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On the ∞-norm of the cubic form of complete hyperbolic affine

hyperspheres

Roland Hildebrand ∗

November 14, 2011

Abstract

Let Mn ⊂ R
n+1 be a complete hyperbolic affine hypersphere with mean curvature H , H < 0,

and let C be its cubic form. We derive a differential inequality and an upper bound on the scalar

function ||C||∞ defined by the fiber-wise maximum of the value of C on the unit sphere bundle of

M . The bound is attained for the affine hyperspheres which are asymptotic to a simplicial cone.

1 Introduction

The subject of this paper are complete hyperbolic affine hyperspheres. The Calabi conjecture [2]
states that every hyperbolic affine hypersphere M which is complete (in the affine metric or in a
metric induced by some Euclidean metric of the ambient affine space) is asymptotic to a regular (with
nonempty interior and containing no lines) convex cone in the ambient space, with vertex in the center
of M , and conversely, for every regular convex cone K in the ambient space and every negative real
number H there exists a unique hyperbolic affine hypersphere with center in the vertex of K and with
mean curvature H which is asymptotic to K. The conjecture has been proven by the efforts of many
authors, a synthesis of the proof is given in [5, Section 2].

In [2, Lemma 5.2, p.31] Calabi obtained a differential inequality on the maximal eigenvalue of the
Ricci tensor on complete hyperbolic affine hyperspheres and proved that the Ricci curvature has to be
non-positive [2, Theorem 5.1, p.31]. He also showed that this bound is sharp, by presenting an example
of a complete hyperbolic affine hypersphere with flat affine metric, namely the one which is asymptotic
to a simplicial cone [2, p.37]. Similar differential inequalities and bounds can be obtained for the Pick
invariant [9, eq. (2.5)], [5, Cor. 2.6.5, p.128].

In this contribution we use the techniques of [2] to obtain a differential inequality (Theorem 3.1)
and a bound (Corollary 4.1) on the function

Υ(x) = max
ξ∈TxM,||ξ||=1

(C(x))(ξ, ξ, ξ) (1)

on a complete hyperbolic affine hypersphere M , with C being the cubic form. This function can be
considered as the (point-wise) ∞-norm of the cubic form. The main motivation for studying this
function lies in conic optimization, to which a link can be made as follows. An n-dimensional complete
hyperbolic affine hypersphere M with center in the origin of R

n+1 is asymptotic to some regular convex
cone K ⊂ R

n+1. On the interior of K define a logarithmically homogeneous convex function F by the
relation F [αM ] = {− logα} for all α > 0 (cf. [6]). Then a bound on (1) translates into a bound on
the self-concordance parameter [7, Sect. 2.3.3] of an appropriate multiple of F . We will elaborate on
this relation in a subsequent publication (cf. also [4, Theorem 4.8]). Our bound on the cubic form is
sharp, as we will demonstrate on the example of the affine hypersphere asymptotic to a simplicial cone
(Proposition 5.1).
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2 Notations and preliminaries

Let us recall the definition of the cubic form and the expression for its Laplacian on affine hyperspheres.
Let M be an n-dimensional complete hyperbolic affine hypersphere with mean curvature H < 0, g the
affine metric, ∇ the Levi-Civita connection of the affine metric, and ∇̄ the affine connection induced
by the ambient real affine space. The cubic form is defined as the covariant derivative C = ∇̄g [8, eq.
(2.6), p.34; Theorem 3.3, p.42]. The difference tensor1 is defined as the difference ∇̄ − ∇ and equals
A = − 1

2C [8, Prop.4.1, p.50]. The difference tensor and hence the cubic form are symmetric in all three
indices [2, pp.23-24]. The Ricci curvature of the affine metric and the Laplacian of C with respect to
the affine metric are given by [9, p.3]

Rij = (n − 1)Hgij +
1

4
Crs

i Cjrs, (2)

∆Cijk = (n + 1)HCijk +
1

4
Cabc(CabiCcjk + CabjCcki + CabkCcij) −

1

2
Ca

ibC
b
jcC

c
ka. (3)

3 Differential inequality

Our purpose is to derive a differential inequality on the function Υ defined by (1) on M . Let p ∈ M

be an arbitrary point and let ξ ∈ TpM be a maximizer of the cubic form on the unit sphere in TpM ,
Υ(p) = (C(p))(ξ, ξ, ξ), ||ξ|| = 1.

Transport ξ from p to a neighbourhood U of p along the geodesics through p by means of the
Levi-Civita connection to obtain a smooth unit length vector field on U . Then ξ satisfies

∇ξ = 0, ∆ξ = 0 (4)

at p [2, p.32], and Ῡ = Cijkξiξjξk ≤ Υ on U , with equality attained at p. Define the symmetric
second-order tensor B = ∇̄ξg on U , in index form Bij = Cijkξk. Note that B is traceless by the
apolarity condition Ci

ij = 0 [8, Theorem 4.3, p.51], and that Bijξ
iξj = Ῡ. Moreover, by [5, Lemma

2.2.3.19, p.106] we have at p that Bijξ
iηj = 0 and Bijη

iηj ≤ 1
2Bijξ

iξj ≤ Ῡ for every unit length vector
η which is orthogonal to ξ. It follows that ξ is also a maximizer of B(p) on the unit sphere in TpM . In
particular, at p we have

Bijξ
j = Ῡgijξ

j (5)

as the first order optimality condition, and Ῡ is the maximal eigenvalue of the matrix of B(p) in any
orthonormal basis of TpM .

Let us now estimate the Laplacian of Ῡ. At p we have by virtue of (3),(4), and (5)

∆Ῡ = (∆C)ijkξiξjξk = (n + 1)HῩ +
3

4
CabcCabiCcjkξiξjξk − 1

2
Ca

ibC
b
jcC

c
kaξiξjξk

= (n + 1)HῩ +
3

4
CabcBabBcjξ

j − 1

2
Ba

b Bb
cB

c
a = (n + 1)HῩ +

3

4
ῩBabBab −

1

2
Ba

b Bb
cB

c
a

≥ (n + 1)HῩ +
n(n + 1)

4(n − 1)2
Ῡ3.

Here the inequality follows from Corollary A.2 in the Appendix. We obtain the following result.

Theorem 3.1. Let M be an n-dimensional complete hyperbolic affine hypersphere with mean curvature
H < 0, and let C be its cubic form. Then the function Υ(x) = maxξ∈TxM,||ξ||=1(C(x))(ξ, ξ, ξ) satisfies

the differential inequality ∆Υ ≥ (n + 1)HΥ + n(n+1)
4(n−1)2 Υ3 weakly in the sense of [1, Def. 1, p.46].

1Sometimes, such as in [2], the difference tensor is called cubic form, which can lead to serious confusions and
apparently resulted in a missing factor of 2 in [3, Cor. 2, p.857] for the bound on the Pick invariant.
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4 Bound

From Theorem 3.1 we might obtain a bound on the function (1) on a complete hyperbolic affine

hypersphere. Namely, from [3, Cor. 1, p.857]2 it follows that Υ ≤
√

− 4H(n−1)2

n
= 2(n−1)

√
−H√

n
. As in

the case of the Pick invariant [5, Cor. 2.6.5, p.128], however, there exists a purely algebraic proof.
As in the preceding section, let p ∈ M be an arbitrary point, let ξ ∈ TpM be a maximizer of the

cubic form on the unit sphere in TpM , and define the traceless symmetric second-order tensor B = ∇̄ξC

on TpM . Let {ξ, η1, . . . , ηn−1} be an orthonormal basis of TpM , then we have

Υ2(p) = (Bijξ
iξj)2 =

(

−
n−1
∑

k=1

Bijη
i
kη

j
k

)2

≤ (n − 1)
n−1
∑

k=1

(Bijη
i
kη

j
k)2 ≤ (n − 1)

n−1
∑

k=1

BilB
l
jη

i
kη

j
k

= (n − 1)
(

BilB
li − BilB

l
jξ

iξj
)

= (n − 1)
(

CiljC
li
k ξjξk − Υ2(p)

)

= 4(n − 1)(Rjk − (n − 1)Hgjk)ξjξk − (n − 1)Υ2(p) ≤ −4(n − 1)2H − (n − 1)Υ2(p).

Here we used (5) and (2) in the last two equalities, respectively, and the non-positivity of the Ricci
curvature [2, Theorem 5.1, p.31] in the last inequality. We obtain the following result.

Corollary 4.1. Let M be an n-dimensional complete hyperbolic affine hypersphere with mean curvature
H < 0, and let C be its cubic form. Then the function Υ(x) = maxξ∈TxM,||ξ||=1(C(x))(ξ, ξ, ξ) satisfies

the inequality Υ ≤ 2(n−1)
√
−H√

n
.

5 Affine hyperspheres asymptotic to a simplicial cone

In this section we show that the inequalities in Theorem 3.1 and Corollary 4.1 are saturated for the
affine hyperspheres which are asymptotic to a simplicial cone.

Denote by Ik the k × k identity matrix, by 1k ∈ R
k the all-ones vector, and by ek ∈ R

n the k-th
canonical basis vector. Let K = R

n+1
+ be the nonnegative orthant, H < 0 a negative real number, and

let M ⊂ K be the hyperbolic affine hypersphere with mean curvature H which is asymptotic to K. It
is well-known that M is given by the equation x0 · · · · · xn = c for some c > 0. On the interior of K we
introduce the coordinates y0, . . . , yn by







y0

...
yn






= γU log x = γ

( 1√
n+1

1√
n+1

1T
n

− 1√
n+1

1n In + 1
n

(

1√
n+1

− 1
)

1n1T
n

)







log x0

...
log xn






,

where γ > 0 is a constant to be determined later. Then in the y-coordinates the surface M is given by
the equation y0 = γ log c√

n+1
. The remaining coordinates y1, . . . , yn ∈ R define a global coordinate chart

on M .
It is easily seen that the subgroup of unimodular diagonal automorphisms of K, which leaves M

invariant, acts by translations on M . The affine metric g and the cubic form C of M have thus constant
coefficients. The symmetric group Sn+1, which acts by permutations of the coordinates xi on K, has a
unique fixed point y0 ∈ M given by y1 = · · · = yn = 0. Therefore Sn+1 acts on the tangent space Ty0M ,
and both g and C have to be invariant under this action. It is not hard to check that the subgroup
Sn ⊂ Sn+1 permuting the coordinates x1, . . . , xn on K acts just by a corresponding permutation of the

2Obviously, in the formulation of this Corollary it should read d1 > 0, d2 < 0, and u ≤
√

−d2/d1, otherwise
the assertion of the Corollary can be disproved simply by choosing u to be an appropriate constant. The proof of the
Corollary contains several flaws, e.g., it assumes that a lower bound on the Ricci curvature implies an upper bound on the
quantity r∆r, where r is the distance function from some point p [3, p.856]. Consider the unit ball in R

n equipped with

the hyperbolic geometry given by the metric g(x) = (1−R
2)I+xx

T

(1−R2)2
in matrix form, where R =

√
xT x is the Euclidean

distance from the centre and I the identity matrix. The geodesic distance function from the centre is then given by
r = 1

2
log 1+R

1−R
, and ∆r = n−1

R
. Hence r∆r tends to +∞ as R → 1. It is, however, straightforward to write down a

correct proof of the Corollary, e.g., by setting f = (a2 − r2)u [3, p.856]. With the choice f = (1 + cos πr
2

a2
)u one can

handle also differential inequalities of the form ∆ψ ≥ d1u2 + d2u.
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y-coordinates. Therefore the coefficients gij , Cijk depend only on the number of distinct indices in the
sets {i, j} and {i, j, k}, respectively. Denote the latter number by θijk. The permutation σi ∈ Sn+1

exchanging the coordinates x0, xi acts on Ty0M by the orthogonal transformation

Ui = I −
(

1 −
√

n + 1

n
1n − ei

)(

1 −
√

n + 1

n
1n − ei

)T

.

It is not difficult to check that the invariance of g and C with respect to the transformations given by
Ui determines these tensors up to a constant multiple. Namely, the matrix of the metric g has to be
proportional to the identity matrix, and the cubic form C is given by

Cijk =







−α(n − 1)
(

2 + (n − 2)
√

n + 1
)

, θijk = 1,

α
(

2 + (n − 2)
√

n + 1
)

, θijk = 2,

α
(

n + 2 − 2
√

n + 1
)

, θijk = 3,

(6)

where α is a yet to be determined proportionality constant.
Let us choose γ such that the matrix of g is given by In. Contracting (2) with the metric and taking

into account that M is flat, we obtain CirsCirs = −4n(n− 1)H . Inserting the values for Cirs from (6),

we get α2n5(n− 1) = −4n(n− 1)H , yielding α = ± 2
√
−H

n2 (it can be checked that the sign is positive).

Hence on the unit length vector 1√
n
1n the cubic form has the value αn3(n−1)

n3/2
= ± 2(n−1)

√
−H√

n
, finally

giving Υ ≥ 2(n−1)
√
−H√

n
. From Corollary 4.1 we can then conclude that Υ ≡ 2(n−1)

√
−H√

n
on M . By the

affine equivalence of an arbitrary simplicial cone to the nonnegative orthant we obtain the following
result.

Proposition 5.1. Let M ⊂ R
n+1 be a complete hyperbolic affine hypersphere which is asymptotic to

a simplicial cone. Then both the bound in Theorem 3.1 and in Corollary 4.1 are saturated.
In particular, this will allow us to show that the optimal self-concordance parameter of an arbitrary

regular convex cone is not worse than the parameter of the standard barrier for the nonnegative orthant
of the same dimension.
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4



A Matrix lemma

In this section we provide an auxiliary inequality.

Lemma A.1. Let n ≥ 2 and λ1, . . . , λn−1 ≤ 1 be such that
∑n−1

i=1 λi = −1. Then 3
4

∑n−1
i=1 λ2

i −
1
2

∑n−1
i=1 λ3

i ≥ 3n−1
4(n−1)2 .

Proof. Define ci = (n − 1)λi + 1. Then
∑n−1

i=1 ci = 0 and ci ≤ n for all i. It follows that c3
i ≤ nc2

i for
all i. We then have

3

4

n−1
∑

i=1

λ2
i −

1

2

n−1
∑

i=1

λ3 − 3n − 1

4(n − 1)2
=

3

4(n − 1)2

n−1
∑

i=1

(ci − 1)2 − 1

2(n − 1)3

n−1
∑

i=1

(ci − 1)3 − 3n − 1

4(n − 1)2

=

(

3

4(n − 1)
+

1

2(n − 1)2
− 3n − 1

4(n − 1)2

)

−
(

3

2(n − 1)2
+

3

2(n − 1)3

) n−1
∑

i=1

ci

+

(

3

4(n − 1)2
+

3

2(n − 1)3

) n−1
∑

i=1

c2
i −

1

2(n − 1)3

n−1
∑

i=1

c3
i

≥
(

3(n + 1)

4(n − 1)3
− n

2(n − 1)3

) n−1
∑

i=1

c2
i =

n + 3

4(n − 1)3

n−1
∑

i=1

c2
i ≥ 0.

This completes the proof.

Corollary A.2. Let B be a real symmetric n×n matrix with vanishing trace. Then 3
4λmax(B) tr B2−

1
2 tr B3 ≥ n(n+1)

4(n−1)2 λ3
max(B).

Proof. If λmax(B) = 0, then B = 0 and the assertion of the corollary is evident.
Suppose now that λmax(B) > 0. Let λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = 1 be the eigenvalues of the

matrix B̃ = B
λmax(B) in increasing order. Then

∑n−1
i=1 λi = −1 and λi ≤ 1 for all i. We then have

3

4
λmax(B) tr B2 − 1

2
trB3 − n(n + 1)

4(n − 1)2
λ3

max(B) = λ3
max(B)

(

3

4
tr B̃2 − 1

2
tr B̃3 − n(n + 1)

4(n − 1)2

)

= λ3
max(B)

[

3

4

(

1 +

n−1
∑

i=1

λ2
i

)

− 1

2

(

1 +

n−1
∑

i=1

λ3
i

)

− n(n + 1)

4(n − 1)2

]

≥ 0,

where the inequality comes from the preceding lemma.
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