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Discrete and continuum modelling of delamination processes 

Cz. Woiniak,  Warszawa 

Summary: The chaotic distributions of delaminated surface elements in laminates are described by a macro- 
delamination density function. Using this concept a phenomenological discrete mathematical model of the 
interlaminar debonding processes is proposed. For multilayered periodic composites the discrete model is 
approximated by a certain continuum model of delamination processes. 

Diskrete und kontinuierliche Modelle der Schichtentrennungsvorgiinge 

t~bersicht: Eine chaotische Verteilung yon gelockerten Bereichen yon den Trennfl/ichen yon Schichtwerk- 
stoffen wird durch einc Dichtefunktion der Schichtentrennung modelliert. Diese Darstellnng ermSglicht die 
Formulierung eines ph/~nomenologischen diskreten Modells yon SchichtenCrennungsvorgiingen. Ffir viel- 
schichtige, periodische Verbundwerkstoffe wird das diskrete )5odell dutch ein kontinuierliches Modcll 
approximiert. 

1 Introduction 

In this paper  we deal with composites made of a number  of sheets (laminae) bonded together 
by  very thin layers of a bonding material. We shall assume tha t  the bonding layers can be treated 
as surfaces, i.e. they coincide with the interfaces of adjacent sheets ; the scheme of the composite 
under consideration is shown in Fig. 1. We are to investigate deformation and stresses in such 
laminates taking into account the possibility of the debonding of laminae. The mathematical  
model of debonding processes in layered composites was proposed in [1] where the loss of a per- 
manent  contact between the sheets was uniquely determined by  a certain extremal value of the 
strain energy of the bonding material. However, in many  deformation processes met  in the engine- 
ering practice a chaotic distribution of certain delaminated micro-surface elements between the 
adjacent layers can be observed. This chaotic distribution is due to the unknown a priori non- 
uniform and non-local character of bonding. Moreover, the model introduced in [1] is too in- 
volved to be the basis of engineering applications. 

The main aim of this contribution is to propose and discuss two macroscopic (phenomenologi- 
cal) models of the debonding processes in laminates which take into account the chaotic micro- 
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AK " /  Fig. 1. Scheme of the composite 
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delaminations between the interfaces of sheets. We start  with the discrete macro-modelling of 
delamination described in terms of functions defined on the interlaminar surfaces; the leading 
concept here is tha t  of a delamination density related to these surfaces. If  the number of layers 
is big enough, then the discrete model is not plausible from the point of view of engineering 
applications. That  is, we shall pass to the continuum model of debonding processes where the 
delamination density is related to the region occupied by the whole composite in its undeformed 
state. In  the continuum modelling we apply  the microloeal approach, [2], which takes into account 
some concepts of the nonstandard analysis, [3, 4]. The proposed models are able to describe the 
physical situations met  in engineering, in which only partial  delamination in certain parts  of a 
composite takes place. 

The time-irreversibility of the debonding processes leads to time-nonlocal governing relations 
of the problems considered. However,  for the quasi-stationary debonding processes it is shown that  
after t ime diseretization we obtain a sequence of problems each of them being described by  a 
certain variational inequality in a discrete model or a certain nonlinear equation in a continuum 
model. The solutions to these problems exist and are unique up to the time instant in which the 
total  delamination takes place. The considerations are carried on under the following assumptions : 

i. The material  of separate sheets is homogeneous and linear elastic, 
~i. the ~hin layer s of the interlaminar bonding material  are modelled as surfaces having linear- 
elastic properties and able to t ransmit  only restricted values of the interlaminar tractions, 
iii. after the delamination only the unilateral contact without friction between the adjacent 
laminae is possible, 
iv. the small deformation gradient theory can be applied. 

2 Micro- and macro-delamination 

Let ~9 stands for the regular region in [R s occupied by the undeformed composite made of S dis- 
jointed sheets A g ( K  = 1 . . . . .  S) separated by  the interlaminar surfaces HK (K = 1 . . . . .  S -- 1) 
as shown in Fig. 1. 

Let  the composite be subjec t to a certain deformation process in the time interval [30, 3/] 
with the initial t ime instant  r0 related to the undeformed and unstressed body. Using the ap- 
proach applied in [1] we assume tha t  the displacement fields, defined for every 3 C [v0, ~/] on f2, 
may  suffer discontinuities across the interlaminar surfaces HK and tha t  some critical values of 
these discontinuities may  lead to the loss of the permanent  contact between the adjacent layers 
AK, A K +  1 . In  this case the bonding material  is no more able to t ransmit  any interlaminar forces 
and the only interactions across the interfaces of sheets are due to the possible mutual  unilateral 
contact between the sheets, Define 

S S- -1  

A ~ kJ BE,  H ~  [.3 J~K" 
K = I  K = I  

The par t  of H where at  the time instant  3 C [30, vi] (in the process under consideration) such 
debonding takes place will be denoted by  D(T). From observations and experiments carried out 
with real laminates it follows tha t  D(T) consists of many  chaotically distributed small surface 
elements. Hence D(v) can be referred to as the micro-delaminated par t  of H at  the time instant v. 
The mapping 

1 if z C D ( ~ ) ,  
[30, ~/] ? ~ -> x v ,  l('), ZD,I(z) --~ 

0 if z C H \ D ( v )  

will be called the miero-delamination process. Obviously, D(~I) ~_ D(~2) for every rl < ~ due to 
the t ime irreversibility of this process. 

In  this contribution we are to propose a certain phenomenological model of the miero-dela- 
mination processes which will be the basis for the mathematical  macro-modelling of debonding 
processes in multilayered composites. Let  h be the minimum thickness of the laminae and B(z, r) 
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be a ball in ER 3 with a center  z E / / a n d  a radius r, such tha t  r < h. Then 

area [B(z, r) n D(v)] 
~,(z,  T) 

area [B(z, r) n / / ]  

represents the mean densi ty of the micro-delamination at z E / / a n d  at a t ime ins tant  v E [v0, T/]. 
The phenomenological  model of delaminat ion will be based on the heuristic assumption tha t  in 
every  debonding process there exist sufficiently regular functions ~(., T), w E [30, vl], defined al- 
most  everywhere  o n / / ,  such tha t  6(., w) ~ d~(., v) for every r ~ h. The values 6(z, v) will be called 
the delaminat ion densities at  z E H and at  the t ime ins tant  v E Iv0, vf]. Moreover, the mapping  

[v0, v I] ) v -+ ~(., v), (~(z, 3) E [0, 1], z C H 

will be referred to as the macro-delaminat ion process. I t  can be assumed tha t  the micro- and macro- 
de]amination processes are interrelated by  

8(z, T) : f ~(z -- ~) ~(n(~)(2) d A ( g ) ,  z E HK (K = 1 . . . . .  S - 1) 
He 

where 0(') is a certain funct ion which makes it possible to t reat  the macro-delaminat ion densi ty 
~(., v) as the result of a certain fi l trat ion of a chaotic distr ibution D(v)  of micro-delaminated 
par ts  of H.  The main  feature of the macro-delaminat ion process is tha t  it takes into account  
what  will be called the part ial  delamination states in which 0 < d(z, 3) < 1 for some z E T / a n d  
v C [vo, vj.]. The case d(z, ~) = 1 will be referred to as the total  delamination at z E H and at  the 
t ime ins tant  v of the deformation process; f rom the physical  point  of view this case can be inter- 
preted as the micro-delaminat ion in a certain vicini ty of z on H.  

The heuristic concepts  of the delamination densi ty  and tha t  of the macro-delaminat ion pro- 
cess const i tute  the basis for the  macro-modell ing of debonding processes in laminates. In  the 
subsequent  section the basic assumptions and governing relations for the discrete macro-model  
will be formulated.  

I n  the  sequel we denote by  n(z), z E 11, the uni t  normal  to H which for every Z E H g  is out-  
ward to AK (K = 1 . . . . .  S -- 1). The uni t  outward  normal  to ~D is denoted by  n(x), x C ~f2. 
For  an a rb i t r a ry  vector  field w : T] ~+ [Ra we int roduce the nota t ion  

w~-(z) ~ w(z) .  n(z), WT(Z) - -  W(Z) -- n(z) W~v(Z). 

Moreover, for every field ~(.) defined on A, which has well defined traces on ~A, we introduce the 
jump  of this field a c r o s s / / ,  set t ing 

[yJ] (z) ~ V+(z) - V-(z), z E 1I  K ( K  = 1 , . . . ,  S - 1) 

where y~ (z), F-(z) are the values of the per t inent  traces on ~AK+I n Lr g and ~AK n HK, respecti-  
vely. 

3 Discrete macro-modell ing 

Let  for every t ime ins tant  v E [30, ~j] the composite under  consideration be subject  to the known 
body  forces b(x, v), x E A, and the surface t ract ions p(x, T), x E / ' ,  where F is the corresponding 
par t  of the boundary  ~D of D. The internal  forces will be represented by  the Cauehy stress tensor 
field T(x ,  v), x E A, and the in ter laminar  stress vector  field t(z, r), z E H. The displacement  field 
at  an a rb i t ra ry  t ime ins tant  v E [v0, v I] will be denoted by  u(x, T), x E A. We assume tha t  u(., v) E V 
where V is a linear topological space of sufficiently regular functions defined almost  everywhere 
on A which have well defined traces on ~A, and m a y  suffer discontinuities [u~  (z, v), z E H, across 
the inter laminar  su r f aces / / .  We also assume tha t  on the pa r t / ' 0  of the boundary  ~D, the traces 
u0(x, v), x E /'0, are known for every  T E [30, ~I], and tha t  rues (/'0) > 0. I n  every  problem under  
consideration the mass densi ty  ~(x) and the  tensor of elastic moduli  (](x) are assumed to be known 
for a lmost  every  x E .4. I n  the sequel we shall introduce the linear operator  defined on V 

-(Pv + 
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and the space V0 of the test functions 

Vo:= {v~ V:vlc.  = 0 } .  

With forementioned denotations and assumptions introduced in Sec. 1 we obtain the stress- 
strain relations 

T(x, v) = t3(x) [E(x,v)],  E(x,v) = ~u(x,v);  x E A, v E [v0, vl] (3.1) 

for the material of the laminae and the following variational form of the equations of motion : 

f t r  IT(x, 3) Ev(x)] dV + f t(z, ~). I v ]  (z) dA = f ~(x) [b(x, v) - ii(x, t)]. v(x) dV 

+ f p(x, v).  v(x) dA ~ v(.) E V0, v E [Vo, ~/]. (3.2) 
F 

Using the approach described in [1] we also have 

t(z, = s(z, + n(z) r(z, 3),  z n ,  Iv0, (3.3) 

where s(z, ~) represents the interlaminar stress due to the bonding material and r(z, v) is the value 
of the reaction to constraints [ u ]~  (z, ~) ~ 0, z E H, resulting from the impenetrability of adja- 
cent laminae. Introducing the cone ~ in V0 defined by 

K : :  {v E V0 : ~v]~ (z) > 0 for almost every z E/7} 

we obtain 

u(., ~ ) c  [K, 

f (Iv1] (z) -- lull (z, i ) ) .  n(z) r(z, v) dA > 0, V v E[K, 3 E [v0, v/]. (3.4) 
H 

So far, the approach coincides with that  given in [1]. The crucial point of the modelling is to 
propose an interrelation between the interlaminar bonding stresses s(z, v), the delamination den- 
sity 6(z, v) and the displacement jumps ~-ul] (z, T), z E H,  in the debonding process. To this aid we 
introduce the two following real vwlued functions: 

1. The interlaminar strain energy function ~(v), v E [R a, which describes the linear elastic pro- 
perties of the bonding material before possible maero-delamination (i.e. for ~(z, v) = 0) : 

1 
~(v) = ~ (~'N [v:~l 2 + ~T IVTI~), 

where yz¢, VT are the longitudinal and shear moduli, respectively. Introducing for every v E [Ra the 
norm 

Ivle -= 1/(vT) 2 + ~(v~)~, ~ > 0,  

and setting 8 = Y~V/YT, V ~- lull (Z, v), we obtain 

1 
(z, = I (z, 

Using the denotations e(z, v) = ][[u~ (z, v)l~' a(z, ~) = z([ul] (z, v)) we also get a(z, v) = 0.5yTe2(Z, V). 
2. The delamination density function ~E(a), a > 0~ which determines the delamination density 
~(z, ~) in term of the supremum of the interlaminar strain energy at z E /7  in the time interval 
[v0,v). We assume that  6~.(.) is a continuous monotone function such that  for some ~0, 31 (0 < a0 < ~1) 
we have 6~(a) = 0 if a E [0, a0], and ~(a)  = 1 if a E [a~, oo). In the simplest case we can assume 
that  ~E(') is linear in [a0, 31]. 

Setting Sv ~ a~(v)/~v, v E [R a, the interlaminar bonding relations will be postulated in the 
form 

s(z, ~) = [1 - ~(z, ~)] SEull (z, ~), z ~ H ,  ~ ~ [~0, ~ ]  (3.5) 
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where 

~(z, 3) = ~ ( sup ~ ( I u ]  (~, ~)), ~ ~ II ,  T c [~0, ~A. (3.6) 
~E['%,'r) 

I t  can be seen tha t  the functional in (3.6) describes the time irreversibility of the debonding pro- 
cess. Alternatively, setting OD(e) --~ OZ(0.5yrea), e ~ 0, we can replace (3.6) by 

- -  ( sup (z, z ( [30, 3s] (37) 

We see that  if the delamination density increases, then the bonding material  is able to t ransmit  
smaller values of the interlaminar tractions s(z, v). 

Together with the initial conditions 

u(x, 30) = 0,  fi(x, T0) = v0(x), x c 9 ,  (3.8) 

(3.1)--(3.5) and the conditions (3.6) or (3.7) constitute the governing relations of the discrete 
model for delamination processes in the layered composites under consideration. The term discrete 
is used to underline the fact tha t  the possible debonding takes place on the discret set of inter- 
laminar surfaces/ /K (K ----- 1 . . . .  , S - 1). 

4 Analysis of discrete models 

For the sake of simplicity we confine ourselves to the quasi-stationary debonding processes. 
Moreover, applying the time-local approximation introduced in [1] we shall assume tha t  the gover- 
ning relations (3.1) - (3.5) have to hold only for v --~ vA (A ---- 0, 1 . . . . .  M) where v0, v1 . . . . .  VM ~ 3/ 

constitute the finite sequence of t ime instants such tha t  3o ~ vl ~ . . .  ~ 3M. Then for every fixed 
3A the values of (~(z, vA), z E / / ,  in (3.5) are known, provided tha t  the solutions to the problems 
described by  (3.1)-(3.6) have been succesively calculated for vl, v2 . . . .  , vA-I, ef. [1]. Every  such 
problem, from the formal point of view, can be treated as time-independent. Setting aside the 
argument  v and introducing the denotations 

a~(u, v ) ~  f t r  [~v(x) (C[~u] (x))] dV + f [1 - ~(z)] I v ]  (z) • S lull (z) dA,  
A II\A(~) 

A(6) : =  {z E / / :  6(z) ---- 1}, 

(v,/5 f e(x) b(x). v(x) dV + f p(x). v(x) dA,  
A F 

we obtain from (3.1) - (3.5) the following variational inequality 

a ~ ( v - - u , u ) > ( v - n , / ) V v E  ~ ,  uE ~ ,  (4.1) 

the form of which depends on the previously calculated delamination density 5(.). 
Using the known denotation for the Sobolev spaces define 

V : =  {V E (L2(Q))s: VIA K ~ ( H I ( A K ) )  a (K : 1 . . . . .  S)} 

and let V* be a dual of V. Then under the condition tha t  mes (/ /g \A(~))  > 0 (K : 1 . . . . .  S - 1) 
it can be proved tha t  for e v e r y / E  V* and every F0 such tha t  mes (F0) > 0, there exist the unique 
solution u : u(.) to the variational inequality (4.1). The exact analysis of this problem will be 
detailed separately. 

Summarizing the obtained result we conclude tha t  the quasi-stationary debonding processes in 
the laminates under consideration can be described by  the sequence of variational inequalities for 
the displacement fields u(vA) ~ u(., 3A), (A : 1, 2 . . . .  , M) given by  

~(~)(v  - u(3~), u (~ ) )  => (v - u(~A), / ( ~ ) )  v v c ~ ,  u(3~) E ~ (4.2) 
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where the delamination density d(v) = 6(., v) is determined by 

= ( sup (z, z c 1 i  ( 4 3 )  
~BE{1,...,A-- 1} 

The problems described by  (4.2) can be succesively solved provided that  the totally delaminated 
par t  A(d(~A)) of the interlaminar surfaces H satisfies the condition in the above stated theorem. 

The time-local approximation can be also applied to dynamical delamination processes. In 
this case we arrive at  the sequence of dynamical problems for functions [rA, TA+I] ) r -~ U(~) E V, 
satisfying the t ime dependent variational inequalities and the pert inent initial conditions. 

5 Continuum modelling 

In  many  engineering problems we deal with laminates made of a large numer of repeating basic 
units of laminae, every unit being composed of a few sheets. Such composites have a periodic 
structure in the direction n(z), z E HE (K = 1 . . . . .  S -- 1). Due to the large number of interfaces 
HK, across which the displacement field can suffer a discontinuity, the discrete models of dela- 
mination processes, introduced in See. 3 , are not plausible in the engineering applications of the 
theory (e.g. as a basis of numerical calculations). That  is why we shall pass now to the continuum 
models of maero-delamination processes. The approach outlined below is based on the mierolocal 
homogenization approach,  [2]. 

Let  every basic unit of the multilayered composite have the thickness s (in the undeformed 
state) and made of s thin homogeneous sheets. Let  Ca, ea (a = 1 . . . . .  s) stand for the tensors of 
elastic moduli and the mass densities, resp., in the particular sheets belonging to an arbi trary 
basic unit  of the laminate. The fragment  of the basic unit is shown on Fig. 2 where also the local 
coordinates ~ = ~(x), ~ E [0, e], is indicated. 

Let  P~ stand for the problem that  can be stated as follows : for the periodic laminate with the 
basic layer of thickness e (s-periodic laminate) find displacements u(., v) and stresses T(., v), 
v E [v0, rf], satisfying (3.1)--(3.8) under pert inent regularity conditions, provided that  the ma- 
terial structure and all external agencies acting on the body are known. 

Let  pn (n = 2, 3 . . . .  ) stand for problems obtained from p1 by formal replacing the s-periodic 
structure by  s/n-periodic structure, all remaining entities in (3.1)-(3.8) being unchanged. 
Roughly speaking, we pass from the periodic composite under consideration to a certain periodic 
composite in which the basic units of laminae are n-times thinner, but  all other quantities in the 
problem under consideration remain unchanged. The method of modelling proposed in [2] and 
applied below is based on the following. 
Homogenization assumption. The solution to the problem p1 can be approximated for every n = 2, 
3, 4 . . . .  by  the solution to the problem Pn. 

The forementioned assumption implies tha t  the periodic laminate under consideration has 
sufficiently thin basic units (related to all characteristic length dimensions) and hence its macro- 
material properties can be approximately  treated as independent of the parameter  e. 

The microlocal approach we are to apply, [2], is based on some notions and theorems of the 

~n(xl 

jx 1 x2 Fig.(~o -2"o,Scheme~s = e,°f~ thee [o,basics]) unit in ~ periodic composit e 
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nons tandard  analysis,  [3, 4]. In  the nons tandard  analysis  we deal not  only with the well known 
s tandard  real numbers  bu t  also with the  real n u m b e r s  t h a t  are infinitely large and infinitely 
small.  F r o m  the t ransfer  principle of the  nons tanda rd  analysis  it follows tha t  if the  p rob lem ~1 
can be a p p r o x i m a t e d  b y  the  p rob lem 2n for every  posit ive integer n, then  it can be also approxi -  
ma ted  b y  the  nons tandard  p r o b l e m  3 ~ where co is a certain infinite posi t ive integer,  i.e. a na tura l  
number  t h a t  is grea ter  then  all s tandard  na tu ra l  numbers .  F rom a formal  point  of view, ~ is a 
p rob lem of a composi te  made  of an infinite number  of infinitely th in  basic units  having the thick- 
ness s/co. I t  has to be emphasized t h a t  no l imit  passage is appl ied here and t h a t  the  prob lem 2" ,  
2~  have  only  fo rmal  meaning  as certain approx ima t ions  of the  p rob lem 21. 

In  order  to fo rmula te  the second assumpt ion  of the  microloeal method  of modelling, we intro- 
duce the  funct ions  ha: [R --> [R (a = 1, . . . ,  s -- 1) and iA: [R --> [R (A ~ 1 . . . .  , s) which are e- 
periodic and given b y  

0 if 

(~a+~ - ~)/~o if 

iA(¢) = ~ - ~  + ~a -- e/2 if 
/ - - ~ + ~ a + e / 2  if 

where ~l~ ~ (~a+l - ~a)/e and ~a is shown 
to look for  the  solution to the  prob lem 3 ~ in a certain class of funct ions which involves only s tan-  
dard funct ions  as the  basic unknowns.  For  the  prob lem under  considerat ion we shall in t roduce the  
Microlocal approximation assumption. The d isp lacement  fields u(., t) ,  v ~ [v0, rf], represent ing a 
solution to the p rob lem 2~  can be a p p r o x i m a t e d  b y  ~(., ~), such t ha t  

c [0, ¢o_~] u [¢~+~, ~], 
~ [~,_~, ~ ] ,  

¢ < [~,  ¢~+x], 

in Fig. 2. The main  idea of the  mierolocal modelling is 

fi(x, 3) = *w(x, v) + __1 *h~(m~)* qa(x, z) + __1 */A(co~) *dA( x, T) , g~ = ~(X), x C *t? 
co co 

where the  summat ion  convent ion with respect  to a = 1, . . . ,  s - 1 and A ~ 1, . . . ,  s holds, and 
where *qa(.), *dA(.), *W(.) are s t andard  sufficiently regular  unknown functions.  

Using the  known extension principle of the  nons tanda rd  analysis,  ef. [3], we assign to every  
ma thema t i ca l  en t i t y  P the  en t i ty  *F  t h a t  is called s tandard .  I t  means  t h a t  the s tandard  funct ions 
*q%),  *dA(-), *W(.) are uniquely  de termined b y  certain funct ions qa(.), dA(.), w(.), resp., of the  well 
known s tandard  analysis.  Funct ions  w(., T), T C Iv0, zj], are called the macro-d isp lacement  fields 
and a p p r o x i m a t e  the  d isplacements  of the  composi te  a t  the t ime ins tan t  T. I t  can be observed 
tha t  the  te rms  in the  microlocal app rox ima t ion  assumpt ion  involving q(-), da(.) are infinitely 
small  and can be neglected if we restr ict  ourselves only to the  evaluat ion  of displacements .  How-  
ever, in the eva lua t ion  of the  d isp lacement  gradients  all t e rms  in the microloeal app rox ima t ion  
assumpt ion  are involved.  The  funct ions qa(., 3) (a = 1, . . . ,  s -- 1) are referred to as mierolocal 
pa r ame te r s  ; it can be shown t h a t  they  describe the  effects due to the j umps  of mater ia l  propert ies  
be tween the  ad jacen t  layers,  [2]. The  funct ions  dA(., r) describe the  j umps  of d isplacements  across 
the interfaces of the  periodic l amina te ;  we have  to notice t h a t  the  known funct ions i~(;) are dis- 
continuous.  Set t ing 

1 - -1/~ a if a = b  d ~ d : + . . - + d  s 
2~b : 1/W if a : b +  1 

0 otherwise,  Nv ~ (n @ v + v @ n)/2,  v C [R 3 

we can see t h a t  the  s t rain tensors  Ea(x, v) in the a - th  mater ia l  componen t  are de termined by  

E~(x, v) = g w ( x ,  v) + 2,,,~NqV(x, v) - -  Nd(x,  T) (a = 1, . . . ,  s --  1). (5.1) 

The vector  fields d(., v), r E [v, vl] , will be referred to as the  s t rain incompatibi l i t ies .  
The main  fea ture  of the  microloeal modell ing is t h a t  the non-s tandard  p rob lem 2o, under  the  

constraints  for  d isp lacements  given b y  the microlocal app rox ima t ion  assumpt ion  implies a 
certain p rob lem ~ for  the macro-d isp lacements  w(-, v), microlocal pa ramete r s  qa(., r) and s t rain 
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incompatibilities d(., 3), v E [v0, vl]. At the same time the problem P does not involve any non- 
standard enti ty and represents a certain homogenized model of the s-periodic laminate under 
consideration. 

Neglecting here all calculations leading from the problem 3 ~ to the problem ~ (for the 
particulars cf. [2]) we present below only the governing relations of the problem ~.  They comprize : 

]. The equations of motion 

f t r  IT(x, 3) ~v(x)] d V = f ~[b(x, 3) - ~(x, v)]. v(x) d V + f p(x, v). v(x) dA 

~ r (5.2) 
V v ~ V0, w(., 3) ~ V0, ~ c [30, ~z] 

where T(x, 3) is called the mean stress tensor, ~ is the mean mass density defined by ~ - -  Vl~ 
+ ... + ~/~ and the functional space V0 coincides with that  introduced in See. 3. 
2. The constitutive equations for the mean stress 

Ta(x, v) = Ca[E~(x, 3)], T(x, 3) = ~ ~aTa(x, v), x E zg, v E Iv0, 3/] (5.3) 
a = l  

where Ea(x, 3) is given by (5.1). 
3. The stress continuity conditions 

[ T a ( x , v ) - T a + i ( x , v ) ] n ( x ) = 0  ( a =  1 . . . . .  s -  1), x E . Q ,  vE [Vo, V/] (5.4) 

where n(x), x E Y2, are unit vectors directed along the local coordinate ~ = ~(x) and the constitu- 
tive stress Ta(x, 3) is determined by means of (5.3). 
4. The averaged interlaminar conditions 

~(x, 3) n(x) = s(x, 3) + n(x) r(x, 3), 

f [ u ( x ) - d ( x , v ) ] . n ( x ) r ( x , v ) d V > 0 ,  V u E [ K . ,  d(.,v) E[K,, 

(5.5) 
s(x, v) ~- [1 -- ~(x, v)] Sd(x, 3), 

~(x, 3) = ~D ( sup Id(x, ~)]~/; x C f 2 ,  vE [v0, V/] 
~E[ro,T) l 

where the linear operator S and the density delamination function were introduced in Sec. 3 and 
where [K n is a cone in a certain linear topological space W of vector functions defined almost 
everywhere on Y2 by K~ :=  {u E W: u(x) • n(x) > 0, x E f2}. 
5. The initial conditions 

w(x, v0) = 0, w(x, r0) = v0(x), x C ~ (5.6) 

where v0(') is the known field belonging to V0. 
Under the pert inent regularity conditions (5 .1)-  (5.6) represent the continuum model for the 

delamination processes in the periodic multilayered composites. The term continuum model is 
used in order to emphasize the fact that  the delamination density (~(x, 3) is related here to the 
region z9 of [Ra occupied by the laminate in its undeformed state. Hence the partial as well as 
total debonding has to be understood in the averaged form and can take place on certain subsets 
of zg. 

6 Analysis of continuum models 

I t  can be proved that  the microlocal parameters qa(x, v) together with the constitutive strains 
Ea(x, v) and constitutive stresses can be eliminated from the governing relations listed above. 
From (5.1), (5.3) and (5.4) we obtain 

T(X, 3) = C[~W(X, z) -- Nd(x, T)], x E -(2, "c E [vo, "Q] (6.1) 
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where C is the constant effective tensor of elastic moduli (for the particulars cf. [2]). At the same 
time (5.5) yields 

(T(x, 3) n(x))~ C 8 indt0,~](dx(x , 3)) + [1 -- 8(x, v)] y~vd~T(x, v), 
(6.2) 

(T(x, 3) n(X))T= [1--  8(X, V)] vTdr(x, 3); X ~ D ,  3E [V0, V/] 

where we have applied the known denotation 8 ind[0.~ ] for the subdifferential of the indicator 
function of [0, c~] and where we have denoted 

- . ( x ) v ( x ) ,  - v ( x )  - 

for an arbitrary vector field v(.) defined on .(2. The crucial point of our procedure is to show that  
(6.1) and (6.2) imply 

T(x, v) : G~(x.,)(~w(x, 3)); x C £2, v e [v0, v/l, (6.3) 

where G~(x.t)(') is the monotone nonlinear operator defined on the set of all symmetric 3× 3- 
matrices. Moreover, if 8(x, v) ~ 1, then G~(x,~)(. ) is strongly monotone. In most cases the effective 
moduli tensor C related to the orthonormal vector basis e~(x) with e~(x) = n(x) has a plane of 
elastic symmetry normal to n(x). With the denotation ~ii[E] ~ OijktEkt (all indices run over 
1, 2, 3, summation convention holds) and assuming that  ~,/3 run over 1, 2, we obtain the follow- 
ing explicit form of the mapping (6.3) : 

~af133 
- (~3~[~w])+, ~"~ = ~ P [ S w ]  O 3883 + (1 - 8) ~x 

0 3 3 3 3  (~33[~W])+ ' (6.4) 
T33 _ ~_)33[~w] _ 0 3333 -~- (1 - -  8) YN 

~:~ : A~,(8) ~'318w], 

where (~)+ ~ max {0, c~} and where A.~(8) are elements of the 2 × 2-matrix which is the inverse 
to the matrix with components ~ + C~3~3/8~,[(1 - 8) YT]. 

Summing up, we arrive at the conclusion that  the continuum model of macro-delamination 
processes in multilayered periodic laminates is governed by the variational equation (5.2), the 
nonlinear monotone constitutive equation (6.3), the constitutive relation for the delamination 
density 

. ( X )  [~(x, ¥) ¥) n(X))T 
8(x, ~) --- 8D ( sup Id(x, ~)1~), d(x, ~) = + , (6.5) 

~[~0.~) [1 --  6 (x ,  ¥)]  y~- [1 - -  ~ (x ,  ¥)] YT 
and by the initial conditions (5.6). 

For the sake of simplicity let us confine ourselves to the quasi-stationary problems. Let us also 
apply the time-local approximation, following the approach described in Sec. 4. With the deno- 
tations 

(~v, - f tr [T(x) 8v(x)] d V, 
Q 

(v,/) = f 6b(x). v(x) dV + f p(x). v(x) dA, 
D F 

we arrive then at the sequence of the nonlinear variational equations of the form 

(~v,  ~ )  = (v , /~ )  V v ~ v0, ~ ( x )  = ( ~ ) ( ~ w ~ ( x ) ) ,  x ~ ~ ,  w~ ~ v0 
(6.6) 

(A = 1, 2 . . . . .  M) 

with the previously calculated 8~(.). Let us observe that  8(x) = 1 implies (T(x) n(X))T = 0 and 
(T(x) n(x))~- ~ 0. Hence if the condition 8(x) = i holds in a certain part A of (2, then the solution 
to (6.6) may not exist for an arbitrary system of external forces, i. e. the equilibrium equations 

d i v T ( x ) + S b ( x ) = 0 ,  x ~ £ 2 ~ A ;  T(x) n~.n(x)=p(x),  x ~ / l ~ A ,  

may not be satisfied for an arbitrary b(x) and p(x). I t  means that  the totally delaminated part of 
a composite (within the continuum model of delamination) is not able to sustain certain systems 
of loadings. 
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Let us introduce the spaces 

v =- ( w ( o ) ) 3 ,  Vo =- {v v :  vl o = o}, 

X--~ {T C (L2(~9))a×a: div T C (L~(O))a}, 

and assume tha t  the delamination density 6 = ~(.) ensures the coereivness of the operator Ga(.) 
defined on (L2(~)) a×a. Then for every / E V~ and every 1"0 with mes (F0) > 0 there exists the uni- 
que solution of (6.6) such tha t  wA E V0, TA E 2:. More detailed analysis of this problem will be 
given elsewhere. 
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7 Final remarks 

The proposed mathematical  models of delamination processes in laminates ~ due to their relatively 
simple form, may  constitute the basis not only for the theoretical analysis but also for various 
engineering applications including the numerical solution of special problems. Using the time local 
approximation and the pert inent  step by  step procedure we can calculate, after every step, the 
deiamination density up to the t ime instant  in which the solution does not exist. This procedure 
makes it also possible to determine the parts  of the composite where the total  delamination 
takes place in the deformation process under consideration. The analysis of such situations will 
be performed separately. I t  must  be emphasized, however, that  the models proposed involve four 
material  parameters  7~T, 7T, a0, al which determine the properties of the bonding between the 
interfaces of adjacent sheets in laminates. Thus, for the quanti tat ive analysis of special problems, 
the forementioned parameters  have to be previously evaluated on the basis of experimental 
results combined with the heuristic assumptions introduced in this contribution. 

References 

1. Naniewicz, Z. ; Wolniak, Cz. : On a quasi-stationary model of debonding processes in layered composites. 
Ing. Arch. 58 (1988) 403--412 

2. Wolniak, Cz. : A nonstandard method of modelling of thermoelastic periodic composites. Int. J. Eng. Sci. 
25 (1987) 483--498 

3. l~obinson, A.: Non-standard analysis. Amsterdam: North Holland 1966 
4. Wo~niak, Cz. : Nonstandard analysis in mechanics. Adv. Mech. 9 (1986) 3--35 

Received March 28, 1989 

Prof. Dr. Cz. Wolniak 
Institute of Fundamental Technological Research 
Polish Academy of Science 
Swi~tokrzyska 21 
PL-00-043 Warszaw~ 
Poland 


