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In this work, we study theoretically the thickness of a liquid film (typically made of
a surfactant solution) pulled out of a bath at constant speed in the absence of gravity,
when it features a viscous or an elastic interfacial rheology. We show that a purely
viscous rheology does not lead to the extraction of a steady state film of constant
thickness. In contrast, the thickness of the film is well defined in the elastic case,
which allows us to compute it. This thickness depends on the capillary number of the
experiment, and on the elasticity of the interface. It is always lower than or equal to
that obtained for an incompressible interface predicted by Frankel (Mysels, Shinoda
and Frankel, Soap Films: Studies of their Thinning and a Bibliography, 1959), which
is recovered in the limit of an arbitrary large elasticity.
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1. Introduction
The formation of soap films from a solution reservoir is a key process of foam

formation and foam shearing. Since the seminal work by Mysels, Shinoda & Frankel
(1959), numerous experimental and theoretical studies have focused on soap film
entrainment by a solid frame (Lal & di Meglio 1994; de Gennes 2001; Berg, Adelizzi
& Troian 2005; van Nierop, Scheid & Stone 2008; Saulnier et al. 2011). The key
theoretical prediction for the thickness hFr of the film that is created in such a
geometry is Frankel’s law (Mysels et al. 1959), hFr = 2.68 rm Ca2/3, where rm and Ca
are respectively the radius of curvature of the meniscus connecting the film to the
bath, and the capillary number of the experiment, Ca = ηU/γ , with η the viscosity
of the solution, U the withdrawal velocity and γ the surface tension. This theory is
in reasonable agreement with experimental data: in particular, the thickness scaling in
Ca2/3 is well verified in most published experiments (see van Nierop et al. 2008 for a
review). However, the absolute thicknesses vary significantly from this prediction, up
to a factor of 2.

The most important assumption made by Frankel is the incompressibility of the
interfaces: his theory assumes a uniform velocity for the surfactant layer, equal
to that of the solid frame. Although the details of the processes leading to this
incompressibility are not known, satisfying this condition requires interfacial stresses
(which may be computed a posteriori in Frankel’s framework, once the velocity field
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in the film has been determined: see Cantat 2013). From a physical standpoint, these
stresses arise from the stretching of the surfactant-covered interfaces. The relation
between stresses and interfacial stretch is modelled with an interfacial extensional
viscoelasticity, which may in practice be dominated either by elastic or by viscous
effects. Frankel’s theory explores the regime where the resulting deformations are
negligible: the interfacial rheology becomes irrelevant, and a simple incompressibility
relation suffices to close the problem.

The aim of this paper is to investigate theoretically the effect of a finite interfacial
viscosity or elasticity (and thus finite interfacial stretches) on the thickness of the
extracted soap film, in order to determine whether taking into account these effects
could explain the discrepancies between Frankel’s law and experiments. Using the
classical framework of the lubrication approximation, we show that elastic interfaces
lead to a steady solution with a film thickness smaller than or equal to that
predicted by Frankel. The corresponding velocity field is a Poiseuille flow, with
some elongational contribution. The steady film thickness only depends on a single
non-dimensional parameter, involving the capillary number and the ratio between the
surface elasticity E and the surface tension γ . A Frankel’s film is obtained at low Ca,
whereas a thinner film is obtained at higher Ca. The critical capillary number between
the two regimes varies as Cac ∼ (E/γ )3/2, as deduced by scaling analysis in Lal &
di Meglio (1994). Our results are in qualitative agreement with experimental results
obtained by Cohen-Addad & di Meglio (1994), Lal & di Meglio (1994) and Saulnier
et al. (2011). However, a quantitative comparison would require a precise knowledge
of the elastic modulus and its dependence on surfactant concentration, for the time and
length scales relevant to the experimental situation and in the nonlinear regime, which
is still an experimental and theoretical challenge (Sagis 2011; Alvarez, Walker & Anna
2012).

In contrast, we show that a solution with purely viscous interfaces cannot form a
steady film. Lastly, we consider the validity of elongational flow (plug flow) solutions,
which cannot be excluded a priori, and which are considered, for example, for soap
film in unsteady drainage in Howell & Stone (2005). Following the method used in
van Nierop et al. (2008) we show that the slightly different set of equations governing
the flow in this case does not admit a steady solution for purely viscous interfaces.
This is consistent with what is observed for viscous sheets or viscous threads, which
continuously thin when pulled out of a bath (Wilson 1988; Gaudet, McKinley & Stone
1996). We also investigate the case of elongational flow with elastic interfaces, which
does not admit a solution either.

2. Governing equations
2.1. Hydrodynamical problem

We consider the problem sketched in figure 1: a film is pulled out of a meniscus
of a surfactant solution, which acts as an infinite reservoir, at a constant velocity U
in the vertical direction ex. We assume invariance in the z-direction. In the geometry
depicted in figure 1, the meniscus radius of curvature at the contact point with the film
is rm = lc/

√
2, with lc = √γ /(ρg) the capillary length, g the gravity constant and ρ

the solution density. More generally, the solution reservoir can be any meniscus, for
example a Plateau border in a foam (Seiwert et al. 2013), for which the radius rm is
determined by the foam’s liquid fraction.

In the following, we neglect inertial effects, as well as gravity, compared to the
capillary forces. The first assumption imposes ρU2 � γ /rm, i.e. We = ρU2rm/γ �
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FIGURE 1. Sketch of the film and notations used in the text. A Poiseuille-type flow is
represented on the right side and an elongational one on the left side. The dashed line is the
symmetry axis, at the position y= 0.

1, where We is the Weber number (Quéré 1999). This may be rewritten as
Ca2� η2/(ργ rm). For usual foaming solutions, ρ ∼ 103 kg m−3, γ ∼ 3 × 10−2 kg s−2,
η ∼ 10−3 kg s−1 m−1 and, if rm ∼ 10−3 m, the upper boundary for Ca thus becomes
Ca� 5×10−3. Similarly, a negligible gravity imposes Ca� 1 for films extracted from
a meniscus whose typical curvature is the capillary length (Quéré 1999), which is thus
less restrictive in our case.

We also impose a steady state: at large x, the film thickness tends towards a constant
and uniform value 2h∞ and the velocity field tends to a plug flow at the imposed
velocity U.

The liquid flow in the film is governed by the Stokes equations:

η1v−∇p= 0, (2.1)
divv= 0, (2.2)

with v(x, y)= vxex + vyey the fluid velocity and p its pressure.
The problem is symmetric with respect to the y = 0 plane. Thus, vy(x, y = 0) = 0

and ∂yvx(x, y = 0) = 0. The liquid/gas interface is defined by y = ±h(x), so the film
thickness is 2h(x). Along this surface, the continuity of normal and tangential stresses
imposes

n · τ ·n= n ·∇sτ s (2.3)
t · τ ·n= t ·∇sτ s (2.4)

where t and n are the tangent and the normal vectors of the interface, respectively,
τij = η(∂xivj + ∂xjvi) − pδij is the usual viscous stress tensor in the Newtonian liquid
bulk, ∇s = Is · ∇ is the surface gradient operator and τ s is the interfacial stress.
The latter arises from both the surface tension and the viscosity of the surfactant
layer. In two-dimensional problems, its general expression for Newtonian interfaces is
τ s = (γ + η∗s Is : Ds)Is = τsIs. Here, the surface tension γ (x, t) is a dynamical variable
of our problem, whose properties (and relation to interface deformations) are discussed
below; η∗s is the interfacial viscosity of the film (η∗s = ηs + κs, with ηs and κs the shear
and dilatational interfacial viscosities, as discussed in appendix A), Is is the surface
projection tensor and Ds is the velocity gradient tensor at the interface.
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Finally, mass conservation imposes, at steady state, a constant flux (in the half-film)
q= Uh∞.

2.2. Interfacial elasticity
To close the problem, the surface tension γ needs to be related to the other parameters.
Strictly speaking, γ is a function of the local concentration of surfactant adsorbed on
the interface, Γ . In principle, the value of Γ could be obtained by explicitly taking
into account surfactant transport: diffusion and convection in the bulk and within
the interface, and exchange dynamics between the bulk and the interface. Such a
physically accurate approach falls beyond the scope of our work, and it is in fact
seldom used by hydrodynamicists. Instead, most studies on soap films use a simplified
linear relation between surface tension variations and interfacial elongations (Tambe &
Sharma 1991; Bruinsma et al. 1992; Schwartz & Roy 1999).

This simplification appears naturally if one considers the surfactants as insoluble,
or if their transfer between the bulk and the interface is much slower than any
other process. In that case, the coupling with the bulk disappears, and the mass
conservation equation for the surfactant becomes at steady state (Park 1991), and in
the approximation of quasi-parallel interfaces (see § 2.3):

∂x(Γ us)− Ds∂xxΓ = 0, (2.5)

where us is the velocity of the interface and Ds is the surface diffusion coefficient.
If, moreover, the Péclet number `U/Ds is large (with ` the characteristic length scale
along x), surface diffusion is negligible and the above equation reduces to ∂x(Γ us)= 0.
This leads to

Γ us = Γ0u∗s , (2.6)

where Γ0 and u∗s , respectively, are the interfacial surfactant concentration and velocity
in the meniscus. Note that this reference value is only well-defined if the interfacial
velocity converges towards a finite limit u∗s in the meniscus. For small variations of the
surface tension around its equilibrium value γ0 = γ (Γ0), we get

γ = γ0 + ∂Γ γ (Γ − Γ0)= γ0 + ∂Γ γΓ0(u
∗
s/us − 1), (2.7)

where ∂Γ is henceforth used to mean ∂Γ |Γ=Γ0 . Defining the surface modulus
E =−∂Γ γΓ0(>0) and

σ = (Γ0 − Γ )/Γ0 = 1− u∗s/us, (2.8)

we get

γ = γ0 + Eσ. (2.9)

Equation (2.9) completes our set of equations (2.1)–(2.4).
It is important to keep in mind that slightly different assumptions lead to different

definitions of E and σ , and a different set of equations. The choice of a particular
relation is somewhat arbitrary, and we present in appendix B two other widely used
definitions for σ and E to facilitate comparison of our work to the literature. We
checked that, in our particular problem, the different choices lead qualitatively to the
same conclusions.

2.3. Dimensionless equations
To predict the shape and thickness of the film, we classically consider separately three
domains (Levich 1962; Quéré 1999). (i) At the top of the film (x→+∞), there is a



128 J. Seiwert, B. Dollet and I. Cantat

region of uniform thickness 2 h∞, and uniform velocity U. (ii) Near the bath, there is
the ‘static meniscus’ of constant radius of curvature rm, much thicker than the constant
thickness film. This size discrepancy ensures that although the interfacial velocity in
this second region can be non-zero, the induced forces and dissipation are negligible,
and the meniscus can be considered at rest (whence the name). In particular, its
shape is unaffected by the withdrawal. (iii) The ‘dynamic meniscus’ bridges the first
two domains. Its shape and velocity field are non-trivial, and are computed using the
lubrication equations established below. Its extension in the x-direction is denoted by `.
An asymptotic matching to the flat film (h(x→+∞)= h∞) and to the static meniscus
(radius of curvature rm for x→−∞) serves as boundary conditions to determine the
shape of the dynamic meniscus, and sets the value of h∞.

The two length scales h∞ and ` are used to non-dimensionalize the variables. They
are both a priori unknown, but we assume that they satisfy h∞ � `, a very classical
approximation for this kind of problems. Hence all equations will be solved below at
the lowest sensible order in the small parameter ε = h∞/`. We set x = `X, y = ε`Y ,
h= ε`H, vx = UVX , vy = εUVY , q= QεU`, p= (ηU/`)P, γ = γ0 + Eσ .

By definition of the length and velocity scales, H, Vx, Vy, Q and their derivatives
along X remain of order one in the dynamic meniscus region. In contrast, the choice
of rescaling P by a typical pressure based on the length ` (instead of h∞, for example)
is arbitrary at this point. Hence, as discussed in detail by Breward & Howell (2002),
the order of P is not constrained.

Three dimensionless numbers describe the system. The capillary number Ca =
ηU/γ0 compares viscous and capillary forces. The Marangoni number Ma = E/(ηU)
compares interface elasticity to viscous forces. The Boussinesq number Bq = η∗s /(η`)
compares surface and bulk viscosities.

Rescaling equations (2.1) and (2.2), we get

∂YYVX + ε2∂XXVX − ε2∂XP= 0, (2.10)
∂YYVY + ε2∂XXVY − ∂YP= 0, (2.11)

∂XVX + ∂YVY = 0. (2.12)

The explicit expressions (2.3) and (2.4) of the stress continuity at the interface are
complex (see appendix C). Below we only write their simplified form, where each
term has been evaluated at the lowest order in ε. Setting Vs(X) = VX(X,H(X)), we
obtain

−P− 2V ′s = εH′′(Ca−1 +Maσ + BqV ′s)= εH′′(Ca−1 +Ξ), (2.13)

∂YVX + ε2
(
∂XVY − 2H′2∂YVX + 4H′∂YVY

)= εBqV ′′s + εMaσ ′ = εΞ ′, (2.14)

where we have introduced the dimensionless dynamical stress at the interface
Ξ(X) = Maσ + BqV ′s satisfying τs = ηU(Ca−1 + Ξ). The prime notation indicates
the derivative for functions depending only on X.

Lastly, mass conservation is given by Q= 1. In the rest of this paper, we will focus
on solutions of this set of equations.

2.4. Thin film approximation: lubrication and elongational flows
The next step in the resolution of our problem is to compare the different terms of
equations (2.10)–(2.14) to simplify them. This step is surprisingly subtle, since, as
already stressed, the order of magnitude of the rescaled pressure P is not known
a priori (Breward & Howell 2002) and thus cannot be compared to the other
terms. And in fact, two mutually exclusive cases must be considered: the lubrication
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case with a viscous stress dominated by the Poiseuille flow in the film, and the
elongational case with a constant velocity across the film (plug flow). Each of these
cases corresponds to a different scaling for P.

Problems with a no-slip condition on one side of the thin film, such as the
Landau–Levich–Derjaguin (LLD) problem (Landau & Levich 1942; Derjaguin 1943),
or on both sides, such as Reynolds drainage (Reynolds 1886), fall within the
lubrication case. Indeed, these boundary conditions impose that ∂YYVX should be
of order one (and non-zero). Since ∂XXVX is also of order one, (2.10) reduces to
∂YYVX = ε2∂XP. Consistently, the pressure P must be of order ε−2: in physical units this
corresponds to p∼ ηU`/h2

∞, in agreement with Poiseuille flow.
The other limit is observed for interfaces with vanishing tangential stresses, such as

viscous sheets or threads of pure Newtonian liquids (Wilson 1988; Gaudet et al. 1996).
In that case ∂YVX vanishes at the interface, and ∂YYVX � 1. The dimensionless pressure
is in that case of order one, so p∼ ηU/`, in agreement with an elongational flow.

The external conditions often determine the relevant case. For soap films, however,
the tangential stress is generated by surfactant transport, which is coupled to the flow
in the film. Depending on the geometry and the scale (both spatial and temporal)
of the problem, and the physical and thermodynamical properties of the surfactants
(diffusion and adsorption constants, for example), one may a priori expect either one
of these limits. And in fact, in the literature both cases have been investigated (Mysels
et al. 1959; de Gennes 2001; Howell & Stone 2005; van Nierop et al. 2008).

In the situation that we consider (a film pulled from a bath, at steady state, with
viscous or elastic interfacial rheology) we show that only the lubrication assumption,
which is investigated below, leads to a self-consistent solution. The elongational case is
discussed and discarded in § 5.

3. Lubrication flow
As we just discussed, what we call the ‘lubrication case’ corresponds to a pressure

P of order ε−2 with our choice of rescaling. Equation (2.11) thus imposes at lowest
order ∂YP= 0, which allows us to integrate (2.10). Using ∂YVX(X, 0)= 0, we obtain

VX(X,Y)= ε2P′(X) (Y2/2− H2/2)+ Vs(X). (3.1)

The flow in the film is thus a simple Poiseuille flow.
The tangential stress continuity (2.14) leads to

∂YVX = εBqV ′′s + εMa σ ′, (3.2)

for Y = H, where ∂YVX has been assumed of order one. This implies that
(Maσ + BqV ′s)

′ is of order ε−1, as well as Maσ + BqV ′s. In (2.13), the only term
able to compensate the pressure term of order ε−2 is thus εH′′/Ca. This implies that
the aspect ratio ε is of the order of Ca1/3 and `∼ h∞Ca−1/3.

Equation (2.13) becomes

P=− ε

Ca
H′′. (3.3)

Hence, by integration of (3.1),

Q= ε3

3Ca
H3H′′′ + VsH = 1. (3.4)
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Another equation is obtained from (3.2), which involves the interfacial rheological
properties. Using (3.1) and (3.3), this equation becomes

ε2HH′′′ + BqCaV ′′s +MaCa σ ′ = 0, (3.5)

or, once integrated between X and +∞,

ε2
(
HH′′ − 1

2 H′2
)+ BqCaV ′s +MaCa [σ(X)− σ∞] = 0. (3.6)

As discussed in van Nierop et al. (2008), these two equations respectively express
the force balance in the X-direction written locally and on the upper part of the film
(between X and +∞), divided by γ . Note that each term is expressed at its lowest
order in ε, independently of the others.

3.1. Incompressible interface
For large interfacial viscosity or elasticity, the tangential stress boundary condition
at the interface (3.2) reduces to V ′s = 0, the condition of interfacial incompressibility.
Given the condition Vs→ 1 as X→+∞, this imposes Vs = 1 everywhere. This is the
classical assumption made by Frankel (Mysels et al. 1959). Setting ε = (3Ca)1/3, (3.4)
becomes

H′′′ = 1− H

H3
. (3.7)

The film deposited on a solid wall pulled at constant velocity U out of a bath of pure
liquid is governed by the same equations. This problem is known as the LLD problem
(Landau & Levich 1942; Derjaguin 1943). The line y = 0 of the Frankel’s film, along
which the viscous stress is zero by symmetry, plays the role of the free interface of
the LLD film; the incompressible interface of the Frankel’s film moving at velocity U
plays the role of the solid wall pulling the LLD film.

Equation (3.7) is solved with the following boundary conditions: for X → +∞,
H→ 1, H′→ 0 and H′′→ 0. The length scale h∞ (which is the unknown quantity to
be computed) is determined by the asymptotic matching of the solution at X→−∞ to
the static meniscus of radius rm. This problem admits a unique solution, for which the
thickness at large x is hFr = 2h∞ = 1.28rm(3Ca)

2/3.
One important remark is that an interfacial stress gradient is required to pull the

Frankel’s film out of the bath. Indeed, as discussed in Cantat (2013), the tangential
stress continuity (2.14) integrated along the film requires that

Ξ∞ −Ξ−∞ = 3

(3Ca)1/3

∫ ∞
−∞

H − 1
H2

dX. (3.8)

The numerical value of the last integral is 1.85. Coming back to physical quantities,
we get

δτs = ηUδΞ = 1.85 γ (3Ca)2/3, (3.9)

where δτs is the interfacial stress difference between the steady thin film and the
meniscus.

A non-zero interfacial extension must occur to produce this interfacial stress
variation, by either interfacial elasticity or viscosity. If these extensions are small
enough (which is the case for ‘large’ elasticities or interfacial viscosities), they do
not affect the solution, and the assumption of incompressible interface is justified.
However, if non-negligible extensions are needed to produce δτs, the interfacial
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rheology must be explicitly taken into account in the model. We will now consider
independently these two limiting cases of purely viscous and purely elastic interfaces.

3.2. Viscous interface

In the case of purely viscous interfaces (Ma = 0), with ε = (3Ca)1/3, the flux balance
(3.4) and the force balance (3.5) lead to a closed system for H and Vs:

V ′′s = λvis
VsH − 1

H2
, (3.10)

H′′′ = 1− VsH

H3
, (3.11)

with λvis = 32/3Bq−1Ca−1/3. The boundary conditions for H are unchanged from the
incompressible case, and in particular the matching to the static meniscus imposes that
H′′ tends to a finite positive value H′′out at X→−∞. The interfacial velocity satisfies
Vs→ 1 and V ′s→ 0 for X→+∞, and must also reach a finite value in the meniscus
region (X→−∞) to be matched to the outer problem.

The equation set solved with boundary conditions at large X admits a solution.
However, the velocity diverges in the meniscus and the solution is thus non-physical.
This means that a steady state film of constant thickness cannot exist with a simple
viscous interface. This important result can be physically pictured by considering the
fact that a force must arise to extract the film out of the reservoir. Capillary and bulk
viscous forces resist the extraction, thus the only driving force is due to interfacial
viscosity. At steady state, a constant traction, hence a constant and non-zero velocity
gradient along the interface, must appear in the film: this is in contradiction to the
conditions of constant interfacial velocity and constant thickness in the steady thin
film.

One way to prove this incompatibility in a more formal and rigorous way is to
consider an energy balance on the dynamic meniscus. We show in appendix D that the
solution of equations (3.10) and (3.11) diverges at least like |x|1/2 in the meniscus.

3.3. Elastic interface
We now consider a purely elastic interface, by setting Bq= 0 in our system (3.4)–(3.5).
The fundamental difference to the viscous case lies in the fact that the surface stresses
now only depend on the (Lagrangian) extension of a portion of the interface, and
not on its velocity. They may persist in the flat film region, and in fact we find this
rheology to be compatible with the pulling of a steady film.

Using (2.8) with u∗s/U = V∗s , the local force balance equation (3.5) becomes

ε2HH′′′ + CaMa
V∗s
V2

s

V ′s = 0, (3.12)

and a closed set of equations is given by (3.4) and (3.12). With ε = (3Ca)1/3, we get
the final form of our system of equations:

V ′s =−
λV2

s (1− VsH)

H2
, (3.13)

H′′′ = 1− VsH

H3
, (3.14)

with λ = λ0/V∗s and λ0 = (3Ca)2/3(γ /E). Here λ is the only parameter of our system,
and it compares interfacial elasticity to surface tension. The matching conditions are
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FIGURE 2. (Colour online) Characteristic solution of the system (3.13)–(3.14) for λ = 0.28.
Solid black line, H(X); short-dashed red line, H′′(X); dot-dashed green line, Vs(X); long-
dashed blue line, σ(X). As expected, the film reaches a constant thickness (H(X→+∞)= 1)
towards the flat film region, and a constant curvature towards the static meniscus. For this
particular value of λ, H′′(X→−∞) = 0.53, which is slightly lower than what is obtained in
Frankel’s theory (0.64): this means that the extracted film is slightly thinner than for perfectly
incompressible interfaces.

unchanged: for X→+∞, H = 1, H′ = H′′ = 0, Vs = 1, and the length scale h∞ is
determined from the curvature condition at X→−∞.

Incompressibility of the interface corresponds to ‘large’ elasticities, that is, λ� 1. In
this limit, (3.13) simply predicts a constant interfacial velocity us = U, and Frankel’s
theory is recovered. We now solve our system (3.13)–(3.14) for a large range of λ and
discuss its solutions.

4. Numerical results for elastic interfaces
4.1. Numerical resolution

The boundary conditions are specified at X → +∞. To incorporate them into our
numerical resolution, we linearize the system (3.13)–(3.14) around H = 1, Vs = 1,
and solve it analytically between X = X0 and X→+∞. The arbitrary choice of X0

allows us to impose, without loss of generality, H(X0) = 1 + εH , with εH � 1. Setting
Hlin = 1 + εH exp[µ(X − X0)] and V lin

s = 1 + αεH exp[µ(X − X0)], we obtain the two
conditions αµ = λ(1 + α) and µ3 = −1 − α. This leads to α = 1/(µ/λ − 1) and
µ3 − λµ2 + 1 = 0. The function µ 7→ µ3 − λµ2 + 1 is increasing in the range of
negative values of µ, and equals 1 for µ = 0, hence it has exactly one real negative
root. Moreover, the sum of its three roots equals λ > 0. Hence, the two other roots of
f are either both real positive, or complex conjugates with a positive real part. Hence,
this third-order equation has only one root µ with a negative real part, and a unique
solution is thus obtained for each value of λ.

This solution (Hlin,V lin
s ) of the linear problem is used as the boundary condition for

the numerical resolution of the nonlinear problem. The resolution is performed with
MATLAB, and convergence has been obtained for all λ in the range [10−4–20]. In all
cases, as seen in figure 2, H′′ and Vs reach a constant value for large negative values
of X. The origin of the X-axis has been chosen so that the curvature reaches half its
maximal value at X = 0.
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FIGURE 3. (a) Interfacial velocity us/U in the dynamic meniscus, as a function of x/`, for
different values of λ. From top to bottom, λ = 2.8 × 10−3; 8.9 × 10−3; 2.8 × 10−2; 8.9 ×
10−2; 2.8 × 10−1; 8.9 × 10−1; 2.8; 8.9. Frankel’s assumption of a constant interfacial velocity
is recovered when λ vanishes (e.g. for diverging interfacial elasticities E). For larger values of
λ, us varies along the film (signature of interface stretching), and reaches a constant value u∗s
in the meniscus. (b) Asymptotic velocity u∗s in the meniscus rescaled by the imposed velocity
U, as a function of λ0 = γ /E(3Ca)2/3.

All physical quantities are deduced from the family of solutions H(X, λ),Vs(X, λ).
In particular, the length scales h∞ and ` = h∞/ε = h∞(3Ca)

−1/3 are deduced by
matching the asymptotic value of the curvature of the film to the (static) curvature
of the meniscus: h∞(λ)= rm(3Ca)

2/3H′′(−∞, λ).
4.2. Film thickness and velocity field

Two physical quantities are of particular interest in this problem. The first one is
the interfacial velocity Vs = us/U, which we plotted in figure 3(a) as a function of
X, for various values of λ = (3Ca)2/3γ /(EV∗s ). As anticipated, Vs tends towards a
well-defined constant value V∗s in the meniscus region. This quantity is important to
determine. Indeed, the physical control parameter of our problem λ0 = (3Ca)2/3(γ /E)
differs from the numerical control parameter λ= λ0/V∗s by a factor of V∗s , which is not
known a priori. Comparing these numerical results to experiments would thus require
us to determine a posteriori the value of λ0 corresponding to each numerical parameter
λ.

The parameter V∗s , shown in figure 3(b) as a function of λ0, has a strong physical
meaning, since it is directly related to interface deformation (see (B 2)). A vanishing
value of λ0 corresponds to a diverging elastic modulus and thus an incompressible
interface, and accordingly the interfacial velocity remains constant along the entire
interface in this limit: Vs(X) = V∗s = 1. V∗s then decreases with λ0, which denotes
increasing interfacial stretching in the dynamic meniscus region.

The other important quantity is the film thickness 2h∞, because it is the easiest and
most natural quantity to measure in experiments. Its value, rescaled by the Frankel’s
thickness hFr = 2.68 rm Ca2/3, is plotted in figure 4(a) as a function of λ0. Similarly to
what happens for V∗s , Frankel’s theory is recovered for vanishing values of λ0; then
2h∞/hFr decreases monotonically as λ0 increases.

The same data are also plotted in a more familiar fashion in figure 4(b) as a
function of the capillary number, for various ratios E/γ , thus allowing for comparison
with experimental data. At small capillary numbers, the value of λ0 is small and
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FIGURE 4. (Colour online) (a) Thickness of the film rescaled by the Frankel’s thickness,
as a function of λ0. Frankel’s law is obeyed at small λ0 (high elasticities, or low
capillary numbers), but the film becomes increasingly thinner as λ0 increases. (b) Symbols:
experimental data obtained respectively with a solution of decanoic acid, concentration 4 %,
pH = 11.55 by Lal & di Meglio (1994) (�); a solution of C12E5 at 0.5 % by Cohen-Addad
& di Meglio (1994) (♦); a solution of C12E6 at 5 cmc by Saulnier et al. (2011) (©). Solid
lines, the same data as in figure 4(a), plotted as a function of the capillary number, for
E/γ = 0.0018, 0.009 and 0.023 (bottom to top). Dashed line, Frankel’s law.

Frankel’s law is obeyed. Above a critical capillary number Cac, scaling as (E/γ )3/2,
the film thickness departs from Frankel’s law, as already deduced from scaling analysis
in Lal & di Meglio (1994). The experimental data reported in Cohen-Addad &
di Meglio (1994), Lal & di Meglio (1994) and Saulnier et al. (2011) are compatible
with our theoretical results, as shown in figure 4(b). This allows us to estimate
the elastic modulus of the different solutions used. The best fit was obtained for
E/γ = (0.0018, 0.009, 0.023), and thus E = (0.066, 0.27, 0.8) mN m−1 respectively
for the solutions of decanoic acid, C12E5 and C12E6. This is in agreement with the
estimation made in Lal & di Meglio (1994) for the first solution. These values are too
small to be compared to surface moduli obtained by pendant drop methods. Moreover,
the elastic moduli deduced from these data are presumably effective moduli, which
implicitly take into account the surfactant exchange with the bulk and the diffusion
in the film, and which may thus depend on the confinement. Experimentally, the film
thickness always remains smaller than the diameter of the frame pulling the film,
which also induces a film thickness saturation at high velocities (Lal & di Meglio
1994). However, this reason can be discarded for the data plotted in figure 4(b), as the
saturation occurs for thicknesses significantly smaller than the frame diameter.

Such a transition at a critical capillary number is reminiscent of the results obtained
in a Landau–Levich geometry. Models assuming elastic (Park 1991) or viscous (Scheid
et al. 2010) interfaces both predict an incompressible behaviour of the interfaces
at low velocities and a transition towards another regime above a critical capillary
number. However, the nature of these transitions is different from the results plotted
in figure 4(b). In the Landau–Levich geometry, for viscous and elastic models, the
thickness obeys hLL = 1.34 rm Ca2/3 below the transition and hLL = 3.38 rm Ca2/3 above,
and keeps increasing with Ca at the transition. In contrast, for soap films, the elastic
model predicts that the thickness saturates above the critical capillary number and the
viscous model does not admit any steady solution. This underlines a major difference
between these two similar problems: the stress-free limit for the liquid/gas interface
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FIGURE 5. Derivative of the tangential stress ∂xγ in the dynamic meniscus (rescaled by
E/`) along the film, for different values of λ. From bottom to top (far from the maximum),
λ= 2.8×10−3; 8.9×10−3; 2.8×10−2; 8.9×10−2; 2.8×10−1; 8.9×10−1; 2.8; 8.9. The stress
is constant in the flat film and in the meniscus regions, and varies only in a confined region in
the dynamic meniscus (see figure 2 for comparison).

is well defined in the Landau–Levich geometry but is irrelevant for soap films. This
comes from the fact that the soap film is pulled out of the liquid bath by the interfaces
themselves, which consequently need to be able to generate forces.

The lubrication assumption made to solve the system can now be tested a posteriori
with these numerical solutions. In particular, the viscous force associated with
elongational flows was assumed to be negligible compared to the Laplace pressure
and surface tension forces. At large λ the extensional deformation of the film becomes
important, and this assumption needs to be checked. The force (acting on the film
between X and +∞, per unit of length in the z-direction) due to Laplace pressure
and surface tension, once rescaled by γ , is given by ε2(HH′′ − H′2/2) (see (3.6)). In
§ 5, we show that the elongational correction scales as CaεH∂XVs (see (5.7)). The
important point is that despite the divergence of H as X2, both H∂XVs and HH′′−H′2/2
remain of order one for all X. Here ε is of the order of Ca1/3 and the elongational
force is negligible as long as Ca2/3� 1. The numerical solution is thus self-consistent,
independently from the value of λ0.

4.3. Interfacial stress
To better understand the physics of the thinning, it is important to examine the
interfacial stress τs. In our purely elastic model, τs is simply the surface tension
γ (x) = γ0 + E[1 − u∗s/us(x)], which is directly related to interfacial velocity us. In the
meniscus region, the latter is constant (us = u∗s ), hence γ is constant and equal to the
equilibrium surface tension γ0. In the flat film region, us = U and γ reaches another
constant, larger than γ0 (since u∗s < 1).

As shown in figure 5, the variation of γ is localized in the transition region between
the flat film and static meniscus, where the curvature of the interface changes rapidly
(see figure 2 for comparison).

The driving force pulling the film out of the bath is directly given by the surface
tension difference between the flat film region and the static meniscus, given by
δγ = E(1 − u∗s/U). The quantity δγ /E is plotted in figure 6(a) as a function
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FIGURE 6. Surface tension difference between the thin film and the meniscus (a) rescaled
by E, plotted as a function of λ0, and (b) rescaled by γ , plotted as a function of E/γ , for
Ca= 10−3. In both graphs, the dashed line is Frankel’s prediction.

of λ0. When λ0 � 1, a linear variation δγ /E ∼ 1.85λ0 is found. This is indeed
expected for an incompressible interface limit, in which a surface tension difference
δγ /γ = 3.84Ca2/3 is predicted (see (3.9)).

Figure 6(b) shows the surface tension difference as a function of the elastic modulus,
at constant capillary number. The curve increases monotonically: the driving force
generated by the system through interface stretching increases with the surface
elasticity. For large values of E/γ , δγ /γ reaches a plateau corresponding to the
Frankel limit. At lower values of E/γ , the driving force lowers, and (from the previous
section) a thinner film is extracted.

Lastly, from a more experimental standpoint, computing δγ allows us to determine
the interfacial concentration in the extracted flat film Γf , which is given by the relation
(Γ0 − Γf )/Γ0 = δγ /E (and which can thus be read on the same graphs). Given a
surfactant solution, this information may help to validate the linear elastic model
chosen here for the interfacial rheology.

5. Absence of a steady solution in the elongational limit
In this last section, we come back to the initial set of equations (2.10)–(2.12)

and we investigate another possible limit. So far we have used the lubrication
approximation: we simplified (2.10) in § 3 by assuming ε2∂XXVX � ∂YYVX , and we
checked the self-consistency in § 4.2. The other possibility is to assume that ε2∂XXVX is
at least of the same order as ∂YYVX . This leads to an elongational flow in the film, and
we show that it does not produce an acceptable solution.

5.1. Governing equations in the elongational limit
We derive the new set of simplified equations in the same way as Breward (1999) and
van Nierop et al. (2008). Since ∂XXVX is of order one, assuming ∂YYVX of the order of
ε2∂XXVX means in a more formal way that ∂YYVX = O(ε2). Together with (2.10), it also
imposes that P is of order ε0 (instead of ε−2 as in the lubrication approximation).

With this information, we now simplify our system at the lowest order in ε. For
convenience, we systematically expand each variable (VX , VY and P) in order of ε,
writing for example VX = V0,X + εV1,X + ε2V2,X + · · · .

The initial assumption thus becomes ∂YYV0,X = ∂YYV1,X = 0, and by symmetry of the
film we get ∂YV0,X = ∂YV1,X = 0. Integration of (2.12) thus leads to V0,Y = −Y∂XV0,X .
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Finally, (2.11) implies ∂YP0 = 0. In simple physical terms, velocity gradients across the
film are negligible in this limit, and a plug flow is observed.

At the free interface, the normal and tangential stress continuity equations (2.13) and
(2.14) become

−P0 − 2∂XV0,X = εH′′(Ca−1 +Maσ + Bq∂XV0,X), (5.1)

∂YV2,X − H∂XXV0,X − 4H′∂XV0,X = Bq

ε
∂XXV0,X + Ma

ε
σ ′0. (5.2)

This imposes Ca ∼ ε, and Bq or Ma of order ε. The second-order term ∂YV2,X is
deduced from the x-component of the Stokes equation (2.10), at order ε2:

∂YYV2,X + ∂XXV0,X − ∂XP0 = 0. (5.3)

This implies ∂YV2,X = Y(−∂XXV0,X + ∂XP0). We thus get

∂XP0 =−2∂XXV0,X − ε

Ca
H′′′ , (5.4)

H(−∂XXV0,X + ∂XP0)− H∂XXV0,X − 4H′∂XV0,X = Bq

ε
∂XXV0,X + Ma

ε
σ ′0, (5.5)

which leads to

4εCa ∂X

(
H∂XV0,X

)+ ε2HH′′′ + BqCa ∂XXV0,X +MaCa σ ′0 = 0 (5.6)

or, after integration,

4εCaH∂XV0,X + ε2

(
HH′′ − H′2

2

)
+ BqCa ∂XV0,X +MaCa (σ0 − σ∞)= 0. (5.7)

These equations are the same force balances as (3.5) and (3.6), except that the
viscous force in the bulk H∂XV0,X now appears at dominant order.

The problem is closed using the flux conservation written at order ε0, Q = V0,XH =
1, which imposes V0,X = 1/H. With σ = 1− V∗s /Vs = 1− V∗s H after (2.8), we obtain

4
H′

H
+ ε

Ca

(
H′2

2
− HH′′

)
+ Bq

ε

H′

H2
+ MaV∗s

ε
(H − 1)= 0. (5.8)

5.2. Asymptotic analysis for the viscous case

Following the work by van Nierop et al. (2008), it can be shown that (5.8) has no
solution for the purely viscous case (Ma= 0). The simplest way to see it is to multiply
(5.8) by H−3/2 and integrate it with respect to X, leading to

8
3

H−3/2 + ε

Ca
H′H−1/2 + 2Bq

5ε
H−5/2 = 8

3
+ 2Bq

5ε
> 0. (5.9)

No solution of our problem can satisfy the above inequality. Indeed, if H were a
solution, the first and third terms of (5.9) would tend towards 0 for X→−∞, while
the second term would be negative. Therefore, the equation for an elongational motion
with viscous interfaces does not admit any steady solution connecting to the bath.

The reason is the same as for the Poiseuille viscous flow: surface viscous forces are
negligible in the meniscus and in the asymptotic thin film, and thus no surface viscous
force difference can pull a film out of the meniscus.
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5.3. Asymptotic analysis for the elastic case
Equation (5.8) is finally tested for purely elastic interfaces, i.e. Bq = 0 and Ma 6= 0.
The equation becomes

H′

H
+ H′2

2
− HH′′ + ξ(H − 1)= 0 (5.10)

if we set ε = 4Ca and ξ =MaV∗s /(16Ca).
This last case is more subtle and the previous argument, used for viscous interfaces,

does not allow us to conclude. However, we show below that the total flux deduced
from a hypothetical solution of equation (5.10) would not be dominated by the first
term of its Taylor expansion: the assumptions made would therefore not be self-
consistent, and the elongational solution is not acceptable.

From (5.3), the velocity field obeys

V2,X = Y2

2

(
∂XP0 − ∂XXV0,X

)+ B, (5.11)

where B is an integration constant. Using (5.4), ε = 4Ca and V0,X = 1/H, this becomes

V2,X = Y2

2

[
−3∂XX

(
1
H

)
− 4H′′′

]
+ B. (5.12)

Finally, the flux is, at order ε2,

Q= 1+ ε2BH + ε
2

6

(
3H′′H − 6H′2 − 4H3H′′′

)
. (5.13)

Since H is assumed to be a solution of (5.10), the last term can be transformed into

I = ξ − ξH − 4ξH2H′ − 5
2

H′2 − H′

H
. (5.14)

As H behaves asymptotically as X2 when X→−∞, the term −4ξH2H′ dominates
and the whole expression diverges like X5. Note that ξ > 0 as the velocity V∗ cannot
vanish in a steady elastic case.

The flux is then dominated by the Poiseuille term close to the meniscus, and the
elongational assumption V0 = 1/H is thus not valid.

6. Conclusion
In this paper we systematically derive the equations governing the steady film profile

obtained by pulling a frame out of a surfactant solution at constant velocity, for elastic
or viscous interfaces, and for two important classes of confined flows, governed either
by a Poiseuille velocity field or by an elongational velocity field. We show that purely
viscous interfaces cannot lead to a steady film. Purely elastic interfaces, in contrast,
lead to self-consistent solutions, which are dominated by a Poiseuille flow. The film
thickness decreases when the elongational modulus of the interface decreases, which
compares favourably with experiments made in a steady regime (Cohen-Addad &
di Meglio 1994; Lal & di Meglio 1994; Saulnier et al. 2011). Film extraction from
menisci also occurs in foams (Biance, Delbos & Pitois 2011; Seiwert et al. 2013) and
plays an important role in foam rheology and stability. Additional studies are required
to determine if, in a three-dimensional foam, such film formation can be considered
to occur in a quasi-steady regime, in which case our study would be relevant to
this topic.
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Appendix A. Expression of the interfacial stresses
The surface that we consider is invariant in the z-direction and its normal is

n= (nx, ny). In that simple case, the surface projection tensor is

Is =
(

n2
y −nxny

−nxny n2
x

)
, (A 1)

and the velocity gradient tensor Ds equals the velocity surface divergence (Is : Ds)Is,
which simplifies to

Ds = (Is : Ds)Is = (−n2
x∂xvx − n2

y∂yvy − nxny(∂xvy + ∂yvx))Is = KIs, (A 2)

so

τ s = γ Is + (κs − ηs)(Is : Ds)Is + 2ηsDs = (γ + η∗s K)Is. (A 3)

Appendix B. Alternative definitions for σ and E
In this article, we have assumed E =−Γ0 ∂Γ γ and σ = 1− u∗s/us. These expressions

for E and σ are generalized from the case of insoluble surfactants, yet we still assume
small relative variations of Γ . However, slightly different assumptions lead to different
definitions of E and σ . We present here two of the most widely used alternatives.

The first alternative is still based on the assumption of a non-diffusive insoluble
surfactant, but linearizes the surface tension with respect to the surface area instead of
the surface concentration Γ . Following an infinitesimal portion of interface along its
motion from the meniscus at t = 0 to its position x at time t, we define its respective
areas A0 and A(x, t).

An alternative to the elastic law (2.7) is to assume that

γ = γ0 + Ẽ
A− A0

A0
. (B 1)

Mass conservation then imposes A(x, t)Γ (x, t) = A0Γ0. At steady state, this imposes
that AΓ is uniform along the film, and so

A(x)/A0 = Γ0/Γ (x)= us(x)/u
∗
s , (B 2)

after (2.6).
A consequence is that (A−A0)/A0 = (Γ0−Γ )/Γ . The two definitions (2.7) and (B 1)

are thus equivalent for |Γ − Γ0| � Γ0. We checked that both choices give qualitatively
similar results.

For soluble surfactants, another important limit is discussed in Couder, Chomaz
& Rabaud (1989). It is strictly valid only if the surfactants diffuse across the thin
film and adsorb at the interfaces on a negligible time scale. The bulk concentration
of surfactants c thus only depends on x and it is in equilibrium with Γ (x).
Below the critical micelle concentration (CMC), a linear relation may be assumed:
c(x) = Γ (x)/hc, with hc a constant. When the interface is stretched, surfactant
adsorption on the newly created interface reduces bulk concentration.
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For purely elongational flows, the velocity is uniform across the film: a material
system defined as the portion of film between x= x1 and x= x2 at time t can be easily
tracked, and will still be a portion of the film between two other abscissae x′1 and x′2 at
a later time.

Surfactant mass conservation on such a closed system imposes

c+ Γ
h
= Γ

(
1
hc
+ 1

h

)
= Γ0

hc
, (B 3)

since in the static meniscus h→∞ and Γ = Γ0. Thus

γ = γ0 + ∂Γ γ (Γ − Γ0)= γ0 − ∂Γ γΓ0
hc

h+ hc
. (B 4)

This provides a second alternative constitutive law for σ . We did not test it on our
system, because it has no physical ground when the flow is not strictly elongational
(and we have shown that solutions for our problem necessarily feature Poiseuille-type
flows).

Appendix C. Boundary conditions for the flow
The first terms of the ε expansion of the different terms of (2.3) and (2.4) are

derived below. The tangent and normal unit vectors are

t = (1− 1
2ε

2H′2; εH′) , (C 1)

n= (−εH′; 1− 1
2ε

2H′2
)
. (C 2)

The bulk contribution to the interfacial stress, with Vs(X)= VX(X,H(X)), is

`

ηU
n · τ ·n=−P− 2∂XVX − 2H′∂YVX =−P− 2∂XVs, (C 3)

`

ηU
t · τ ·n= 1

ε
∂YVX + ε

(
∂XVY − 2H′2∂YVX + 4H′∂YVY

)
. (C 4)

The surface contribution is determined using τ s = τsIs = (γ + η∗s K)Is and, after (A 2),

`

U
K = ∂XVX + H′∂YVX = V ′s, (C 5)

`∇sIs = εH′′n, (C 6)
`

ηU
η∗s∇sK = Bq(∂XXVX + H′′∂YVX − 2H′∂YYVY + H′2∂YYVX)t = BqV ′′s t, (C 7)

`

ηU
∇sγ =Ma σ ′t. (C 8)

Finally, we get

`

ηU
n ·∇sτ s = εH′′[Ca−1 +Maσ + BqV ′s], (C 9)

`

ηU
t ·∇sτ s =Maσ ′ + BqV ′′s , (C 10)

leading to (2.13) and (2.14).
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FIGURE 7. System used for the energy balance.

Appendix D. Energy balance on the film, for the lubrication case with viscous
interfaces.

We consider the open system sketched in figure 7, limited by the symmetry plane
of the film, a section of the steady film at position x2 and a section of the dynamic
meniscus, at position x1. The surface free energy of the interface is γ . In physical
units, the surface free energy flux crossing x2 is thus −γ us(x2), with a negative sign
indicating energy exiting the open system. This flux exactly compensates the power
given by the interface to the system. Finally the pressure is the atmospheric pressure
taken as reference pressure, so p= 0. There is thus no energy exchange across x2.

The energy exchanges only come from the meniscus contribution. The power given
by the interface is −τsus(x1) = −(γ + η∗s ∂us/∂x)us(x1), partly compensated for by
the free energy flux γ us(x1). The average velocity at x1 is ū1, which satisfies the
mass balance h∞U = h(x1)ū1. The pressure power is −γ h′′hū1 =−γ h′′h∞U. Finally, in
steady state, the energy exchange must compensate the positive energy dissipation in
the system and for any x1:

−η∗s
∂us

∂x
us − γ h′′h∞U > 0. (D 1)

Now, since h′′→ 1/rm > 0 as x→−∞, we can find a constant M > 0 and a position
xM so that γ h′′(x)h∞U >M for any x smaller than xM. We deduce

−
∫ xM

x
η∗s
∂us

∂x
us dx′ >

∫ xM

x
M dx′, (D 2)

leading to us(x) > M′
√

k − x for any x smaller than xM, with M′ a positive constant
and k an arbitrary constant. The velocity is thus diverging in the meniscus. In the
frame of a Poiseuille flow assumption, a steady film with purely viscous interfaces can
thus not be pulled out of a meniscus.



142 J. Seiwert, B. Dollet and I. Cantat

R E F E R E N C E S

ALVAREZ, N. J., WALKER, L. M. & ANNA, S. L. 2012 A criterion to assess the impact of confined
volumes on surfactant transport to liquid–fluid interfaces. Soft Matt. 8, 8917–8925.

BERG, S., ADELIZZI, E. A. & TROIAN, S. M. 2005 Experimental study of entrainment and
drainage flows in microscale soap films. Langmuir 21 (9), 3867–3876.

BIANCE, A.-L., DELBOS, A. & PITOIS, O. 2011 How topological rearrangements and liquid
fraction control liquid foam stability. Phys. Rev. Lett. 106, 068301.

BREWARD, C. J. W 1999 The mathematics of foam. PhD thesis, Oxford University.
BREWARD, C. J. W. & HOWELL, P. D. 2002 The drainage of a foam lamella. J. Fluid Mech. 458,

379–406.
BRUINSMA, R., DI MEGLIO, J.-M., QUÉRÉ, D. & COHEN-ADDAD, S. 1992 Formation of soap

films from polymer solutions. Langmuir 8, 3161–3167.
CANTAT, I. 2013 Liquid meniscus friction on a wet wall: bubbles, lamellae and foams. Phys. Fluids

25, 031303.
COHEN-ADDAD, S. & DI MEGLIO, J.-M. 1994 Stabilization of aqueous foam by hydrosoluble

polymers. Part 2. Role of polymer/surfactant interactions. Langmuir 10 (3), 773–778.
COUDER, Y., CHOMAZ, J.-M. & RABAUD, M. 1989 On the hydrodynamics of soap films. Physica

D 37, 384–405.
DERJAGUIN, B. V. 1943 Thickness of liquid layer adhering to walls of vessels on their emptying.

Acta Physicochim. USSR 20, 349.
GAUDET, S., MCKINLEY, G. H. & STONE, H. A. 1996 Extensional deformation of Newtonian

liquid bridges. Phys. Fluids 8, 2568–2580.
DE GENNES, P. G. 2001 Young soap films. Langmuir 17 (8), 2416–2419.
HOWELL, P. D. & STONE, H. A. 2005 On the absence of marginal pinching in thin free films.

Eur. J. Appl. Maths 16, 569–582.
LAL, J. & DI MEGLIO, J.-M. 1994 Formation of soap films from insoluble surfactants. J. Colloid

Interface Sci. 164 (2), 506–509.
LANDAU, L. & LEVICH, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR

17, 42.
LEVICH, V. G. 1962 Physicochemical Hydrodynamics. Prentice Hall.
MYSELS, K. J., SHINODA, K. & FRANKEL, S. 1959 Soap Films: Studies of their Thinning and a

Bibliography. Pergamon.
VAN NIEROP, E. A., SCHEID, B. & STONE, H. A. 2008 On the thickness of soap films: an

alternative to Frankel’s law. J. Fluid Mech. 602, 119–127 and Corrigendum 630, 443 (2009).
PARK, C. W. 1991 Effects of insoluble surfactants on dip coating. J. Colloid Interface Sci. 146 (2),

382–394.
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