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ABSTRACT
In this paper, we used the 3108 Earth-based astrometric observations from the Natural Satellite
Data Center over more than 30 yr time span from 1975 to 2006 for determining the epoch state
vectors of the Neptunian largest satellite Triton. These observations almost contain all modern
photo and CCD observations available. In integrating perturbation equation, the barycentric
frame of Neptune–Triton system is adopted, and in considering the oblateness perturbation
due to Neptune, a revised pole model describing the precession of the Neptune’s pole is used
in our calculation.

Key words: astrometry – planets and satellites: general.

1 IN T RO D U C T I O N

Among all the moons of the Solar system, Triton is a large and
remarkable planetary satellite due to its retrograde orbit about the
primary, which not only can be used to explore the dynamical
evolution of Neptunian system (Matija, Brett & Gladman 2005)
but also that of the Solar system itself. The Neptunian tidal friction
can affect the motion of Triton by transferring angular momentum
between the orbiting Triton and the spinning Neptune.

Earlier orbits for Triton were given by Eichelberger & Newton
(1926) and by Harris (1984). In those models, an inclined orbit
precessing at a constant rate was adopted to represent Triton’s mo-
tion. To date, the best available orbit of Triton was completed by
Jacobson (1990a, 2009) and by Jacobson, Reidel & Taylor (1991) in
employing a precessing pole model of Neptune (Jacobson 1990b).
These previous works used the observations over a century, con-
taining the Earth-based visual, photographic and CCD observations
with also some spatial observations from radio tracking of the Voy-
ager spacecraft. It is reported that the orbit has been improved upon
to present an accuracy better than 100 km for the satellite.

In the Neptunian system, the oblateness force depends upon the
orientation of the pole of Neptune. The polar motion is driven
primarily by the torque due to the gravitational attraction of the
Triton on the planet’s equatorial bulge, which causes the orbit to
actually precess at constant inclination to a plane about the Neptune
pole. The significant feature of the perturbational model of Triton
arises more complicated calculations than for other satellites. In
the calculations of the force due to Neptune’s oblateness made by
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Jacobson (1990a) and by Jacobson et al. (1991), the pole is modelled
directly as a vector r precessing about an axis, direction vector of
the system angular momentum. However, in our reduction, we used
a revised Neptune pole model presented here, in which the formulae
used are different from Jacobson (1990b).

Also, in this paper we used the data base of astrometric observa-
tions from the Natural Satellite Data Center (NSDC) of the IMCCE
(Arlot & Emel’Yanov 2009), including the two largest sets of re-
cent observations of Triton as the 1192 CCD observations taken by
Veiga & Vieira Martins (1996, 1998) from 1989 to 1997, and the
943 modern CCD observations made in 1996–2006 by Qiao et al.
(2007). The used observations almost cover the whole period since
the observations used by Jacobson et al. (1991).

2 DY NA M I C A L M O D E L

2.1 Orbital theory and perturbation model

The current best theory of Triton’s motion is provided by Jacobson
(1990a, 2009) and by Jacobson et al. (1991), in which almost all
relevant dynamical parameters were solved. The satellite orbit is a
numerical integration of the equation of motion proposed by Peters
(1981).

In the force model, we have included the following forces: the
central force of the primary; the perturbing force due to the Sun,
Saturn, Jupiter and Uranus; the perturbation due to the Neptunian
oblateness which is related to the orientation of the pole of Neptune
that precesses and rotates at constant rate about angular momentum
vector of the Neptunian system.

C© 2013 The Authors
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Table 1. Neptunian system dynamical constants from Jacobson (private
communication).

Constant Value Units

Neptune system GM 6836 524.433 737 406 (km3 s−2)
Neptune GM 6835 096.902 831 996 (km3 s−2)
Triton GM 1427.530 905 409 709 (km3 s−2)
Jupiter GM 126 712 764.485 82 (km3 s−2)
Saturn GM 3.794 058 500 00 (km3 s−2)
Uranus GM 5.794 548 600 00 (km3 s−2)
Sun GM 132 713 233 266.4355 (km3 s−2)
Neptune J2 3406.368 915 7168 × 10−6

Neptune radius 25 225 (km)
Neptune pole 299.440 222 90 (deg)
right ascension
Neptune pole 43.400 209 139 (deg)
declination
Precession axis 299.364 (deg)
right ascensiona

Precession axis 43.448 (deg)
declinationa

aThe values were taken from Jacobson (1990b).

In our previous calculations of perturbing forces that we made
for Phoebe (Shen et al. 2005), the oblateness perturbations were
not significant, but for Triton, they become here very important.
This is mainly due to the important Triton’s mass (see Table 1) and
to the proximity to Neptune. Tides are raised by the gravitational
attraction of Triton on Neptune’s equatorial bulge, resulting in a
transfer of angular momentum between the two bodies. This can
affect the orientation of the pole of Neptune in inertial space, which
precesses and nutates very quickly about the angular momentum
vector of the Neptunian satellite system.

The details for calculating the perturbations on the satellite due
to the oblateness of the primary are given in the description of
the oblateness force by Jacobson (1990b). In Triton’s equations
of motion, the potential function φobl for the nth zonal harmonics
of the gravity field of the planet upon the satellite is assumed to
be of the following form (Sinclair & Taylor 1985):

�φobl = Ar + B k̂. (1)

Here, �φobl is the oblateness acceleration,

r = xi + y j + zk,

k̂ is a unit vector in the z-direction,

A = μ0 + μ

r3

[
−3

2
J2

a2
0

r2
(5ζ − 1)

]

B = μ0 + μ

r3

[
−3

2
J2

a2
0

r2
(5ζ − 2)

]

ζ = z

r
,

where r2 = x2 + y2 + z2, subscript 0 corresponds to the equatorial
radius of oblate primary planet. J2 is associated with the second
harmonics of oblateness functions. Here, fourth harmonics are not
included as they are negligible.

When specifying the orientation of the pole, the representation of
the pole right ascension and declination angles may be any function
of time. Jacobson (1990a) affirms that the representation of the pole
right ascension and declination by linear function of time given by
Peters (1981) is not valid over the time span of the observational
data. So, an alternative pole orientation model was adopted here.

Our model defines the pole as a unit vector precessing at constant
rate about the angular momentum vector and the precession rate.
By the rotation matrix, the vector r i − r0 is rotated into the Earth
equatorial frame,

r = CT(r i − r0). (2)

Rotation matrix C is given by

C =

⎛
⎜⎜⎝

− sin α cos δ 0

− cos α sin δ − sin α sin δ sin δ

− cos α cos δ sin α cos δ sin δ

⎞
⎟⎟⎠ .

According to the description of Jacobson (1990b), the right
ascension α and declination δ of Neptune pole with respect to
International Celestial Reference Frame (ICRF) satisfy the follow-
ing formulae:

α = αp + 0.◦696 sin ψ − 0.◦003 sin 2ψ

δ = αp + 0.◦506 cos ψ + 0.◦001 cos 2ψ,

where

(i) ψ = 352.◦099 + 52.◦318T;
(ii) α = the right ascension of the epoch pole of Neptune;
(iii) δ = the declination of the epoch pole of Neptune;
(iv) αp = 298.◦953 – right ascension of the pole of the invariable

plane;
(v) δp = 43.◦312 – declination of the pole of the invariable plane;
(vi) T is measured in Julian centuries from JED244 7763.5.

The more detailed model was described in the appendix of Ja-
cobson (1990a).

The partial derivatives required for orbit fitting were also gener-
ated by numerical integration. A variational equation is integrated
for each parameter to be differentially corrected. These parameters
are the initial state vectors for the satellite. Each equation is of the
general form (Peters 1981):

∂r̈i

∂Pk

=
n∑

j=1

∂r̈i

∂rj

∂rj

∂Pk

+
(

∂r̈i

∂Pk

)
explicit

, i = 1, . . . , n (3)

for Pk = initial positions for the integrated satellite. The starting
values of the partial derivatives at the initial epoch are(

∂r̈i

∂r̈j

)
t=0

= δij I, (4)

where I is 3×3 identity matrix and the Kroneker delta is defined
by

δij =
{

I for i = j

0 for i �= j .
(5)

The initial positions for ∂ri /∂Pj are zero for all other parameters.

2.2 Formulae used in our alternative pole model

In this work, we use a revised pole model presented here for a better
representation of the pole direction with time than previous Peters
(1981) representation which could not be valid over the whole time
span of the observational data (Jacobson 1990a). Moreover, we
checked such a better validity of the revised pole adopted here
as we obtained a better convergence in Triton’s orbit than in using
Peters (1981) formulae. Here, we derive the accelerations and partial
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derivatives of the acceleration upon a satellite due to the oblateness
of Neptune in an arbitrary planetocentric reference.

We suppose that the direction cosines of the pole vector of the
planet are defined as (γ 1, γ 2, γ 3), and that the planetocentric coor-
dinates of the satellite are x1, x2, x3,

r2 = x2
1 + x2

2 + x2
3

ζ = γ1x1 + γ2x2 + γ3x3

r
. (6)

The potential function for the effect of the nth zonal harmonic of
the gravity field the planet upon the satellite is

φ = −k(μ0 + μ)

r

4∑
n=2

Jn

( a0

r

)n

Pn(ζ ) = K
1

rn+1

4∑
n=2

JnPn(ζ ), (7)

where K = −k(μ0 + μ)Jna
n
0 , μ0 is the mass of the planet, μ is the

mass of satellite, a0 is the equatorial radius of the planet and Jn is
the coefficient of the nth zonal harmonic.

The acceleration component of coordinate xi is

Fi = ∂φ

∂x
= K

rn+2

(
−xi

r
P ′

n+1(ζ ) + γiP
′
n(ζ )

)
, (8)

where we have used the identity

(n + 1)Pn(x) + xP ′
n(x) ≡ P ′

n+1(x). (9)

The partial derivative of Fi with respect to xj is obtained after
algebraic process and the use of another identity between Legendre
polynomial. It is found to be

∂Fi

∂xj

= K

rn+3

(
(−δi,j + (n + 3)ξiξj )P ′

n+1(ζ ) + γiγjP
′′
n (ζ )

+ (ξiξj ζ − ξiγj − ξj γi)P
′′
n+1(ζ )

)
, (10)

where ξ k = xk/r.

3 O B S E RVAT I O N S A N D R E F E R E N C E F R A M E

3.1 Used observations

The observations applied in our calculation are taken from NSDC, as
shown in Table 2, in which columns listed contain: period, observer,
type of observation and number of observation (Nu). In the last two
columns also are listed the rms of the post-fit observation resid-
uals and their means. Relative right ascension and declination are
denoted by 
α and 
δ or X and Y, absolute right ascension and dec-
lination by α and δ. In the NSDC website (http://www.imcce.fr/sat),

α and X similarly represent the relative right ascension of Triton,
but respectively expressed in seconds of time and in arcseconds.
These observations include all of the available observations after
1970 modern observing development, in which a large amount of
observation is astrometric accurate CCD observations.

Table 2. List of all the series of observations used here to fit our new orbit of Triton. Nu is the number of observations
for each series. We also give the mean residuals μ(arcsec), standard deviations σ (arcsec) of the O−C residuals about
the mean. The O−C(S) residuals are computed from our new orbit and the O−C(J) residuals are from the ephemeris
of Jacobson (2009).

Obs. Period of Observer Type of Nu O−C(S) O−C(J)
code observation data σ (arcsec) μ (arcsec) σ (arcsec) μ (arcsec)

689 1975–1977 U.S.N.O Phot., X 28 0.067 0.025 0.476 − 0.096
Phot., Y 28 0.087 0.206 0.379 − 0.167

689 1979–1983 U.S.N.O CCD, X 114 0.047 0.001 0.097 0.131
CCD, Y 114 0.073 0.219 0.095 − 0.041

689 1984–1986 Flagstaff Phot., X 56 0.029 0.012 0.085 0.163
Phot., Y 56 0.030 0.176 0.122 0.103

119 1986–1993 Abastumani Phot., α 54 0.418 − 0.068 0.416 − 0.061
Phot., δ 54 0.409 − 0.182 0.416 − 0.334

874 1989–1994 Veiga CCD, X 433 0.128 0.073 0.126 0.129
CCD, Y 433 0.139 0.014 0.198 0.050

188 1990 Majdanak Phot., α 5 0.067 0.081 0.115 0.183
Phot., δ 5 0.059 0.289 0.040 0.047

874 1995–1997 Veiga CCD, X 759 0.152 − 0.058 0.162 0.030
CCD, Y 759 0.199 − 0.109 0.183 − 0.052

337 1996–2006 Qiao CCD, α 943 0.062 − 0.072 0.092 0.042
CCD, δ 943 0.043 − 0.073 0.044 − 0.143

689 1998–2000 Flagstaff CCD, α 188 0.140 − 0.324 0.161 − 0.038
CCD, δ 188 0.114 − 0.186 0.220 − 0.152

673 1999, 2001 Table Moun. CCD, 
α 6 0.111 0.033 0.247 − 0.134
CCD, 
δ 6 0.033 0.162 0.092 − 0.322

673 1999, 2001 Table Moun. CCD, α 6 0.370 − 0.145 0.092 0.207
CCD, δ 6 0.103 − 0.209 0.030 0.033

874 2000–2002 Itajuba CCD, α 66 0.298 − 0.183 0.207 − 0.067
CCD, δ 66 0.241 0.077 0.243 0.040

689 2001–2005 Flagstaff CCD, α 306 0.184 − 0.269 0.116 0.021
CCD, δ 306 0.194 − 0.137 0.052 − 0.241

689 2005–2006 Flagstaff CCD, α 144 0.117 − 0.202 0.133 − 0.008
CCD, δ 144 0.124 − 0.033 0.147 − 0.029

All 1975–2006 α 3108 0.167 − 0.040 0.135 0.045
All 1975–2006 δ 3108 0.185 − 0.051 0.238 − 0.134
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3.2 Barycentric reference frame

The initial state vectors of the satellite are referred to the Earth
equator and equinox of J2000.0 and centred at the Neptunian system
barycentre in the ICRF which is used as the integration reference
frame.

It is said from Taylor et al. (1990) that the range of the motion
of Neptune relative to Neptune–Triton barycentre is of the order
0.04 arcsec in right ascension and 0.03 arcsec in declination. In our
calculation, we are considering such a difference. So, we need to
translate the planetocentric coordinates of Neptune into barycentre
coordinates as defined:

rB = 1

Mn

n∑
i=0

miri . (11)

The coordinates and velocities of the Sun and other planets are
taken from the JPL DE421 ephemeris (Folkner, William & Boggs
2009).

4 R E D U C T I O N

4.1 Initial values and dynamical constants

We started our integration at 1982 August 19 0h TDT
(JD244 5200.5). The initial state values of the satellite and its rel-
evant system dynamical constants required in the integration are
provided by Jacobson et al. (1991) and by Jacobson (private com-
munication). They are appearing in Tables 1 and 3, respectively.

In connection with the short-period coverage of the observations
that we used, the dynamical constants cannot be expected to acquire
very high improvements so that they are fixed in the integrating
process.

4.2 Calculating process

We carried out a numerical integration still using the same formu-
lae to the 12th-order Runge–Kutta–Nyström as used in our previous
work (Shen et al. 2005). Its advantages are very significant over gen-
eral Runge–Kutta methods in most of astrodynamical cases in which
the second-order differential equations r̈ = a(t, r) are allowed for
the direct integration due to independence on the velocity of the
satellite. The method can be especially designed for easy stepsize
control and be well adapted for high-accuracy requirements (Liu
1998; Montenbruck & Gill 2000). The positions of Neptune, Sun
and planets are issued from the Ephemeris DE421 given in the
ICRF reference frame. Our numerical integration is referred to the
barycentre of the Neptune–Triton system, Sun, Saturn and Uranus.
Consequently, the new orbit is also referred to the ICRF.

The theoretical positions of Triton at Julian ephemeris date were
acquired from the numerical integration. As usual way, a least-
squares program has been used in order to improve the orbit.

Table 3. Starting state vectors of Triton at Julian ephemeris
date 244 5200.5 referred to the barycentre of the Neptunian
system and to the Earth mean equator and equinox J2000.0,
which were taken from Jacobson et al. (1991).

Position (au) Velocity (au d−1)

0.201 965 291 6166D−02 −0.885 239 590 1161D−03
0.447 266 749 6641D−03 −0.124 423 124 2257D−02

−0.115 875 594 8953D−02 −0.202 316 195 8544D−02

Table 4. Resulting state vectors of Triton at Julian ephemeris
date 244 5200.5 referred to the Earth mean equator and
equinox J2000.0.

Position (au) Velocity (au d−1)

0.201 966 383 9902D−02 −0.885 232 682 2536D−03
0.447 274 426 9529D−03 −0.124 422 037 1714D−02

−0.115 873 948 8470D−02 −0.202 316 799 7257D−02

Through repeated iterations we computed the values of the satellite
epoch state vectors, which are listed in Table 4.

4.3 Processing results

Table 2 contains the residuals of all the sets of observations. The last
two columns, respectively, give the standard deviations to the mean
σ and the mean residuals μ. Also, Fig. 1 shows the O−C residuals in
right ascension and declination for all CCD and photographic used
observations over the period 1975–2006. In the improving process,
we chose a rejection level of 2 arcsec with which no observation
was rejected. In Fig. 1, we can see that the old observations present
slightly positive residuals in declination (up to + 0.1 arcsec) and
oppositely, the new observations present slightly negative residuals
(up to about −0.1 arcsec). One explanation could be that the old
observed positions, until about 1990, are relative to the planet, and
the new observed positions, made after 1990, are absolute, as it is
mentioned in the NSDB of the IMCCE. This could be consequent
to a drift in declination (up to −0.2 arcsec) of the DE421 ephemeris
of Neptune that we have used to compare the absolute observed
positions of Triton. Such a drift of the ephemeris of Neptune had
previously been pointed out by Arlot, Dourneau & Le Campion
(2008) concerning the DE405 ephemeris. Our result shows that the
new DE421 could not have been completely corrected the drift of
the previous DE405.

In Table 2, we can see that the set of 943 CCD observations
made over the period 1996–2006 by Qiao et al. (2007) at the She-
shan Station is the most accurate among all these observations sets
with Flagstaff’s set made in the period 1984–1986 but which only
contains 56 observations. So, this observation set by Qiao et al.

Figure 1. Plots of residuals O−C in right ascension (above) and declination
(below) from integration fitting all CCD and photo observations over 1975–
2006.
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(2007) appears quite important to be used in this work for obtaining
a precise determination of the orbit presented here.

The new orbit will be available for the scientific community
on the Saimirror MULTI-SAT server of the IMCCE (Emel’Yanov
& Arlot 2008) before the end of the year 2013 at the following
address: www.imcce.fr/hosted_sites/saimirror/nssephf.php. In the
meantime, we propose to the readers to send us a mail at the address
given in the text of the paper with the dates at which they want to
obtain the positions of Triton computed by our new orbit. Then we
will answer them as soon as possible.

5 C O M PA R I S O N W I T H JAC O B S O N ’ S TH E O RY

For Triton, the previous investigations were primarily completed by
Jacobson et al. (1991) and by Jacobson (2009). In order to check our
ephemeris, we have used the ephemeris of Jacobson (2009) cover-
ing 1975–2006 period. For a better comparison of our new orbit to
Jacobson (2009), we have calculated the O−C residuals from both
of these ephemerides. The O−C residuals from Jacobson (2009)
were obtained from the IMCCE website. The so-derived residuals
are presented in Table 2. The results show a rather good agreement
between the two ephemerides, within less than 0.1 arcsec, which is
lower than the observational errors visualized in Fig. 1 and which
can reach 0.2 arcsec or more. Table 2 emphasizes the high quality
of our new orbit as its mean residuals computed for all the observa-
tions appear to be slightly lower in right ascension (−0.040 arcsec)
and in declination (−0.051 arcsec) than those derived from the Ja-
cobson (2009) ephemeris (0.045 and −0.134 arcsec, respectively).
Also, we have used the Jacobson (2009) ephemeris as observing
points covering the 1982–2006 period. Fig. 2 gives the differences
between the two ephemerides, above in right ascension and below
in declination. Fig. 2 shows a rather good agreement between the
two orbits, as differences remain within about 0.1 arcsec and are
lower than the observational accuracy. In Fig. 2, we can see some
periodic differences, mainly in right ascension. With the help of
Fourier analysis, we have obtained their following main periodic
term:


α(t)(arcsec) = 0.011 75 arcsec + 0.1385 arcsec cos(6.245t)

which may be attributed to the pole model used as it is different
from Jacobson’s.

Figure 2. Plots of the differences in right ascension (above) and declination
(below) from integration fitting Jacobson’s ephemeris over 1984–2006.

Figure 3. Plots of the residuals in right ascension (above) and declination
(below) from fitting our integration to the 68 brand new observations that
we have taken in 2012.9.13–19.

In order to estimate the accuracy of our new ephemeris in the
recent period, Fig. 3 gives the plots of the residuals acquired from
fitting our integration to 68 brand new observations that we made
in 2012 September at Lintong station of NTSC by making use of
a 36 cm catadioptric telescope. These data have not yet been pub-
lished, so they cannot have been and used in any previous orbit im-
provement. In this specific fit, we have shown that the rms residuals
are 0.098 arcsec in right ascension and 0.101 arcsec in declination.
This result shows that our new orbit appears to be very accurate,
within less than 0.1 arcsec for the recent period. This emphasizes
that the new orbit has better outside agreement.

6 C O N C L U S I O N

In this paper, we have presented a new determination of the orbit
of Triton. We have fitted it, via numerical integration, to the new
CCD and astrophotographical astrometric observations, including
the largest sets of recent CCD observations of Triton as the data
obtained in our recent observing campaign (Qiao et al. 2007) and
the data collected by Veiga & Vieira Martins (1996, 1998). On
one hand, we have translated the centre of coordinate system to
the barycentric coordinate of Neptune–Triton system. On the other
hand, we have considered the effect due to the precession of pole
with a revised Neptune’s pole model presented here. For both of
those reasons, our orbit represents an improvement compared to the
earlier reported orbits. First, this has been checked with a compar-
ison of our new orbit to Jacobson (2009). We have shown that our
new orbit presents slightly lower mean residuals than Jacobson’s for
all the observations spreading over the period 1975–2006. Also, we
have emphasized the high accuracy of our new orbit for the recent
period, within less than 0.1 arcsec, with another comparison to a
brand new set of unpublished observations that we made in 2012
September. Moreover, we have pointed out a possible negative drift
in declination, up to −0.2 arcsec, of the DE421 ephemeris of Nep-
tune, similar to the drift already pointed out by Arlot et al. (2008)
for the previous Neptune DE405 ephemeris. Obviously, it can be
expected that the ephemerides based on the new orbit will support
future scientific investigation of the Neptunian system, especially as
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the new orbit will be soon available on the Saimirror MULTI-SAT
server of the IMCCE.
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