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Wozn1ak, C.; BaczyNskl, Z. F.; WozNI1AK, M.

Modelling of Nonstationary Heat Conduction Problems
in Micro-periodic Composites

In diesem Beitrag wird ein Modell des Wirmeleiters mit mikroperiodischer Struktur formuliert. Dieses angebotene Modell
beschreibt den Einfluf der Struktur im zeitabhingigen Wirmeleitungsprozefs. Es wurde bewiesen, dafi dieser Einfluf in allen
nichtstationdren Problemen eine bedeutende Rolle spielt.

In this contribution an averaged refined model of a rigid heat conductor with micro-periodic structure is formulated. The
proposed model describes the effect of a microstructure length dimension on the time-dependent heat transfer processes. It is
shown that this effect plays a crucidal role in the analysis of nonstationary problems and hence the known effective modulus
theories of heat conduction (where the microstructure is scaled down), have the range of applicability restricted to steadv-state
problems.

MSC (1991): 73B30. 73C60, 73K 20, 73599

1. Introduction

The subject of this paper is a heat conduction in a rigid conductor, made of a micro-periodic composite material
(cf. Fig. 1). Due to the highly oscillating character of thermal properties of a composite, suffering the jump discontinuities
across the interfaces between constituents, the direct description of heat transfer problems cannot be used as a basis for
analytical and/or numerical solutions to engineering problems. That is why different homogenized models of the heat
conduction in periodic composite materials are formulated. These models are obtained, as a rule, by the asymptotic
procedures where the microstructure is scaled down, cf.: BENsoUsSAN et al. {1}, BAKHVALOV and PANASENKO [2], MATYSIAK
and WozNiAk [3], etc., leading to what are called “the effective modulus theories”. In heat conduction problems the
constant effective modulae describe in an averaged form the highly oscillating thermal properties of a medium (e.g. thermal
conductivity), which in the direct description of a problem are described by the micro-periodic functions. However, the
known effective modulus theories, obtained by the scaling microstructure down, do not take into account the microstructure
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Fig. 1. Scheme of a composite body and its representative volume element
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length-scale effects on the heat transfer in composite materials. This fact stands for the motivation of the presented
research, and its thesis is that in nonstationary problems length scale effects play a crucial role related both to the
quantitative and qualitative character of a thermal conductivity.

The main aim of the research is to propose a certain new refined averaged model of a rigid heat conductor with
microperiodic material structure, which describes the aforementioned effects on the time-dependent heat transfer processes.
At the same time the range of physical applicability of the effective modulus theory will be outlined.

The approach to the proposed refined theory of heat conduction in composite materials is similar to that applied
in a formulation of the refined macro-elastodynamics, WoZN1AK [4] being based on certain modelling hypotheses which
will be given in Sec. 2. In Sec. 3, the governing relations of the refined heat conduction theory will be discussed, and in
Sec. 4 we recall the effective modulus theory in the form given by MaTYSIAK and WoznNiak [3]. In order to compare these
theories, in Sec. 5, the special problem is solved in the framework of both averaged models. The general conclusions are
formulated in Sec. 6. The main result is that the proposed refined theory of heat conduction in micro-periodic composites
has to be applied if we deal with nonstationary problems and that the effective modulus theories have the range of
applicability rather restricted to the steady-state problems.

List of symbols

ab,c,... superscriptsrunover 1,2, ...,n;n = 1 t time coordinate
¢ = c(x) specific heat per unit volume in Q\I" ¥V = (0, 1) x (0, ;) x (0, /3) representative volume element (r.v.e.)
[F] stands for a jump of an arbitrary func- x = (X1, Xy, X3) points belonging to Q
tion F across a surface I’
Yy = (bl | f(x)dv where dv = dx; dx; dx,, Greek symbols
v averaged value of a )
V-periodic function £(-) P = (x, 1) temperature corrector fields .
h = hix,1) heat supply across the unit area of 9Q r interface between the adjacent constit-
hy = hi(x, 1) heat flux vector in Q uents in @
ij, k1 subscripts run over 1, 2, 3, and are 0 = o) mass density in 2\ T
related to the orthogonal cartesian 0 =0x,1 macro-temperature field o
coordinates x; parameterized & = 8(x, 1) temperature field in a rigid V-periodic
a region 2 conductor o
ki; = kii(x) heat conductivity tensor in Q \ I’ Q region occupied by a V-periedic rigid
n; unit normal vector to asurface I or 0Q _ CO!‘{ducfor o
q = g{x, t} heat supply per unit mass in Q Q region Q together with its boundary 082
5% = 5%(x) micro-shape functions QN T remaining part of Q

2. Modelling procedure

The starting point of the modelling approach are the well known equations of the heat conduction in a rigid conductor.
The energy balance yields the well known conditions ¢§ — h;; = ggin @\ I, hn; = h on dQ, [h]n; = 0 on I', which can
be jointly written down in the weak form

§ h68 ,dv = ¢ ho9da + | (eq — c9) 69 dv, (1)
2 3R 2

which has to hold for an arbitrary, sufficiently regular, test function §3. Eq. (1) has to be considered together with the
Fourier law

hi(x, y) = ki(x) 9 ;(x, 1), xeQ\TI. 2

Functions k;;(), c(+), ¢(*) are V-periodic and piecewise constant, attaining different constant values in pertinent constituents of
the medium under consideration. Since in a composite body the length dimensions of the r.v.e. are very small compared to the
minimum characteristic length dimension L of @, then | = max {l,, I,, I3}, can be treated as a certain small parameter | < L,
and Eqgs. (1), (2) have the microperiodic highly oscillating coefficients. Hence, these equations cannot be directly applied to the
computational analysis of engineering problems and constitute here only a starting point of the modelling procedure.

The procedure leading from Egs. (1), (2) to the refined averaged model of the heat transfer problem will be based
on certain heuristic hypotheses. In order to formulate these hypotheses we recall, following WozNiak [4], the auxiliary
concept of the regular ¥-macro function, and that of the micro-shape functions.

Function F(x, r) defined on Qx[0, 00) is called V-macro function (related to a certain small macro-accuracy
parameter A) provided that for every x', x”" € Q, if x' — x” € V then |[F(x') — F{x")| < A. If the similar conditions also hold
for all derivatives of F (including time derivatives) then F(:) is called the regular V-macro function.

The sequence of n linear independent continuous V-periodic function s°(x),a = 1, ..., n, having piecewise continuous
first derivatives, is referred to as the system of microshape functions if: (s = 0, s°(x) € 0(/) and the values of the first
derivatives of s* are independent of the small parameter I: s%(x) € 0(1). Moreover, the derivatives 5% can suffer jump
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discontinuities only on the interfaces between the adjacent constituents of the composite. The choice of the micro-shape
functions is related to a certain microdiscretization of the r.v.e. and depends on the character of the problem under
consideration. Roughly speaking, microshape functions play a role similar to that of the shape functions in the finite
element method, but are restricted to the r.v.e. of a periodic composite structure.

Now, we formulate three basic hypotheses of the proposed modelling approach.

Temperature Distribution Hypothesis (TDH). The distribution of a temperature field in V-periodic composite will
be assumed in the form

Hx, 1) = O(x. 1) + *(x) P*(x, 1), 3)

where @(-) and &°(-) are arbitrary regular V-macro functions and s°(-) are postulated @ priori micro-shape functions.
In the sequel functions @ and @“ are treated as the new basic unknowns and will be referred to as the
macro-temperature and the temperature correctors, respectively.
Energy Balance Assumption (EBA). The energy balance equation in its weak form (1) is assumed to be consistent
with TDH and hence holds for every

33(x) = 00(x) + s*(x) 59“(x), (4)

where 60(-) and 69°(-) are arbitrary regular V-macro functions.

Macro-Modelling Approximation (MMA). In calculations of the balance equation (1) by using Egs. (2)— (4), terms
0(4) are neglected in integrals over Q and terms 0(/) are neglected in integrals over 0€.

Combining Egs. (1)—(4) and using MMA, after rather lengthy manipulations, we arrive at the system of governing
equations for the macro-temperature @ and the temperature correctors ¢° Setting aside all calculations we summarize the
obtained results in the subsequent section.

3. Refined theory (RT)

The governing equations for ® and @° can be written down in the form of the following averaged balance equations:
() O(x, t) — H, (x, 1) = oq)
(ess?S d(x, t) + Gx,t) =0; xeQ, >0,

where H, is the averaged heat flux and G° are called microheat fluxes, given by the macro-constitutive equations

H; = <kij> O + kst 97,

7

G = k™ > O, + (hys™s®y @
At the same time we obtain the averaged natural boundary conditions
H(x, ) ni(x) = hix, 1), xedQ, t>0.
Under extra denotation C* = (¢s°"> 172, from the aforementioned equations we obtain

(> Ox, 1) — (hyd O (x, 1) — ks> D4(x, 1) = <og),
RPN x, 1) + (st B(x, 1) + (ks> @4k, 0) = 05 xeQ, (>0, (5)

Since (cs“s”» € 0(1*) and s*% e 0(1), then C* e 0(1) and all averaged modulae in Egs. (5) are independent of the microstructure
length parameter I. This parameter occurs in the explicit form in the second from Eqgs. (5). The obtained result represents
the system of n + 1 equations with constant coefficients for a macrotemperature & and n temperature correctors ¢*. Due
to the presence of the parameter [, this system describes the microstructure length-scale effect on the heat conduction.
Such situation does not take place in effective modulus theories where all terms of an order 0()) are neglected. That is
why we shall refer the obtained model to as the refined (averaged) theory of heat conduction in a micro-periodic rigid
conductor. The characteristic feature of this theory is that the temperature correctors ¢* are governed by ordinary differential
equations involving the first time derivatives of @. Hence temperature correctors are certain internal balance variables,
not depending on the boundary conditions. Hence Egs. (5) have to be considered together with one boundary condition
for @, and n + 1 initial conditions for @ and &°. Let us also observe, that the solution to the initial-boundary value
problem of the refined theory of heat conduction have a physical sense only if @, ¢* are regular ¥V-macro functions. Hence,
also H; and G° are V-macro functions. This fact imposes certain restriction on the distribution of heat supply 7 across
the boundary.



4. Effective modulus theory (EMT)

The effective modulus theory of heat conduction can be based on TDH and EBA, and on the limit passage [ — 0 under
the condition that the ratios [/l of the r.v.e. are constant. This procedure leads to the equation with constant coefficients
for the macro-temperature @

{ey O(x, 1) — K0 ;i(x, 1) = {oq>; xeQ, t>0, (6)
where the tensor with the components K,;, defined by
K = <kij> - <kik5flk> Hﬂb<kﬂs?z> ,

where H*{k;;s%s°;> = 6%, is called the effective thermal conductivity tensor. Let us observe, that EMT can be obtained
directly from RT by neglecting the first term in Eq. (5),, which makes it possible to eliminate ¢ from Egs. (5). The
discussion and applications of Eq. (6) can be found in the paper by MaTYsiak and Wozniak [3]. In this contribution we
recall the effective modulus theory only in order to compare RT and EMT, which will be done in the subsequent section.

5. Example

The aim of this example is to compare two solutions to a certain simple heat conduction problem, which will be obtained
in the framework of RT and EMT. To formulate this problem we consider a thick laminated two-component periodic
layer, bounded by the coordinate planes x; = + L. The representative element of this layer is made of two laminae of
thicknesses ', I”, where [ = I' + [” is sufficiently small compared to L, | € L (cf. Fig. 2). We introduce one micro-shape
function s(x,), given in [0, [] by s(0) = s() = —1/2, s() = [/2 and linear in [0, I'T and [/, I]. Moreover, we assume that the
heat conduction across the layer is independent of coordinates x,, x;. Hence Eq. (3) has the form

3xp, 1) = O(xy, 1) + s(xy) B(xy, 1),

and we deal only with one temperature corrector @. Setting k = k,,, 6> = [2/12, and neglecting the heat supply ¢, from
Egs. (5) of RT we obtain

ey @'(xn t) — <k @,11(x1> £) — ks > & 4 (xs, 1)=0,
02 e> Bxy, 1) + k(s )*) Pley, 1) + Cks > O ((x1,8) =0;  x;e(—L L), >0, (M

Let the boundary condition be given by @(L,t) = ©@(—L,t) = @, where @, = const. For the sake of simplicity let the
mitial condition for the macro-temperature be assumed in the form @(x,,0) = &, + @, cos (nx,/2L), x, € (=L, L),
O, being constant. For the temperature corrector ¢ we assume the trivial initial condition @(x,0) = 0, x, € (—L, L);
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Fig. 2. Scheme of a laminated layer and a diagram of a micro-shape function s(-) in the interval [0, /]



it means that there is no micro-disturbances in the initial distribution of temperature. The solution to this problem can be
written down in the form

Ox,, 1) = O + Oyexp (—A,t) cos (nx,/2L) + 0(%),

D(x,, 1) = Oplks > k(s D71 (mf2L) [exp (— Ayt) — exp (—A,t)] sin (mx/2L) + 0(6?). (8)
where

iy = KT (mf20)F — Kks (7 (> 71 (ks )7 71 (m2L)* 6% + 0(5%)

K = ¢k — ks 7 k(s )71,

Gy = ks () (edTHOT2 4 Chs (D% (o) THCk(s o)) T (m2L)7 + 0(9%).
For the averaged heat flux H, = <k)> @, + (ks ;> ¢ we obtain the formula

H, = —On/2L[K exp (—i;1) + <ks y»? <k(s,()*> 7' exp (—A0)] sin (nxy/2L), 9)

and the oscillations A9 ; of temperature gradients between every two adjacent laminae, given by AY | = ®(x,, 1) /11"
(where x, is related to the interface between laminac) are

A9, = Ocks > k(s )2~ (ml/2LIT) [exp (— A1) — exp (—Ayt)] sin (mx,/2L) + 0(8%). (10)

Egs. (8)— (10) hold for every x, e[—L,L]and t = 0.
Equations of the effective modulus theory can be obtained from Egs. (7) by neglecting the underlined term involving
the parameter 62 = [2/12. In this case the temperature corrector P(x,, f) is governed by the linear algebraic equation and
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Fig. 3. Diagram of a heat flux H, for x; = —L; k"/k' is taken as a parameter, and H = n{k) @,/2L



the initial condition &(x,,0) =0 may not hold. The solution to the problem considered in the framework of
EMT is

O(x, t) = Oy exp (— ) cos (nx,/2L) + O,

D(xy, 1) = Oglks, ) <k(s,1)*> 71 (r/2L) exp (= A1) sin (wxy/2L), (11)
where

i =K (mf2L)%.
The averaged heat flux H, is equal to

H, = —0,Kn/2L exp (—At) sin (nx,/2L), (12)
and the oscillations of temperature gradients between adjacent laminae are

A8 = Onks 1y <k(s )*> ™1 (ml?/2LIT") exp (— A1) sin (nx,/2L) . (13)

Egs. (11)—(13) hold for every x, e{—L, L) and ¢t = 0.

Comparing formulae (8)— (10) related to RT, and formulae (11)—(13) obtained in the framework of EMT it can
be seen that the distribution of the macro-temperature obtained from EMT can be treated as a certain approximation
(of an order 0(?)) of that obtained from RT. However, the results obtained in the framework of EMT for the averaged
heat flux H, and the temperature oscillation A3 ; are uncorrect. In Fig. 3, there are shown diagrams of a heat flux for
x,; = —L, where the ratio of heat conductivities k', k" of adjacent laminac is taken as a parameter, H = n0,<{k)/2L,
and I' = I".

ﬂ\ (EMT)
-

(RT)

t

Fig.4. A diagram of oscillations of temperature gradients between adjacent laminae for x; = L; o = 2nlks ;> O¢/L{k(s 112D

In Fig. 4, the oscillations of temperature gradients between adjacent laminae are shown for x;, = L; here also I' = I”
and o = 210<ks, ,>/L{k(s ;)*>. The discrepancies between RT and EMT hold only for small times, for which values of
exp (— A,¢t) are not neglectibly small compared to those of exp (— 4,1). Let us also observe that for “weak” inhomogeneities,
where the ratio k'/k" is approximatively equal to 1, results obtained from EMT can be treated as approximations of those
of RT.

Conclusions

The investigations of governing equations for RT and EMT as well as the results obtained in Sec. 5 lead to the following
general conclusions:

(i) In stationary problems RT and EMT coincide.

(ii) For homogeneous media RT reduces to the well known formulations of the heat conduction problems provided
that the trivial initial conditions for all temperature correctors are prescribed.

(iii) In nonstationary problems the microstructure length-scale effects on the heat conduction cannot be neglected
and hence in these problems RT has to used as the tool of analysis.

Moreover, for some special nonstationary problems, the macrotemperature field calculated on the basis of EMT can
represent a good approximation of this field obtained in the framework of RT. Such situation does not occur, as a rule,
if we deal with calculations of heat fluxes.

More general approach to the heat conduction problems in micro-periodic materials, in which the deformation of
a conductor is taken into account, will be presented in a separate paper.
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