Philippe Marchal
email: marchal@math.univ-paris13.fr

Permutations with a prescribed descent set

We give a formula to compute the number of permutations with a prescribed descent set in quadratic time. We give the generating function of the number of permutations with a periodic descent set. We introduce an algorithm generating uniformly distributed random permutations with a prescribed descent set.

Statement of the results

Let σ be permutation of {1, 2, . . . N }. The descent set of σ, D(σ), is the set of integers i ∈ [1, N -1] such that σ(i) > σ(i + 1). For instance, D(Id) = ∅. If σ is an alternating permutation, that is, if σ(1) > σ(2) < σ(3) > σ(4) . . .

then D(σ) = [1, N -1] -2N.
The aim of this paper is to study permutations of {1, 2, . . . N } with a prescribed descent set A ⊂ [1, N -1]. We first give a method to compute this number efficiently, namely, using O(N 2) elementary computations, while the classical formula based on an inclusion-exclusion argument uses an exponential number of elementary computations. Next, given a periodic pattern of ascents and descents, we give a complete expression of the exponential generating function of permutations whose descent set follows this pattern. Finally, we introduce an algorithm generating at random, with uniform probability, permutations with a given descent set. Our first theorem is the following:

Theorem 1 Fix an integer N ≥ 2 and a set A ⊂ [1, N -1]. Define by descending induction a sequence of polynomials (f i , 1 ≤ i ≤ N) as follows:

• f N = 1 • If i ∈ A, f i (x) = x 0 f i+1 (y)dy • If i / ∈ A, f i (x) = 1 x f i+1 (y)dy
Let Q N (A) be the number of permutations of {1, 2, . . . N } with descent set A. Then

Q N (A) = N ! 1 0 f 1 (y)dy
The reason why we use descending induction, rather than regular induction, will appear in Theorem 3. An easy inclusion-exclusion argument (see for instance [B], Chapter 1) gives

Q N (A) = B⊂A (-1) |A|-|B| g N (B) (1)
where the function g N is defined as follows. If B = ∅, then g N (B) = 1. Otherwise, there exists k ∈ [1, N -1] such that B has the form B = {i 1 < i 2 . . . < i k } and in that case

g N (B) = N ! (N -i k)!(i k -i k-1)! . . . (i 2 -i 1)!i 1 !
However, in order to use (1), one needs to compute 2 N -|A| terms. By comparison, Theorem 1 only requires the computations of the coefficients of N polynomials of degree 0 to N -1, which means computing O(N 2) coefficients. Moreover, each coefficient can be computed using only one elementary computation, except for the constant coefficients. It is easily seen that calculating the constant coefficient of f d requires Nd elementary computations. Hence the number of elementary computations in Theorem 1 is O(N 2). Another efficient method to compute Q N is given by Viennot [V].

Theorem 1 also gives access to comparison results. For a permutation σ of

[1, N], say that m ∈ [2, N -1] is a local extremum if either σ(m -1) < σ(m) > σ(m + 1) or σ(m -1) > σ(m) < σ(m + 1). Then we have Corollary 1 For B ⊂ [2, N -1], let F (B) be the number of permutations of [1, N] with set of local extrema B. Then F : P({2, 3, . . . n -1}) → N is an increasing function.
Of course, such results are more difficult to derive using alternating sums such as (1). The fact that the maximum of F is achieved for alternating permutations was first observed by Niven [N], see also [BR]. Our next result deals with the case of a periodic descent set.

Theorem 2 Let p ≥ 2 be an integer, fix a set A ⊂ {1, 2, . . . p} and put

A ∞ = ∪ ∞ n=0 A + np
For each integer n ≥ 1, let d n be the number of permutations of {1, . . . , n} with descent set

A ∞ ∩ [1, n -1] Let ω 1 , . . . ω p be the p-th roots of 1 (resp -1) if p -|A| is even (resp. odd). For k, l ∈ [1, p], put g k,l (t) = ∞ n=0 (ω k t) np+l (np + l)!
Then there exists a rational function R A ∈ Z(X 1 , . . . , X p(p+1)), which can be computed explicitely using equations (7) through (17), such that

∞ n=1 d n t n n! = R A (ω 1 , . . . , ω p , g 1,1 (t), . . . , g p,p (t))
Equations (7) to (17) are given in Section 3. We shall see that these expressions involve matrices of size µp × µp, where µ = p -|A| is the number of ascents in a period. Theorem 2 generalizes the classical theorem by André [A] for alternating permutations:

∞ n=0 d n t n n! = 1 + sin(t) cos(t)
where we agree that d 0 = 1. More recent results were established by Carlitz (see [C] for instance) and Mendes-Remmel-Riehl [MRR] in the case µ = 1. We shall see how to recover these results from our method in Section 3.

For the first-order asymptotics, see [LM] and [BHR]. For every set A, one can compute R A using (7) to (17) and derive the asymptotics from the zeros of the denominator, using the classical tools of analytic combinatorics. See for instance the analysis of alternating permutations as Example IV.35 in [FS]. However, our approach does not provide the general form of the denominator.

Finally, we introduce an algorithm generating uniform random permutations with a given descent set. We begin by a simple remark, which was already used in [ELR]

among others. Let Y = (Y 1 , . . . Y N) be a sequence of distinct reals in [0, 1]. We can construct from Y a permutation σ Y as follows. Let k 1 ∈ {1, 2, . . . N } be the integer such that Y k1 is minimal in {Y 1 , . . . Y N } and put σ Y (k 1) = 1. Then, let k 2 ∈ {1, 2, . . . N } -{k 1 } be the integer such that Y k2 is minimal in {Y 1 , . . . Y N } -{Y k1 }, put σ Y (k 2) = 2
and so on. To recover σ Y from Y , one can use a sorting algorithm.

One can define the descent set D(Y) of a sequence of reals Y as for a permutation and clearly, D(Y) = D(σ Y). Moreover, if Y is chosen according to the Lebesgue measure on [0, 1] N , then σ Y is uniformly distributed over all permutations of {1, 2, . . . N }. As a consequence, if Y is chosen uniformly at random among all sequences with descent set A, that is, if its density with respect to the Lebesgue measure on [0, 1] N is

C1 {D(Y)=A} (2)
for some constant C > 0, then σ Y is uniformly distributed over all permutations with descent set A. Therefore, we want to find an algorithm constructing a random sequence with descent set A.

Algorithm Using iid random variables (U 1 , . . . U N), uniform on [0, 1], and the functions f i defined in Theorem 1, construct a sequence Y = (Y 1 , . . . Y N) as follows:

• Y 1 is the real in [0, 1] such that Y1 0 f 1 (y)dy = U 1 1 0 f 1 (y)dy • For i ∈ [1, N -1], Y i+1 is the only solution in [0, 1] of the equation f i (Y i+1) = U i+1 f i (Y i) (3)
Finally, recover the permutation σ Y from Y by sorting.

Theorem 3 The algorithm described above yields a random permutation of {1, 2, . . . N }, uniformly distributed over all permutations with descent set A.

To see that the algorithm is well-defined, suppose for instance that i ∈ A.

Then (3) becomes

Yi+1 0 f i+1 (y)dy = U i+1 f i (Y i) (4)
Since the function f i is nonnegative on the interval [0, 1], (4) clearly has a unique solution on [0, 1].

We shall not study in detail the complexity of the algorithm. Nevertheless, let us make a few comments.

First, remark that a simple rejection algorithm would have exponential complexity. Indeed, if we draw a permutation at random , the most likely profile is the alternating case, and the probability for a random permutation of length N to be alternating is ∼ 4 π (2/π) N (see Example IV.35 in [FS]). Therefore, the average number of times one has to draw a permutation before finding one with the prescribed descent set is at least c(π/2) N .

Using our algorithm, we need to compute the functions f i , which can be done using O(N 2) elementary computations, as already seen. The last step, namely sorting the sequence Y to deduce σ Y , has an average complexity O(N log N) if one uses randomized quicksort. What is more intricate is to evaluate the time needed to generate the variables Y i , which amounts to solving N equations of the form (4). We shall not discuss this from a theoretical point of view. However, some experimental results are given at the end of the paper. Typically, our algorithm can generate permutations of length a few thousands.

In the particular case of alternating permutations, other algorithms with a better complexity can be found in [BRS] and [M].

We now proceed to the proof of the results. We first prove Theorem 3 and deduce Theorem 1 and Corollary 1 in Section 2. Section 3 is devoted to the proof of Theorem 2. Finally, a possible implementation of our algorithm in Maple is given in Section 4.

Proof of Theorems 1 and 3

First, observe that there are obvious symmetries in the problem. If one replaces

σ(i) with N + 1 -σ(i) for each i, then A is replaced with its complement. If σ(i) is replaced with σ(N + 1 -i) for each i, then A is replaced with N -A.
Let us prove Theorem 3. One can re-formulate the algorithm, using the notion of conditional density of a random variable, as follows:

• Y 1 has density f 1 / 1 0 f 1 (y)dy. • If i ∈ A, conditionally on Y i , Y i+1 has density 1 [0,Yi] f i+1 /f i (Y i). • If i / ∈ A, conditionally on Y i , Y i+1 has density 1 [Yi,1] f i+1 /f i (Y i).
As a consequence, the density of the sequence Y = (Y 1 , . . . , Y N) with respect to the Lebesgue measure on [0, 1] N is equal to the telescopic product

f 1 (Y 1) 1 0 f 1 (y)dy × f 2 (Y 2) f 1 (Y 1) × . . . × f N (Y N) f N -1 (Y N -1) 1 {D(Y)=A} = 1 1 0 f 1 (y)dy 1 {D(Y)=A}
which is exactly the form required in (2). Therefore, σ Y is uniformly distributed over all permutations with descent set A. This proves Theorem 3. Let us deduce Theorem 1. If a permutation of {1, . . . n} is drawn uniformly at random, the probability that its descent set is A is

1 0 dy 1 . . . 1 0 dy N 1 {D(Y)=A}
But this probability is also equal to

Q N (A) N !
Using the formula for the density of Y , we find that

1 1 0 f 1 (y)dy
h i , 1 ≤ i ≤ N by h N = 1 and h i (x) = f i (x) if i ∈ A while h i (x) = f i (1 -x) if i / ∈ A.
Remark that for i ≤ N -1, the h i are increasing functions on [0, 1] such that h i (0) = 0. Besides, one can directly define the h i by descending induction as follows. First, h N = 1 and then, if i / ∈ B,

h i (x) = x 0 h i+1 (y)dy (5) while if i ∈ B, h i (x) = x 0 h i+1 (1 -y)dy (6)
Likewise, define the polynomials hi , 1

≤ i ≤ N by hN = 1, hi (x) = fi (x) if i ∈ Ã and hi (x) = fi (1 -x) if i /
∈ Ã. Since B = B ∪ {m}, we have hi = h i for i > m. Moreover, using (5) and (6), we get that hm (x) > h m (x) for every x ∈ (0, 1] and by induction, for every i < m and every x ∈ (0, 1], hi (x) > h i (x). Integrating this inequality for i = 1, we get the result.

Remark

The coefficients of the polynomials f i can be computed by induction. Put

f N -i (x) = i k=0 a (i) k x k First, a (0) 0 = 1. Next, if N -i ∈ A, then a (i+1) 0 = 0 and for k ≥ 0, a (i+1) k+1 = a (i) k k + 1 On the other hand, if N -i / ∈ A, then for k ≥ 0, a (i+1) k+1 = - a (i) k k + 1 and a (i+1) 0 = i k=0 a (i) k k + 1 Therefore, if N -i / ∈ A, a (i+1) 0 = i j=0 a (i-j) 0 (j + 1)! (-1) |A c ∩[N -i+1,N -1]|
By recursion, this leads to (1), which provides an alternative proof of Theorem 1.

Proof of Theorem 2

Define by induction the sequence of polynomials (f n) by

• f 0 = 1 • If i ∈ A ∞ , i ≥ 1 f i (x) = x 0 f i-1 (y)dy • If i / ∈ A ∞ , i ≥ 1 f i (x) = 1 x f i-1 (y)dy
We claim that

d N = N ! 1 0 f N -1 (x)dx
Indeed, Theorem 1 tells us that the right-hand side is the number of permutations with length N and descent set N -D N . Using the symmetries of the problem, we see that this is equal to the number of permutations with length N and descent set D N .

Consider the bivariate generating function

F (x, y) = ∞ n=0 y n f n (x)
Then we have

∞ n=1 d n n! y n = 1 0 yF (x, y)dx
So it is sufficient to compute F . Let µ be the number of ascents in a period, µ = p -|A|. By differentiating,

∂ p F (x, y) ∂x p = (-1) µ y p F (x, y)
Solutions of this differential equation have the general form

F (x, y) = p k=1 a k (y)e ω k yx
where the ω k are the p-th roots of 1 if µ is even and the p-th roots of -1 if µ is odd, and where the a k are power series:

a k (y) = n≥0 a k,n y n Since f 0 = 1, p k=1 a k,0 = 1
Next, we can re-express

f n (x) = n l=0 p k=1 ω l k x l l! a k,n-l
and so

f ′ n+1 (x) = n l=0 p k=1 ω l+1 k x l l! a k,n-l If n ≥ 1 is a descent, f n (0) = 0 whence p k=1 a k,n = 0 If n ≥ 1 is an ascent, f n (0) = 1 whence p k=1 a k,n = - n j=1 p k=1 a k,n-j ω j k j!
Moreover, f ′ n+1 = f n or -f n according as whether n is a descent or an ascent. Therefore, for all n, j ≥ 0, identifying the coefficient of x j in the polynomials f n+j and f ′ n+j+1 , we find that if n + j + 1 is a descent,

p k=1 a k,n ω j k = p k=1 a k,n ω j+1 k and if n + j + 1 is an ascent, p k=1 a k,n ω j k = - p k=1 a k,n ω j+1 k
This leads to the following matrix expression. Put

B n =    a 1,n . . . a p,n   
Let V be the Vandermonde matrix

V =      1 . . . 1 ω 1 . . . ω p ω p-1 1 . . .ω p-1 p      (7)
For each n ≥ 0 put

U n =    u n,1 0. . .0 u n,p 0. . .0    where u n,1 = 1 (8)
and for every j ≥ 1, if n + j is a descent, u n,j+1 = u n,j while if n + j is an ascent, u n,j+1 = -u n,j . In other words,

u n,j+1 = u n,j × (-1) 1 {n+j / ∈A∞ } (9)
Next, put ρ 0 = 1 and for n ≥ 1, if n is a descent, put ρ n = 0 and if n is an ascent,

ρ n = - n j=1 p k=1 a k,n-j ω j k j!
Then we have the matrix equality

V B n = U n      ρ n 0 . . . 0      That is, B n = V -1 U n      ρ n 0 . . . 0     
Let us now express the generating series of ρ n . For every

i ∈ [1, p], ∞ n=1 ρ n t n u n,i = - p k=1 ∞ n=1 n-1 j=0 a k,j ω n-j k (n -j)! u n,i t n 1 {n / ∈A∞} = - p k=1 ∞ j=0 ∞ n=j+1 a k,j ω n-j k (n -j)! u n,i t n 1 {n / ∈A∞} = - p k=1 ∞ j=0 ∞ m=1 a k,j ω m k m! u m+j,i t m+j 1 {m+j / ∈A∞} = - p k=1 p-1 l=0 ∞ n=0 a k,np+l t np+l ∞ m=1 (ω k t) m m! u m+l,i 1 {m+l / ∈A∞} Thus let us put, for k ∈ [1, p] h k,l (t) = ∞ n=0 a k,np+l t np+l and for k ∈ [1, p], l ∈ [0, p -1] and i ∈ [1, p], f k,l,i (t) = ∞ n=1 (ω k t) n n! u n+l,i 1 {n+l /

∈A∞}

Then we can re-express, for every

i ∈ [1, p], ∞ n=1 ρ n t n u n,i = - p k=1 p-1 l=0 h k,l (t)f k,l,i (t)
In matrix terms, this gives

∞ n=1 t n U n      ρ n 0 . . . 0      =    p k=1 p-1 l=0 h k,l (t)f k,l,1 (t) . . . p k=1 p-1 l=0 h k,l (t)f k,l,p (t)    whence ∞ n=1 t n B n =    p k=1 h 1,l (t) -a 1,0 . . . p k=1 h p,l (t) -a p,0    = -V -1    p k=1 p-1 l=0 h k,l (t)f k,l,1 (t) . . . p k=1 p-1 l=0 h k,l (t)f k,l,p (t)   
We want to deduce an expression of the functions h k,l from the equality above.

To do so, put, for k ∈

[1, p], l ∈ [0, p -1], m ∈ [1, p] and i ∈ [1, p], g k,l,m,i (t) = ∞ n=0 (ω k t) np+m (np + m)! u m+l,i 1 {m+l / ∈A∞} Then for l ∈ [0, p -1],    h 1,l (t) -a 1,0 1 {l=0} . . . h p,l (t) -a p,0 1 {l=0}    = -V -1    p k ′ =1 p-1 l ′ =0 h k ′ ,l ′ (t)g k ′ ,l ′ ,l-l ′ ,1 (t) . . . p k ′ =1 p-1 l ′ =0 h k ′ ,l ′ (t)g k ′ ,l ′ ,l-l ′ ,p (t)   
where the index ll ′ in the right-hand side is to be taken modulo p. So let H(t) be the p 2 -dimensional vector with entries in C [[t]] defined by

H(t) =                     h 1,0 (t) . . . h p,0 (t) h 1,1 (t) . . . h p,1 (t) . . . h 1,p-1 (t) . . . h p,p-1 (t)                     (10)
Likewise, let B be the p 2 -dimensional vector with entries in C defined by

B =           a 1,0 . . . a p,0 0 . . . 0           (11)
where the first p entries are given by

   a 1,0 . . . a p,0    = V -1    u 0,1 . . . u 0,p    (12) For l ∈ [0, p -1], let G l be the p × p 2 matrix with entries in C[[t]] defined as follows. For k ∈ [1, p], l ′ ∈ [0, p -1], k ′ ∈ [1, p], put (G l) k,l ′ p+k ′ = g k ′ ,l ′ ,l-l ′ ,k (t) Then for l ∈ [0, p -1],    h 1,l (t) . . . h p,l (t)    = -V -1 G l H(t)
Finally, let G be the p 2 × p 2 matrix with entries in C [[t]] defined by

G =    G 0 . . . G p    In other words, if l > l ′ , G lp+k,l ′ p+k ′ = ∞ n=0 (ω k ′ t) np+l-l ′ (np + l -l ′)! u l,k 1 {l / ∈A∞} (13) whereas, if l ≤ l ′ , G lp+k,l ′ p+k ′ = ∞ n=1 (ω k ′ t) np+l-l ′ (np + l -l ′)! u l,k 1 {l / ∈A∞} (14)
Remark that G has valuation 1. Let V be the p 2 × p 2 matrix, V being diagonal by blocks and given by

V = -      V -1 0 . . . 0 0 V -1 . . . 0 0 . . . 0 V -1      (15)
Then

H(t) -B = VGH(t) whence H(t) = (I -VG) -1 B (16
)
Remark that each entry of G is either 0 or has the form ±g k,l (t) with the functions g k,l (t) defined in Theorem 2. Moreover, using the formula for the inversion of matrices, we check that the entries of V have a rational expression, with integer coefficients, in terms of the roots ω 1 , . . . , ω p . Therefore, H itself has a rational expression, with integer coefficients, in terms of the ω k and the g k,l (t), and so have all the functions h k,l (t). Finally,

∞ n=1 d n n! t n = 1 0 tF (x, t)dx = p k=1 p l=1 h k,l (t) e ω k t -1 ω k (17)
and each term e ω k t -1 ω k also has a rational expression, with integer coefficients, in terms of the ω k and the g k,l (t). This establishes the existence of the rational function R A as stated in Theorem 2.

Note that, according to (13) and (14), if l is a descent, all the lines of the matrix G between l + 1 and l + p are 0. So we may suppress these lines and we are lead to a system of size µp × µp instead of p 2 × p 2 .

Example. Let us examine the case when when µ = 1. Suppose that the only ascent is at position j ∈ [1, p]. First, the ω k are roots of -1: for 1 ≤ k ≤ p, ω k = exp (2k + 1)iπ p

Next, it turns out that h k,l (t) = 0 whenever l = j, whence

∞ n=1 d n n! t n = p k=1 h k,j (t) e ω k t -1 ω k
In that case, the vector H from (10) becomes p-dimensional:

H(t) =    h 1,j (t) . . . h p,j (t)   
To compute H, define the p-dimensional vector U by

U =           1 . . . 1 -1 . . . -1          
where the first j entries are 1 and the last pj entries are -1. The matrix G(t) becomes a p × p matrix, since we can restrict equations (13) and (14) to the case l = l ′ = j. Using the definition of the u l,m , we find that G(t) is a matrix where all the lines are equal, namely

G k,k ′ (t) = ∞ n=1 (ω k ′ t) np (np)!
and (16) becomes

H(t) = (I + V -1 G(t)) -1 V -1 U
In the particular case of alternating permutations,

ω 1 = i, ω 2 = -i, G(t) = [cos(t) -1] 1 1 1 1 V -1 = 1 2 1 -i 1 i and U = 1 1
Diagonalizing the matrix V -1 G(t), we find

-V -1 G(t) = 1 -cos(t) 2 1 -i 1 -i 1 + i 1 + i = 1 -cos(t) 2
P -1 2 0 0 0 P for some invertible matrix P . By geometric summation,

(I + V -1 G(t)) -1 = ∞ n=0 (-V -1 G(t)) n = P -1 1/ cos(t) 0 0 0 P and therefore, (I + V -1 G(t)) -1 = 1 2 cos(t) 1 -i 1 -i 1 + i 1 + i
The generating series can then be expressed as

∞ n=1 d n n! t n = (1 -i)(e it -1) 2i cos(t) + (1 + i)(e -it -1) -2i cos(t)
Adding the term d 0 = 1, we recover André's result.

Implementation

We have implemented our algorithm in Maple 1 . The length of the permutation is nmax. The random variables U [n], which are drawn independently at random, represent the descent profile: U [n] = 0 or 1 according as whether nmaxn is a descent or an ascent. The reals V [n] in the code correspond to the random variables Y i in the algorithm. As pointed out in the introduction, generating the variables Y i amounts to solving N equations of the form (4). Of course, we can only get approximate solutions and since the Y i are computed recursively, there is a propagation of errors. We shall not discuss this point from a theoretical point of view here. Observe, however, that these errors do not affect the permutation we generate as long as, for each i, the difference between Y i and its approximation is smaller than the minimal value of 2|Y i -Y j | over all i, j ∈ [1, nmax].

Since equations of the form (4) are polynomial and since f ′ i = ±f i-1 , we can directly implement Newton's method in the algorithm. We stop the iterations in Newton's method as soon as two successive approximations of the solution are at distance less that 10 -p , where p is a parameter that can be tuned. We give the time needed to generate permutations of variable length and for various values of p. For a permutation of length 2000, we have run the algorithm for the values p = 4 and p = 5 and we observe empirically that this yields the same permutation.

Here are some tables giving the run time of the algorithm for permutations of various lengths. In the first table, we have also let the parameter p vary. The first line is the length of the permutation, the second line the run time (in seconds) for p=4 and the third line the run time for p=5. Empirically, the run time is more than quadratic. This is due to the fact that we have to perform computations with polynomials of large degree. Also, the quantity of memory is quite large if we want to record all the coefficients of all the polynomials. Of course, only keeping in memory the polynomial of highest degree and the descent profile would be sufficient, since the other polynomials can be obtained by differentiation. However, this would mean computing twice these polynomials.

 us prove Corollary 1. It suffices to prove that if B, B are two subsets of [2, N -1] with B = B ∪ {m}, m / ∈ B, then the number of permutations with set of extrema B is smaller than the number of permutations with set of extrema B. Using the symmetries of the problem, it suffices to count permutations with set of extrema B, B ending with a descent. If we impose this condition, let A, Ã be the corresponding descent sets. Using A, Ã we define by descending induction the polynomials f i , fi as in Theorem 1. Now define the polynomials

 .936 2.212 4.468 6.757 11.360 16.145 23.366 31.734 37.930 0.196 0.972 2.521 4.656 7.360 12.293 17.705 24.662 34.594 41.151 In the next simulations, we have taken p=4 and we only give the integer part of the run time (in seconds).

	100	200	300	400	500	600		700	800	900	1000
	0.184 01200 1400 1600 1800 2000 2200 2400 2600 2800 3000
	68	90	119	174	213	269	351	627	678	766
	3300 3600 3900 4200 4500 4800 5100 5400 5700 6000
	840	1210 1410 1822 2385 3283 5395 5877 6380 9121

The code is available at http://www.math.univ-paris13.fr/∼marchal/algopermut.m

Acknowledgments I am very grateful to Cyril Banderier for his help in the implementation of the algorithm. I thank Olivier Bodini and various participants of the conference "Permutation patterns 2013" for useful comments and references.