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S U M M A R Y
Full waveform inversion of ground-penetrating radar data is an emerging technique for the
quantitative, high-resolution imaging of the near subsurface. Here, we present a 2-D frequency-
domain full waveform inversion for the simultaneous reconstruction of the dielectric permit-
tivity and of the electrical conductivity. The inverse problem is solved with a quasi-Newton
optimization scheme, where the influence of the Hessian is approximated by the L-BFGS-B
algorithm. This formulation can be considered to be fully multiparameter since it enables to
update permittivity and conductivity values within the same descent step, provided we define
scales of measurement through a reference permittivity, a reference conductivity, and an addi-
tional scaling factor. Numerical experiments on a benchmark from the literature demonstrate
that the inversion is very sensitive to the parameter scaling, despite the consideration of the
approximated Hessian that should correct for parameter dimensionalities. A proper scaling
should respect the natural sensitivity of the misfit function and give priority to the parame-
ter that has the most impact on the data (the permittivity, in our case). We also investigate
the behaviour of the inversion with respect to frequency sampling, considering the selected
frequencies either simultaneously or sequentially. As the relative imprint of permittivity and
conductivity in the data varies with frequency, the simultaneous reconstruction of both param-
eters takes a significant benefit from broad frequency bandwidth data, so that simultaneous or
cumulative strategies should be favoured. We illustrate our scaling approach with a realistic
synthetic example for the imaging of a complex subsurface from on-ground multioffset data.
Considering data acquired only from the ground surface increases the ill-posedness of the
inverse problem and leads to a strong indetermination of the less-constrained conductivity
parameters. A Tikhonov regularization can prevent the creation of high-wavenumber artifacts
in the conductivity model that compensate for erroneous low-wavenumber structures, thus
enabling to select model solutions. We propose a workflow for multiparameter imaging in-
volving both parameter scaling and regularization. Optimal combinations of scaling factors
and regularization weights can be identified by seeking regularization levels that exhibit a clear
minimum of final data misfit with respect to parameter scaling. We confirm this workflow by
inverting noise-contaminated synthetic data. In a surface-to-surface acquisition configuration,
we have been able to reconstruct an accurate permittivity structure and a smooth version of
the conductivity distribution, based entirely on the analysis of the data misfit with respect to
parameter scaling, for different regularization levels.

Key words: Inverse theory; Tomography; Electrical properties; Ground penetrating radar.

1 I N T RO D U C T I O N

Ground-penetrating radar (GPR) is a non-invasive subsurface
prospecting technique based on the propagation of electromagnetic
waves. Similar in its principle to seismic reflection experiments,

GPR imaging took large benefits from seismic processing develop-
ments such as migration, so that the method provides today accurate
qualitative images of the subsurface from constant offset measure-
ments (e.g. Fischer et al. 1992b; Grasmueck et al. 2005) and more
rarely from multioffset measurements (Fischer et al. 1992a; Greaves
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et al. 1996; Bradford 2008; Gerhards et al. 2008). The development
of a quantitative imaging that would estimate the electromagnetic
properties of the sounded medium—mainly the dielectric permittiv-
ity ε [F m−1] and the electrical conductivity σ [S m−1]—appears as
a critical issue for a physical interpretation of the target structures.
In particular, geological, hydrological or geotechnical applications
need important information, such as the composition of the mate-
rial (Deeds & Bradford 2002; Ihamouten et al. 2012) or its water
content (Garambois et al. 2002; Huisman et al. 2003; Day-Lewis
et al. 2005; Weihermüller et al. 2007).

Up to now, efforts have been oriented towards quantitative GPR
imaging using multioffset measurements with velocity analysis (e.g.
Fischer et al. 1992a), amplitude-versus-offset studies (e.g. Deeds &
Bradford 2002; Deparis & Garambois 2009), traveltime and ampli-
tude tomography (Cai et al. 1996; Holliger et al. 2001; Gloaguen
et al. 2005; Musil et al. 2006), and full waveform inversion (FWI).
The latter is one of the most promising techniques for building
quantitative, high-resolution images of the subsurface. Contrary to
velocity analysis or tomography which exploit a few events in the
radargram, FWI takes benefit from the whole recorded signal. Orig-
inating from the time-domain seismic imaging (Lailly 1983; Taran-
tola 1984), FWI has then been developed for frequency-domain
data (Pratt & Worthington 1990; Pratt et al. 1998). The frequency-
domain approach makes an efficient use of the data by inverting
only few frequency components, taking benefit of the data redun-
dancy provided by the acquisition. It also enables to mitigate the
non-linearity of the inverse problem by following a low to high-
frequency hierarchy (Pratt & Worthington 1990; Sirgue & Pratt
2004). Synthetic and real seismic applications of this approach
have been successful (see Virieux & Operto 2009, for an overview).
The interest of FWI for GPR data has been demonstrated in recent
applications for water content estimation in the first centimeters of
agricultural soils (Lambot et al. 2006; Minet et al. 2010) and for the
estimation of permittivity and conductivity in stratified structures
such as concrete (Kalogeropoulos et al. 2011, 2013; Patriarca et al.
2011) or layered soils (Busch et al. 2012). In addition, FWI has
been applied to 2-D crosshole sections by Ernst et al. (2007), Meles
et al. (2010), Klotzsche et al. (2010, 2012) and Cordua et al. (2012)
in the time-domain, and by El Bouajaji et al. (2011), Ellefsen et al.
(2011) and Yang et al. (2012) in the frequency-domain. Among the
existing literature, only Lopes (2009) and El Bouajaji et al. (2011)
tackle the interpretation of surface-based GPR measurements for
the quantitative imaging of 2-D sections of the medium. However,
these authors restrict themselves to monoparameter inversions, re-
constructing only the permittivity distribution. In this paper, we
propose a FWI method for the simultaneous inversion of permittiv-
ity and conductivity in 2-D, with a particular interest in data acquired
in surface-to-surface multioffset configuration (on-ground GPR).

Compared to crosshole GPR configurations, on-ground GPR
measurements provide a reduced coverage of the subsurface at
depth, which tends to increase the ill-posedness of the inverse prob-
lem (Meles et al. 2012). Moreover, on-ground GPR measurements
illuminate the subsurface targets with small reflection angles which
may provide a better resolution but a lack of low wavenumbers com-
pared to crosshole experiments (Sirgue & Pratt 2004), making the
design of an adequate initial model to start the FWI process more
critical. The reduced illumination may also increase the trade-off
between the two parameter types that are permittivity and conduc-
tivity (Hak & Mulder 2010), making the multiparameter imaging
more challenging. In addition, crosshole and on-ground GPR data
may have different sensitivities to permittivity and conductivity due
to the fact that on-ground GPR is mainly based on reflections and

diffractions whereas crosshole data mostly contain transmitted sig-
nal. In the paper, we spend some time to describe the sensitivity
of on-ground GPR data to permittivity and conductivity. Other dif-
ferences between on-ground and crosshole GPR concern the mode
used for the measurement (TE versus TM, respectively), and the in-
fluence of the air-ground interface, which both have an effect on the
antenna radiation pattern, but we do not investigate these aspects.

The frequency-domain FWI is formulated as an optimization
problem which consists in minimizing a misfit function that mea-
sures the distance between observed and calculated data. The min-
imization is achieved through a local descent method. We shall fo-
cus our attention on the limited Broyden-Fletcher-Goldfarb-Shanno
bounded algorithm (L-BFGS-B, Byrd et al. 1995), which belongs to
the family of quasi-Newton optimization schemes. In this algorithm,
the effect of the inverse Hessian operator is approximated through
previous gradients and updated models, limiting the demand on
computer resources. The consideration of the approximated Hes-
sian is expected to improve the convergence of the optimization
process, to partially correct for wave propagation effects such as
geometrical spreading and double scattering, and to deconvolve
the finite-frequency artifacts due to the limited bandwidth of the
source and to the discrete acquisition sampling (Pratt et al. 1998).
In a multiparameter framework, the approximated Hessian should
also account for differences in sensitivity of the misfit function
with respect to different types of parameters, such as permittivity
and conductivity. Therefore, an important advantage of our quasi-
Newton formulation is that it enables to update permittivity and
conductivity simultaneously within the same descent step, and thus
to consider the parameter trade-offs (Operto et al. 2013), unlike
alternated or decoupled approaches (Ernst et al. 2007; Meles et al.
2010). Besides, the proper consideration of bounds for the possible
range of parameters values through active sets in the implemen-
tation of L-BFGS-B is of great interest for GPR imaging, where
physical limits are often encountered (in the air, for instance).

In the first part of the paper, we begin with a short presentation
of the forward problem. We then consider the inverse problem for-
mulation and its resolution with a focus on quasi-Newton schemes
of optimization. In a second part, we highlight the difficulty raised
by the simultaneous reconstruction of permittivity and conductivity,
due to their different impacts on the data. We illustrate these differ-
ent sensitivities on a simple synthetic case with perfect illumination
inspired from Meles et al. (2011). We will see that the inversion is
sensitive to the scale used for the definition of the reconstructed pa-
rameters, despite the consideration of the approximated Hessian that
should correct for parameter dimensionalities. For a better insight
into this problem, we analyse the behaviour of the multiparameter
scheme with respect to the parameter scaling and to the frequency
sampling strategy. In a third part, we illustrate the proposed imaging
method on a more realistic synthetic case with a surface-to-surface
acquisition. In this case, we will show that the parameter scaling
must be combined with a regularization term to prevent the op-
timization for over-interpreting the data with undesired structures
appearing in the image. Finally, noise will be introduced in the data
in order to investigate the feasibility of such approach for future
real data inversion.

2 F O RWA R D A N D I N V E R S E P RO B L E M S
F O R M U L AT I O N I N T H E F R E Q U E N C Y
D O M A I N

In this section, we first introduce the electromagnetic forward prob-
lem in the frequency domain and associated notations. We then
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formulate the inverse problem and detail the optimization algorithm
used for its resolution.

2.1 Forward problem

Restricting the Maxwell’s equations to a 2-D geometry leads to
two decoupled systems: the transverse electric mode (TE) and the
transverse magnetic mode (TM). In the following, we focus on the
TE mode, vibrating in the (xOz) plane, for an electric dipole source
oriented along the y-axis. The mathematical analogy between the
acoustic system and the TE mode (Carcione & Cavallini 1995) leads
to the following scalar wave equations:

∇2 P(ω, x, z) + ω2

v2
P (x, z)

P(ω, x, z) = δ(x − xS)δ(z − zS), (1)

⇔ ∇2 Ey(ω, x, z) + εe(ω, x, z)μω2 Ey(ω, x, z)

= δ(x − xS)δ(z − zS), (2)

where P denotes the acoustic pressure field (in Pa), vP its velocity (in
m s−1), Ey the component of the electric field in TE mode (in V m−1),
μ the magnetic permeability (in H m−1), and εe a complex-valued
effective permittivity, accounting for both propagation and attenu-
ation. The source is located at (xS, zS) and the angular frequency
is denoted by ω (in rad s−1). We use a conventional time-harmonic
dependency in e−ıωt, denoting ı = √−1 the imaginary unit.

We focus on non-magnetic media, where the permeability μ is
homogeneous and equal to μo = 4π .10−7 H m−1 (vacuum value).
Moreover, we consider the simplest expression for the effective
permittivity

εe(ω, x, z) = ε(x, z) + ıσ (x, z)/ω, (3)

where we assume that the dielectric permittivity ε (in F m−1) and
the electrical conductivity σ (in S m−1) are real quantities. More
elaborate parameterizations of the effective permittivity εe can be
considered to account for dispersive effects (Debye, Cole-Cole, or
Jonscher parameterizations, see e.g. Hollender & Tillard 1998).

The analogy between Maxwell’s TE mode and acoustic propa-
gation (eqs 1 and 2) enables us to simulate electromagnetic waves
with an optimized finite-difference scheme developed for seismic
modelling in the visco-acoustic approximation and introduced by
Hustedt et al. (2004). This formulation leads to a linear system of
the form

A(ω, ε, σ )u(ω) = s(ω), (4)

where the complex impedance matrix is denoted by A, the vector
of the simulated wavefield by u (Ey in TE mode), and the discrete
source term by s. The linear system (4) is solved using the direct
solver MUMPS (MUMPS-team 2009). Only one LU factorization
of the matrix A is needed for a given medium and frequency. Once
the matrix is factorized, the resolution of eq. (4) for multiple right-
hand side terms can be achieved very efficiently. Computations are
performed on a finite-difference grid of size (Nx, Nz) and the order of
the matrix A is NM = Nx × Nz . Perfectly matched layers (PML) are
used to absorb the waves at the boundary of the medium (Berenger
1994).

2.2 Inverse problem

We formulate the FWI problem as the minimization of a misfit
function C(m):

min
m

C(m), (5)

where the model vector m of size 2 × NM gathers both permittivity
and conductivity values at each point of the finite-difference grid.
The misfit function is defined as the fit to the data through the �2

norm of the residuals �d:

C(m) = 1

2

Nω∑
i=1

Ns∑
j=1

�d(ωi , s j )
†�d(ωi , s j ), (6)

where the symbol † denotes the transpose (T)—conjugate (∗) opera-
tor. For each of the Nω frequencies ωi and each of the Ns sources sj,
the residuals are defined as the difference �d = dobs − dcal between
observed data dobs and calculated data dcal. The calculated data
are extracted from the simulated wavefield u through a projection
operator R to the receiver locations: dcal = Ru, with u verifying
eq. (4).

The inverse problem (5) is solved through a local descent algo-
rithm: From an initial guess mo, we build the sequence mk such
that, for each iteration k,

mk+1 = mk − αkB−1
k Gk, (7)

where the scalar αk denotes the descent step length, the matrix Bk

is an approximation of the Hessian (the second-order derivative of
the misfit function with respect to the model parameters) and the
vector Gk = G(mk) is the gradient of the misfit function.

At each grid point i ∈ [1, NM ] in the medium, the gradient value
Gi is computed using the adjoint state method (Plessix 2006) as

Gi (m) =
Nω∑ Ns∑

Re

{
uT ∂A

∂mi

T

v∗
}

. (8)

In this formulation, the adjoint wavefield, denoted by v and ver-
ifying the linear system A†v = R†�d, corresponds to the back-
propagation of the residuals in the medium. In practice, MUMPS
software enables to solve for the conjugate equation AT v∗ =
RT �d∗ without computing AT and its LU factorization again. The
diffraction matrix ∂mi A (or sensitivity kernel) characterizes the sen-
sitivity to the parameter mi, that refers either to the permittivity εi or
to the conductivity σ i at grid point i. In the finite-difference scheme
of Hustedt et al. (2004), it can be expressed as

∂Ai j

∂εi
= −ω2δi j , and

∂Ai j

∂σi
= −ıωδi j , (9)

where δij is the Kronecker symbol (δij = 1 if i = j, and 0 otherwise).
In expression (7), the model update �mk = −αkB−1

k Gk is esti-
mated by the L-BFGS-B algorithm (Byrd et al. 1995). The descent
step length αk is determined using an inexact linesearch based on
the Wolfe conditions (Nocedal & Wright 2006, p. 33). In practice,
Bk is never built explicitly: The L-BFGS-B algorithm directly builds
the matrix-vector product B−1

k Gk using a limited number nL of vec-
tors of the form sl = ml + 1 − ml and yl = Gl + 1 − Gl, with k −
nL ≤ l ≤ k − 1, which limits the storage requirements by making
use of the nL most recent models and gradients only (Nocedal &
Wright 2006, p. 177). In our numerical tests, we set nL = 5 as we
have found that higher values do not improve the results in the con-
figurations we consider. Since the gradient computation requires
one direct and one adjoint simulations, the algorithm needs the res-
olution of approximately two forward problems per iteration, per
source, and per frequency. An over-cost can occur in the linesearch
procedure if the initial step length αk = 1 is not accepted (which
is rare). In our experiments, the iterative process stops when the
norm of the model update is smaller than 104 times the machine
precision.
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2-D FWI of multi-offset GPR data 251

The design of a suitable initial model mo for starting the FWI
scheme is a crucial point but it is out of the scope of this study. In
our numerical tests, we will start either from an obvious background
value or from a smooth version of the true model. In the case of real
data, an initial permittivity model could be recovered by velocity
analysis (hyperbolae fitting or semblance analysis), whereas other
geophysical methods can provide a smooth initial model for con-
ductivity (e.g. electromagnetic induction measurements or electri-
cal resistivity tomography). An other important point when dealing
with true data is the estimation of the source signature, which is
not investigated here (in our tests, we will assume that we know the
exact Dirac source in eq. 2). Usually, the frequency components of
the source signal are estimated either by solving an over-determined
quadratic problem at each iteration (Pratt & Worthington 1990) or
by including the phase and the amplitude of the source in the pa-
rameters to be inverted (Pratt & Worthington 1990; Busch et al.
2012). Finally, we do not consider the complex radiation pattern of
a real antenna, assuming that the source is an infinitesimal electric
dipole.

3 M U LT I PA R A M E T E R I M A G I N G O F
P E R M I T T I V I T Y A N D C O N D U C T I V I T Y

To understand how the multiparameter inversion behaves, we first
perform numerical experiments on a synthetic example introduced
by Meles et al. (2011; see Fig. 1). In these tests, we are interested
in reconstructing the two cross-shaped anomalies, starting from the
homogeneous background. The step h of the finite-difference grid
is taken as h = 7 cm to ensure at least four discretization points per
propagated wavelength. This results in NM = 201 × 201 = 40 401
grid points and as many discrete unknowns for permittivity and
conductivity. Targets are surrounded by 40 sources and 120 receivers
in a perfect illumination configuration, which means that the signal
of each source is recorded by all the receivers. Fig. 2 shows an
example of time-domain shot gathers computed in the true and in the
initial models for the source located at x = 2 m and z = 7 m. Traces
number 30 to 60 correspond to the signal recorded by receivers
located on the same edge as the source (x = 2 m), whereas traces
n◦ 1 to 30 and n◦ 60 to 90 are recorded by receivers on adjacent
edges (z = 2 and z = 12 m). Traces n◦ 90 to 120 correspond to the
transmitted signal recorded on the opposite edge (x = 12 m). As the
initial model is homogeneous (equal to the background model), the
initial residuals shown in Fig. 2(c) essentially consist in events that
are diffracted by the anomalies.

To perform the inversion, we first compute synthetic observed
data in the true model of Fig. 1 for the seven following frequencies:
50, 60, 70, 80, 100, 150 and 200 MHz, which are consistent with the
frequency bandwidth of a 100-MHz antenna. Note that we compute
these observed data dobs with the same modelling tool as the one
used for computing the calculated data dcal in the inversion process
(inverse crime approach). The irregular frequency sampling is in-
spired by the strategy of Sirgue & Pratt (2004) who show that the
wavenumber coverage increases with frequency (see their Fig. 3),
so that a fine sampling of high frequencies is not required. We can
perform inversion by considering the seven selected frequencies
either simultaneously or through a sequential procedure where the
initial model for each frequency is the final result of the previous
inverted frequency. The sequential strategy based on the low to high-
frequencies hierarchy has been promoted by Pratt & Worthington
(1990) to mitigate non-linearities such as cycling skipping effects.
On the other hand, the strategy of inverting simultaneously all fre-

Figure 1. Acquisition setup and true models for permittivity (a) and conduc-
tivity (b), after Meles et al. (2011). Black crosses indicate source locations
and receiver locations are marked with triangles. Note that we assume the
antennas to be perpendicular to the plane of observation (TE mode), whereas
Meles et al. (2011) use in-plane antennas (TM mode).

quencies is more subject to the cycle-skipping problem, depending
on the initial model. But if a good initial model is available, it will
take benefit from a broadband information. Finally, more elaborated
strategies can be used. For instance, we may proceed through a cu-
mulative sequential approach where we keep low-frequency data as
we move to high frequencies as suggested by Bunks et al. (1995)
for seismics in the time domain, and used by Meles et al. (2011) for
GPR data inversion. In the frequency domain, it amounts to invert
the following seven groups of cumulative frequencies:

50 MHz,
50 60 MHz,
50 60 70 MHz,

···
50 60 70 80 100 150 200 MHz.

Note that this approach, that we will call the Bunks’ strategy by
analogy with the time domain, implies a consequent computational
effort when applied in the frequency-domain. In the following, we
will test the three above-mentioned strategies (simultaneous versus
sequential versus Bunks’ strategy) and retain the most robust one
for our realistic application.
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252 F. Lavoué et al.

Figure 2. Time-domain shot gathers computed for the cross-shaped benchmark, (a) true model, (b) initial homogeneous model, (c) residuals. Data have been
computed in the frequency-domain and convolved with the time-derivative of a Ricker wavelet of central frequency 100 MHz before inverse Fourier transform.

3.1 Parameter sensitivity and trade-off

As we are interested in quantifying permittivity and conductivity
values, we have to estimate the sensitivity of the data to these pa-
rameters. As done by Malinowski et al. (2011) for velocity and
attenuation, we can evaluate the impact of both parameters in the
data by computing the electric field that is diffracted by anoma-
lies of permittivity and conductivity. Fig. 3 shows the real part of

Figure 3. Real part of the monochromatic electric fields diffracted by a per-
mittivity anomaly (a) and a conductivity anomaly (b) at 100 MHz. Anomalies
are located at the centre of the medium (x = 7 m, z = 7 m) and the black
cross indicates the source location (x = 2 m, z = 7 m). Perturbation ampli-
tudes are of 5 per cent of the homogeneous background values (δεr = 0.2
and δσ = 0.15 mS m−1).

such monochromatic scattered fields usc(m, δmi) at a frequency of
100 MHz, computed as the difference between the incident field
u(m) emitted by a source in the homogeneous background m of
Fig. 1 and the field emitted by the same source in a perturbed
medium m + δmi where an anomaly δmi of small amplitude has
been added in the centre of the medium. We apply a perturbation
amplitude of δp = 5 per cent of the background value, such that
δmi = δp × mi, with i the index of the central cell in the finite-
difference grid.

The scattered wavefield usc(m, δmi) is linked to the partial deriva-
tive wavefield ∂mi u, which in turn can be related to the diffraction
matrix by differentiating the forward problem (eq. 4) with respect
to the model parameters, providing at first order

usc(m, δmi ) 
 ∂u(m)

∂mi
δmi = −A−1 ∂A

∂mi
δmi u(m). (10)

In eq. (10), the scattered wavefield can be interpreted as the field
emitted by a virtual source ∂mi A δmi u colocated with the anomaly
δmi and whose signature characterizes the data sensitivity to the con-
sidered parameter, contained in the diffraction matrix ∂mi A (Pratt
et al. 1998; Malinowski et al. 2011; Operto et al. 2013). This scat-
tered field is the response of the anomaly to the incident field u(m)
which controls its illumination, depending on the acquisition config-
uration and on the antenna radiation pattern. Therefore, the shape of
the scattered wavefield entirely reflects the response of the anomaly
and only depends on the sensitivity kernel ∂mi A, whereas its ampli-
tude and phase partly come from the incident field, and thus from
the GPR antenna.

As shown in Fig. 3, the fields diffracted by permittivity and con-
ductivity anomalies in a homogeneous medium are both isotropic
but have different amplitudes and phases. In Fig. 4, we present the
amplitudes and phases of the diffracted fields as a function of the
distance to the anomaly for different frequencies. Fig. 4(a) shows
that the impact of the anomaly of permittivity is larger in amplitude
than the one of conductivity in the frequency range we consider for
GPR investigation (at least, for equal relative perturbations δp). In
the general case, this amplitude ratio depends on the loss-tangent at
grid point i, tan δi = σ i/(εiω), that quantifies the energy dissipation
in the dielectric lossy background, and on the relative perturbation
amplitudes in permittivity δpε and conductivity δpσ . Based on the
expressions of the scattered wavefield (eq. 10) and of the diffraction
matrices (eq. 9), we have

usc(m, δσi )

usc(m, δεi )
= ıω δσi

ω2 δεi
= ı

σi

εiω

δpσ

δpε
. (11)
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2-D FWI of multi-offset GPR data 253

Figure 4. (a) Amplitudes of the diffracted fields for three frequencies. (b) Phases of the diffracted fields at 50 MHz.

In the frequency range of GPR investigations, EM waves encounter
rather low-loss media, such that tan δ � 1 (for instance, in the ho-
mogeneous background of Fig. 1, we have tan δ 
 0.14), so that
data are intrinsically more sensitive to permittivity than to conduc-
tivity. However, it can be compensated by the fact that in natural
media, conductivity may present more contrasts than permittivity
(conductivity can vary over several order of magnitudes, typically
from 10−4 to 0.1 S m−1, whereas permittivity varies from 1 in air
to 81 in water). Consequently, conductivity anomalies can have a
significant imprint on the data. Moreover, eq. (11) and Fig. 4(a)
show that, in a given medium, the sensitivity of the data to con-
ductivity decreases with frequency relatively to the sensitivity to
permittivity. Therefore, high-frequency information about low con-
ductivity contrasts may be hidden below the noise level. Finally,
another important feature in Fig. 4(b) is that diffractions of permit-
tivity and conductivity present a 90◦ phase shift, as expected from
the presence of the imaginary unit in eq. (11).

From the differences in frequency-dependency and phase be-
tween the diffraction patterns of permittivity and conductiv-
ity, we can expect that both parameters could be reconstructed
from recorded GPR data, provided that various angles of illu-
mination and a wide frequency bandwidth are available to dis-
tinguish their respective signatures (Pratt et al. 1998; Operto
et al. 2013). Conversely, a partial illumination and a reduced
frequency bandwidth will induce a trade-off between both pa-
rameters, meaning that a wave scattered in one direction at one
frequency by a permittivity anomaly can be equivalently ex-

plained by a conductivity anomaly shifted in space and of stronger
amplitude.

To draw a parallel with the reconstruction of seismic velocity and
attenuation, let us remark first that the imprint of conductivity in
GPR data is generally stronger than the effect of the quality factor
QP in seismic data (see the perturbations applied by Malinowski
et al. 2011, and the resulting imprint relatively to velocity). In
addition, the attenuation of electromagnetic waves do not suffer
from the ambiguity discussed by Mulder & Hak (2009) and Hak &
Mulder (2011): Even in low-loss media, the electromagnetic quality
factor QEM 
 1/tan δ is frequency dependent. Seismic velocity and
attenuation can only be distinguished by their phases, whereas the
frequency dependency of the relative impact of permittivity and
conductivity in the data is an additional information that may help
to mitigate the trade-off between parameters.

We shall mention that the above discussion on the diffraction pat-
terns of parameter anomalies is particularly adapted to on-ground
GPR data, which mostly contain reflections and diffractions. Cross-
hole GPR data present other sensitivities to permittivity and con-
ductivity. First because crosshole measurements are generally per-
formed in TM mode, for which permittivity and conductivity act
differently on the impedance matrix, so that their diffraction pat-
terns are dipolar (independently from the dipolar radiation pattern
of finite-line antennas in TM mode). To go further, it is not obvious
that this kind of sensitivity analysis based on the diffraction patterns
would be consistent when dealing with crosshole data, which mostly
contain transmitted signal. In transmission regime, data might be
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more sensitive to extended anomalies which the waves pass through
than to local diffracting points.

The previous remarks about the scattered wavefields have im-
portant consequences on the strategy required for multiparameter
imaging. In a first approach, reasoning only on the loss tangent
in eq. (11) tends to confirm the common mind that GPR data are
mainly sensitive to permittivity, which justifies the use of alternated
strategies: fixing the conductivity to an expected value and invert-
ing for the permittivity in a first step, and then proceeding to the
conductivity reconstruction with a fixed updated permittivity (Ernst
et al. 2007). However, this strategy can fail to retrieve satisfactory
models because, as shown in eq. (11), strong conductivity contrasts
may have a significant imprint on the data (both on amplitudes and
phases), which may hinder the reconstruction of an accurate permit-
tivity model during the first step. In the second step, the conductivity
reconstruction may then suffer from artifacts because it is very sen-
sitive to the kinematic accuracy of the background medium (as is the
reconstruction of attenuation in visco-acoustics, see e.g. Kamei &
Pratt 2008, 2013). Because of the trade-offs, errors contained in
the previously inverted permittivity, even if small, will systemati-
cally map into conductivity artifacts (for an interesting discussion
on the effect of the trade-off, see Kamei & Pratt 2013 ; Section 3.3).
As a consequence, simultaneous inversion of permittivity and con-
ductivity generally yields better results than alternated or cascaded
algorithms (Meles et al. 2010).

More elaborated schemes can consist in a first FWI step for
the reconstruction of the permittivity while keeping fixed the con-
ductivity, and in a second FWI step to invert simultaneously for
permittivity and conductivity. It is a strategy used for the inversion
of velocity vP and attenuation QP in seismics (Kamei & Pratt 2008;
Malinowski et al. 2011; Prieux et al. 2013; Kamei & Pratt 2013;
Operto et al. 2013), where the parameter vP is first reconstructed
with an approximate estimation of a constant QP before the simul-
taneous inversion of the two parameters. This approach yields more
satisfactory results because the first step improves the kinematic
model for the second step, but a well-designed multiparameter
scheme is still needed for the second step (if the initial model is
accurate enough, we do not need the first step).

The design of multiparameter FWI is thus crucial but it faces
a major problem when dealing with different parameter units and
sensitivities (Meles et al. 2012). Meles et al. (2010) tackle this is-
sue by introducing two descent step lengths in their algorithm: one
for minimizing the misfit function in the gradient direction with
respect to permittivity, and another in the direction of conductivity.
This approach performs better than the one proposed by Ernst et al.
(2007) because permittivity and conductivity models are updated
simultaneously at each iteration (instead of every n iterations). But
it amounts to consider the optimization with respect to permittiv-
ity and conductivity as two independent problems, and to neglect
the possible trade-off between the two types of parameters. In this
study, we propose to investigate a fully multiparameter strategy.
The L-BFGS approximation of the inverse Hessian operator in the
quasi-Newton scheme (7) should take the trade-offs between pa-
rameters into account.

3.2 Parameter scaling

To gather permittivity and conductivity in the model vector m, we
have to consider adimensional quantities. It requires to define scales
of measurement for the permittivity and the conductivity. The rel-
ative permittivity εr = ε/εo is commonly defined according to the
vacuum permittivity εo 
 8.85 . 10−12 F m−1. In addition, we intro-

duce a relative conductivity σ r = σ/σ o. By convention, we define
the reference conductivity σ o as the conductivity of a reference
medium in which the loss tangent tan δo = σ o/(εoωo) equals one
at a reference frequency fo = 100 MHz. The reference frequency
fo = ωo/(2π ) corresponds to the central frequency of the band we
will use in our numerical tests. We shall underline that this arbi-
trary definition is only a convention used for the optimization. In
particular, the reference medium of permittivity εo and conductivity
σ o has nothing to do with the physical medium we want to inves-
tigate. This convention leads to the reference value σ o = εoωo 

5.6 mS m−1. The relative permittivity εr and the relative conductiv-
ity σ r constitute the two classes of parameters we will use for the
reconstruction.

Note that we could question the choice of εr and σ r as the model
parameters mi to be optimized. Although we are interested in know-
ing the permittivity and the conductivity in the subsurface because
they are meaningful physical quantities, other variables might be
considered in the optimization procedure. We shall mention that we
have investigated various couples of parameters (amoung others,√

εr , 1/
√

εr , ln (1 + σ r), tan δ, . . . ) and we did not found signifi-
cant advantages for using these non-linear parameters compared to
the choice of the relative permittivity εr and relative conductivity
σ r. On the contrary, inverting for the loss tangent tan δ = ε/(σω)
should be avoided because it induces a strong coupling between
permittivity and conductivity models. In addition, optimizing the
parameters εr and σ r enables to easily control the relative weight
given to permittivity and conductivity in the inversion process, as
we will discuss in the following. Thus, we consider linear combina-
tions of the relative permittivity and of the relative conductivity of
the form (εr, σ r/β), where β is a dimensionless scaling factor which
controls the weight of σ r versus εr in the optimization process and
may compensate for the arbitrary definition of the reference permit-
tivity and reference conductivity. In the following, we refer to the
reconstructed parameter σ r/β as the scaled conductivity. We can
now give explicit expressions for the model and gradient vectors:

m =
(

εr

σr/β

)
, and G(m) =

(
Gεr (m)

βGσr (m)

)
. (12)

Here, we shall remind that, although the gradient contains two dis-
tinct parts related to permittivity and conductivity, the descent di-
rection is computed using the global gradient vector G(mk) and the
model update is performed using a unique step length αk in eq. (7).
The gradient components are deduced from eqs (8) and (9) using
the chain rule such that

∂Ai j

∂εri

= −εoω
2δi j , and

∂Ai j

∂σri

= −ıσoωδi j . (13)

Numerical experiments show that the inversion is very sensitive
to the respective weights between the relative permittivity and the
scaled conductivity in the optimization process, that is to the scales
of measurement through the selected scaling factor β. On average,
the relative weight of the scaled conductivity versus permittivity in
the gradient is given by

||βGσr ||
||Gεr || 
 β

||∂σr j
A||

||∂εr j
A|| ∝ β

σo

εoω
, (14)

which is nothing other than the loss tangent tan δo(ω) of the refer-
ence medium with permittivity εo and conductivity σ o at frequency
ω, scaled by the factor β. According to our definition of the ref-
erence conductivity σ o, the ratio of eq. (14) will then be about β

for a group of frequencies centred around 100 MHz. Note that we
recognize an expression for the gradient in eq. (12) that is similar
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2-D FWI of multi-offset GPR data 255

Figure 5. Hessians of the misfit function (a–c) and final models of conductivity (d–f) for three linear combinations of εr and σ r/β, using a scaling factor
β = 0.25 (a, d), β = 1 (b, e) and β = 4 (c, f). The final misfits C are expressed in fraction of the initial misfit Cinit.

to the preconditioned gradient proposed by Kamei & Pratt (2013).
The difference in our case is that we consider the parameter σ r/β,
whose natural gradient is βGσr . It is therefore a reparameterization,
another way to scale the parameter space, and not a preconditioning.
However, as in Kamei & Pratt (2013), the factor β will act as an
implicit regularization: We will see that small values of β penalize
the conductivity update (at the frequency 100 MHz, it corresponds
to values of β < 1).

In eq. (7), the descent direction depends not only on the gradient,
but also on the L-BFGS approximation of the Hessian B. Although
this Hessian approximation is not readily available, understanding
the structure of the Hessian through an approximate evaluation
should shade light into the optimization procedure. The true Hessian
H of the misfit function reads

H = Re

(
J ε

†
rJ εr βJ ε

†
rJ σr

βJ σ
†
r J εr β2J σ

†
r J σr

)

+Re

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ND∑
i=1

�di

⎛
⎜⎜⎝

∂2dcali

∂εr j ∂εrl

β
∂2dcali

∂εr j ∂σrl

β
∂2dcali

∂σr j ∂εrl

β2 ∂2dcali

∂σr j ∂σrl

⎞
⎟⎟⎠

†

j ∈ [[1, NM ]]
l ∈ [[1, NM ]]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(15)

In this expression, for each data value i and each grid point j, the
elements of the Jacobian matrices J are defined by

J εr
i j = ∂dcali

∂εr j

and J σr
i j = ∂dcali

∂σr j

. (16)

In eq. (15), the first term corresponds to the linear part of the Hes-
sian (Gauss-Newton). It accounts for geometrical spreading and
dimensionalities of the parameters (diagonal terms), for the limited
bandwidth effects due to the finite-frequency content of the source

and to the partial illumination of the medium through the discrete
acquisition setup (band-diagonal terms), and for the trade-offs be-
tween parameters (off-diagonal blocks). The second term accounts
for double-scattered events with second-order derivatives of the
wavefield which are neglected in Gauss-Newton approaches. The
inverse Hessian approximated in eq. (7) should correct for all these
effects and act as a deconvolution operator on the gradient (Pratt
et al. 1998; Operto et al. 2013).

Figs 5(a)–(c) show three Hessian matrices Hβ for values of β ∈
{0.25, 1, 4}. These matrices have been computed using a finite-
difference approximation around the final reconstructed models
mβ = (εr, σr/β), which have been obtained inverting the seven fre-
quencies between 50 and 200 MHz simultaneously, starting from
the homogeneous background of Fig. 1. In these figures, we rec-
ognize the expected symmetric structure of the four blocks of the
Hessian in eq. (15). Slight discrepancies in this symmetry are only
due to numerical errors in the finite-difference approximation. The
correlation between the parameters εr and σ r/β represented in the
off-diagonal blocks is not negligible, which justifies their consider-
ation through efficient quasi-Newton methods for solving the mul-
tiparameter problem. The amplitude of the trade-off terms is par-
ticularly high in the corner of the subblocks (i.e. for cells located in
the low-illuminated zone outside the acquisition system in Fig. 1).
This is consistent with the result by Hak & Mulder (2010) that a
partial illumination contributes to enhance the ambiguity between
the different parameter types.

As expected from eq. (15), a scaling factor β = 1 provides
four blocks of similar amplitudes (Fig. 5b). Alternatively, the value
β = 0.25 penalizes the conductivity terms and gives more weight to
the subblocks associated to permittivity (Fig. 5a), whereas the value
β = 4 enhances the blocks related to conductivity (Fig. 5c). We
present on Figs 5(d)–(f) the final conductivity models correspond-
ing to the three values for the scaling factor β. The final images of
conductivity are very sensitive to the parameter scaling through the
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selected factor β. Small values of β provide smooth reconstructions
of conductivity (Fig. 5d), whereas large values of β enhance the
contrasts, but also introduce instabilities (Figs 5e and f). Following
Kamei & Pratt (2013), we can interpret the artifacts in the conduc-
tivity image as unphysical oscillations coming from the trade-off
between permittivity and conductivity (monoparameter inversions
of conductivity provide images without artifacts when the true per-
mittivity model is known). In these tests, the reconstruction of the
permittivity is less sensitive to the parameter scaling (all three val-
ues of β yield nearly identical, satisfactory results that we do not
show). Further tests show that very large values of β > 10 provide
smoother images of permittivity (and very high amplitude oscilla-
tions in conductivity), whereas very small values of β < 0.05 may
also introduce instabilities in the image of permittivity, whereas the
conductivity is not updated at all.

There are two possibilities to mitigate the undesired oscillations
in the conductivity image. We can either penalize the relative con-
ductivity with small values of the scaling factor β, as done by
Kamei & Pratt (2013), or we can introduce a regularization term
in the misfit function. Actually, both approaches are needed in the
multiparameter permittivity-conductivity problem. The use of reg-
ularization may be the first choice in a common optimization pro-
cedure because the high amplitude oscillations in the conductivity
model partly comes from the fact that the data are weakly sensitive
to conductivity. To constrain the conductivity update, we introduce
a Tikhonov regularization (Tikhonov & Arsenin 1977) through a
model term CM in the misfit function:

C(m) = CD(m) + λCM (m), (17)

with

CM (m) = 1

2
σr

TDσr. (18)

In this new misfit function, the first term CD represents the fit to
the data according to eq. (6). In the second term CM, the matrix D
corresponds to the Laplacian operator, such that the minimization of
the regularization term forces the conductivity model to be smooth.
The hyperparameter λ is a weighting factor which balances the
contribution of the regularization term with respect to the data term
in the misfit function.

The gradient of the new misfit function (17) can also be expressed
in terms of a data part and of a model part as

G(m) = GD(m) + λGM (m), (19)

where the data part GD is computed after eqs (8) and (13) and the
model part is

GM =
(

0
βDσr

)
. (20)

Note that we choose to regularize the relative conductivity σ r and not
the reconstructed parameter σ r/β. Strictly speaking, both are equiv-
alent because the scaling β would be absorbed in the regularization
weight λ, but regularizing σ r instead of σ r/β is more convenient for
further comparison of solutions obtained with a given regulariza-
tion weight λ and different scaling factors β. In this synthetic case,
we do not regularize the permittivity which is more constrained by
the data. In real data cases, it may be necessary to constrain the
permittivity update as well, using a smaller regularization weight
than for conductivity.

Numerical tests involving regularization show that, in the case of
β = 1, small values for the regularization weight λ slightly attenuate
the very high-frequency artifacts in the image of Fig. 5(e). However,

larger values of λ does not enable to remove entirely the remain-
ing oscillations without degrading the shape of the reconstructed
anomalies. In the case of β = 4, the Tikhonov regularization cannot
both avoid the artifacts and provide a satisfactory reconstruction
of the anomalies. The attenuation of the very high-amplitude os-
cillations requires a strong regularization which prevents the opti-
mization from finding a satisfying minimization of the data misfit.
Thus, regularization alone is not sufficient to design a stable inver-
sion scheme. The parameter scaling through the scaling factor β is
crucial both to avoid instabilities and obtain a satisfying resolution
in the image of conductivity.

3.3 Behaviour of the inversion with respect to parameter
scaling and frequency sampling

In this section, we try to understand in more details the effect of the
scaling parameter β. Once we have selected the optimization tech-
nique, we expect that setting the scaling factor β will depend on the
investigated medium, on the initial model, on the acquisition config-
uration, and on the frequency sampling strategy (because the relative
impact of permittivity and conductivity in the data is frequency-
dependent). In the following, we investigate the behaviour of the
inversion process with respect to the scaling factor and to the fre-
quency sampling strategy in the case of the cross-shaped benchmark
with perfect illumination and without regularization. Although we
proceed in the reconstruction of the parameters [εr, σ r/β], we shall
present results for the quantities [εr, σ ] as they are those we under-
stand physically.

First, we focus on the simultaneous frequency strategy, devel-
oping the case of Fig. 5. The Fig. 6 shows the evolution of the
updated models of permittivity and conductivity, in the cases β = 1
(Fig. 6a) and β = 0.25 (Fig. 6b). We extract updated models at
some iterations, corresponding to a given decrease of the misfit
function C. In Fig. 6(a), we first note that instabilities in the con-
ductivity image appear at early iterations (for C = 0.25 × Cinit

and C = 0.1 × Cinit) and not at the end of the optimization. As
a consequence, they are not due to the fact that the optimization
fits numerical noise and cannot be avoided by stopping the itera-
tive process earlier. It is also the reason why regularization fails
to avoid instabilities when a non-adequate scaling factor is used.
It is only when the permittivity is correctly reconstructed, provid-
ing a reliable kinematic background, that the image of conductivity
converges towards the true one (C = 0.01 × Cinit). Conversely, on
Fig. 6(b) where more weight is given to permittivity, the permit-
tivity model is reconstructed earlier in the iterations, whereas the
reconstruction of conductivity is delayed and, thus, better retrieved
when a more reliable kinematic model is available (C = 0.01 × Cinit

and C = 0.001 × Cinit). This numerical test suggests that, even
in the frame of a simultaneous reconstruction of permittivity and
conductivity, the inversion should be led first by the permittivity up-
date. However, there is a counterpart for this behaviour: As a strong
penalization delays the reconstruction of conductivity, it induces a
loss of resolution in the conductivity image for the same misfit de-
crease. An optimal value for the scaling factor β should both allow
to avoid instabilities and to recover an image of conductivity that
should be as complete and resolved as possible. The main limitation
for achieving this goal is given by the maximal possible decrease of
the misfit function (which depends mainly on the signal-over-noise
ratio in the real data case).

Up to now, we have seen that the inversion path (Fig. 6), and
even the final conductivity models (Fig. 5), strongly depend on the
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2-D FWI of multi-offset GPR data 257

Figure 6. Evolution of permittivity and conductivity models along iterations using a scaling factor β = 1 (a) and β = 0.25 (b) when inverting for seven
frequencies simultaneously.

parameter scaling. This result is quite unexpected and suggests that
the L-BFGS approximation of the Hessian correct only partially
for parameter dimensionalities. We would like to better appreci-
ate the exact performance of the L-BFGS algorithm. To illustrate
the behaviour of the effective descent direction, we downgrade the
example of Fig. 1 into an optimization in a two-parameter space.
In this very simple problem, permittivity and conductivity in the
background and in the blue cross are fixed at their true values and
only the values in the red cross are allowed to vary. The anomaly
is assumed to be homogeneous, such that the problem has only two
degrees of freedom: εr and σ r/β in the red cross. Fig. 7(a) presents
a grid analysis of the misfit function for this two-parameter case.
The misfit function has been evaluated for εr ranging in [1, 14] and
σ ranging in [0, 27] mS m−1, with the same acquisition setup as
presented in Fig. 1 and for the seven frequencies simultaneously.
We can notice on Fig. 7 that the misfit function is convex with a
unique minimum. In addition, Fig. 7(a) shows the paths followed

by the inversion for various values of the scaling factor β. All pro-
cesses finally reach the global minimum but inversion paths are very
sensitive to the parameter scaling as already observed in Fig. 6. In-
tuitively, large scaling factors β tends to orientate the inversion path
along the conductivity axis.

Fig. 7(b) shows the inversion path in the case of β = 1, mapped
on a scaled view of the misfit function in the parameter space
[εr, σ r/β]. The arrows represent the opposite of the gradient vec-
tors at each iteration: We can check that they are well orthogonal to
the contours of the misfit function, indicating the steepest descent
directions. Note that this case corresponds to a nearly circular misfit
function in the vicinity of the solution, whereas larger scaling val-
ues would elongate the valley in the direction of permittivity, and
thus would orientate the gradients in the direction of conductivity.
This view of the misfit function in the parameter space, as seen
by the optimization process, helps us to understand the behaviour
of the L-BFGS algorithm. For iterations 1, 2 and 3, the descent
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Figure 7. Grid analysis of the misfit function on a simplified two-parameter
problem. Dotted contours are spaced every 0.05 while dashed contours
indicate particular levels of the misfit function (in fraction of the initial
misfit). (a) Inversion paths in the physical domain (εr, σ ) using various
parameter scalings β. (b) Inversion path and gradients in the parameter
domain (εr, σ r/β) using a scaling factor β = 1.

directions computed by the L-BFGS-B technique (dashed lines be-
tween updated models) do not follow the steepest descent directions
but are shifted towards the minimum. We can see here the benefit
of the quasi-Newton approach which approximates the local curva-
ture. But for later iterations (>4), the L-BFGS descent directions
seem non-optimal compared to the steepest descent directions. This
inertial effect is partly due to the old curvature information used by
the L-BFGS algorithm to compute the local approximation of the
Hessian.

Fig. 7 well illustrates that the parameter scaling deforms the
parameter space and therefore modifies the descent directions com-
puted by the L-BFGS-B algorithm. Although we could think about
better approximations of the Hessian (e.g. preconditioned L-BFGS
or truncated Newton methods, see Métivier et al. 2013, 2014), the
optimization of permittivity and conductivity is likely to remain
sensitive to the parameter scaling. As the problem is non-linear,
the local descent directions on Fig. 7 cannot point directly to the
global minimum of the misfit function, even with a good local
estimation of the curvature (at least before being in the vicinity of the
solution, where the quadratic approximation is more valid). In the
two-parameter example, the inversion converges towards the unique

minimum anyway because the problem is largely over-determined,
but we speculate that the parameter scaling is of crucial impor-
tance for the high-dimensional case with the additional difficulty of
secondary minima.

For this reason, the effect of non-linearity observed at early it-
erations in Fig. 6(a) is strongly dependent on the initial model
we have selected, that is on how far the initial model is from the
validity domain of the quadratic approximation. In particular, if
we start from a good kinematic background, the updates of the
conductivity model will be improved at early iterations. The ini-
tial model can be improved with the low-frequency content of the
data if we adopt the low to high frequency hierarchy promoted
by Pratt & Worthington (1990), inverting the seven frequencies
sequentially.

Fig. 8 shows the permittivity and conductivity models obtained
at the end of each mono-frequency step when inverting the seven
frequencies sequentially, each model being the initial model for
the next step. Again, we compare the use of a scaling factor equal
to β = 1 (Fig. 8a) and β = 0.25 (Fig. 8b). As already observed
when inverting the frequencies simultaneously, a low scaling factor
β = 0.25 provides smoother results than the value β = 1, and the
permittivity image is less sensitive to the parameter scaling. De-
spite the frequency hierarchy, the reconstruction of the conductivity
model is not very satisfactory if a scaling factor β = 1 is used.
In particular, the shape of the blue cross is degraded in Fig. 8(a),
compared to the use of simultaneous frequencies (Fig. 5e). We may
invoke two reasons to explain this. First, the consideration of simul-
taneous frequencies might help to better constrain the reconstruction
of conductivity, as inferred from the frequency dependence of its
diffraction pattern (Fig. 4). Secondly, in the sequential approach, the
final reconstructed model results from the inversion of the highest
frequency. Even if lower frequencies have been previously inverted,
the final model thus contains a stronger finite-frequency imprint
than using simultaneous frequencies.

The advantages of the frequency hierarchy and of a large fre-
quency bandwidth can be combined using Bunks’ strategy. Further
numerical tests involving Bunks’ strategy yields similar results as
using the simultaneous strategy. Reconstructions are not signifi-
cantly improved because this simple benchmark do not need a hier-
archical approach. Since we choose a lower frequency bandwidth,
we do not suffer from the cycle-skipping effect observed by Meles
et al. (2011).

As a partial conclusion, we have shown on this perfect illumi-
nation case that an ad hoc scaling is needed between the relative
permittivity and the relative conductivity in our quasi-Newton op-
timization scheme. This scaling should play a significant role for
surface-to-surface acquisition because partial illumination tends to
increase the ill-posedness of the inverse problem (Meles et al. 2012)
as well as the trade-off between parameters (Hak & Mulder 2010).

Up to now, we have performed a quality control of the solution
by comparison with the true model in an inverse crime way. In
the following, we will propose a practical strategy for selecting a
reasonable value for the scaling factor using an objective criterion.

4 A R E A L I S T I C S Y N T H E T I C T E S T

We now introduce a more realistic benchmark for the imaging of
complex subsurface structures from multioffset on-ground GPR
data. We first investigate the inversion of noise-free data with respect
to the parameter scaling in order to establish a robust criterion for
selecting the scaling factor β. In a second time, we add noise to the
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Figure 8. Evolution of the final reconstructed models for each step of the sequential inversion of the seven frequencies using scaling values β = 1 (a) and
β = 0.25 (b).

data to give an insight into the feasibility of the proposed workflow
on real data.

4.1 Benchmark design

A realistic configuration has been designed for a 2-D distribution
of permittivity (Fig. 9a) and conductivity (Fig. 9b) according to
common-offset GPR profiles, a few common mid-point surveys,
and electrical tomography measurements acquired at a test site lo-
cated on recent fluvial deposits near Grenoble (France). We restrict
the zone of interest to a 5-m-deep and 10-m-long section of the
subsurface. The permittivity and conductivity values are in princi-
ple consistent with a silty soil (first layers) including lenses of clay
(top right) above a 2- to 3-m-thick layer of relatively dry sands.
The interface at around 3.8 m depth represents the water table. The
50-cm-thick zone above the zero z-level has values (εr = 1, σ = 0
S m−1) of the air. This benchmark displays realistic but challenging
sharp and large variations. In the subsurface, permittivity values
range from 4 (main part in the middle) to 32 (layers of clay in the
top right and at the bottom of the medium), and conductivity values
range from 0.1 mS m−1 (first layer) to 20 mS m−1 (bottom layer).
Maximal permittivity contrasts are of 1:10 at the air-ground inter-
face, and of 4:22 in the subsurface (bottom of the main layer at z

 3 m). Note the strongly attenuating layer at a depth of z = 3.5 m
with a conductivity about σ = 10 mS m−1, which may mask the
underlying structures.

The medium is discretized on a 101 × 207 grid, with a grid step
h = 5 cm. This meshing results in 20 907 grid points in the finite-
difference modelling, and in 18 837 unknown values of permittivity
and conductivity in the subsurface (values are kept fixed in the
air, both to constrain the inversion and to avoid singularities at
source and receiver locations). The acquisition setup consists in 41
source locations spaced every 0.25 m and in 101 receiver positions
located every 0.1 m at a negative z-level of −0.1 m, that is two grid
points above the air-ground interface. This setup is consistent with
a multioffset experiment performed on the test site within a day.
Initial models for permittivity (Fig. 9c) and conductivity (Fig. 9d)
have been obtained by applying a gaussian smoothing to the true
models with a correlation length τ = 50 cm. Only the main trends are
depicted in the initial model and all details are erased, in particular
the thin lenses in the top right of the medium but also the alternation
of high and low values at depth (z 
 3.5 m). Fig. 10 shows the time-
domain data computed in the true and initial models, for the first
source of the acquisition array (at x = 0 m). In Fig. 10(a), three
major reflections at t 
 20, 50, and 75 ns can be associated with the
interfaces at z = 0.3, 2.5, and 3.8 m, while the diffractions at large
offsets correspond to the thin lenses of clay. In Fig. 10(b), the initial
model provides direct arrivals that are kinematically compatible
with the observed data but the lack of contrasts does not reproduce
the main reflected events and the diffractions are missing. Most of
the data are not explained by the initial model and remain in the
residuals (Fig. 10c).
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260 F. Lavoué et al.

Figure 9. Realistic subsurface benchmark for permittivity (a, c) and conduc-
tivity (b, d). (a, b) True models. (c, d) Initial models. Sources and receivers
are located 10 cm above the air-ground interface.

4.2 Inversion of noise-free data

The frequency sampling is crucial for the imaging of such com-
plex media. Therefore, we select a dense frequency sampling with
10 frequencies to be inverted: 50, 60, 70, 80, 90, 100, 125, 150,
175 and 200 MHz. Fig. 11 shows the final relative misfits obtained

by inverting the ten frequencies simultaneously or adopting the
so-called Bunks’ strategy which results here in ten groups of cu-
mulative frequencies. These two strategies were quite equivalent
in the cross-shaped benchmark with perfect illumination. For the
imaging of more complex media with surface-to-surface illumina-
tion, Bunks’ strategy appears as the most efficient approach in terms
of misfit decrease and provides more accurate models, because it
presents the advantage both to proceed hierarchically and to end up
with the inversion of the full frequency band. Again, the sequential
strategy yields final reconstructed models that are less satisfactory,
confirming the need for keeping the low frequency content in the
hierarchical process. Therefore, we will use Bunks’ strategy in the
following tests.

In Fig. 11, it must be noted that the misfit values reached us-
ing the Bunks’ strategy are quasi-independent from the param-
eter scaling in the range β ∈ [0.15, 1] (we do not apply any
regularization here). However, the reconstructed models are very
different and remain strongly sensitive to the scaling factor. Fig. 12
shows the permittivity and conductivity models obtained with scal-
ing factor values of β = 0.15 and β = 1, which both have a
misfit very close to 10−5 (in fraction of the initial misfit). As in
the previous section, the value β = 0.15 provides a smooth con-
ductivity model (Fig. 12c), whereas the value β = 1 (Fig. 12d)
introduces instabilities and largely over-estimates the conductivity
variations.

The problem we face here is that we cannot discriminate between
the two solutions of Fig. 12 with a criterion based only on the
data misfit. This could suggest that the variations between the final
models obtained with different β values of equivalent misfits all
belong to the kernel (or null space) of the misfit function. Then we
should conclude that we cannot recover a more precise information
about the conductivity from the inverted data.

To have a more detailed insight into this problem, we can try
to identify which spectral components differ between the solu-
tions obtained using different scaling factors. To do so, we apply a
kz-transform to the conductivity logs of Figs 12(c) and (d). The
corresponding amplitude spectra are shown in Fig. 13. On these
spectra, we observe that the variations in the reconstruction are
not restricted to the highest wavenumbers: Low wavenumbers are
affected by the scaling as well. This result is quite unexpected
because the small eigenvalues of the Hessian, related to the less
constrained parameters, are generally related to small-scale struc-
tures (Hansen 2010, p.62). Our understanding is that discrepancies
in the low wavenumbers should induce a degradation of the mis-
fit but these discrepancies are compensated by high-wavenumber

Figure 10. Time-domain shot gathers computed for the subsurface benchmark (Fig. 9) for the source located at x = 0 m, considering (a) the true model, (b)
the initial model. (c) Initial residuals. Data have been computed in the frequency-domain and convolved with the time derivative of a Ricker wavelet of central
frequency 100 MHz before inverse Fourier transform.
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2-D FWI of multi-offset GPR data 261

Figure 11. Final data misfit with respect to parameter scaling and frequency sampling strategy.

Figure 12. On the left: permittivity (a, b) and conductivity models (c, d) obtained by the inversion of noise-free data using scaling factors β = 0.15 (a, c) and
β = 1 (b, d). On the right: vertical logs extracted along the black lines indicated on the 2-D sections. Red curves denote the true model, blue curves the inverted
model and green curves the initial model. The optimization required about 350 iterations per frequency group (3448 and 3767 total iterations using β = 0.15
and β = 1, respectively).
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262 F. Lavoué et al.

Figure 13. kz-domain spectra of the vertical conductivity logs of Fig. 12
using a scaling factor β = 0.15 (a) and β = 1 (b). The black curves represent
the low-pass filter applied both in x- and z-direction to the conductivity
models in Fig. 14. Red curves denote the true model, blue curves the inverted
model and green curves the initial model.

structures. If so, removing the high-wavenumber structures should
cancel this compensation and lead to a degradation of the data mis-
fit that would enable to distinguish the best models between the
different solutions.

Fig. 14 shows low-pass filtered versions of the conductivity mod-
els of Fig. 12, where high wavenumbers kx, kz ≥ 2 are filtered
out (both in the x- and z-directions). The threshold kxmax , kzmax = 2
roughly corresponds to the wavelengths propagating in the central
part of the medium (where εr = 4) at 50 MHz, so it is rather a lower
bound of the covered wavenumbers and it induces a quite dras-
tic filtering. As expected from the differences in low-wavenumber
contents in Fig. 13, the filtered models of Fig. 14 are still quite dif-
ferent but, since high wavenumbers have been filtered out, we can
now discriminate between them: Computing the corresponding data
misfit for these models, we find that the filtered conductivity model
obtained with a scaling factor β = 0.15 (Fig. 14a) better explains
the data than the one obtained with a value β = 1 (Fig. 14b) by a
factor of 
2.5.

Consequently, we can expect that introducing a Tikhonov regu-
larization in the misfit function will enable to identify conductiv-
ity solutions, by preventing the creation of the high-wavenumber
structures that compensate for erroneous low-wavenumber recon-
struction. As in the cross-shaped experiment, we regularize only
the conductivity update following eqs (18) and (20). Fig. 15 shows
the data misfit decrease obtained with the Bunks’ strategy when a
Tikhonov regularization is introduced, as a function of the scaling
factor β and for different regularization weights λ. As expected, the
use of regularization makes the final data misfit more sensitive to
the parameter scaling. Since it prevents the optimization to fit the

Figure 14. Filtered conductivity models corresponding to β = 0.15 (a) and
β = 1 (b). Synthetic data computed in these filtered models yield data misfits
C = 0.0017 × Cinit and C = 0.0045 × Cinit, respectively.

data with high wavenumber structures, we can now discriminate be-
tween smooth reconstructed structures that well explain the data and
those that do not. Varying the regularization weight λ, we can see on
Fig. 15 that the more resolution we allow (with small λ values), the
wider is the range of scaling factors β that well explain the data, and
the more variability we get in the final conductivity models. Con-
versely, the more smoothness we impose (with large λ values), the
less information we recover. For very large regularization weights
λ > 1, we recover barely more than the initial model.

From Fig. 15, a reasonable criterion for selecting an adequate
range of values for the scaling factor β and for the regularization
weight λ is to seek for λ values that provide a satisfactory data fit on
a small range of β values, that is regularization weights for which it
exists a clear minimum of the data misfit with respect to the scaling
factors. For instance, the regularization weight λ = 0.05 seems too
large as it significantly degrades the data fit. Conversely, the weight
λ = 4 . 10−4 is probably too small as it yields good data fits on a
wide range of scaling values β ∈ [0.2, 0.5], which may provide
dubious models. A reasonable range of values would therefore be λ

∈ [0.002, 0.01] for the regularization weight and β ∈ [0.1, 0.35] for
the scaling factor.

Fig. 16 shows the model obtained with a scaling factor β = 0.2
and a regularization weight λ = 0.002. This solution is quite
satisfactory when compared with the true model, suggesting that
the proposed workflow for selecting the hyperparameters β and λ

is pertinent. In particular, it shows that we can rely on the data
misfit (without an arbitrary model criterion) for selecting a reason-
able range for the parameter scaling β, in relation with an adequate
regularization level λ for which it exists a clear minimum for the
data misfit with respect to parameter scaling. We must underline
the lower resolution of the conductivity reconstruction, resulting
from the applied regularization (λ > 0) and penalization (β < 1).
However, this solution provides a good compromise in the recon-
struction of the high-permittivity, high-conductivity layer at z = 3 m,
in spite of a slight shift in the conductivity image. The conductiv-
ity values in the thin lenses are comparable with those of the true
model.
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2-D FWI of multi-offset GPR data 263

Figure 15. Final data misfit with respect to parameter scaling when a Tikhonov regularization is applied.

Figure 16. On the left: permittivity (a) and conductivity models (b) obtained by the inversion of noise-free data using a scaling factor β = 0.2 and a
regularization weight λ = 0.002. On the right: vertical logs extracted along the black lines indicated on the 2-D sections. Red curves denote the true model,
blue curves the inverted model and green curves the initial model. The optimization required about 330 iterations per frequency group (3379 total iterations).

As a partial conclusion, we have shown that the parameter scaling
is even more crucial in this realistic case with surface-to-surface
illumination than in the previous case with perfect illumination.
Due to partial illumination, the inversion is less constrained and
various scaling factors β can provide equivalent misfit decreases
but very different solutions. Regularization is necessary to miti-
gate the ambiguity. By preventing the optimization to create high-
wavenumber structures that artificially explain the data, regular-
ization makes the final data misfit more sensitive to the scaling
factor β. It is thus possible to determine a reasonable range of
values both for the regularization weight λ and for the scaling
factor β.

Fig. 17 summarizes the successive tests we performed in this
section. Note that this diagram does not state for the final workflow
that should be applied for multiparameter imaging, but rather as the
reasoning flow that leads us to our multiparameter strategy. As in-
dicated in the diagram, if performing regularized FWI still leads to
different models of equivalent data misfits, then we can not discrim-
inate between the different solutions based only on the data misfit,
and we have to invoke a priori information to drive the inversion
process towards a unique solution (see e.g. Asnaashari et al. 2013).

Alternatively, we could have observed that only high wavenum-
bers differ between the models reconstructed with different scaling
factors. Regularization would then have avoided the creation of the
high-wavenumber artifacts and would probably have yielded similar
solutions for the different scaling factors.

Finally, the retained workflow for multiparameter imaging would
be:

(i) Perform FWI with different parameter scalings β and regular-
ization weights λ.

(ii) Plot the data misfit as a function of the scaling factor β, for
each regularization weight λ.

(iii) Identify the regularization levels that exhibits a clear mini-
mum of the data misfit with respect to parameter scaling. We shall
choose the optimal (λ, β) combinations as the smallest λ values for
which we can find such a minimum, and β values corresponding to
this minimum.

We shall now see whether this workflow can be applied to noisy
data, when noise may mask information about conductivity.
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Figure 17. Flow diagram of the successive tests performed in Section 4 and
of the related conclusions.

4.3 Inversion of noisy data

In order to tackle a more realistic example, white noise is added to
the synthetic frequency data with a signal-over-noise ratio (SNR) of
25 dB. This noise level is consistent with the noise observed in real
GPR data. Fig. 18 shows the impact of the noise on a time-domain
shot gather. In the noisy data, the main reflected events are still
visible but diffractions at large offsets are below the noise level.

In Fig. 19, the thick dashed line shows the final data misfit de-
crease obtained with different values for the scaling factor, without
regularization. The presence of noise in the data prevents to decrease
the misfit function below a threshold of about 0.0365 (in fraction
of the initial misfit). Again, we reach equivalent data misfits for
very different scaling values β ∈ [0.2, 1]. Regularization is needed
to constrain the conductivity model and discriminate between the
different solutions. The other curves of Fig. 19 show the final data
misfit reached using the same range of scaling factors β and various
regularization weights λ. It presents the same features as in the case
of noise-free data (Fig. 15), enabling to determine a range of reason-
able values both for the scaling factor β and for the regularization
weight λ on the single criterion of data misfit. Here, the smallest
regularization weights that provide a satisfactory data fit on a small
range of scaling factors β ∈ [0.1, 0.2] are λ = 5 to 10.

Fig. 20 shows the inversion results obtained with a scaling fac-
tor β = 0.2 and a regularization weight λ = 5. In the permittivity
image, thin superficial layers are still reconstructed quite accurately
although the second lens is slightly shifted downwards. Resolu-
tion dramatically decreases with depth and the high-permittivity
layer does not clearly appear. The strong regularization of conduc-
tivity only provides the main trend of the conductivity structures.
The lenses of clay can be distinguished while a blurred image of
the alternation of conductivity at depth is obtained. This result
may seem disappointing but it should be underlined that the low
resolution we obtain is the consequence of the applied regulariza-
tion and penalization, which are necessary to not over-interprete
the data.

Finally, Fig. 21 compares the time-domain data computed in the
inverted model of Fig. 20 with the observed noisy data (Fig. 21a)
and with the observed noise-free data (Fig. 21b). For a better visual-
ization of the signal at late arrival times and large offsets, we apply a
time-varying gain and a trace-by-trace normalization (for each off-
set, the reference amplitude is the maximum of the observed trace).
Every tenth trace is shown. It can be seen that noise is not fitted
in the time-domain, although we did not regularize the permittivity
update. It suggests that the L-BFGS optimization is robust with
respect to noise, but it also may come from the fact that there does
not exist any structure in the model space that could explain the
applied noise, which is totally uncoherent. We expect to encounter
more difficulties when dealing with coherent noise in real data (e.g.
ringing effects). In Fig. 21(b), it appears that the added noise slightly
damaged the fit in some parts of the radargram, especially in the
zone related to the thin lenses (8 ≤ x ≤ 10 m). For comparison, it
must be mentioned that synthetic data computed in the model of

Figure 18. Noisy time-domain shot gathers for the subsurface benchmark (source at x = 0 m). (a) Observed data, (b) data computed in the initial model.
(c) Initial residuals. Data have been computed in the frequency-domain, then we applied a white noise of SNR = 25 dB in the frequency-domain before the
convolution with the time-derivative of a Ricker wavelet of central frequency 100 MHz and inverse Fourier transform.
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Figure 19. Final data misfit with respect to parameter scaling when a Tikhonov regularization is introduced in the inversion of noisy data (SNR = 25 dB).

Figure 20. On the left: permittivity (a) and conductivity models (b) obtained by the inversion of noisy data (SNR = 25 dB) using a scaling factor β = 0.2 and
a regularization weight λ = 5. On the right: vertical logs extracted along the black lines indicated on the 2-D sections. Red curves denote the true model, blue
curves the inverted model and green curves the initial model. The optimization required about 25 iterations per frequency group (241 total iterations).

Fig. 16, which has been reconstructed by inverting noise-free data,
perfectly match the observed data.

5 D I S C U S S I O N

We have shown that a robust reconstruction of permittivity and
conductivity requires both parameter scaling and regularization.
Here, we may comment the similarities and differences between
these two ingredients, which may appear redundant but have actually
distinct roles.

As shown in Fig. 5, small values for the scaling factor β penalize
the conductivity updates and provide smooth conductivity mod-
els, as does regularization. Looking at the Hessian matrices, we can
also note that penalizing the conductivity with a small scaling factor
amounts to damp the small singular values of the Hessian, because
the misfit function is more sensitive to permittivity than to conduc-
tivity. It is also the effect of Tikhonov regularization (Hansen 2010,
p.62). Finally, parameter scaling and regularization both modify the
shape of the global misfit function, and thus the inversion path, but
in different ways we shall describe now.

Penalization of the conductivity update through the scaling fac-
tor β orientates the inversion path in the direction of permittivity,
until a satisfying kinematic model is obtained (see Fig. 7). The
conductivity model is then updated only on the basis of the data
misfit decrease, without an explicit smoothness requirement. Po-
tentially, an adequate parameter scaling can guide the inversion on
a reasonable path towards the minimum of the data misfit CD and
this solution can present smooth parts as well as contrasts. Con-
versely, regularization attracts the inversion path towards a smooth
conductivity model: The minimum of the global misfit function is
then shifted towards the minimum of its model term CM (in the
two-parameter case of Fig. 7, it would be a valley located at σ = 3
mS m−1). Consequently, the parameter scaling does not prevent the
misfit function to converge, contrary to regularization which gen-
erally results in a lower convergence rate: The optimization stops
when the updated models cannot both minimize the data misfit and
satisfy the model smoothness requirement. As a conclusion, the role
of the parameter scaling is to guide the inversion on a reasonable
path, according to the sensitivity of the data, whereas regulariza-
tion constrains the conductivity update, prevents the creation of
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Figure 21. Time data fit. (a) Noisy observed data versus data calculated in the model of Fig. 20 obtained by inverting the noisy data. (b) Noise-free observed
data versus the same data calculated in the inverted model of Fig. 20. A time-varying gain (×t) and trace-by-trace normalization have been applied.

high-wavenumber structures, and thus enables us to discriminate
between low-wavenumber reconstructions that well explain the data
or not (Fig. 15). Indeed, the inversion results using small values for
the scaling factors (e.g. β = 0.2) are very similar with and with-
out regularization (e.g. λ = 5 versus λ = 0 in the noisy data case)
because the penalization of conductivity through the scaling factor
already acts as a regularization. The principal role of regularization
in our workflow is to tell us which smooth solution is convenient
regarding the fit to the data.

6 C O N C LU S I O N

In this study, we have presented a FWI algorithm of on-ground
GPR data for the simultaneous reconstruction of permittivity and
conductivity in 2-D. The inverse problem has been formulated in
the frequency-domain as the minimization of the misfit to the data
in a least-square sense. A model term is added to constrain the
inversion with a Tikhonov regularization. The gradient of the mis-
fit function is defined in the whole parameter space and is com-
puted with the adjoint state method. The optimization is performed
with a quasi-Newton scheme using the L-BFGS-B algorithm to
economically estimate the effect of the Hessian on the parameter
update.

Tests performed on a synthetic benchmark from the literature
shows that the respective weights of permittivity and conductiv-
ity in the optimization process is of prior importance. A param-
eter scaling is introduced through a penalization of the conduc-
tivity parameter. Without an adequate value for this scaling fac-
tor, regularization alone cannot provide satisfactory results. The
adequate value for the parameter scaling mainly depends on the
respective sensitivity of the data to permittivity and conductivity,
and to the quality of the initial model. With a weak sensitivity to
conductivity and a poor initial model, more weight must be given
to the permittivity parameter to give priority to the kinematic re-
construction before reconstructing the conductivity. The sensitivity

of the reconstructions to the parameter scaling suggests that the
L-BFGS algorithm does not correctly scale the descent direction
with respect to different parameter types. We underline the need for
investigating more complete approximations of the Hessian (e.g.
truncated Newton methods, Métivier et al. 2013) to understand if
more information can be extracted from the curvature of the misfit
function.

The behaviour of the inversion with respect to frequency sampling
has been investigating. As the relative impact of permittivity and
conductivity varies with frequency, the reconstruction of both pa-
rameters takes a significant benefit from the simultaneous inversion
of data with a broad frequency bandwidth. Therefore, simultaneous
or cumulative frequency sampling strategies should be favoured,
depending on the quality of the initial model.

The algorithm has also been tested on a more realistic benchmark,
with a multi-offset, surface-to-surface acquisition configuration. In
this case, various parameter scalings can lead to the same misfit
decrease but to very different solutions. Regularization is needed
to constrain the conductivity update and reduce the ambiguity. In
the synthetic case we investigate, it is possible to find a range of
reasonable values for both the scaling factor and the regularization
weight, based only on the data misfit analysis. This workflow can
be applied to extract a reliable information about conductivity from
noisy data. We shall mention that, in some cases, it could be im-
possible to constrain the solution based only on the data misfit, and
we underline the interest of introducing a priori information in the
FWI process (Asnaashari et al. 2013).

The proposed workflow implying parameter scaling and regular-
ization enables us to consider the inversion of real data in the near
future. Common obstacles to real data inversion are 3-D to 2-D
conversion, the design of a compatible initial model, and the esti-
mation of the source signal, which must be integrated in the iterative
process. Since first traveltime and amplitude tomography can not be
performed from on-ground GPR data (contrary to crosshole data),
the design of initial models for permittivity and conductivity from
on-ground GPR data will be particularly challenging.
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