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On the ∞-norm of the cubic form of complete hyperbolic affine hyperspheres

Let Mn ⊂ R n+1 be a complete hyperbolic affine hypersphere with mean curvature H, H < 0, and let C be its cubic form. We derive a differential inequality and an upper bound on the scalar function ||C||∞ defined by the fiber-wise maximum of the value of C on the unit sphere bundle of M . The bound is attained for the affine hyperspheres which are asymptotic to a simplicial cone.

Introduction

The subject of this paper are complete hyperbolic affine hyperspheres. The Calabi conjecture [START_REF] Calabi | Complete affine hyperspheres I[END_REF] states that every hyperbolic affine hypersphere M which is complete (in the affine metric or in a metric induced by some Euclidean metric of the ambient affine space) is asymptotic to a regular (with nonempty interior and containing no lines) convex cone in the ambient space, with vertex in the center of M , and conversely, for every regular convex cone K in the ambient space and every negative real number H there exists a unique hyperbolic affine hypersphere with center in the vertex of K and with mean curvature H which is asymptotic to K. The conjecture has been proven by the efforts of many authors, a synthesis of the proof is given in [5, Section 2].

In [2, Lemma 5.2, p.31] Calabi obtained a differential inequality on the maximal eigenvalue of the Ricci tensor on complete hyperbolic affine hyperspheres and proved that the Ricci curvature has to be non-positive [START_REF] Calabi | Complete affine hyperspheres I[END_REF]Theorem 5.1,p.31]. He also showed that this bound is sharp, by presenting an example of a complete hyperbolic affine hypersphere with flat affine metric, namely the one which is asymptotic to a simplicial cone [2, p.37]. Similar differential inequalities and bounds can be obtained for the Pick invariant [9, eq. (2.5)], [START_REF] Li | Global affine differential geometry of hypersurfaces[END_REF]Cor. 2.6.5,p.128].

In this contribution we use the techniques of [START_REF] Calabi | Complete affine hyperspheres I[END_REF] to obtain a differential inequality (Theorem 3.1) and a bound (Corollary 4.1) on the function

Υ(x) = max ξ∈TxM,||ξ||=1 (C(x))(ξ, ξ, ξ) (1) 
on a complete hyperbolic affine hypersphere M , with C being the cubic form. This function can be considered as the (point-wise) ∞-norm of the cubic form. The main motivation for studying this function lies in conic optimization, to which a link can be made as follows. An n-dimensional complete hyperbolic affine hypersphere M with center in the origin of R n+1 is asymptotic to some regular convex cone K ⊂ R n+1 . On the interior of K define a logarithmically homogeneous convex function F by the relation F [αM ] = {log α} for all α > 0 (cf. [START_REF] Loftin | Affine spheres and Kähler-Einstein metrics[END_REF]). Then a bound on (1) translates into a bound on the self-concordance parameter [7, Sect. 2.3.3] of an appropriate multiple of F . We will elaborate on this relation in a subsequent publication (cf. also [START_REF] Hildebrand | Barriers on projective convex sets[END_REF]Theorem 4.8]). Our bound on the cubic form is sharp, as we will demonstrate on the example of the affine hypersphere asymptotic to a simplicial cone (Proposition 5.1).

Notations and preliminaries

Let us recall the definition of the cubic form and the expression for its Laplacian on affine hyperspheres. Let M be an n-dimensional complete hyperbolic affine hypersphere with mean curvature H < 0, g the affine metric, ∇ the Levi-Civita connection of the affine metric, and ∇ the affine connection induced by the ambient real affine space. The cubic form is defined as the covariant derivative C = ∇g [8, eq. 

R ij = (n -1)Hg ij + 1 4 C rs i C jrs , (2) 
∆C ijk = (n + 1)HC ijk + 1 4 C abc (C abi C cjk + C abj C cki + C abk C cij ) - 1 2 C a ib C b jc C c ka . (3) 

Differential inequality

Our purpose is to derive a differential inequality on the function Υ defined by (1) on M . Let p ∈ M be an arbitrary point and let ξ ∈ T p M be a maximizer of the cubic form on the unit sphere in

T p M , Υ(p) = (C(p))(ξ, ξ, ξ), ||ξ|| = 1.
Transport ξ from p to a neighbourhood U of p along the geodesics through p by means of the Levi-Civita connection to obtain a smooth unit length vector field on U . Then ξ satisfies ∇ξ = 0, ∆ξ = 0 (4) at p [2, p.32], and Ῡ = C ijk ξ i ξ j ξ k ≤ Υ on U , with equality attained at p. Define the symmetric second-order tensor B = ∇ξ g on U , in index form B ij = C ijk ξ k . Note that B is traceless by the apolarity condition C i ij = 0 [8, Theorem 4.3, p.51], and that B ij ξ i ξ j = Ῡ. Moreover, by [5, Lemma 2.2.3.19, p.106] we have at p that B ij ξ i η j = 0 and B ij η i η j ≤1 2 B ij ξ i ξ j ≤ Ῡ for every unit length vector η which is orthogonal to ξ. It follows that ξ is also a maximizer of B(p) on the unit sphere in T p M . In particular, at p we have

B ij ξ j = Ῡg ij ξ j (5) 
as the first order optimality condition, and Ῡ is the maximal eigenvalue of the matrix of B(p) in any orthonormal basis of T p M . Let us now estimate the Laplacian of Ῡ. At p we have by virtue of (3),(4), and ( 5)

∆ Ῡ = (∆C) ijk ξ i ξ j ξ k = (n + 1)H Ῡ + 3 4 C abc C abi C cjk ξ i ξ j ξ k - 1 2 C a ib C b jc C c ka ξ i ξ j ξ k = (n + 1)H Ῡ + 3 4 C abc B ab B cj ξ j - 1 2 B a b B b c B c a = (n + 1)H Ῡ + 3 4 ῩB ab B ab - 1 2 B a b B b c B c a ≥ (n + 1)H Ῡ + n(n + 1) 4(n -1) 2 Ῡ3 .
Here the inequality follows from Corollary A.2 in the Appendix. We obtain the following result. 

Bound

From Theorem 3.1 we might obtain a bound on the function (1) on a complete hyperbolic affine hypersphere. Namely, from [3, Cor. 1, p.857] 2 it follows that Υ ≤ -4H(n-1)

2 n = 2(n-1) √ -H √ n
. As in the case of the Pick invariant [5, Cor. 2.6.5, p.128], however, there exists a purely algebraic proof.

As in the preceding section, let p ∈ M be an arbitrary point, let ξ ∈ T p M be a maximizer of the cubic form on the unit sphere in T p M , and define the traceless symmetric second-order tensor B = ∇ξ C on T p M . Let {ξ, η 1 , . . . , η n-1 } be an orthonormal basis of T p M , then we have

Υ 2 (p) = (B ij ξ i ξ j ) 2 = - n-1 k=1 B ij η i k η j k 2 ≤ (n -1) n-1 k=1 (B ij η i k η j k ) 2 ≤ (n -1) n-1 k=1 B il B l j η i k η j k = (n -1) B il B li -B il B l j ξ i ξ j = (n -1) C ilj C li k ξ j ξ k -Υ 2 (p) = 4(n -1)(R jk -(n -1)Hg jk )ξ j ξ k -(n -1)Υ 2 (p) ≤ -4(n -1) 2 H -(n -1)Υ 2 (p).
Here we used ( 5) and (2) in the last two equalities, respectively, and the non-positivity of the Ricci curvature [2, Theorem 5.1, p.31] in the last inequality. We obtain the following result.

Corollary 4.1. Let M be an n-dimensional complete hyperbolic affine hypersphere with mean curvature H < 0, and let C be its cubic form. Then the function Υ

(x) = max ξ∈TxM,||ξ||=1 (C(x))(ξ, ξ, ξ) satisfies the inequality Υ ≤ 2(n-1) √ -H √ n
.

Affine hyperspheres asymptotic to a simplicial cone

In this section we show that the inequalities in Theorem 3.1 and Corollary 4.1 are saturated for the affine hyperspheres which are asymptotic to a simplicial cone. Denote by I k the k × k identity matrix, by 1 k ∈ R k the all-ones vector, and by e k ∈ R n the k-th canonical basis vector. Let K = R n+1 + be the nonnegative orthant, H < 0 a negative real number, and let M ⊂ K be the hyperbolic affine hypersphere with mean curvature H which is asymptotic to K. It is well-known that M is given by the equation x 0 • • • • • x n = c for some c > 0. On the interior of K we introduce the coordinates y 0 , . . . , y n by    y 0 . . .

y n    = γU log x = γ 1 √ n+1 1 √ n+1 1 T n -1 √ n+1 1 n I n + 1 n 1 √ n+1 -1 1 n 1 T n    log x 0 . . . log x n    ,
where γ > 0 is a constant to be determined later. Then in the y-coordinates the surface M is given by the equation

y 0 = γ log c √ n+1 . The remaining coordinates y 1 , . . . , y n ∈ R define a global coordinate chart on M .
It is easily seen that the subgroup of unimodular diagonal automorphisms of K, which leaves M invariant, acts by translations on M . The affine metric g and the cubic form C of M have thus constant coefficients. The symmetric group S n+1 , which acts by permutations of the coordinates x i on K, has a unique fixed point y 0 ∈ M given by y 1 = • • • = y n = 0. Therefore S n+1 acts on the tangent space T y 0 M , and both g and C have to be invariant under this action. It is not hard to check that the subgroup S n ⊂ S n+1 permuting the coordinates x 1 , . . . , x n on K acts just by a corresponding permutation of the 2 Obviously, in the formulation of this Corollary it should read d 1 > 0, d 2 < 0, and u ≤ -d 2 /d 1 , otherwise the assertion of the Corollary can be disproved simply by choosing u to be an appropriate constant. The proof of the Corollary contains several flaws, e.g., it assumes that a lower bound on the Ricci curvature implies an upper bound on the quantity r∆r, where r is the distance function from some point p [3, p.856]. Consider the unit ball in R n equipped with the hyperbolic geometry given by the metric g(x)

= (1-R 2 )I+xx T (1-R 2 ) 2
in matrix form, where R = √ x T x is the Euclidean distance from the centre and I the identity matrix. The geodesic distance function from the centre is then given by r = 1 2 log 1+R 1-R , and ∆r = n-1 R . Hence r∆r tends to +∞ as R → 1. It is, however, straightforward to write down a correct proof of the Corollary, e.g., by setting f = (a 2 -r 2 )u [3, p.856]. With the choice f = (1 + cos πr 2 a 2 )u one can handle also differential inequalities of the form ∆ψ ≥ d 1 u 2 + d 2 u. y-coordinates. Therefore the coefficients g ij , C ijk depend only on the number of distinct indices in the sets {i, j} and {i, j, k}, respectively. Denote the latter number by θ ijk . The permutation σ i ∈ S n+1 exchanging the coordinates x 0 , x i acts on T y 0 M by the orthogonal transformation

U i = I - 1 - √ n + 1 n 1 n -e i 1 - √ n + 1 n 1 n -e i T .
It is not difficult to check that the invariance of g and C with respect to the transformations given by U i determines these tensors up to a constant multiple. Namely, the matrix of the metric g has to be proportional to the identity matrix, and the cubic form C is given by

C ijk =    -α(n -1) 2 + (n -2) √ n + 1 , θ ijk = 1, α 2 + (n -2) √ n + 1 , θ ijk = 2, α n + 2 -2 √ n + 1 , θ ijk = 3, (6) 
where α is a yet to be determined proportionality constant. Let us choose γ such that the matrix of g is given by I n . Contracting (2) with the metric and taking into account that M is flat, we obtain C irs C irs = -4n(n -1)H. Inserting the values for C irs from (6), we get α 2 n 5 (n -1) = -4n(n -1)H, yielding α = ± 2 √ -H n 2

(it can be checked that the sign is positive).

Hence on the unit length vector 1 √ n 1 n the cubic form has the value αn 3 (n-1)

n 3/2 = ± 2(n-1) √ -H √ n
, finally giving Υ ≥ 2(n-1)

√ -H √ n
. From Corollary 4.1 we can then conclude that Υ ≡ 2(n-1)

√ -H √ n on M . By the affine equivalence of an arbitrary simplicial cone to the nonnegative orthant we obtain the following result.

Proposition 5.1. Let M ⊂ R n+1 be a complete hyperbolic affine hypersphere which is asymptotic to a simplicial cone. Then both the bound in Theorem 3.1 and in Corollary 4.1 are saturated.

In particular, this will allow us to show that the optimal self-concordance parameter of an arbitrary regular convex cone is not worse than the parameter of the standard barrier for the nonnegative orthant of the same dimension.

( 2 . 6 )

 26 , p.34; Theorem 3.3, p.42]. The difference tensor 1 is defined as the difference ∇ -∇ and equals A = -1 2 C [8, Prop.4.1, p.50].The difference tensor and hence the cubic form are symmetric in all three indices[2, pp.23-24]. The Ricci curvature of the affine metric and the Laplacian of C with respect to the affine metric are given by[9, p.3] 

Theorem 3 . 1 .

 31 Let M be an n-dimensional complete hyperbolic affine hypersphere with mean curvature H < 0, and let C be its cubic form. Then the function Υ(x) = max ξ∈TxM,||ξ||=1 (C(x))(ξ, ξ, ξ) satisfies the differential inequality ∆Υ ≥ (n + 1)HΥ + n(n+1) 4(n-1) 2 Υ 3 weakly in the sense of[START_REF] Calabi | An extension of E. Hopf's maximum principle with an application to Riemannian geometry[END_REF] Def. 1, p.46].

Sometimes, such as in[START_REF] Calabi | Complete affine hyperspheres I[END_REF], the difference tensor is called cubic form, which can lead to serious confusions and apparently resulted in a missing factor of

in[START_REF] Cheng | Complete affine hypersurfaces, part I. The completeness of affine metrics[END_REF] Cor. 2, p.857] for the bound on the Pick invariant.

A Matrix lemma

In this section we provide an auxiliary inequality.

Lemma A.1. Let n ≥ 2 and λ 1 , . . . , λ n-1 ≤ 1 be such that

Proof. Define c i = (n -1)λ i + 1. Then n-1 i=1 c i = 0 and c i ≤ n for all i. It follows that c 3 i ≤ nc 2 i for all i. We then have

This completes the proof.

Corollary A.2. Let B be a real symmetric n × n matrix with vanishing trace. Then 3 4 λ max (B) tr B 2 -

Proof. If λ max (B) = 0, then B = 0 and the assertion of the corollary is evident. Suppose now that λ max (B) > 0. Let where the inequality comes from the preceding lemma.