polynomial algorithms in convex programming[END_REF] Prop. 

2.3.6] it is required that K is polyhedral, but this is not used in the proof.

As noted by an anonymous referee, expression (29) can be rewritten as 2 + (1 -q/p)γ 1/p .

self-concordant barrier with barrier parameter ν = 3 was proposed and a logarithmically homogeneous function with homogeneity parameter ν = 3 -2 p was conjectured to be self-concordant. We shall now give a lower bound on the barrier parameter of any logarithmically homogeneous self-concordant barrier on K p .

Consider the compact section D = {(u, v, w)

, we can parameterize D by (ρ, w) T . Inserting the relations u = 1+ρ 2 , v = 1-ρ 2 into the inequality defining the cone K p , we see that D is given by the set {(ρ, w)

Let now γ > 0 be the unique positive root of the transcendent equation

Choose ρ 2 , ρ 3 ∈ (-1, 1) such that ρ 2 < ρ 3 and γ = (1-ρ3)(1+ρ2) (1+ρ3)(1-ρ2) . Then ρ 3 can be expressed as a function of ρ 2 by ρ 3 = 1+ρ2-γ (1-ρ2) 1+ρ2+γ(1-ρ2) . Define further

All these 6 points are located on the boundary of D, and the lines l k through e k , y k , k = 1, 2, 3, intersect in the common point x * = ( ρ2w3+ρ3w2 w2+w3 , 0) T , which lies in the interior of the triangle formed by the e k . The line l 1 intersects the line through e 2 , e 3 in the point z 1 = (ρ 2 , 0) T , while l 3 intersects the line through e 1 , e 2 in the point

) .

From this we readily compute the projective cross-ratios

and hence

By (22) we then obtain

Corollary 7.1. Let K p ⊂ R 3 be the power cone given by (25) with parameter p ≥ (2, +∞). If F is a logarithmically homogeneous self-concordant barrier on K p , then its barrier parameter satisfies the inequality ν ≥ 1 + 1+γ 1/p 1+γ 1/q , where γ is given by (26) and 1 p + 1 q = 1. In Fig. 1 the lower bound ν * as a function of p is depicted along with the barrier parameters of the barriers proposed in [START_REF] Nesterov | Towards nonsymmetric conic optimization[END_REF] and [1] 2 .

Epigraph of the || • || p norm

Next we consider the epigraph of the || • || p -norm in R 2 for 1 ≤ p ≤ ∞, i.e., the 3-dimensional cone

In [START_REF] Nesterov | Towards nonsymmetric conic optimization[END_REF] Nesterov proposed a method to construct a logarithmically homogeneous self-concordant barrier with barrier parameter ν = 2ν for this cone if a logarithmically homogeneous self-concordant barrier for the corresponding power cone K p is available which has barrier parameter ν. In [START_REF] Chares | Cones and Interior-Point Algorithms for Structured Convex Optimization involving Powers and Exponentials[END_REF] the universal barrier [4, Sect. 2.5] for K 3,p was computed and a barrier parameter ν = 3p p+1 (p ≥ 2) for this barrier

A Self-concordance of function (24)

In this section it is proven that the function F given by ( 24) is a self-concordant barrier for the cone K n,∞ defined in (23). The proof is due to an anonymous reviewer. It replaces the much more complicated proof from the first version of the paper.

Consider the positive orthant R n-1 + with its optimal barrier F R n-1 + (y) = -n-1 k=1 log y k . As a homogeneous cone, it has rank n -1. From this cone we construct [START_REF] Güler | Characterization of the barrier parameter of homogeneous convex cones[END_REF]Sect. 3] (see also [4, pp. 165-166]) a homogeneous cone of rank n and dimension 2n -1,

where B : R n-1 → R n-1 + is a symmetric vector-valued bilinear form given by B(x) = (x 2 1 , . . . , x 2 n-1 ) T . An optimal barrier for the cone SC(R n-1 + , B) with barrier parameter n is given by [2, Theorem 4.1]

Now the intersection of the cone SC(R n-1 + , B) with the linear subspace given by x 0 = y 1 = • • • = y n-1 is isomorphic to the cone K n,∞ , and the restriction of the barrier F SC(R n-1 + ,B) to this intersection induces the function F on K n,∞ . This proves that F is actually a self-concordant barrier.