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Abstract

We give a formula to compute the number of permutations with a

prescribed descent set in quadratic time. We give the generating function

of the number of permutations with a periodic descent set. We introduce

an algorithm generating uniformly distributed random permutations with

a prescribed descent set.

1 Statement of the results

Let σ be permutation of {1, 2, . . . N}. The descent set of σ, D(σ), is the set of
integers i ∈ [1, N − 1] such that σ(i) > σ(i+ 1). For instance, D(Id) = ∅. If σ
is an alternating permutation, that is, if

σ(1) > σ(2) < σ(3) > σ(4) . . .

then D(σ) = [1, N − 1]− 2N.
The aim of this paper is to study permutations of {1, 2, . . . N} with a pre-

scribed descent set A ⊂ [1, N − 1]. We first give a method to compute this
number efficiently, namely, using O(N2) elementary computations, while the
classical formula based on an inclusion-exclusion argument uses an exponen-
tial number of elementary computations. Next, given a periodic pattern of
ascents and descents, we give a complete expression of the exponential generat-
ing function of permutations whose descent set follows this pattern. Finally, we
introduce an algorithm generating at random, with uniform probability, permu-
tations with a given descent set. Our first theorem is the following:

Theorem 1 Fix an integer N ≥ 2 and a set A ⊂ [1, N −1]. Define by descend-
ing induction a sequence of polynomials (fi, 1 ≤ i ≤ N) as follows:
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• fN = 1

• If i ∈ A,

fi(x) =

∫ x

0

fi+1(y)dy

• If i /∈ A,

fi(x) =

∫ 1

x

fi+1(y)dy

Let QN (A) be the number of permutations of {1, 2, . . . N} with descent set A.
Then

QN (A) = N !

∫ 1

0

f1(y)dy

The reason why we use descending induction, rather than regular induc-
tion, will appear in Theorem 3. An easy inclusion-exclusion argument (see for
instance [B], Chapter 1) gives

QN (A) =
∑

B⊂A

(−1)|A|−|B|gN (B) (1)

where the function gN is defined as follows. If B = ∅, then gN (B) = 1. Other-
wise, there exists k ∈ [1, N −1] such that B has the form B = {i1 < i2 . . . < ik}
and in that case

gN (B) =
N !

(N − ik)!(ik − ik−1)! . . . (i2 − i1)!i1!

However, in order to use (1), one needs to compute 2N−|A| terms. By com-
parison, Theorem 1 only requires the computations of the coefficients of N
polynomials of degree 0 to N − 1, which means computing O(N2) coefficients.
Moreover, each coefficient can be computed using only one elementary compu-
tation, except for the constant coefficients. It is easily seen that calculating the
constant coefficient of fd requires N − d elementary computations. Hence the
number of elementary computations in Theorem 1 is O(N2). Another efficient
method to compute QN is given by Viennot [V].

Theorem 1 also gives access to comparison results. For a permutation σ of
[1, N ], say that m ∈ [2, N − 1] is a local extremum if either σ(m− 1) < σ(m) >
σ(m+ 1) or σ(m− 1) > σ(m) < σ(m+ 1). Then we have

Corollary 1 For B ⊂ [2, N − 1], let F (B) be the number of permutations of
[1, N ] with set of local extrema B. Then F : P({2, 3, . . . n − 1}) → N is an
increasing function.

Of course, such results are more difficult to derive using alternating sums
such as (1). The fact that the maximum of F is achieved for alternating per-
mutations was first observed by Niven [N], see also [BR]. Our next result deals
with the case of a periodic descent set.
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Theorem 2 Let p ≥ 2 be an integer, fix a set A ⊂ {1, 2, . . . p} and put

A∞ = ∪∞
n=0A+ np

For each integer n ≥ 1, let dn be the number of permutations of {1, . . . , n} with
descent set

A∞ ∩ [1, n− 1]

Let ω1, . . . ωp be the p-th roots of 1 (resp -1) if p− |A| is even (resp. odd). For
k, l ∈ [1, p], put

gk,l(t) =

∞
∑

n=0

(ωkt)
np+l

(np+ l)!

Then there exists a rational function RA ∈ Z(X1, . . . , Xp(p+1)), which can be
computed explicitely using equations (7) through (17), such that

∞
∑

n=1

dnt
n

n!
= RA(ω1, . . . , ωp, g1,1(t), . . . , gp,p(t))

Equations (7) to (17) are given in Section 3. We shall see that these ex-
pressions involve matrices of size µp × µp, where µ = p − |A| is the number of
ascents in a period. Theorem 2 generalizes the classical theorem by André [A]
for alternating permutations:

∞
∑

n=0

dnt
n

n!
=

1 + sin(t)

cos(t)

where we agree that d0 = 1. More recent results were established by Carlitz
(see [C] for instance) and Mendes-Remmel-Riehl [MRR] in the case µ = 1. We
shall see how to recover these results from our method in Section 3.

For the first-order asymptotics, see [LM] and [BHR]. For every set A, one
can compute RA using (7) to (17) and derive the asymptotics from the zeros
of the denominator, using the classical tools of analytic combinatorics. See for
instance the analysis of alternating permutations as Example IV.35 in [FS].
However, our approach does not provide the general form of the denominator.

Finally, we introduce an algorithm generating uniform random permutations
with a given descent set. We begin by a simple remark, which was already
used in [ELR] among others. Let Y = (Y1, . . . YN ) be a sequence of distinct
reals in [0, 1]. We can construct from Y a permutation σY as follows. Let
k1 ∈ {1, 2, . . . N} be the integer such that Yk1

is minimal in {Y1, . . . YN} and
put σY (k1) = 1. Then, let k2 ∈ {1, 2, . . . N}− {k1} be the integer such that Yk2

is minimal in {Y1, . . . YN} − {Yk1
}, put σY (k2) = 2 and so on. To recover σY

from Y , one can use a sorting algorithm.
One can define the descent set D(Y ) of a sequence of reals Y as for a permu-

tation and clearly, D(Y ) = D(σY ). Moreover, if Y is chosen according to the
Lebesgue measure on [0, 1]N , then σY is uniformly distributed over all permu-
tations of {1, 2, . . . N}. As a consequence, if Y is chosen uniformly at random
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among all sequences with descent set A, that is, if its density with respect to
the Lebesgue measure on [0, 1]N is

C1{D(Y )=A} (2)

for some constant C > 0, then σY is uniformly distributed over all permuta-
tions with descent set A. Therefore, we want to find an algorithm constructing
a random sequence with descent set A.

Algorithm Using iid random variables (U1, . . . UN ), uniform on [0, 1], and
the functions fi defined in Theorem 1, construct a sequence Y = (Y1, . . . YN ) as
follows:

• Y1 is the real in [0, 1] such that

∫ Y1

0

f1(y)dy = U1

∫ 1

0

f1(y)dy

• For i ∈ [1, N − 1], Yi+1 is the only solution in [0, 1] of the equation

fi(Yi+1) = Ui+1fi(Yi) (3)

Finally, recover the permutation σY from Y by sorting.

Theorem 3 The algorithm described above yields a random permutation of
{1, 2, . . . N}, uniformly distributed over all permutations with descent set A.

To see that the algorithm is well-defined, suppose for instance that i ∈ A.
Then (3) becomes

∫ Yi+1

0

fi+1(y)dy = Ui+1fi(Yi) (4)

Since the function fi is nonnegative on the interval [0, 1], (4) clearly has a unique
solution on [0, 1].

We shall not study in detail the complexity of the algorithm. Nevertheless,
let us make a few comments.

First, remark that a simple rejection algorithm would have exponential com-
plexity. Indeed, if we draw a permutation at random , the most likely profile
is the alternating case, and the probability for a random permutation of length
N to be alternating is ∼ 4

π (2/π)
N (see Example IV.35 in [FS]). Therefore, the

average number of times one has to draw a permutation before finding one with
the prescribed descent set is at least c(π/2)N .

Using our algorithm, we need to compute the functions fi, which can be done
using O(N2) elementary computations, as already seen. The last step, namely
sorting the sequence Y to deduce σY , has an average complexity O(N logN) if
one uses randomized quicksort. What is more intricate is to evaluate the time
needed to generate the variables Yi, which amounts to solvingN equations of the
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form (4). We shall not discuss this from a theoretical point of view. However,
some experimental results are given at the end of the paper. Typically, our
algorithm can generate permutations of length a few thousands.

In the particular case of alternating permutations, other algorithms with a
better complexity can be found in [BRS] and [M].

We now proceed to the proof of the results. We first prove Theorem 3 and
deduce Theorem 1 and Corollary 1 in Section 2. Section 3 is devoted to the
proof of Theorem 2. Finally, a possible implementation of our algorithm in
Maple is given in Section 4.

2 Proof of Theorems 1 and 3

First, observe that there are obvious symmetries in the problem. If one replaces
σ(i) with N + 1 − σ(i) for each i, then A is replaced with its complement. If
σ(i) is replaced with σ(N + 1− i) for each i, then A is replaced with N −A.

Let us prove Theorem 3. One can re-formulate the algorithm, using the
notion of conditional density of a random variable, as follows:

• Y1 has density f1/
∫ 1

0
f1(y)dy.

• If i ∈ A, conditionally on Yi, Yi+1 has density 1[0,Yi]fi+1/fi(Yi).

• If i /∈ A, conditionally on Yi, Yi+1 has density 1[Yi,1]fi+1/fi(Yi).

As a consequence, the density of the sequence Y = (Y1, . . . , YN ) with respect to
the Lebesgue measure on [0, 1]N is equal to the telescopic product

f1(Y1)
∫ 1

0
f1(y)dy

×
f2(Y2)

f1(Y1)
× . . .×

fN (YN )

fN−1(YN−1)
1{D(Y )=A}

=
1

∫ 1

0
f1(y)dy

1{D(Y )=A}

which is exactly the form required in (2). Therefore, σY is uniformly distributed
over all permutations with descent set A. This proves Theorem 3.

Let us deduce Theorem 1. If a permutation of {1, . . . n} is drawn uniformly
at random, the probability that its descent set is A is

∫ 1

0

dy1 . . .

∫ 1

0

dyN1{D(Y )=A}

But this probability is also equal to

QN (A)

N !

Using the formula for the density of Y , we find that

1
∫ 1

0
f1(y)dy

∫ 1

0

dy1 . . .

∫ 1

0

dyN1{D(y)=A} = 1
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whence

QN (A) = N !

∫ 1

0

f1(y)dy

which proves Theorem 1.
Finally, let us prove Corollary 1. It suffices to prove that if B, B̃ are two

subsets of [2, N − 1] with B̃ = B ∪ {m}, m /∈ B, then the number of permuta-
tions with set of extrema B is smaller than the number of permutations with
set of extrema B̃. Using the symmetries of the problem, it suffices to count
permutations with set of extrema B, B̃ ending with a descent. If we impose this
condition, let A, Ã be the corresponding descent sets. Using A, Ã we define by
descending induction the polynomials fi, f̃i as in Theorem 1.

Now define the polynomials hi, 1 ≤ i ≤ N by hN = 1 and hi(x) = fi(x)
if i ∈ A while hi(x) = fi(1 − x) if i /∈ A. Remark that for i ≤ N − 1, the hi

are increasing functions on [0, 1] such that hi(0) = 0. Besides, one can directly
define the hi by descending induction as follows. First, hN = 1 and then, if
i /∈ B,

hi(x) =

∫ x

0

hi+1(y)dy (5)

while if i ∈ B,

hi(x) =

∫ x

0

hi+1(1− y)dy (6)

Likewise, define the polynomials h̃i, 1 ≤ i ≤ N by h̃N = 1, h̃i(x) = f̃i(x) if
i ∈ Ã and h̃i(x) = f̃i(1− x) if i /∈ Ã.

Since B̃ = B ∪ {m}, we have h̃i = hi for i > m. Moreover, using (5) and
(6), we get that h̃m(x) > hm(x) for every x ∈ (0, 1] and by induction, for every
i < m and every x ∈ (0, 1], h̃i(x) > hi(x). Integrating this inequality for i = 1,
we get the result.

Remark

The coefficients of the polynomials fi can be computed by induction. Put

fN−i(x) =

i
∑

k=0

a
(i)
k xk

First, a
(0)
0 = 1. Next, if N − i ∈ A, then a

(i+1)
0 = 0 and for k ≥ 0,

a
(i+1)
k+1 =

a
(i)
k

k + 1

On the other hand, if N − i /∈ A, then for k ≥ 0,

a
(i+1)
k+1 = −

a
(i)
k

k + 1

and

a
(i+1)
0 =

i
∑

k=0

a
(i)
k

k + 1
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Therefore, if N − i /∈ A,

a
(i+1)
0 =

i
∑

j=0

a
(i−j)
0

(j + 1)!
(−1)|A

c∩[N−i+1,N−1]|

By recursion, this leads to (1), which provides an alternative proof of Theorem
1.

3 Proof of Theorem 2

Define by induction the sequence of polynomials (fn) by

• f0 = 1

• If i ∈ A∞, i ≥ 1

fi(x) =

∫ x

0

fi−1(y)dy

• If i /∈ A∞, i ≥ 1

fi(x) =

∫ 1

x

fi−1(y)dy

We claim that

dN = N !

∫ 1

0

fN−1(x)dx

Indeed, Theorem 1 tells us that the right-hand side is the number of permu-
tations with length N and descent set N − DN . Using the symmetries of the
problem, we see that this is equal to the number of permutations with length
N and descent set DN .

Consider the bivariate generating function

F (x, y) =

∞
∑

n=0

ynfn(x)

Then we have
∞
∑

n=1

dn
n!

yn =

∫ 1

0

yF (x, y)dx

So it is sufficient to compute F . Let µ be the number of ascents in a period,
µ = p− |A|. By differentiating,

∂pF (x, y)

∂xp
= (−1)µypF (x, y)

Solutions of this differential equation have the general form

F (x, y) =

p
∑

k=1

ak(y)e
ωkyx
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where the ωk are the p-th roots of 1 if µ is even and the p-th roots of −1 if µ is
odd, and where the ak are power series:

ak(y) =
∑

n≥0

ak,ny
n

Since f0 = 1,
p

∑

k=1

ak,0 = 1

Next, we can re-express

fn(x) =
n
∑

l=0

p
∑

k=1

ωl
kx

l

l!
ak,n−l

and so

f ′
n+1(x) =

n
∑

l=0

p
∑

k=1

ωl+1
k xl

l!
ak,n−l

If n ≥ 1 is a descent, fn(0) = 0 whence

p
∑

k=1

ak,n = 0

If n ≥ 1 is an ascent, fn(0) = 1 whence

p
∑

k=1

ak,n = −
n
∑

j=1

p
∑

k=1

ak,n−jω
j
k

j!

Moreover, f ′
n+1 = fn or −fn according as whether n is a descent or an ascent.

Therefore, for all n, j ≥ 0, identifying the coefficient of xj in the polynomials
fn+j and f ′

n+j+1, we find that if n+ j + 1 is a descent,

p
∑

k=1

ak,nω
j
k =

p
∑

k=1

ak,nω
j+1
k

and if n+ j + 1 is an ascent,

p
∑

k=1

ak,nω
j
k = −

p
∑

k=1

ak,nω
j+1
k

This leads to the following matrix expression. Put

Bn =







a1,n
...

ap,n






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Let V be the Vandermonde matrix

V =











1 . . . 1
ω1 . . . ωp

...
...

ωp−1
1 . . .ωp−1

p











(7)

For each n ≥ 0 put

Un =







un,10. . .0
...

...
...

un,p0. . .0







where
un,1 = 1 (8)

and for every j ≥ 1, if n + j is a descent, un,j+1 = un,j while if n + j is an
ascent, un,j+1 = −un,j . In other words,

un,j+1 = un,j × (−1)1{n+j /∈A∞} (9)

Next, put ρ0 = 1 and for n ≥ 1, if n is a descent, put ρn = 0 and if n is an
ascent,

ρn = −
n
∑

j=1

p
∑

k=1

ak,n−jω
j
k

j!

Then we have the matrix equality

V Bn = Un











ρn
0
...
0











That is,

Bn = V −1Un











ρn
0
...
0










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Let us now express the generating series of ρn. For every i ∈ [1, p],

∞
∑

n=1

ρnt
nun,i = −

p
∑

k=1

∞
∑

n=1

n−1
∑

j=0

ak,j
ωn−j
k

(n− j)!
un,it

n1{n/∈A∞}

= −

p
∑

k=1

∞
∑

j=0

∞
∑

n=j+1

ak,j
ωn−j
k

(n− j)!
un,it

n1{n/∈A∞}

= −

p
∑

k=1

∞
∑

j=0

∞
∑

m=1

ak,j
ωm
k

m!
um+j,it

m+j1{m+j /∈A∞}

= −

p
∑

k=1

p−1
∑

l=0

∞
∑

n=0

ak,np+lt
np+l

∞
∑

m=1

(ωkt)
m

m!
um+l,i1{m+l/∈A∞}

Thus let us put, for k ∈ [1, p]

hk,l(t) =

∞
∑

n=0

ak,np+lt
np+l

and for k ∈ [1, p], l ∈ [0, p− 1] and i ∈ [1, p],

fk,l,i(t) =

∞
∑

n=1

(ωkt)
n

n!
un+l,i1{n+l/∈A∞}

Then we can re-express, for every i ∈ [1, p],

∞
∑

n=1

ρnt
nun,i = −

p
∑

k=1

p−1
∑

l=0

hk,l(t)fk,l,i(t)

In matrix terms, this gives

∞
∑

n=1

tnUn











ρn
0
...
0











=







∑p
k=1

∑p−1
l=0 hk,l(t)fk,l,1(t)

...
∑p

k=1

∑p−1
l=0 hk,l(t)fk,l,p(t)







whence

∞
∑

n=1

tnBn =







∑p
k=1 h1,l(t)− a1,0

...
∑p

k=1 hp,l(t)− ap,0






= −V −1







∑p
k=1

∑p−1
l=0 hk,l(t)fk,l,1(t)

...
∑p

k=1

∑p−1
l=0 hk,l(t)fk,l,p(t)







We want to deduce an expression of the functions hk,l from the equality above.
To do so, put, for k ∈ [1, p], l ∈ [0, p− 1], m ∈ [1, p] and i ∈ [1, p],

gk,l,m,i(t) =

∞
∑

n=0

(ωkt)
np+m

(np+m)!
um+l,i1{m+l/∈A∞}

10



Then for l ∈ [0, p− 1],







h1,l(t)− a1,01{l=0}

...
hp,l(t)− ap,01{l=0}






= −V −1







∑p
k′=1

∑p−1
l′=0 hk′,l′(t)gk′,l′,l−l′,1(t)

...
∑p

k′=1

∑p−1
l′=0 hk′,l′(t)gk′,l′,l−l′,p(t)







where the index l − l′ in the right-hand side is to be taken modulo p. So let
H(t) be the p2-dimensional vector with entries in C[[t]] defined by

H(t) =









































h1,0(t)
...

hp,0(t)
h1,1(t)

...
hp,1(t)

...
h1,p−1(t)

...
hp,p−1(t)









































(10)

Likewise, let B be the p2-dimensional vector with entries in C defined by

B =





















a1,0
...

ap,0
0
...
0





















(11)

where the first p entries are given by






a1,0
...

ap,0






= V −1







u0,1

...
u0,p






(12)

For l ∈ [0, p − 1], let Gl be the p × p2 matrix with entries in C[[t]] defined as
follows. For k ∈ [1, p], l′ ∈ [0, p− 1], k′ ∈ [1, p], put

(Gl)k,l′p+k′ = gk′,l′,l−l′,k(t)

Then for l ∈ [0, p− 1],






h1,l(t)
...

hp,l(t)






= −V −1GlH(t)
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Finally, let G be the p2 × p2 matrix with entries in C[[t]] defined by

G =







G0

...
Gp







In other words, if l > l′,

Glp+k,l′p+k′ =

∞
∑

n=0

(ωk′t)np+l−l′

(np+ l − l′)!
ul,k1{l/∈A∞} (13)

whereas, if l ≤ l′,

Glp+k,l′p+k′ =

∞
∑

n=1

(ωk′t)np+l−l′

(np+ l − l′)!
ul,k1{l/∈A∞} (14)

Remark that G has valuation 1.
Let V be the p2 × p2 matrix, V being diagonal by blocks and given by

V = −











V −1 0 . . . 0

0 V −1. . . 0
...

. . .
...

0 . . . 0 V −1











(15)

Then
H(t)−B = VGH(t)

whence
H(t) = (I −VG)−1B (16)

Remark that each entry of G is either 0 or has the form ±gk,l(t) with the
functions gk,l(t) defined in Theorem 2. Moreover, using the formula for the
inversion of matrices, we check that the entries of V have a rational expression,
with integer coefficients, in terms of the roots ω1, . . . , ωp. Therefore, H itself
has a rational expression, with integer coefficients, in terms of the ωk and the
gk,l(t), and so have all the functions hk,l(t). Finally,

∞
∑

n=1

dn
n!

tn =

∫ 1

0

tF (x, t)dx =

p
∑

k=1

p
∑

l=1

hk,l(t)
eωkt − 1

ωk
(17)

and each term
eωkt − 1

ωk

also has a rational expression, with integer coefficients, in terms of the ωk and
the gk,l(t). This establishes the existence of the rational function RA as stated
in Theorem 2. �
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Note that, according to (13) and (14), if l is a descent, all the lines of the
matrix G between l+ 1 and l+ p are 0. So we may suppress these lines and we
are lead to a system of size µp× µp instead of p2 × p2.

Example. Let us examine the case when when µ = 1. Suppose that the
only ascent is at position j ∈ [1, p]. First, the ωk are roots of −1: for 1 ≤ k ≤ p,

ωk = exp

(

(2k + 1)iπ

p

)

Next, it turns out that hk,l(t) = 0 whenever l 6= j, whence

∞
∑

n=1

dn
n!

tn =

p
∑

k=1

hk,j(t)
eωkt − 1

ωk

In that case, the vector H from (10) becomes p-dimensional:

H(t) =







h1,j(t)
...

hp,j(t)







To compute H, define the p-dimensional vector U by

U =





















1
...
1
−1
...
−1





















where the first j entries are 1 and the last p− j entries are −1. The matrix G(t)
becomes a p × p matrix, since we can restrict equations (13) and (14) to the
case l = l′ = j. Using the definition of the ul,m, we find that G(t) is a matrix
where all the lines are equal, namely

Gk,k′(t) =

∞
∑

n=1

(ωk′t)np

(np)!

and (16) becomes
H(t) = (I + V −1G(t))−1V −1U

In the particular case of alternating permutations, ω1 = i, ω2 = −i,

G(t) = [cos(t)− 1]

(

1 1
1 1

)

V −1 =
1

2

(

1 −i
1 i

)

13



and

U =

(

1
1

)

Diagonalizing the matrix V −1G(t), we find

−V −1G(t) =
1− cos(t)

2

(

1− i 1− i
1 + i 1 + i

)

=
1− cos(t)

2
P−1

(

2 0
0 0

)

P

for some invertible matrix P . By geometric summation,

(I + V −1G(t))−1 =

∞
∑

n=0

(−V −1G(t))n = P−1

(

1/ cos(t) 0
0 0

)

P

and therefore,

(I + V −1G(t))−1 =
1

2 cos(t)

(

1− i 1− i
1 + i 1 + i

)

The generating series can then be expressed as

∞
∑

n=1

dn
n!

tn =
(1− i)(eit − 1)

2i cos(t)
+

(1 + i)(e−it − 1)

−2i cos(t)

Adding the term d0 = 1, we recover André’s result.

4 Implementation

We have implemented our algorithm in Maple1. The length of the permutation is
nmax. The random variables U [n], which are drawn independently at random,
represent the descent profile: U [n] = 0 or 1 according as whether nmax − n is
a descent or an ascent. The reals V [n] in the code correspond to the random
variables Yi in the algorithm.

As pointed out in the introduction, generating the variables Yi amounts to
solving N equations of the form (4). Of course, we can only get approximate
solutions and since the Yi are computed recursively, there is a propagation of
errors. We shall not discuss this point from a theoretical point of view here.
Observe, however, that these errors do not affect the permutation we generate
as long as, for each i, the difference between Yi and its approximation is smaller
than the minimal value of 2|Yi − Yj | over all i, j ∈ [1, nmax].

Since equations of the form (4) are polynomial and since f ′
i = ±fi−1, we can

directly implement Newton’s method in the algorithm. We stop the iterations
in Newton’s method as soon as two successive approximations of the solution
are at distance less that 10−p, where p is a parameter that can be tuned. We

1The code is available at http://www.math.univ-paris13.fr/∼marchal/algopermut.m
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give the time needed to generate permutations of variable length and for various
values of p. For a permutation of length 2000, we have run the algorithm for
the values p = 4 and p = 5 and we observe empirically that this yields the same
permutation.

Here are some tables giving the run time of the algorithm for permutations
of various lengths. In the first table, we have also let the parameter p vary.
The first line is the length of the permutation, the second line the run time (in
seconds) for p=4 and the third line the run time for p=5.

100 200 300 400 500 600 700 800 900 1000
0.184 0.936 2.212 4.468 6.757 11.360 16.145 23.366 31.734 37.930
0.196 0.972 2.521 4.656 7.360 12.293 17.705 24.662 34.594 41.151

In the next simulations, we have taken p=4 and we only give the integer
part of the run time (in seconds).

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
68 90 119 174 213 269 351 627 678 766

3300 3600 3900 4200 4500 4800 5100 5400 5700 6000
840 1210 1410 1822 2385 3283 5395 5877 6380 9121

Empirically, the run time is more than quadratic. This is due to the fact that
we have to perform computations with polynomials of large degree. Also, the
quantity of memory is quite large if we want to record all the coefficients of all
the polynomials. Of course, only keeping in memory the polynomial of highest
degree and the descent profile would be sufficient, since the other polynomials
can be obtained by differentiation. However, this would mean computing twice
these polynomials.
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