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Discrete and continuum modelling of delamination processes

Cz. Woiniak, Warszawa

Summary: The chaotic distributions of delaminated surface elements in laminates are described by a macro-
delamination density function. Using this concept a phenomenological discrete mathematical model of the
interlaminar debonding processes is proposed. For multilayered periodic composites the discrete model is
approximated by a certain continuum model of delamination processes.

Diskrete und kontinuierliche Modelle der Schichtentrennungsvorginge

Ubersicht: Eine chaotische Verteilung von gelockerten Bereichen von den Trennflichen von Schichtwerk-
stoffen wird durch eine Dichtefunktion der Schichtentrennung modelliert. Diese Darstellung erméglicht die
Formulierung eines phéinomenologischen diskreten Modells von Schichtentrennungsvorgingen. Fiir viel-
schichtige, periodische Verbundwerkstoffe wird das diskrete Modell durch ein kontinuierliches Modell
approximiert.

1 Introduction

In this paper we deal with composites made of a number of sheets (laminae) bonded together
by very thin layers of a bonding material. We shall assume that the bonding layers can be treated
as surfaces, i.e. they coincide with the interfaces of adjacent sheets; the scheme of the composite
under consideration is shown in Fig. 1. We are to investigate deformation and stresses in such
laminates taking into account the possibility of the debonding of laminae. The mathematical
model of debonding processes in layered composites was proposed in [1] where the loss of a per-
manent contact between the sheets was uniquely determined by a certain extremal value of the
strain energy of the bonding material. However, in many deformation processes met in the engine-
ering practice a chaotic distribution of certain delaminated micro-surface elements between the
adjacent layers can be observed. This chaotic distribution is due to the unknown a priori non-
uniform and non-local character of bonding. Moreover, the model introduced in {1] is too in-
volved to be the basis of engineering applications.

The main aim of this contribution is to propose and discuss two macroscopic (phenomenologi-
cal) models of the debonding processes in laminates which take into account the chaotic micro-

Fig. 1. Scheme of the composite



delaminations between the interfaces of sheets. We start with the discrete macro-modelling of
delamination described in terms of functions defined on the interlaminar surfaces; the leading
concept here is that of a delamination density related to these surfaces. If the number of layers
is big enough, then the discrete model is not plausible from the point of view of engineering
applications. That is, we shall pass to the continuum model of debonding processes where the
delamination density is related to the region occupied by the whole composite in its undeformed
state. In the continuum modelling we apply the microlocal approach, [2], which takes into account
some concepts of the nonstandard analysis, [3, 4]. The proposed models are able to describe the
physical situations met in engineering, in which only partial delamination in certain parts of a
composite takes place.

The time-irreversibility of the debonding processes leads to time-nonlocal governing relations
of the problems considered. However, for the quasi-stationary debonding processes it is shown that
after time discretization we obtain a sequence of problems each of them being described by a
certain variational inequality in a discrete model or a certain nonlinear equation in a continuum
model. The solutions to these problems exist and are unique up to the time instant in which the
total delamination takes place. The considerations are carried on under the following assumptions:

t, The material of separate sheets is homogeneous and linear elastic,

U7, the thin layers of the interlaminar bonding material are modelled as surfaces having linear-
elastic properties and able to transmit only restricted values of the interlaminar tractions,

27t after the delamination only the unilateral contact without friction between the adjacent
laminae is possible, :

2v. the small deformation gradient theory can be applied.

2 Micro- and macro-delamination

Let Q stands for the regular region in R? occupied by the undeformed composite made of § dis-
jointed sheets Ax (K = 1, ..., §) separated by the interlaminar surfaces Il (K = 1,...,8§ — 1)
as shown in Fig. 1.

Let the composite be subject to a certain deformation process in the time interval [zy, 7/]
with the initial time instant 7, related to the undeformed and unstressed body. Using the ap-
proach applied in [1] we assume that the displacement fields, defined for every = € [z, 7;] on £,
may suffer discontinuities across the interlaminar surfaces IIy and that some critical values of
these discontinuities may lead to the loss of the permanent contact between the adjacent layers
Ay, Agy:. In this case the bonding material is no more able to transmit any interlaminar forces
and the only interactions across the interfaces of sheets are due to the possible mutual unilateral
contact between the sheets. Define

5 5-1
A=y Ag, = Ilg.

K=1 K=1
The part of IT where at the time instant 7 € [7,, 7;] (in the process under consideration) such
debonding takes place will be denoted by D(r). From observations and experiments carried out
with real laminates it follows that D(r) consists of many chaotically distributed small surface
elements. Hence D(7) can be referred to as the micro-delaminated part of I7 at the time instant 7.
The mapping
1 if z¢€ D(z),

[70, Tf] 3T —> Xp(n('), Xp(r)(z) E{O it ze¢lIl\ D)

will be called the micro-delamination process. Obviously, D(z;) & D(z,) for every 7; < 7, due to
the time irreversibility of this process.

In this contribution we are to propose a certain phenomenological model of the micro-dela-
mination processes which will be the basis for the mathematical macro-modelling of debonding
processes in multilayered composites. Let /& be the minimum thickness of the laminae and B(z, 7)



be a ball in R3 with a center z € I7 and a radius 7, such that » < A. Then

area [B(z, r) n D(7)]

o ) = e B ) o T

represents the mean density of the micro-delamination at z € IT and at a time instant 7 € [y, 7].
The phenomenological model of delamination will be based on the heuristic assumption that in
every debonding process there exist sufficiently regular functions 6(-, ¢), 7 € [1, 77], defined al-
most everywhere on I7, such that (-, 7) == 6,(-, =) for every r = h. The values §(z, =) will be called
the delamination densities at z € /7 and at the time instant = € [y, 7;]. Moreover, the mapping

[0, 7l 27— 6(7), Oz, 7)€[0,1], zell

will be referred to as the macro-delamination process. It can be assumed that the micro- and macro-
delamination processes are interrelated by

8z, T) = f§(z — @) @) dAE@), zelly (K=1,..,8 1)
Iy

where §(-) is a certain function which makes it possible to treat the macro-delamination density
8(-, v) as the result of a certain filtration of a chaotic distribution D(z) of micro-delaminated
parts of JI. The main feature of the macro-delamination process is that it takes into account
what will be called the partial delamination states in which 0 < 8(z, 7) << 1 for some z € /7 and
7 € [7), 7¢]. The case d(z, 7) = 1 will be referred to as the total delamination at z ¢ IT and at the
time instant v of the deformation process; from the physical point of view this case can be inter-
preted as the micro-delamination in a certain vicinity of z on I1.

The heuristic concepts of the delamination density and that of the macro-delamination pro-
cess constitute the basis for the macro-modelling of debonding processes in laminates. In the
subsequent section the basic assumptions and governing relations for the discrete macro-model
will be formulated.

In the sequel we denote by n(z), z € I7, the unit normal to I7 which for every z € Il is out-
ward to Ag (K =1,...,8 — 1). The unit outward normal to 20 is denoted by n(x}, x € 9%.
For an arbitrary vector field w: /7 — [R3 we introduce the notation

wy() = wiz) - n(m),  Wp() = w(z) — n(z) wy(2).

Moreover, for every field y(-) defined on A, which has well defined traces on 84, we introduce the
jump of this field across 77, setting

[l =y (@ - p(z), 2elly (K=1...,8—1)
where ¢~ (z), y~(2) are the values of the pertinent traces on 04y, 0 [y and 04y n Iy, respecti-
vely.

3 Discrete macro-modelling

Let for every time instant v € [z, 7;] the composite under consideration be subject to the known
body forces b(x, 1), x € A, and the surface tractions p(x, 7), x € I', where I" is the corresponding
part of the boundary 82 of 2. The internal forces will be represented by the Cauchy stress tensor
field T'(z, 1), x € A, and the interlaminar stress vector field i(z, 7), z € I1. The displacement field
at an arbitrary time instant v € [y, 7;] will be denoted by u(x, 7), x € 4. We assume that u(-, v) € V
where V is a linear topological space of sufficiently regular functions defined almost everywhere
on A which have well defined traces on 84, and may suffer discontinuities [u]] (z, v), z € 11, across
the interlaminar surfaces /7. We also assume that on the part Iy of the boundary 0, the traces
Uy(X, ), X € I}, are known for every v € [z, 77], and that mes (1) > 0. In every problem under
consideration the mass density p(x) and the tensor of elastic moduli C(x) are assumed to be known
for almost every x € A. In the sequel we shall introduce the linear operator defined on V

gv = (Vv + (rv)7)/2



and the space V, of the test functions
Vor={ve Viv|, = 0}.

With forementioned denotations and assumptions introduced in Sec. 1 we obtain the stress-
strain relations

T(X: T) = O(X) [E(X7 f)]a E(x, 7) = &u(x,7); X¢€ A, 1€ {70, tf] (31)
for the material of the laminae and the following variational form of the equations of motion:

f tr [T(x, 7) Bv(x)] dV + f t(z, 7) - [v] (z) d4 = f o(x) [b(x, 7) — ii(x, )] - v(x)dV

Q 1 2

+ [0 ¥x)dd WY ETy,  vEm Tl (3.2)
r

Using the approach described in [1] we also have

t(z, v} = s(z, 7} + n(z) r(z, 1), z€ll, 7 € [19, 7] (3.3)

where $(z, ) represents the interlaminar stress due to the bonding material and r(z, 7) is the value
of the reaction to constraints [u]y (z, ) = 0, z € II, resulting from the impenetrability of adja-
cent laminae. Introducing the cone K in V, defined by

K:={ve Vo:[v]s (2) = O for almost every z ¢ IT}

we obtain
u('s 7) € K:
f ([v] (2 — [u] (z,7)) - n@) 7(z,7)d4 =0, VveEK, 7€ fr,1l. (3.4)
n

So far, the approach coincides with that given in [1]. The crucial point of the modelling is to
propose an interrelation between the interlaminar bonding stresses 8(z, ), the delamination den-
sity 6(z, =) and the displacement junps [u]) (z, t), z € /1, in the debonding process. To this aid we
introduce the two following real valued functions:

1. The interlaminar strain energy function n(v), v € [R?, which describes the linear elastic pro-
perties of the bonding material before possible macro-delamination (i.e. for d(z, v} = 0):

(v) = % (ra [0l + 2 [V2),

where yy, vr are the longitudinal and shear moduli, respectively. Introducing for every v € R? the
norm

|V|5 = V(VT)2 _I" f(UN)zy é: > O,

and setting £ = yy/yr, v = [u] (2, 7), we obtain

a([u] (z, 7)) = —12— yr|[u] (2, r)‘%.

Using the denotations ¢(z, 7) = |[u] (z,7)|e o(2,7) = a([u] (z, 7)) we also get o(z, v) = 0.5y7¢*(z, 7).
2. The delamination density function dgz(¢), ¢ = 0, which determines the delamination density
d(z, 7) in term of the supremum of the interlaminar strain energy at z € I in the time interval
[19,7). We assume that dz(-) is a continuous monotone function such that for some oy, 01 (0 = 0g <C 0y)
we have 8g(o) = 0 if ¢ € [0, 0,], and z(c) = 1 if ¢ € [0y, o0). In the simplest case we can assume
that dz(+) is linear in [oy, o1]-

Setting Sv = &n(v)/ov, v € [R3, the interlaminar bonding relations will be postulated in the
form

8(z, 7) = [1 — 8(z, )] S[u] (2, 7), z €11, 7 € [0, /] (3.5)



where

oz, 1) = 05 ( sup a([u] (z, ?)), ze€ll, 7,7 (3.6)
Telzg,)

It can be seen that the functional in (3.6) describes the time irreversibility of the debonding pro-

cess. Alternatively, setting d,(¢) = 8z(0.5yr¢%), ¢ = 0, we can replace (3.6) by

8(z, T) = 6p ( sup |[u] (z, ?)If)’ nell, 7€, (8.7
Telro,7)
We see that if the delamination density increases, then the bonding material is able to transmit
smaller values of the interlaminar tractions s(z, 7).
Together with the initial conditions

ll(X, TO) =0, l'l(X, TO) = VO(X)> X¢ ‘Q: (38)

(3.1)—(3.5) and the conditions (3.6) or (3.7) constitute the governing relations of the discrete
model for delamination processes in the layered composites under consideration. The term discrete
is used to underline the fact that the possible debonding takes place on the discret set of inter-
laminar surfaces I7; (K = 1,..., 8§ — 1).

4 Analysis of discrete models

For the sake of simplicity we confine ourselves to the quasi-stationary debonding processes.
Moreover, applying the time-local approximation introduced i [1] we shall assume that the gover-
ning relations (3.1)— (3.5) have to hold only forv = v, (4 = 0, 1, ..., M) where 7y, 71, ..., Ty = 74
constitute the finite sequence of time instants such that 7, << 7; << --- << 7p. Then for every fixed
74 the values of d(z, v,), z € IT, in (3.5) are known, provided that the solutions to the problems
described by (3.1)—(3.6) have been succesively caleulated for 7, 74, ..., 741, ¢f. [1]. Every such
problem, from the formal point of view, can be treated as time-independent. Setting aside the
argument 7 and introducing the denotations

as(u, v) = ftr [&v(x) (C[&u] (x))] dv + f [1 — 8(z))[v] (=) - S [u] (z) d4,
A

TINA{6)

A(®) := {z € IT: §(z) = 1},
W, fy=[e(x)b(x)-v(x)dV + [p(x) - v(x)d4,
4 r

we obtain from (3.1)— (3.5) the following variational inequality

aV—uu) =2 -unHVveK, uek, 4.1)

the form of which depends on the previously calculated delamination density 4(-).
Using the known denotation for the Sobolev spaces define

Vi {v € (EAQ): ¥l g € (H(AR))P (K =1, ..., )}

and let V* be a dual of 7. Then under the condition that mes (HK \A(é)) >0K=1,...,8§ = 1)
it can be proved that for every f € V* and every Iy such that mes (I';) > 0, there exist the unique
solution u = u(-) to the variational inequality (4.1). The exact analysis of this problem will be
detailed separately.

Summarizing the obtained result we conclude that the quasi-stationary debonding processes in
the laminates under consideration can be described by the sequence of variational inequalities for
the displacement fields u(z,) =u(-, 74), (4 =1, 2, ..., M) given by

By p(V — W), u(Te)) = (v —u(ry), )V VEK, u(m)eK (4.2)



where the delamination density d(z) = d(:, 7) is determined by

0(z, 14) = Op ( sup |[u] (z, rB)lg), zell. (4.3)
Be{led—1}
The problems described by (4.2) can be succesively solved provided that the totally delaminated
part A(B(TA)) of the interlaminar surfaces I7 satisfies the condition in the above stated theorem.
The time-local approximation can be also applied to dynamical delamination processes. In
this case we arrive at the sequence of dynamical problems for functions [z, 7,3] 3 v > u(z) € V,
satisfying the time dependent variational inequalities and the pertinent initial conditions.

5 Continuum modelling

In many engineering problems we deal with laminates made of a large numer of repeating basic
units of laminae, every unit being composed of a few sheets. Such composites have a periodic
structure in the direction n(z), z € Il (K = 1, ..., 8 — 1). Due to the large number of interfaces
Iy, across which the displacement field can suffer a discontinuity, the discrete models of dela-
mination processes, introduced in Sec. 3 , are not plausible in the engineering applications of the
theory (e.g. as a basis of numerical calculations). That is why we shall pass now to the continuum
models of macro-delamination processes. The approach outlined below is based on the microlocal
homogenization approach, [2].

Let every basic unit of the multilayered composite have the thickness ¢ (in the undeformed
state) and made of s thin homogeneous sheets. Let Gy, 0, (@ = 1, ..., s) stand for the tensors of
elastic moduli and the mass densities, resp., in the particular sheets belonging to an arbitrary
basic unit of the laminate. The fragment of the basic unit is shown on Fig. 2 where also the local
coordinates ¢ = Z(x), ¢ € [0, ], is indicated.

Let P! stand for the problem that can be stated as follows: for the periodic laminate with the
basic layer of thickness ¢ (e-periodic laminate) find displacements u(:, 7) and stresses T(:, 7),
v € [7y, 7/], satisfying (3.1)—(3.8) under pertinent regularity conditions, provided that the ma-
terial structure and all external agencies acting on the body are known.

Let P" (n = 2, 3, ...) stand for problems obtained from P! by formal replacing the e-periodic
structure by &/n-periodic structure, all remaining entities in (3.1)—(3.8) being unchanged.
Roughly speaking, we pass from the periodic composite under consideration to a certain periodic
composite in which the basic units of laminae are n-times thinner, but all other quantities in the
problem under consideration remain unchanged. The method of modelling proposed in [2] and
applied below is based on the following.

Homogenization assumption. The solution to the problem P! can be approximated for every n = 2,
3,4, ... by the solution to the problem P".

The forementioned assumption implies that the periodic laminate under consideration has
sufficiently thin basic units (related to all characteristic length dimensions) and hence its macro-
material properties can be approximately treated as independent of the parameter &.

The microlocal approach we are to apply, [2], is based on some notions and theorems of the

Fig. 2. Scheme of the basic unit in a periodic composite

(CO i 07 Cs =&, C € [07 6])




nonstandard analysis, [3, 4]. In the nonstandard analysis we deal not only with the well known
standard real numbers but also with the real numbers that are infinitely large and infinitely
small. From the transfer principle of the nonstandard analysis it follows that if the problem &1
can be approximated by the problem &#" for every positive integer #, then it can be also approxi-
mated by the nonstandard problem &* where w is a certain infinite positive integer, i.e. a natural
number that is greater then all standard natural numbers. From a formal point of view, $ is a
problem of a composite made of an infinite number of infinitely thin basic units having the thick-
ness ¢/ew. It has to be emphasized that no limit passage is applied here and that the problem #7,
&* have only formal meaning as certain approximations of the problem #1.

In order to formulate the second assumption of the microlocal method of modelling, we intro-
duce the functions 2,: R -R (@=1,...,s — 1) and 7,: R —-R (4 = 1,...,s) which are &
periodic and given by

O lf C € [0; Ca»l] U [Ca+1) 5];
ha(é) = (C - Ca.—l)/ﬁa—l if S [ca—b Ca]:
(Ca+1 - C)/%s if ¢ E»[Cm Ca+1]:

iA(f):{—C+5a—8/2 1f CE[O;Ca)’
) ~Ch L te2 i € (Cael

where 7, = ({41 — {,)/e and ¢, is shown in Fig. 2. The main idea of the microlocal modelling is
to look for the solution to the problem &#* in a certain class of functions which involves only stan-
dard functions as the basic unknowns. For the problem under consideration we shall introduce the
Microlocal approximation assumption. The displacement fields u(-, v), 7 € [zy, 7], representing a
solution to the problem #* can be approximated by u(-, 7), such that

u(x, 7) = *w(x, 7) + L Fha(wl)* %X, 7) + L *iol) ¥d4(x, 1), C=1{(x), x€*Q
w w

where the summation convention with respect toa = 1,...,s — L and 4 = 1, ..., s holds, and
where *q?(-), *d4(-), *w() are standard sufficiently regular unknown functions.

Using the known extension principle of the nonstandard analysis, cf. [3], we assign to every
mathematical entity F the entity *# that is called standard, It means that the standard functions
*qa(-), ¥d4(-), *w(-) are uniquely determined by certain functions q2(-), d4(-), w(-), resp., of the well
known standard analysis. Functions w(-, 7), v € [z, 7;], are called the macro-displacement fields
and approximate the digsplacements of the composite at. the time instant 7. It can be observed
that the terms in the microlocal approximation assumption involving g(-), d4(-} are infinitely
small and can be neglected if we restrict ourselves only to the evaluation of displacements. How-
ever, in the evaluation of the displacement gradients all terms in the microlocal approximation
assumption are involved. The functions q%(-,7) (@ = 1, ...,s — 1) are referred to as microlocal
parameters; it can be shown that they describe the effects due to the jumps of material properties
between the adjacent layers, [2]. The functions d4(-, 7) describe the jumps of displacements across
the interfaces of the periodic laminate; we have to notice that the known functions 1,(+) are dis-
continunous. Setting

__1/776; if a=~5 dEd1+...+d3,
lab = 19, f a=5b-+1 Ny — 9 RS
0 otherwise, V=MV VRS2, ve

we can see that the strain tensors E,(x, ) in the a-th material component are determined by
Ey(x, 7) = &W(X, ) + 2N@b(x,7) — Nd(x,7) (a=1,...,s — 1). (6.1)

The vector fields d(-, 7), 7 € [7, 77], will be referred to as the strain incompatibilities.

The main feature of the microlocal modelling is that the non-standard problem &#* under the
constraints for dxsplacements given by the microlocal approximation assumption implies a
certain problem & for the macro- displacements w(-, t}, microlocal parameters q%(-, r) and strain



incompatibilities d(-, ), 7 € [¢9, 77]. At the same time the problem P does not involve any non-
standard entity and represents a certain homogenized model of the e-periodic laminate under
consideration.

Neglecting here all calculations leading from the problem £ to the problem & (for the
particulars cf. [2]) we present below only the governing relations of the problem &P . They comprize:

1. The equations of motion

f tr [T(x, 7) &v(x)]dV = f alb(x, 7) — W(x, D] - ¥(x) AV + [ p(x,7) - v(x) d4
VveVy, Ww(r)€eEV,, 7€yl

where T(x, 7) is called the mean stress tensor, § is the mean mass density defined by ¢ = 70,
4 «-+ + 7.0, and the functional space ¥V, coincides with that introduced in Sec. 3.
2. The constitutive equations for the mean stress
To(x, 7) = ColBa(x, 1)), T(x, 7) = L 7Tu(X,7), x€ 0, ve[n, 7] (5.3)
a=1

where F,(x, 7) is given by (5.1).
3. The stress continuity conditions

[Ta(X> f) - Taﬂ(xz T)] n(x) =0 ((l =1,...,8 — 1)9 xef, v¢ [fOJ Tf] (5'4)

where n(x), X € @2, are unit vectors directed along the local coordinate { = {(x) and the constitu-
tive stress T,(x, t) is determined by means of (5.3).
4, The averaged interlaminar conditions

T(x, 7) n(x) = s(x, 7) + n(x) 7(x, 7),

[ — dx, 9] @ r(x, 1) dV 20, VuckK,, d¢,7)cK,,
@ (5.5)
8(x, 7) = [1 — 6(x, v)] Sd(x, 7),

8(x,7) = 0p ( sup |d(x, ?)15); X €02, 7 € {79, 7]
Tef7y,7)

where the linear operator S and the density delamination function were introduced in Sec. 3 and

where K, is a cone in a certain linear topological space W of vector functions defined almost

everywhere on 2 by K, := {u € W:u(x)-n(x) =0, x € £2}.

5. The initial conditions

wix, 1) =0, WX, 1) =v(X), Xx€8 (5.6)

where vy(-) is the known field belonging to V.

Under the pertinent regularity conditions (5.1)— (5.6) represent the continuum model for the
delamination processes in the periodic multilayered composites. The term continuum model is
used in order to emphasize the fact that the delamination density 6(x, z) is related here to the
region 2 of R3 occupied by the laminate in its undeformed state. Hence the partial as well as

total debonding has to be understood in the averaged form and can take place on certain subsets
of 0.

6  Analysis of eontinuum models

It can be proved that the microlocal parameters ?(x, z) together with the constitutive strains
E,(x, 7) and constitutive stresses can be eliminated from the governing relations listed above.
From (5.1), (5.3) and (5.4) we obtain

T(x, 7) = C[EW(x, 7) — Nd(x,7)], X€Q, 7€ vy, 7] (6.1)



where € is the constant effective tensor of elastic moduli (for the particulars cf. [2]). At the same
time (5.5) yields

(T(x, 7) n(x))y € @ indyg oo (dn(X, 7)) + [1 — 8(x, )} yadu(X, 7),
('I‘(x, 7) n(x))T = [1 — 8(x, ¥)] yrdr(X,7); X €82, 7€ /[, 7]

where we have applied the known denotation @ ind . for the subdifferential of the indicator
function of [0, co] and where we have denoted

(V) =10(0) - ¥(x), (v(x))r = v(x) — n(x) (v(x))y, V(x)€ RS,

for an arbitrary vector field v(-) defined on Q. The crucial point of our procedure is to show that
(6.1) and (6.2) imply

T(X, 7) = G (EW(X, 7)); X €2, 7€ 7, 7], (6.3)

(6.2)

where Gy, (:) is the monotone nonlinear operator defined on the set of all symmetric 3 3-
matrices. Moreover, if (x, 7) < 1, then Gy, ,,(-) is strongly monotone. In most cases the effective
moduli tensor € related to the orthonormal vector basis e;(x) with e,(x) = n(x) has a plane of
elastic symmetry normal to n(x). With the denotation §V/[E]= C/*E,, (all indices run over
1, 2, 3, summation convention holds) and assuming that «,  run over 1, 2, we obtain the follow-
ing explicit form of the mapping (6.3):

N _ (i3s3 _
Teor = Tee[Ew] — < (C=[Ew))",
o 4 (1 — 6) yy
713333 -
788 — 633[5“,] ¢ (Co3[Ew])T, (6.4)

O (1= 0)
T3 —= A%(5) CP[Ew],

where («)t = max {0, «} and where A4:,(0) are elements of the 2x 2-matrix which is the inverse
to the matrix with components 83 -+ 0*33/8,,[(1 — ) y7].

Summing up, we arrive at the conclusion that the continuum model of macro-delamination
processes in multilayered periodic laminates is governed by the variational equation (5.2), the
nonlinear monotone constitutive equation (6.3), the constitutive relation for the delamination
density
) [T 7 a®ly |, ([, 7))y

[1 -6, 7)]yy [1—6(x,%)]y

o(x, 7) = dp ( sup |d(x, ?)15), d(x, 7) (6.5)

Tefto,7)
and by the initial conditions (5.6).
For the sake of simplicity let us confine ourselves to the quasi-stationary problems. Let us also

apply the time-local approximation, following the approach described in Sec. 4. With the deno-
tations

(&v,T) = f tr [T(x) &v(x)]d 7V,
Q

W h= [abx) - v(x)dV 4 [p(x)- v(x)d4,
r

3

we arrive then at the sequence of the nonlinear variational equations of the form
&V, T =iV VeV, Tux) =0, (EWx), xc, wyeV,
A=1,2,..., M)

with the previously calculated d,(-). Let us observe that é(x) = 1 implies (T(X) n(x))T = 0 and

(T(x) n(x))y < 0. Hence if the condition §(x) = 1 holds in a certain part 4 of 2, then the solution
to (6.6) may not exist for an arbitrary system of external forces, i. e. the equilibrium equations

divT(x) + gb(x) =0, x€2nd; T(X)n,x) =px), xeI'nd,
may not be satisfied for an arbitrary b(x) and p(x). It means that the totally delaminated part of

a composite (within the continuum model of delamination) is not able to sustain certain systems
of loadings.

(6.6)



Let us introduce the spaces
VE(Hl(Q))?', Vo={ve V:v|p, =0},
Z={T ¢ (L(Q))P**: div T € (L2(Q))*}},

and assume that the delamination density ¢ = 4(-) ensures the coercivness of the operator G;(-)
defined on (Lz(Q))W“. Then for every f € 173“ and every Iy with mes (1) > 0 there exists the uni-
que solution of (6.6) such that w, € V,, T, € 2. More detailed analysis of this problem will be
given elsewhere.

7 Final remarks

The proposed mathematical models of delamination processes in laminates, due to their relatively
simple form, may constitute the basis not only for the theoretical analysis but also for various
engineering applications including the numerical solution of special problems. Using the time local
approximation and the pertinent step by step procedure we can calculate, after every step, the
delamination density up to the time instant in which the solution does not exist. This procedure
makes it also possible to determine the parts of the composite where the total delamination
takes place in the deformation process under consideration. The analysis of such situations will
be performed separately. Tt must be emphasized, however, that the models proposed involve four
material parameters yy, vp, 0, 01 Which determine the properties of the bonding between the
interfaces of adjacent sheets in laminates. Thus, for the quantitative analysis of special problems,
the forementioned parameters have to be previously evaluated on the basis of experimental
results combined with the heuristic assumptions introduced in this contribution.
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