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Abstract. The recovery of a sparse vector from a noisy underdetermined linear system arises in various

fields. Two desirable models to find a sparse solution are the constrained problem where the quadratic error

is minimized subject to a given level of sparsity and the regularized problem where both the quadratic error

and the sparsity are minimized using a regularization parameter.

The existence of connections between these two problems is intuitive. However, the mechanism of

this relation has remained unclear so far. This work provides an exhaustive description of the relationship

between the globally optimal solutions of these two problems. A partial equivalence between them always

exists. We exhibit formulae for a sequence of critical parameters that can enable equality between the global

minimizers of these problems. This sequence always admits a strictly decreasing subsequence that partitions

the positive axis into a certain number of intervals. For every value of the regularization parameter inside an

interval, there is a sparsity level k such that the global minimizers of the regularized problem and those of

the k-constrained problem coincide. At the values of the subsequence of critical parameters, the optimal set

of the regularized problem contains two optimal sets of the constrained problem. In some cases the whole

sequence of critical parameters is strictly decreasing. Then the number of the intervals on the positive axis

equals the number of all sparsity levels and both problems are quasi-completely equivalent. The critical

parameters are obtained from the optimal values of the constrained problem. Examples and small-size exact

numerical tests are given to illustrate our theoretical results. Our contributions yield various open questions

and can help the design of innovative numerical schemes.

Keywords: ℓ0-regularization; k-sparsity constraint; globally optimal solutions; optimal solution analysis; parameter

selection; quasi-equivalence between nonconvex problems; sparse recovery; under-determined linear systems.

1 Introduction

The recovery of sparse objects (e.g., signals, images) or representations u ∈ RN using a few basis vectors

from few and possibly inaccurate data d ∈ RM is an extremely lively area of research in linear inverse

problems and in compressed sensing [10, 16, 9, 41, 17]. The most natural measure of sparsity is the

counting function ∥ . ∥0, called usually the ℓ0-norm

∥u∥0 := ♯
{
i ∈ {0, 1, · · · ,N} : ui ̸= 0

}
, (1)

where ♯ S is the number of elements in the set S and ui is the ith components of u. We consider a

matrix (e.g., a dictionary, a measurement system) A ∈ RM×N with M < N for fixed M and N.

1



Two desirable models to find a sparse solution are given by the following optimization problems:

• the k-sparsity constrained minimization problem where one looks for the minimum squared error at

a given level of sparsity k

(Ck) min
u∈RN

∥Au− d∥22 , subject to ∥u∥0 6 k , (2)

• the ∥ · ∥0-regularised problem where a positive parameter β is used to balance the minimization of

both squared error and sparsity in the objective function Fβ : RN → R

(Rβ) Fβ(u) := ∥Au− d∥22 + β∥u∥0 , β > 0 . (3)

Let us evoke a few fields where problems (Ck) and (Rβ) arise. Problem (Ck) involves a natural

sparse coding constraint; it is a particular case of the well known best k-term approximation [14, 12].

It has been used for low-rank matrix decomposition [4], sparse inverse problems [8]. Problem (Rβ) has

been widely considered for subset selection [30, 6], model selection [25], variable selection [23], feature

selection [33, 18], signal and image reconstruction [22, 19, 42, 15].

Even though overlooked for several decades, problems (Ck) and (Rβ) were essentially considered from

a numerical standpoint. The existence of some connections between these problems seems intuitive.

However, the relationship between these problems has never been studied in a systematic way.

The goal of this work is to analyze in depth the connections between the sets of global minimizers of

(Ck) and of (Rβ). Our theoretical results raise salient questions about the existing algorithms and can

help the design of innovative numerical schemes.

As usual, we say “optimal set” or “optimal solutions” (resp., “optimal values”) for globally optimal

solutions, i.e., global minimizers (resp., globally optimal values) [38, 3]. For clarity we recall that:

− In problem (Ck) for k 6 N the constraint set of u reads as
{
u ∈ RN

∣∣ ∥u∥0 6 k
}
, so we have

optimal value ck := inf
{
∥Au− d∥2

∣∣ u ∈ RN and ∥u∥0 6 k
}
, (4)

optimal solutions Ĉk :=
{

u ∈ RN and ∥u∥0 6 k
∣∣ ∥Au− d∥2 = ck

}
. (5)

− In problem (Rβ) for β > 0 one has

optimal value rβ := inf
{
Fβ(u) | u ∈ RN

}
, (6)

optimal solutions R̂β :=
{
u ∈ RN

∣∣ Fβ(u) = rβ

}
. (7)

We anticipate that for any d ∈ RN, it holds that Ĉk ̸= ∅, ∀ k > 0 and that R̂β ̸= ∅, ∀ β > 0 (Lemma 1

and Theorem 2(b), respectively). In view of these definitions, we are aimed at clarifying the relationship

between the sets of global minimizers Ĉk and R̂β. To this end, we adopt a blanket assumption:

H1. The matrix A ∈ RM×N satisfies rank(A) = M < N. It is also assumed that d ̸= 0.
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The quite standard Definition 1 shall be used to evaluate the extent of some properties.

Definition 1. A property is generic on RM if it holds on a subset of RM \S where S is closed in RM

and its Lebesgue measure in RM is null.

A generic property is clearly stronger than a property that holds only with probability one because

RM \S contains a dense open subset of RM. Equivalently, we say that a property holds generically.

1.1 Related work

The amount of papers dealing with problems (Ck) and (Rβ) is huge. We present a brief summary.

Solving problems (Ck) and (Rβ) by exhaustive search is combinatorial and NP-hard in general

[13, 40]. A major difficulty raised by these problems is the design of practical numerical schemes.

The solutions of problems (Ck) and (Rβ) are usually approximated by greedy pursuit [31], relaxation

of the ∥ · ∥0 penalty [40] often combined with nonconvex minimization [18, 25, 19], as well as direct

optimization [30, 1]. Tropp and Wright [41] gave a comprehensive overview, mainly focused on greedy

pursuits and convex relaxation. Iterative hard thresholding algorithms has become a major technique

after the local convergence results of Blumensath and Davies [6], further expanded by the authors to

solve (Ck) in [7, 8]. In the compressed sensing context, one typically seeks for guarantees for exact

recovery if there is no noise and for unique and stable recovery when data are noisy. Such guarantees

can be given under very strong assumptions, e.g., restricted isometry property (RIP) [10], bounds

on spark(A) and on the sparsity of the solution. Verifying whether a given matrix A satisfies such

conditions is NP-hard in general [9]. Instead, certain random measurement matrices A, known to

satisfy such conditions, are employed. Recent results in compressed sensing allow to alleviate the

burden of the RIP condition [26, 5, 11]. In the context of ill-posed inverse problems from limited

data, the matrix A is fixed by the physics underlying the problem. Convergence of descent methods –

proximal, operator splitting, and regularized Gauss-Seidel – for a wide class of problems including (Rβ)

was recently established in [1].

Problem (Rβ) is a particular case of a class of objectives where the counting function ∥ · ∥0 is

used in the context of Markov random field models. In the inaugural work [21] Geman and Geman

(1984) designed a stochastic relaxation method for labeled images that achieves global minimization

asymptotically. Various stochastic algorithms have been proposed to improve the convergence speed.

Robini, Lachal and Magnin [35, 36] introduced the stochastic continuation approach and proved high

probability for convergence to a global minimizer in finite time. They applied the method to reconstruct

3D tomographic images. Recently, Robini and Reissman [37] extended the methodology to general

combinatorial objectives and gave results on the probability for global convergence with respect to the

running time.

Comparison between ∥ · ∥0-related problems In finite dimensional real spaces, Fung and Man-

gasarian [20] considered the minimization of ∥u∥p subject to Au = d, Bu > b and ∥u∥∞ 6 1 for

p ∈ [0, 1), where B and b are a matrix and a vector, respectively. They proved that the ∥u∥0-problem is

equivalent to the ∥u∥p-problem for a sufficiently small p > 0. A promising continuous tight continuous

relaxation of model (Rβ) was recently proposed in [39].
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1.2 Main contributions

This work provides a detailed description of the relationship between the sets of global minimizers

(called also optimal sets) of the two nonconvex (combinatorial) problems (Ck) and (Rβ), given in (2)

and (3), respectively. These sets, see (5) and (7), are always nonempty (Lemma 1 and Theorem 2(b)).

Our main results are summarized below. The couple (A, d) satisfies H1.

(a) We define L as the least number so that the optimal value of (CL) is null; note that L = M

generically (Proposition 5). For any k 6 L, any optimal solution û of (Ck) is strict and obeys

∥û∥0 = k (Theorem 1). Problem (Rβ) for all β ∈ (0,+∞) has at most L+1 different sets of global

minimizers which are global minimizers of (Ck) for k ∈ {0, . . . , L} (Theorem 4).

(b) Optimality of (Rβ) can be reduced to a search over the optimal sets of (Ck) (Theorem 5).

(c) A sequence of parameter values {βk, βU
k }Lk=0 is proposed (Definition 3) using the optimal values

of problem (Ck). The global minimizers of (Ck) and of (Rβ) coincide if and only if βk < β < βU
k

(Theorem 6). However, according to the data, it can occur that (βk, β
U
k ) = ∅. So we focus on J :=

{k ∈ {0, . . . , L} | βk < βU
k } which subset is always nonempty and yields βU

Jk
= βJk−1

(Proposition 3).

(d) Problem (Rβ) for any β ∈
(
βJk , βJk−1

)
and problem (CJk) have the same global minimizers (Theo-

rem 7). This agreement is referred to as partial equivalence. For the isolated values β = βJk , the

optimal set of problem (Rβ) contains the global minimizers of (CJk) and
(
CJk+1

)
(Theorem 8).

(e) {βk}k∈J is the largest strictly decreasing subsequence in Definition 3 containing β0 (Proposition 4).

(f) When the whole sequence {βk}Lk=0 in Definition 3 is strictly decreasing, problem (Ck) and problem

(Rβ) for all β ∈ (βk, βk−1) have the same optimal set (Theorem 9). This case is referred to as

quasi-complete equivalence.

(g) The optimal solutions of (Ck) and of (Rβ) are generically uniques (subsection 6.1).

1.3 Paper overview

Section 2 establishes necessary and sufficient conditions for global minimizers of problem (Rβ) only in

terms of the global minimizers of problem (Ck). It begins with a study of the optimal sets of problem

(Ck). Facts on the optimal sets of problem (Rβ) are taken from [34]. Section 3 is devoted to parameter

values and conditions for agreement between the optimal sets of problems (Ck) and (Rβ). The main

results on the relationship between the optimal sets of problems (Ck) and (Rβ) – partial equivalence and

possible quasi-complete equivalence – are established in section 4. Some facts on the optimal values of

these problems are given in section 5. Uniqueness of the global minimizers of problems (Ck) and (Rβ)

under additional mild conditions is discussed in section 6. The theoretical findings are illustrated using

exact numerical tests for (M,N) = (5, 10) in section 7. Conclusions are presented in section 8.

1.4 Notation

For ease of presentation, we give here all important notations used throughout the paper.
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The ℓ2-norm is denoted by ∥ . ∥ := ∥ . ∥2 . Let n be a positive integer. We denote by In and I0n the

totally and strictly ordered index sets

In :=
(
{1, . . . , n}, <

)
and I0n :=

(
{0, 1, . . . , n}, <

)
, (8)

where the symbol < stands for the natural order of integers (the superscripts 0 recalls that zero is

included). Thus any subset ω ⊆ In is also totally and strictly ordered. The support of u ∈ Rn is

supp(u) :=
{
i ∈ I0n

∣∣ u[i] ̸= 0
}

. A vector u is said to be k-sparse if ∥u∥0 = ♯ (supp(u)) 6 k.

Remark 1. For (Ck) we consider also the trivial case k = 0 because Fβ always has a strict (local)

minimum at û = 0 [34]. According to the value of β, û can be global minimizer of Fβ. ♢

For any ω ⊆ IN, we denote by Aω the M× ♯ ω submatrix of A formed from the columns of A with

indexes in ω and similarly uω is the ♯ ω-length restriction of u ∈ RN whose indexes are in ω:

Aω :=
(
Aω1 , . . . , Aω ♯ ω

)
and uω :=

(
uω1 , . . . , uω ♯ ω

)T
,

where the superscript T means transposed. We also set AT
ω := (Aω)

T. In view of Remark 1, we define

A∅ := [ ] ∈ RM×0 and rank (A∅) := 0 in order to handle the case û = 0. The identity operator on Rn

is denoted by In; the index n is omitted when clear from the context. A vector or a matrix of zeros of

arbitrary dimension is denoted by 0.

The notation specific to problem (Ck) (resp., (Rβ)) is based on the letter “c” (resp., the letter “r”).

Lowercase (resp., uppercase) letters stand for optimal values (resp., optimal sets). Furthermore:

− L := min
{
k ∈ IN

∣∣ ck = 0
}
where ck is the optimal value of problem (Ck) defined in (4).

− Ωk := {ω ⊂ IN | ♯ ω = k = rank (Aω)} – introduced in (17) (section 2).

− Ĉ :=
∪L

k=0 Ĉk where Ĉk are he global minimizers of (Ck) defined in (5).

− R̂ :=
∪

β>0 R̂β where R̂β is the optimal set of (Rβ) (the global minimizers of Fβ) given in (7).

− βk, β
U
k for k ∈ I0L – critical parameter values, Definition 3 (section 3).

− J (resp. JE) – all k ∈ I0L such that βk < βU
k (resp., βk = βU

k ), Definition 4 (section 3).

2 Joint optimality conditions for (Ck) and (Rβ)

In this section we shall derive necessary and sufficient conditions for the global minimizers of problem

(Rβ) only in terms of the global minimizers of problem (Ck). The obtained results enable us to compare

the optimal sets of these problems.

2.1 Preliminaries

We shall refer to the constrained quadratic optimization problem stated next. Given d ∈ RM and

ω ⊆ IN, problem (Pω) reads as:

(Pω)

min
u∈RN

∥Au− d∥2 , subject to u[i] = 0 ∀ i ∈ I0N \ω

⇐⇒ ûω = arg min
v∈R ♯ ω

∥Aωv − d∥2 and ûIN \ω = 0
(9)
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The convex problem (Pω) is related to problems (Ck) and (Rβ). So problem (Pω) is a good tool for

analyzing the combinatorial problems (Ck) and (Rβ). This is used in sections 2 and 6. We remind that

for any ω ⊂ I0N, the solution of problem (Pω) is a (local) minimizer of the nonconvex objective Fβ in

(3), see [34]. This fact is independent of the value of β.

For clarity, we recall the following definitions:

Definition 2. For a function f : RN → R and a set S ⊆ RN, û is a strict (local) minimizer of the

problem min {f(u) | u ∈ S} if there is a neighborhood O ⊂ S containing û so that f(u) > f(û) for any

u ∈ O \{û}. Further, û is an isolated (local) minimizer if û is the only minimizer in an open subset

O′ ⊂ O; see, e.g., [32].

An isolated minimizer is always a strict minimizer.

Remark 2. For any ω ⊂ IN such that rank(Aω) = ♯ ω, it is readily seen from (9) that the solution û

of (Pω) is an isolated minimizer. Since any solution of problems (Ck) and (Rβ) is a solution problem

(Pω) for a particular ω, all strict minimizers discussed in this work are also isolated minimizers.

2.2 On the global minimizers of problem (Ck)

We begin with a brief study of the optimal sets of problem (Ck) that are essential to develop the paper.

The proofs of all results in this subsection are given in Appendix A.1.

The list of the supports ω ∈ IN of all k-sparse vectors in RN is given bellow:

Σk :=

k∪
n=0

{
ω ⊂ IN

∣∣∣ ♯ ω = n
}

. (10)

Using this notation problem (Ck) in (2) also reads as

min
u∈RN

∥Au− d∥2 , subject to supp(u) ∈ Σk . (11)

The corresponding optimal set Ĉk given in (5) is

Ĉk =
{
u ∈ RN, supp(u) ∈ Σk

∣∣∣ ∥Au− d∥2 = ck

}
. (12)

It is straightforward that if û ∈ Ĉk then û solves (Pω) for ω := supp(û).

A central question is to know whether problem (Ck) admits an optimal solution.

Lemma 1. For any k ∈ I0N problem (Ck) has a global minimizer, i.e., Ĉk ̸= ∅.

Using (Pω) in (9) and (11), the optimal value ck of (Ck) is

ck = min
{
∥Aũ− d∥2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Σk

}
. (13)

At this point, we need the following simple lemma.

Lemma 2. Let H1 hold. Then c0 = ∥d∥2 > 0 and {ck}k>0 is decreasing with ck = 0 ∀ k > M.

The next simple lemma has a pivotal role in this work.
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Lemma 3. Let H1 hold. For k ∈ IM, assume that (Ck) has an optimal solution û obeying

∥û∥0 = k− n for n > 1 . (14)

Then Aû = d . Furthermore, cm = 0 and û ∈ Ĉm ∀ m > k− n .

Based on Lemma 3 and assuming that H1 holds, we introduce the constant

L := min
{
k ∈ IN | ck = 0

}
. (15)

L is uniquely defined since { ck} is decreasing with L 6 M (Lemma 2). We emphasize that L depends

only on d (Lemma 5(a)) and that L = M generically (Proposition 5(b) and Remark 9).

Example 1. One has L 6 M− 1 if d = Au for ∥u∥0 6 M− 1. Then d belongs to a subspace of RM of

dimension ∥u∥0 which has null Lebesgue measure in RM. Usual data range on the whole RM and L = M.

Theorem 1. Let H1 hold and L be as in (15). One has:

(a) If k ∈ I0L, then
û ∈ Ĉk =⇒ ∥û∥0 = k = rank (Aσ̂) for σ̂ := supp(û) (16)

and û is a strict global minimizer of problem (Ck).

(b) If k > L+ 1 then ĈL ⊂ Ĉk.

Observe that û in (16) is a strict solution of problem (Ck) since û solves problem (Pσ̂) in (9) for

σ̂ := supp(û) where rank (Aσ̂) = ♯ σ̂ (Lemma 10). Further, the graph {(k, ck) | k 6 L} is Pareto optimal

[27, Definition 1]: for any k 6 L, there is no u ̸∈ Ĉk that can decrease both ∥Au− d∥2 and ∥u∥0.

Theorem 1(a) gives necessary conditions for an optimal solution of (Ck) for k 6 L.

The optimal solutions of (Ck) for k 6 L are strict minimizers.

The algorithm aimed at solving (Ck) proposed in [6] was shown in [6, Lemma 6] to produce, under

certain conditions, solutions that fulfill this necessary condition.

Example 2. Let I2 be the 2× 2 identity matrix and set 1l2 := (1, 1)T.

• Consider that A = (I2, 1l2) and d = 1l2. There is an optimal solution û = (0, 0, 1)T with c1 = 0, hence

L = 1. Further, û = (1, 1, 0)T is a strict minimizer of (C2) because rank
(
Asupp(û)

)
= 2. One has

∥û∥0 = 3 for a continuum of optimal solutions of the form û = (x, x, 1− x)T where x ∈ R \ {0, 1}.

• Let now A = (I2, I2) and d = (1, 0)T. The optimal solutions of (C1) are (1, 0, 0, 0)T and (0, 0, 1, 0)T.

One has c1 = 0 and L = 1. For k > 2 all other optimal solutions are nonstrict and have the form

û = (x, y, 1− x,−y)T, x ∈ R \ {0, 1}. If y = 0 then ∥û∥0 = 2 and otherwise ∥û∥0 = 4. ♢

The optimal solutions of (Ck) for k > L have ℓ0-norms in {L, . . . , k} and they can be nonstrict.

Remark 3. [On Assumption H1] This usual assumption ensures that A is rich enough to represent

any d ∈ RM. It is also needed to prove the pivotal Lemma 3 and to define L in (15). ♢
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A direct and useful consequence of Theorem 1(a) is stated below.

Corollary 1. Let H1 hold. Then Ĉk ∩ Ĉn = ∅ for all (k, n) ∈ ( I0L )2 such that k ̸= n.

If û solves optimally (Ck) for k 6 L, then û is not an optimal solution of (Cn) for n 6 L, n ̸= k.

By Theorem 1(a), many subsets in {Σk}Nk=0 are not the supports of optimal solutions of (Ck).
Accordingly, we focus only on the subsets ω ⊂ I0N with exactly k entries such that rank (Aω) = k:

Ωk :=
{

ω ⊂ IN | ♯ ω = k = rank (Aω)
}

. (17)

Remark 4. From H1 and Theorem 1(a), the optimal value of problem (Ck) for any k ∈ I0L obeys

ck = min
{
∥Aũ− d∥2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Ωk

}
(18)

and the corresponding set of optimal solutions satisfies

Ĉk =
{
u ∈ RN, supp(u) ∈ Ωk

∣∣∣ ∥Au− d∥2 = ck

}
. (19)

Let û ∈ Ĉk; for σ̂ := supp(û) one has σ̂ ∈ Ωk and û solves (Pσ̂), hence û is an isolated minimizer

(Remark 2). Denoting by Πσ̂ the orthogonal projector onto range (Aσ̂), see e.g. [29], one has

ck = dT(I −Πσ̂) d where Πσ̂ = Aσ̂ (A
T

σ̂Aσ̂)
−1AT

σ̂ . (20)

From (18) and (20), the optimal value ck satisfies also ck = ∥d∥2 −max
{
dT Πω d

∣∣ ω ∈ Ωk

}
. ♢

The fact that ♯Ωk ≪ ♯Σk might be useful.

2.3 Necessary and sufficient conditions

Problem (Rβ) in (3) is equivalently given by the global minimization of

Fβ(u) = ∥Au− d∥2 + β ♯ supp(u) .

We give two known results on its optimal sets (Theorems 2 and 3) needed in what follows. They hold

for any A ∈ RM×N with M < N.

Theorem 2 ([34] Theorem 4.4). Let Fβ read as in (3). The following statements hold:

(a) Fβ always has a global minimizer, i.e., R̂β ̸= ∅ for any β > 0 and any d ∈ RM.

(b) If û is a global minimizer of Fβ, then û is a strict minimizer.

The global minimizers of Fβ are strict. The strict (local) minimizers of Fβ are characterised next.

Theorem 3 ([34], Theorem 3.2). A point û ∈ RN is a strict (local) minimizer of Fβ if and only if

rank (Aσ̂) = ♯ σ̂ where σ̂ := supp(û).

The global minimizers û of (Ck) for k 6 L and those of Fβ are strict and moreover isolated: they

solve problem (Pσ̂) in (9) for σ̂ := supp(û) such that rank(Aσ̂) = ♯ σ̂ (Remark 2).

The proofs of the statements below (except for Theorem 5) are given in Appendix A.2.

Proposition 1 relates the optimal sets and the optimal values of problems (Ck) and (Rβ).
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Proposition 1. Let H1 hold. The following statements hold:

(a) For any k ∈ I0L it holds that

Fβ(û) = ck + β k ∀ û ∈ Ĉk .

(b) û ∈ R̂β =⇒ û ∈ Ĉk where k := ∥û∥0 ∈ I0L .

(c) û ∈ R̂β =⇒ Ĉk ⊆ R̂β for k := ∥û∥0 ∈ I0L .

By (c), the global minimizers of Fβ are composed of some optimal sets Ĉk only for k 6 L.

The statements that follow are given in terms of the optimal sets Ĉk and R̂β, as defined in (5) and

(7), respectively. The claim in the next Lemma 4 is usually false for ordinary subsets C and R.

Lemma 4. Let H1 hold. For any β > 0 and for any k ∈ I0L one has

Ĉk ̸⊆ R̂β ⇐⇒ Ĉk ∩ R̂β = ∅ .

We denote by Ĉ the collection of all optimal solutions of problems (Ck) for k ∈ I0L and likewise, by

R̂ – the set of all global minimizers of Fβ for all β > 0:

Ĉ :=

L∪
k=0

Ĉk and R̂ :=
∪
β>0

R̂β . (21)

With this notation, Theorem 4 is a direct consequence of Proposition 1(b).

Theorem 4. Let H1 hold. Then R̂ ⊂ Ĉ .

Theorem 4 shows that when β ranges on (0,+∞), Fβ can have at most L + 1 different sets of global

minimizers which are optimal solutions of (Ck) for k ∈ {0, . . . , L}.

In view of Proposition 1(c) and Theorem 4, each global minimizer of (Rβ) can be composed out of

the optimal sets of several problems of the form of (Ck) or it can be equal to the optimal set of exactly

one problem (Ck). This is made explicit in the following remark:

Remark 5. Let β > 0 and k ∈ I0L. Since R̂β is the set of the global minimizers of Fβ, one has

Ĉk ⊆ R̂β ⇐⇒ Fβ(u) > Fβ(û) ∀ û ∈ Ĉk ∀ u ∈ RN ;

Ĉk = R̂β ⇐⇒ Fβ(u) > Fβ(û) ∀ û ∈ Ĉk ∀ u ∈ RN \ Ĉk .

The next theorem provides the basic tool to compare the optimal sets of problems (Ck) and (Rβ).

Theorem 5. Let H1 hold and let β > 0. For any k ∈ I0L the following holds:

(a) Ĉk ⊆ R̂β if and only if

Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉk ∀ u ∈ Ĉ ; (22)

(b) Ĉk = R̂β if and only if

Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉk ∀ u ∈ Ĉ \ Ĉk . (23)
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Proof . From Remark 5 it is straightforward that

Ĉk ⊆ R̂β (resp., Ĉk = R̂β) =⇒ Fβ(u)−Fβ(û) > 0 ∀ u ∈ Ĉ (resp., > 0, ∀ u ∈ Ĉ \ Ĉk) ∀ û ∈ Ĉk .

The rest of the proof is by contraposition.

(a) Assume that Ĉk ̸⊆ R̂β. Then Ĉk ∩ R̂β = ∅ by Lemma 4. Since R̂β ̸= ∅ (Theorem 2(a)),

Proposition 1(c) entails that there exists n ∈ I0L \ {k} such that Ĉn ⊆ R̂β. It follows that

Fβ(û) > Fβ(u) ∀ û ∈ Ĉk ∀ u ∈ Ĉn , (24)

a contradiction to (22).

(b) Let Ĉk ̸= R̂β. This, together with R̂β ̸= ∅, implies that there is u ∈ R̂β such that u ̸∈ Ĉk.

Proposition 1(c) shows that Ĉn ⊆ R̂β for n := ∥u∥0 ∈ I0L where n ̸= k (Theorem 1(a)). Therefore

Fβ(û) > Fβ(u) ∀ û ∈ Ĉk ∀ u ∈ Ĉn ,

which contradicts (23). �

Theorem 5 is the key to finding the links between the optimal sets of (Ck) and (Rβ): it provides necessary

and sufficient conditions for optimality of (Rβ) only in terms of the optimal sets of {(Ck)}Lk=0.

A simple useful result is stated next.

Lemma 5. Let H1 hold. Let (k, k + p) ∈
(
I0L
)2

for p > 1. The following implications holds:

Ĉk ⊆ R̂β

(
resp., Ĉk = R̂β

)
and Ĉk+p = R̂β′

(
resp., Ĉk+p ⊆ R̂β′

)
=⇒ β′ < β .

This lemma confirms the intuition that when β increases on (0,+∞), the optimal sets R̂β are

given by a subsequence of
{
Ĉk

}
with decreasing indexes.

3 Parameter values for equality between optimal sets

The links between the optimal solutions of problems (Ck) and (Rβ) are driven by the values of k and

of β. This section is devoted to parameter selection.

3.1 The entire list of parameter values

Based on the optimal values {ck}Lk=0 of problems (Ck)’s, see (20), for each k ∈ I0L we give explicit

formulae for the lower and the upper bounds of β that can enable an agreement between the optimal

sets Ĉk and R̂β.

Definition 3. (Critical parameter values) Let L be as in (15). The parameters (βk, β
U
k ) are defined by

βk := max

{
ck − ck+n

n
| n ∈ {1, . . . , L− k}

}
∀ k ∈ I0L−1 and βL := 0 , (25)

βU
k := min

{
ck−n − ck

n
| n ∈ {1, . . . , k}

}
∀ k ∈ IL and βU

0 := +∞ . (26)

10



The superscript U in (26) suggests that βU
k can be the upper bound.

Remark 6. Since d ̸= 0, this definition indicates that βL = 0 < βU
L =

L
min
n=1

cL−n

n
and that β0 < βU

0

because β0 is finite. The cases where βk < βU
k will be of particular interest, as seen in section 4

(Theorems 7 and 9). However, this inequality can fail (see Discussion on Theorem 9). A simplification

of these parameters is derived in Proposition 3. Some insight can be gained from the numerical tests

in section 7. ♢

In view of Definition 3, the intuition suggests that the set {k | βk = βU
k } should be “small”.

Proposition 2. Let H1 hold and {βk, βU
k }Lk=0 be as in Definition 3. There exists a finite union of

vector subspaces of dimension 6 M− 1, denoted by S, such that

d ∈ RM \ S =⇒ βk ̸= βU
k ∀ k ∈ I0L .

Thus RM \S contains a dense open subset of RM. The proof is given in Appendix B.1.

Data generically live in RM \S. So βk ̸= βU
k ∀ k ∈ I0L in Definition 3 holds generically.

3.2 Conditions for agreement between the optimal sets of (Ck) and (Rβ)

Theorem 6 relates Theorem 5 and Definition 3. It provides a general mechanism for comparing the

optimal sets of problems (Ck) and (Rβ).

Theorem 6. Let H1 hold. Then ∀ k ∈ I0L it holds that

(a) Ĉk ⊆ R̂β if and only if


β0 6 β < βU

0 for k = 0 ;

βk 6 β 6 βU
k for k ∈ {1, . . . , L− 1} ;

βL < β 6 βU
L for k = L .

(b) Ĉk = R̂β if and only if βk < β < βU
k .

Proof . The following equalities come from Proposition 1(a):

− If û ∈ Ĉk for k ∈ I0L−1, then

∀ n ∈ IL−k ∀ u ∈ Ĉk+n Fβ(u)−Fβ(û) = ck+n − ck + nβ = n

(
β − ck − ck+n

n

)
. (27)

− If û ∈ Ĉk for k ∈ IL, then

∀ n ∈ Ik ∀ u ∈ Ĉk−n Fβ(u)−Fβ(û) = ck−n − ck − nβ = n

(
ck−n − ck

n
− β

)
. (28)

(a) Using (27) together with (25) in Definition 3, for any k ∈ I0L−1 one has

Fβ(u) > Fβ(û) ∀ û ∈ Ĉk ∀ n ∈ IL−k ∀ u ∈ Ĉk+n ⇐⇒ β > ck − ck+n

n
∀ n ∈ IL−k ⇐⇒ β > βk .

Using (28) together with (26) in Definition 3, for any k ∈ IL one has

Fβ(u) > Fβ(û) ∀ û ∈ Ĉk ∀ n ∈ Ik ∀ u ∈ Ĉk−n ⇐⇒ β 6 ck−n − ck
n

∀ n ∈ Ik ⇐⇒ β 6 βU
k .

11



For k = 0 (resp., for k = L), β > β0 (resp., β 6 βU
L ) is equivalent to β0 6 β < +∞ =: βU

0 (resp.,

βL := 0 < β 6 βU
L ). Combining the obtained results, one has

Fβ(u)−Fβ(û) > 0, ∀ û ∈ Ĉk, ∀ u ∈ Ĉ

if and only if βk 6 β 6 βU
k for k ∈ IL−1, β0 6 β 6 βU

0 (resp., βL < β 6 βU
L ) for k = 0 (resp., for k = L).

Applying Theorem 5(a) proves statement (a).

(b) The proof of (b) follows the same recipe as above (nonstrict inequalities are replaced by strict

inequalities) and the conclusion is obtained using Theorem 5(b). �

The proof of Theorem 6 reveals how the critical parameters in Definition 3 were defined.

3.3 The effective parameters values

Since the global minimizers of Fβ are always in Ĉ (Theorem 4), we are interested in the indexes k for

which there exist values of β such that Fβ has global minimizers containing components of Ĉk. Their

set, referred to as effective parameter set, is obtained from Theorem 6.

Definition 4. Let {βk, βU
k }

L
k=0 be as in Definition 3. The effective index set J ∪ JE is defined by

J :=
{
k ∈ I0L | βk < βU

k

}
and JE :=

{
m ∈ I0L | βm = βU

m

}
. (29)

The entries Jk of J are ordered as it follows:

J = {J0, J1, . . . , Jp} where p := ♯ J− 1 and Jk−1 < Jk ∀ k . (30)

Using Definition 3 and Remark 6,

(J0 = 0, Jp = L) ∈ J2 with βJ−1 := βU
J0 ≡ βU

0 = +∞ and βJp ≡ βL = 0 . (31)

It worths emphasizing that the set J is always nonempty (Remark 6). The superscript E in JE

evokes equality.

The proofs of several statements in this subsection are delegated to Appendix B.2. The next claim

is a cautionary consequence of Theorems 4 and 6.

Lemma 6. Let H1 hold. One has R̂ ∩ Ĉk = ∅ if and only if k ∈ I0L \ {J ∪ JE} .

In words: for any β > 0, the optimal set R̂ of problem (Rβ) does not contain optimal solutions of

(Ck), k 6 L, unless k belongs to J ∪ JE. Thus R̂ =
∪

k∈{J∪JE}̂

Ck .

A simplification of the parameters {βk, βU
k }k∈J∪JE is derived in Proposition 3.

Proposition 3. Let H1 hold, {βk, βU
k } and J be as in Definition 3 and Definition 4, respectively. Then

(a) βJk < βU
Jk

= βJk−1
∀ Jk ∈ J \ {J0} and βJU0

≡ βJ−1 = +∞ .

(b) βJk =
cJk − cJk+1

Jk+1 − Jk
∀ Jk ∈ J \ {Jp} and βJp ≡ βL = 0 .

(c) { βm | m ∈ JE} ⊂
{
βJk

∣∣ Jk ∈ J \ {Jp}
}
.
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Proof . (a)-(b) Let (Jk−1, Jk) ∈ J2. Applying Definition 3 for βJk−1
and for βU

Jk
yields

βU
Jk

6
cJk−1

− cJk
Jk − Jk−1

6 βJk−1
. (32)

Assume that βU
Jk

< βJk−1
and that (m1, . . . ,mq) ∈ (JE)q satisfy βmi ∈ (βU

Jk
, βJk−1

), ∀ i ∈ Iq. Since R̂β ̸=
∅ ∀ β > 0, Proposition 1(c) implies that for β ∈

(
βU
Jk
, βJk−1

)
\ {βmi}

q
i=1 there is n ∈ I0L \ {J ∪ JE}

obeying Ĉn ⊂ R̂β, in contradiction to Lemma 6. Therefore, βU
Jk

= βJk−1
. This, together with (32) and

the formula of J in (29) gives that

βJk < βU
Jk

=
cJk−1

− cJk
Jk − Jk−1

= βJk−1
.

(c) Let m ∈ JE. By Definition 4, βm > βJp = 0. From Theorem 6(b) and statement (a), βm ̸∈(
βJk , βJk−1

)
for any Jk ∈ J. Consequently, there exists Jk ∈ J \ {Jp} such that βm = βJk . �

We emphasize that {βk}k∈J is strictly decreasing and that its first entry is β0.

In Example 3 we designed a decreasing sequence {ck}Lk=0 that illustrates several special cases.

Example 3. Let {ck}Lk=0 for L = 7 reads as

c0 = 48 c1 = 40 c2 = 30 c3 = 22 c4 = 14 c5 = 10 c6 = 4 c7 = 0 . (33)

According to Definition 3 the sequences {βk, βU
k }

7
k=0 are given by

β0 = 9 β1 = 10 β2 = 8 β3 = 8 β4 = 5 β5 = 6 β6 = 4 β7 = 0

βU
0 = +∞ βU

1 = 8 βU
2 = 9 βU

3 = 8 βU
4 = 8 βU

5 = 4 βU
6 = 5 βU

7 = 4
(34)

From Definition 4, p = 4, J = { J0 = 0, J1 = 2, J2 = 4, J3 = 6, J4 = 7} and JE = {3 } .

− One has βJk = βU
Jk+1

for any Jk ∈ J as asserted in Proposition 3(a).

− The formula in Proposition 3(b) is easy to verify.

− {β3 | 3 ∈ JE} yields β3 = βJ1 = 8 and thus {β3 | 3 ∈ JE} ⊂ {βJk | Jk ∈ J \ {J4}} (Proposition 3(c)).

− One has JE
βJ1

:= {m ∈ JE | βm = βJ1} = {3 ∈ JE | J1 < 3 < J2}, as seen in Lemma 7.

− Observe that J has the smallest indexes so that {βk}k∈J = { 9, 8, 5, 4, 0 } is the longest strictly

decreasing subsequence of {βk}7k=0 containing β0 – see Proposition 4. Another set yielding the same

{βk}k∈J is J′ := { 0, 3, 4, 6, 7}; however its indexes are larger than those of J: J′2 > J2. ♢

The location of {βm |m ∈ JE} is given by the (probably empty) subsets

JE
βJk

:= {m ∈ JE | βm = βJk} . (35)

Lemma 7. Let H1 hold. The sets JE
βJk

in (35) fulfill JE
βJk

= ∅ for k = p, and for any k 6 p− 1

JE
βJk

= {m ∈ JE | Jk < m < Jk+1} . (36)

We want to know how J and {βk}k∈J are related to {βk}k∈I0L in (25), Definition 3. Both J and

{βk}k∈J are characterized in the following proposition:
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Proposition 4. Let H1 hold, {βk}Lk=0 read as in Definition 3 and J as in Definition 4. Then 0 ∈ J

and J contains the smallest indexes such that {βk}k∈J is the longest strictly decreasing subsequence of

{βk}Lk=0 containing β0.

In order to find the effective indexes J and values {βk}k∈J we need only {βk}Lk=0 in (25), Definition 3.

The effective parameter values according to Definition 4 can be derived using Proposition 4.

4 Equivalence relations between the optimal sets of (Ck) and (Rβ)

In this section we derive the main results of this paper. The most general relationship between the

global minimizers of (Ck) and (Rβ) is a partial equivalence formulated in Theorems 7 and 8 (subsection

4.1). According to the content of the data d, quasi-complete equivalence can hold in the sense that the

global minimizers of both problems differ only at β = βk for k = 0, . . . , L − 1. The result is presented

in Theorem 9 (subsection 4.2).

4.1 Partial equivalence

The main result of this work can be stated in the following theorems. We recall that the set J cannot

be empty (Remark 6).

Theorem 7. Let H1 hold, {βk} be as in Definition 3 and J as in Definition 4. Then the following hold:{
R̂β

∣∣ β ∈
(
βJk , βJk−1

)}
= ĈJk ∀ Jk ∈ J , (37)(

p∪
n=1

[
βJk , βJk−1

])
∪
[
βJ0 , βJ−1

)
= [ 0,+∞) . (38)

Proof . From Proposition 3(a),
(
βJk , β

U
Jk

)
=
(
βJk , βJk−1

)
̸= ∅ for any Jk ∈ J. Then (37) is an

immediate consequence of Theorem 6(b). Definition 4 and Proposition 3(a) directly lead to (38). �

Discussion on Theorem 7 The theorem states that for any β ̸∈
{
βk | k ∈ J

}
there is an optimal

set Ĉk of problem (Ck) that coincides with the optimal set R̂β of problem (Rβ) for a whole range of

parameter values β. More precisely, the effective parameter values
{
βJ0 , · · · , βJp−1

}
in Definition 4

partition the positive axis (0,+∞) into ♯ J proper intervals. For any β ∈
(
βJk , βJk−1

)
the optimal set

of problem (Rβ) equals the optimal set of problem (Cn) for n = Jk. The agreement described above can

be referred to as partial equivalence because when I0L \ J is nonempty, the optimal sets (Ck) for k ∈ I0L \ J
cannot be optimal solutions of (Rβ) for any β > 0.

Remark 7. Since
{
βk | k ∈ J \ {L}

}
is a finite set of isolated values in (0,∞), the selection of a

β belonging to this set can be considered as extremely exceptional (β ̸= βJk for any k is a generic

property).

In spite of this remark, we will describe the optimal sets of problem (Rβ) for βk, k ∈ J.
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Theorem 8. Let H1 hold. Let {βk} be as in Definition 3 and J as in Definition 4. Then

R̂βJk
= ĈJk ∪ ĈJk+1

∪
(∪

m∈JEβJk
Ĉm

)
∀ Jk ∈ J \ {Jp} , (39)

where JE
βJk

obeys (36) and Ĉk ∩ Ĉn = ∅ for any (k, n) ∈ (J ∪ JE)2 , k ̸= n.

Proof . For any k 6 p − 1, Proposition 3(a) and Theorem 6(a) show that ĈJk ⊆ R̂β ∀ β ∈ [βJk , βJk−1
]

and that ĈJk+1
⊆ R̂β ∀ β ∈ [βJk+1

, βJk ]. Therefore, ĈJk ∪ ĈJk+1
⊆ R̂βJk

. In addition, βm = βJk
for any m ∈ JE

βJk
(Proposition 3(c) and (35)) which yields

∪
m∈JEβJk

Ĉm ⊆ R̂βJk
. The conditions in

Theorem 6 for β = βJk can be satisfied only for n ∈
{
Jk ∪ JE

βJk

}
because {βJk} is strictly decreasing

(Proposition 3(a)). Hence the equality in (39). The set JE
βJk

satisfies (36) by Lemma 7. The result on

the intersection of the sets Ĉn comes from Corollary 1. �

Example 4. [Example 3, continued] Let {βk}7k=0, J and JE be as in Example 3. We recall that

J = { 0, 2, 4, 6, 7} and that JE = { 3 }, so JE
2 = {3} and JE

k = ∅ otherwise. By Theorem 7 one has

{ R̂β | β > 9} = Ĉ0 { R̂β | β ∈ (8, 9)} = Ĉ2 { R̂β | β ∈ (5, 8)} = Ĉ4 { R̂β | β ∈ (4, 5)} = Ĉ6 { R̂β | β ∈ (0, 4)} = Ĉ7

and R̂β=9 = Ĉ0 ∪ Ĉ2 R̂β=8 = Ĉ2 ∪ Ĉ3 ∪ Ĉ4 R̂β=5 = Ĉ4 ∪ Ĉ6 R̂β=4 = Ĉ6 ∪ Ĉ7 .

Discussion on Theorem 8 Proposition 2 have proved that the sets JE
βJk

are empty with an over-

whelming probability. So (39) in Theorem 7 show that for β ∈
{
βk | k ∈ J \ {L}

}
, the optimal set of

problem (Rβ) is normally composed out of two optimal sets of problem (Ck), namely R̂βJk
= ĈJk∪ĈJk+1

.

Further, if an JE
βJk

is nonempty, we know from Lemma 7 that the optimal set of (Rβ) for β = βJk can

involve at most Jk+1 − Jk − 1 additional optimal sets Ĉm where m ∈ (Jk, Jk+1).

A partial equivalence between problems (Ck) and (Rβ) always exists.

For the ♯ J− 1 isolated values
{
βk | k ∈ J \ {L}

}
problem (Rβ) has normally two optimal sets.

4.2 Quasi-complete equivalence

Here we explore the conditions enabling the equivalence results in Theorem 7 to hold for any k 6 L.

Lemma 8. Let H1 hold. Let J be as in Definition 4. Then the following hold:

(a) If the sequence {βk}Lk=0 in Definition 3 is strictly decreasing, then its entries read as

βk = ck − ck+1 ∀ k ∈ I0L−1 and βL = 0, β−1 := βU
0 = +∞ . (40)

(b) If the sequence {βk}Lk=0 in (40) is strictly decreasing then J = I0L.

Proof . (a) Since {βk}Lk=0 is strictly decreasing, Proposition 4 implies that the set J in (29) obeys

J = I0L. Applying Proposition 3(b) with Jk = k and Jk+1 = k + 1 delivers the formula in (40).

(b) Let {βk}Lk=0 in (40) be strictly decreasing. Then βk in (40) satisfies Proposition 3(b) for any

k ∈ J = I0L. By setting βU
k := βk−1, one has J = I0L according to Definition 4. �
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Theorem 9. Let H1 hold. Let {βk}Lk=0 in (40) be strictly decreasing. Then{
R̂β

∣∣ β ∈ (βk, βk−1)
}
= Ĉk ∀ k ∈ I0L (41)

R̂βk
= Ĉk ∪ Ĉk+1 with Ĉk ∩ Ĉk+1 = ∅ ∀ k ∈ I0L−1 . (42)

Proof . Since {βk}Lk=0 in (40) is strictly decreasing, one has J = I0L by Lemma 8(b). So, JE = ∅ in

Definition 4 and JE
k = ∅ in (35). Then the statement follows from Theorems 7 and 8. �

Discussion on Theorem 9 The condition that {βk}Lk=0 in (40) is strictly decreasing reads as

βk−1 > βk ∀ k ∈ IL−1 ⇐⇒ ck−1 − ck > ck − ck+1 ∀ k ∈ IL−1 . (43)

For generic data, {ck} is strictly decreasing (Proposition 5(b)). For such generic data and k 6 L−1, let

u, û and ũ be optimal solutions of problems (Ck−1), (Ck) and (Ck+1), respectively. Denote σ := supp(u),

û := supp(û) and σ̃ := supp(ũ). The condition on the right hand side in (43) reds as

dT (Πσ̂ −Πσ) d > dT (Πσ̃ −Πσ̂) d (44)

where both sides in the inequality above are positive. It is reasonable to expect that there are data d

such that the above condition holds for any k 6 L. Note such data would belong to an open subset

of RM where (44) is satisfied. Given a series of numerical tests on 5 × 10 matrices (see section 7) the

realization of (43) essentially depends on d.

Theorem 9 shows that it is possible to have equivalence between problems (Ck) and (Rβ), except for

the isolated parameter values {βk}Lk=0. If the matrix A is specified and if there are assumptions on the

data, one could infer knowledge whether the context of Theorem 9 is a regular regime or not. If the

answer turns to be positive, this can be used in the development of numerical schemes.

A mid-way scenario appears as an immediate consequence of Proposition 3(b), (35) and Theorem 7.

Remark 8. Let H1 hold, {βk, βU
k } and J be as in Definition 3 and Definition 4, respectively. Suppose

that for m > 0 and n > 1 the entries of J satisfy

J′ := {Jm, . . . , Jm+n} = {Jm, Jm + 1, Jm + 2, . . . , Jm + n} .

Then

βJm+k
= cJm+k−cJm+k+1

{
R̂β

∣∣ β ∈
(
βJm+k

, βJm+k−1

)}
= ĈJm+k and JE

βJk
= ∅ 0 6 k 6 n−1 .

If the subset J′ contains all sparsity levels of interest in a given situation, we are again in the setup of

Theorem 9 and the comments given after it.

5 On the optimal values of (Ck) and (Rβ)

The proofs of the statements in this section are outlined in Appendix C.

Using the definition of Ωk in (17), we introduce the subsets of RM given below:

Ek :=
∪

ω∈Ωk

range (Aω)
⊥ and Gk :=

∪
ω∈Ωk

range (Aω) . (45)

Clearly, E0 = GM = RM and EM = G0 = {0} by H1.

The next Proposition 5 gives results on {ck}Mk=0 in connection with d ∈ RM.
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Proposition 5. Let H1 hold. Let L′ 6 M be arbitrarily fixed. Then

(a) ck > 0 ∀ k 6 L′ − 1 ⇐⇒ d ∈ RM \GL′−1 ;

(b) d ∈ RM \ (E2 ∪GL′−1) =⇒ ck−1 > ck ∀ k ∈ IL′ .

Proposition 5(a) shows that the constant L in (15) corresponds to d ∈ GL \GL−1.

Remark 9. The subsets E2 and GM−1 are finite unions of vector subspaces of dimensions M − 2 and

M− 1, respectively. Hence, d ∈ RM \ (E2 ∪GM−1) is a generic property (Definition 1).

Therefore, {ck}Mk=0 is strictly decreasing and L = M generically. ♢

By Proposition 1(a) and Theorem 4, for any β > 0 the optimal value of problem (Rβ) in (6),

rβ = inf
{
Fβ(u) | u ∈ RN

}
, equivalently reads as

rβ = min
{
ck + β k | k ∈ I0L

}
. (46)

From this observation and Theorems 7 and 8 one infers the following:

Corollary 2. Let H1 hold and J be as in Definition 4. The application β 7→ rβ : (0,+∞) → R fulfills

(a)

{
rβ = cJk + β Jk

= Fβ(û) ∀ û ∈ ĈJk

if and only if β ∈


[βJ0 , +∞) for J0 = 0 ;[
βJk , βJk−1

]
for Jk ∈ J \ {0, L} ;(

0, βJp−1

]
for Jp = L .

(b) β 7→ rβ is continuous and concave.

(c) rβJk−1
> rβJk

∀ Jk ∈ J , rβJ0
= cJ0 = rβ ∀ β > βJ0 and rβJ0

> rβ ∀ β < βJ0.

rβ is affine increasing on each interval (βkn , βkn−1) with upward kinks at kn ∈ J \ {L} and bounded by c0.

Example 5. [Continuation of Example 3] Let us consider again {ck}7k=0 in (33) along with {βk}7k=0 in

(4) and J. From Corollary 2, the mapping β 7→ rβ is given by

β ∈ (0, 4] rβ = c7 + 7β = 7β rβ=4 = 28
β ∈ [4, 5] rβ = c6 + 6β = 4 + 6β rβ=5 = 34
β ∈ [5, 8] rβ = c4 + 4β = 14 + 4β rβ=8 = 46
β ∈ [8, 9] rβ = c2 + 2β = 30 + 2β rβ=9 = 48
β ∈ [9,+∞) rβ = c0 + 0β = 48

6 Cardinality of the optimal sets of (Rβ) and of (Ck)

For the convex surrogates of problems (Ck) and (Rβ) where ∥u∥0 is replaced by ∥u∥1, it is well known
that the optimal sets are convex closed with possibly a continuum of solutions.

Proposition 6. Let H1 hold. For any β > 0 and for any k 6 L, the optimal sets R̂β and Ĉk are finite.

Proof . From Remark 4, each û ∈ Ĉk is the unique minimizer of problem (Pω) for ω := supp(û) where

ω ∈ Ωk (Theorem 1(a) and the notation in (17)). Therefore, ♯ Ĉk is finite (with ♯ Ĉk 6 ♯Ωk). This,

together with Theorem 7 and Theorem 8, shows that ♯ R̂β is finite for every β > 0. �

For any β > 0 and k ∈ I0L the optimal sets of problems (Ck) and (Rβ) are composed out of a

certain finite number of isolated (hence strict) minimizers.
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6.1 Uniqueness of the global minimizers of (Ck) and (Rβ)

If L = M, Remark 4 shows that ♯ ĈM = ♯ΩM and by Definition 4, M ∈ J in which case Theorem 7 and

Theorem 8 yield ♯
{
R̂β | β ∈

(
0, βkp−1

]}
> ♯ ĈM.

Let k 6 min{L,M − 1} and (û, ũ) ∈
(
Ĉk

)2
for û ̸= ũ. Set σ̂ := supp(û) and σ̃ := supp(ũ). By

Theorem 1(a), (σ̂, σ̃) ∈ (Ωk)
2. Then

ck = ∥Aσ̂ûσ̂ − d∥2 = ∥Aσ̃ũσ̃ − d∥2 where σ̂ ̸= σ̃ .

The expression for ck in (20) shows that

∥Aσ̂ûσ̂ − d∥2 − ∥Aσ̃ũσ̃ − d∥2 = dT (Πσ̃ −Πσ̂) d = 0 . (47)

The last equality in (47) suggests that Ĉk could be a singleton under the assumption H⋆ below.

H⋆. For K 6 min{M− 1, L} fixed, A ∈ RM×N obeys Πω ̸= Πω ∀ (ω, ω) ∈ (Ωk)
2 , ω ̸= ω ∀ k ∈ IK .

H⋆ is a generic property of all matrices in RM×N [34, Theorem 5.3]. Under H⋆, the set ∆K below

∆K :=
∪K

k=1

∪
(ω,ω)∈(Ωk)

2

{
g ∈ RM

∣∣ ω ̸= ω and g ∈ ker (Πω −Πω)
}

is a finite union of vector subspaces of dimension 6 M− 1, so data generically live in RM \∆K.

Remark 10. Let the two generic assumptions, A satisfies H⋆ and d ∈ RM \∆K, hold. From (47),

problem (Ck) ∀ k ∈ IK has a unique optimal solution. Using that {βk}k∈J is strictly decreasing, we

set K′ := max {k ∈ J | k 6 K}. Then Theorems 7 and 8 show that problem (Rβ) has a unique optimal

solution for any β ∈ (βK′ ,+∞) \ {βk}k∈J and hence generically for any β > βK′ by Remark 7. ♢

For any k 6 min{M− 1, L} and for any β > βkp−1 problems (Ck) and (Rβ)

generically have a unique global minimizer.

For the sake of generality, we did not consider the assumptions evoked in this subsection.

7 Numerical tests

Here we present two kind of experiments using matrices A ∈ RM×N for (M,N) = (5, 10), original vectors

uo ∈ RN and data samples d = Auo(+noise) with two different goals:
• to get a rough idea on behaviour of the parameters βk in Definitions 3 and 4;

• to verify and illustrate our theoretical findings.

All results were calculated using an exhaustive combinatorial search.

7.1 Monte Carlo experiments for (M,N) = (5, 10)

We realized two experiments, each one composed of 105 trials with (M,N) = (5, 10). In each trial,

the “original” uo ∈ RN had a random support on {1, . . . ,N} satisfying ∥uo∥0 6 M − 1 = 4 with mean

3.79. The coefficients of each A and the non-zero entries of each uo were independent and identically

distributed (i.i.d.). Data were obtained as d = Auo+ i.i.d. centered Gaussian noise. In each trial we

computed the exact optimal values {ck} and then computed (βk, β
U
k ) according to Definition 3. We

considered two different distributions for A and for the non-zero entries of uo.
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− Experiment N (0,10). All coefficients of each A and all non-zero entries of uo had a normal

distribution with mean 0 and variance 10. The SNR in dB was in [10, 61] with mean value 33.75

dB.

− Experiment Uni [0,10]. The coefficients of A and of uosupp(uo) were uniform on [0, 10]. We had

SNR in [20, 55] with a mean of 28.95 dB.

In these experiments, the following facts were observed:

• We had L = M in each trial which confirms Proposition 5(b) and Remark 9;

• {ck}Mk=0 was always strictly decreasing – as expected from Proposition 5;

• We never found βm = βU
m, so the set JE in (29) was always empty; see Proposition 2.

• For every A there were data d so that the sequence {ck − ck−1}Lk=0, see (40), was strictly decreasing.

The other results in percentage are shown in Table 1 where Nk reads as

Nk := ♯
{
k ∈ I0M | βk > βk−1

}
. (48)

In both experiments, the sequence {βk}Mk=0 in Definition 3 was strictly decreasing in a huge amount

Table 1: Results on the behaviour of {βk} in Definition 3 for two experiments, each one composed of
105 random trials. For k > 3 we had Nk = 0.

βk < βk−1, ∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR)

N (0, 10) 93.681 % 6.254 % 0.065 % 33.75

Uni [0, 10] 98.783 % 1.216 % 0.001 % 28.95

of cases; by Lemma 8(a) in all these cases {βk}Mk=0 equals the sequence in (40) and the quasi-complete

equivalence in Theorem 9 holds. One should suppose that these percentages are high because of

the small size of the matrices. Anyway, these percentages clearly depend on the distribution of the

coefficients of (A, d).

7.2 Tests on (partial) equivalence with a selected matrix and selected data

Next we present in detail three experiments for (M,N) = (5, 10) where

A =


13.94 16.36 4.88 −3.09 −15.42 1.31 −3.18 −12.13 −4.26 −10.09
7.06 −6.48 −9.07 −8.37 −2.72 −17.42 −5.83 −3.81 3.87 −1.80

11.63 6.73 −4.75 −6.28 3.42 6.68 −1.64 13.23 9.03 −20.27
−7.54 12.74 −6.66 5.01 4.84 8.98 −9.35 3.85 7.18 4.09
3.22 −10.40 −5.02 16.70 9.53 −5.49 11.88 −3.62 17.36 7.34


uo =

(
0 4 0 0 0 9 0 0 3 0

)T
. (49)

The entries of A follow a nearly normal distribution. The coefficients of A, uo, and d in (50), (52) and

(54) are exact. H1 holds since rank(A) = M = 5. Problem (CM) has ♯ΩM = 252 optimal solutions;

none of them is shown. We have β0 < βU
0 = +∞ (Remark 6), so Ĉ0 =

{
R̂β |β > β0

}
in all cases

(Theorem 6). In the tests presented below the optimal set of (Ck) for k 6 M − 1 is a singleton (see

subsection 6.1).
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In order to illustrate various cases of partial or quasi-complete equivalence, we selected a couple (A, uo) in

(49) that behaves behaves differently compared to Table 1: it does not favor quasi-complete equivalence

as seen from the 105 random trials summarized in Table 2.

Table 2: The behaviour of {βk} in Definition 3 for an experiment with 105 trials where A and uo are
given by (49) d = Auo+ i.i.d. centered Gaussian noise. We had Nk = 0, ∀ k > 3.

βk < βk−1, ∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR)

A, uo in (49) 29.41 % 70.59 % 0 % 36.25

Noise-free data According to (49), data read as

d = Auo =
(
64.45 −171.09 114.13 153.32 −38.93

)T
. (50)

Since data are noise-free and ∥uo∥0 = 3, clearly û = uo is an optimal solution to problems (Ck) with

ck = 0 for k ∈ {3, 4, 5} and L = 3. The other optimal values ck are seen in Table 3. By Theorem 4, any

û ∈ R̂ obeys ∥û∥0 6 3. The critical parameters {βk} by Definition 3 are

β3 = 0 < βU
3 = β1 = 3872.46 < βU

1 = β0 = 63729 and β2 = 3968 > βU
2 = 3776.82 . (51)

βk > βU
k only for k = 2, so J = {0, 1, 3} in (29). By Lemma 6, R̂ ∩ Ĉk = ∅ for k = 2. By Theorem 7,

Ĉ3 =
{
R̂β | β ∈ (β3, β1)

}
and Ĉ1 =

{
R̂β | β ∈ (β1, β0)

}
. The numerical results are seen in Table 3.

Table 3: The optimal values ck and the optimal sets of (Ck) for k ∈ I03 where d is as in (50). The values

of βk are given in (51). We recall that R̂β is the optimal set of problem (Rβ).

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

3
2
1
0

0
3968
7745
71474

0 4 0 0 0 9 0 0 3 0
0 3.25 0 0 0 9.29 0 0 0 0
0 0 0 0 0 11.76 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β3, β1)
no

β ∈ (β1, β0)
β > β0

Noisy data 1. Data are corrupted with nearly normal, centered, i.i.d. noise and SNR= 32.32 dB:

d =
(
69.13 −171.95 113.74 150.27 −36.09

)T
. (52)

The optimal values ck of problems (Ck) in Table 4 with c5 = 0 yield L = M = 5. From Definition 3,

β5 = 0 < βU
5 = β4 = 0.068 < βU

4 = β3 = 36.25 < βU
3 = β1 = 3987.68 < βU

1 = β0 = 63154 , (53)

while β2 = 4002.83 > βU
2 = 3972.54. Hence, J = I05 \ {2} in (29) and {βk}k∈J confirms Propositions 3

and 4. By Lemma 6, R̂∩Ĉ2 = ∅ and by Theorem 7, Ĉ5 =
{
R̂β |β ∈ (0, β4)

}
, Ĉ4 =

{
R̂β |β ∈ (β4, β3)

}
,

Ĉ3 =
{
R̂β |β ∈ (β3, β1)

}
and Ĉ1 =

{
R̂β |β ∈ (β1, β0)

}
. The numerical tests are shown in Table 4.
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Table 4: The optimal values ck and the optimal solutions of (Ck) for k ∈ I04 where d is given in (52).

The values of βk are given in (53). We recall that R̂β is the set of the global minimizers of Fβ.

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

4
3
2
1
0

0.068
36.3141
4039

8011.68
71166

0 4.40 0 0 0 8.71 0.54 0 2.95 0
0 4.09 0 0 0 8.88 0 0 3.01 0
0 3.33 0 0 0 9.17 0 0 0 0
0 0 0 0 0 11.71 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)
β ∈ (β3, β1)

no
β ∈ (β1, β0)

β > β0

Noisy data 2. The noise is nearly normal, centered, i.i.d., SNR= 25.74 dB:

d =
(
66.67 −169.08 101.56 149.38 −39.50

)T
. (54)

The optimal values {ck} in Table 5 show that L = M. The sequence {βk} by Definition 3 reads as

β0 = 60287 β1 = 3825 β2 = 3037.1 β3 = 72.734 β4 = 0.0259 β5 = 0 . (55)

This {βk} is strictly decreasing and equals {βk} in (40), as claimed in Lemma 8(a). From Theorem 9,

problems (Ck) and (Rβ) are quasi-completely equivalent. This is confirmed by the tests reported in

Table 5.

Table 5: The optimal values and solutions of (Ck) for k ∈ I4 where d is given in (54). Here {βk} is
strictly decreasing, see (55), so (Ck) and (Rβ) are quasi-completely equivalent.

k ck Ĉk = the optimal solution of (Ck), singleton Ĉk = R̂β

4
3
2
1
0

0.0259
72.7601
3109.86
6934.85
67222

0 8.54 0 0 4.59 4.90 2.73 0 0 0
0 3.93 0 0 0 8.70 0 0 2.63 0
0 3.27 0 0 0 8.95 0 0 0 0
0 0 0 0 0 11.44 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)
β ∈ (β3, β2)
β ∈ (β2, β1)
β ∈ (β1, β0)

β > β0

8 Conclusions and open questions

We have derived the precise mechanism of the relationship between the optimal solutions of least-

squares constrained by k-sparsity (problem (Ck) in (2)) and regularized by ∥ · ∥0 via a parameter β > 0

(problem (Rβ) in (3)). Subsection 1.2 (Main contributions) made seven claims regarding the obtained

new results. These problems were shown to be partially equivalent in general and under conditions,

quasi-completely equivalent. Our theoretical findings pose intriguing questions, of both a theoretical

and practical flavor.

• Our work provided useful hints how to analyze ∥ · ∥0-related problems.

• The obtained results can clarify a proper choice between models (Ck) and (Rβ) in applications. If

one needs optimal solutions with a fixed number of nonzero entries, (Ck) is obviously the best choice.

If only information on the perturbations is available, (Rβ) is a more flexible model.
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• A proper extension of our results to matrices A and data d with complex entries should not present

inherent difficulties but it is important in many applications (e.g., phase retrieval).

• Many algorithms have been built on good knowledge on the optimal solutions. One can expect our

detailed results to give rise to innovative and efficient algorithms enabling one to compute relevant

solutions.

• Extensions to penalties of the form ∥Du∥0 for D a linear operator. The preliminary step should

involve an extension of the knowledge on the optimal solutions of (Ck) and (Rβ) to these more

complex penalties.

• The Monte-Carlo tests (subsection 7.1) have shown that the degree of partial equivalence, i.e., the

size and the distribution of effective critical sequence {βk}, depends on the statistics of the matrix

A and the data d.

• By specifying a class of matrices A and assumptions on data d, one might want to infer statistical

knowledge on the optimal values ck’s of problems (Ck) and thus on the critical parameters {βk}. In

the partial equivalent context, it would be intriguing to see if problem (Rβ) is able to eliminate some

uninteresting optimal solutions of problem (Ck).

Hopefully, these problems will be addressed in future work.

A Proofs for joint optimality conditions for (Ck) and (Rβ), sec. 2

A.1 On the optimal solutions of problem (Ck), subsection 2.2

Proof of Lemma 1. Using (Pω) in (9) and (11), the optimal value of (Ck) for any k is given by

ck = inf
{
∥Aũ− d∥2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Σk

}
.

For k ∈ I0N and ω ∈ Σk, define cω > 0 by

cω := ∥Aũ− d∥2 where ũ solves (Pω) for ω ∈ Σk . (56)

The set of numbers {cω | ω ∈ Σk} is nonempty and finite. Then ck = min{cω | ω ∈ Σk} is well defined.

By (56) there exists û ∈ RN such that ∥Aû− d∥2 = ck. Hence û ∈ Ĉk and thus Ĉk ̸= ∅.

Proof of Lemma 2 Since Σk−n ⊂ Σk, ∀ n ∈ I0k it follows from (9) and (13) that

ck 6 ∥Au− d∥2 ∀ u ∈ RN such that supp(u) ∈ Σk−n, ∀ n ∈ I0k . (57)

Hence ck 6 ck−n, ∀ n ∈ Ik. By H1, there is ω ∈ ΣM so that rank (Aω) = M = ♯ ω. Then ∥Aû − d∥2 =

cM = 0 for û given by ûω = (Aω)
−1d and ûIN \ω = 0.

Proof of Lemma 3 Since n > 1, û solves the problem minu ∥Au− d∥2 subject to ∥û∥0 < k. This is

an unconstrained problem, therefore the gradient of u 7→ ∥Au− d∥2 must be null at û:

AT(Aû− d) = 0 .
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By H1 we immediately get that Aû − d = Aσ̂ûσ̂ − d = 0 and ∥Aû − d∥2 = 0. This combined with

supp(û) ∈ Σk−n yields ck−n = 0 and û ∈ Ĉk−n. For any m > n − k one has cm = 0 by Lemma 2 and

û ∈ Ĉm because Σm ⊃ Σk−n.

In order to prove Theorem 1(a) we need some auxiliary results.

Corollary 3. Let H1 hold. Then
[
k ∈ I0L and û ∈ Ĉk =⇒ ∥û∥0 = k

]
.

Proof . The case k = 0 being trivial we focus on k ∈ IL. Assume that ∥û∥0 = k − n for n > 1. Then

ck−n = 0 by Lemma 3 which contradicts the definition of L in (15) Hence n = 0. �

Lemma 9. Let H1 hold. Consider that û ∈ Ĉk for k ∈ I0L. Set σ̂ := supp(û). Then

rank (Aσ̂) = ♯ σ̂ ≡ ∥û∥0 . (58)

Proof . One has ∥û∥0 = k by Corollary 3. For k = 0 (58) is obvious. Suppose that (58) fails for k > 1:

rank (Aσ̂) 6 ♯ σ̂ − 1 . (59)

The rank-nullity theorem [29] entails that dim ker (Aσ̂) = ♯ σ̂ − rank (Aσ̂) > 1 . Take an arbitrary

vσ̂ ∈ ker (Aσ̂) \ {0}, set vIN \ σ̂ := 0 and select an i ∈ σ̂ in order to define ũ by

ũ := û− ûi
v

vi
.

Then ũi = 0 and ûi ̸= 0 , so σ̃ := supp (ũ) $ σ̂, which leads to

∥ũ∥0 = k− n for n := ∥û∥0 − ∥ũ∥0 > 1 . (60)

From vσ̂
ûi
vi

∈ ker (Aσ̂) one has Aû = Aσ̂ûσ̂ = Aσ̂

(
ûσ̂ − vσ̂

ûi
vi

)
= Aσ̂ũσ̂ = Aσ̃ũσ̃ = Aũ . Then

ck = ∥Aû− d∥2 = ∥Aũ− d∥2 . (61)

This, together with the fact supp(ũ) ∈ Σk shows that ũ ∈ Ĉk. Thus ũ ∈ Ĉk and ∥ũ∥0 6 k− 1 by (60),

hence ck−1 = 0 by Lemma 3, in contradiction to the definition of L in (15). So (59) fails. �

Lemma 10. Let H1 hold. Let û be a solution of problem (Ck) such that rank (Aσ̂) = ♯ σ̂ for σ̂ :=

supp(û). Then û is a strict minimizer of problem (Ck).

Proof . Observe that û solves the problem min
{
∥Au− d∥2 | u ∈ S

}
where

S =
{
v ∈ RN : supp(v) ⊂ σ̂

}
. (62)

Since û solves problem (Pσ̂) where rank (Aσ̂) = ♯ σ̂ the mapping ûσ̂ 7→ ∥Aσ̂ûσ̂ − d∥2 is strictly convex

and its unique solution ûσ̂ satisfies

v ∈ S \ {0} =⇒ ∥Aσ̂(ûσ̂ + vσ̂)− d∥2 > ∥Aσ̂ûσ̂ − d∥2 .

This, combined with (62) shows that ∥A(û+ v) − d∥2 > ∥Aû− d∥2 for any v ∈ S \ {0}. Hence û is a

strict minimizer of problem (Ck) (Definition 2). �
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Proof of Theorem 1. (a) Let û ∈ Ĉk for k ∈ I0L. By Corollary 3 and Lemma 9, rank (Aσ̂) = k = ∥û∥0
where σ̂ := supp(û), which proves (16). Since û solves problem (Pσ̂) in (9) where rank (Aσ̂) = ♯ σ̂ it

follows by Lemma 10 that û is a strict minimizer.

(b) From Lemma 3 and the definition of L in (15) one finds ĈL ⊂ Ĉk for any k > L+ 1.

Proof of Corollary 1 Let û ∈ Ĉk and u ∈ Ĉn for (k, n) ∈ ( I0L )2, k ̸= n. By Theorem 1(a), ∥û∥0 = k

and ∥u∥0 = n, hence the result.

A.2 Proofs for necessary and sufficient conditions, subsection 2.3

From Theorems 2 and 3, if H1 holds, all global minimizers û of Fβ satisfy ∥û∥0 6 M.

Corollary 4, Lemmas 11, 12 and 13 below help to prove Proposition 1.

Corollary 4 ([34] Corollary 3.3). Let û solve (Pω) for ω ∈ Ωk where k ∈ I0M. Then û is a strict (local)

minimizer of Fβ for any β > 0.

With the notation in (17), it is suitable to set

Ω :=
M∪
k=0

Ωk .

Lemma 11. Let d ∈ RM and β > 0. Then

û is a strict (local) minimizer of Fβ ⇐⇒ û ∈ U :=
∪
ω∈Ω

{ũ ∈ RN solves (Pω) for ω ∈ Ω}. (63)

Proof . Let û be a strict (local) minimizers of Fβ. Then û solves (Pω) for ω := supp(û). By Theorem 3

ω ∈ Ω and thus û ∈ U. Conversely, any û ∈ U is a strict (local) minimizer of Fβ by Corollary 4. �

Now we partition U in (63) as follows:

U =
M∪
k=0

Uk where Uk :=
∪
ω∈Ω

{
ũ ∈ RN solves (Pω) for ω ∈ Ω and ∥ũ∥0 = k

}
. (64)

Lemma 12. Let H1 be satisfied and L be as in (15). Then Ĉk ⊂ Uk ∀ k ∈ I0L .

Proof . Let û ∈ Ĉk for k ∈ I0L. Set ω := supp(û). The expression for Ĉk in (19) and Theorem 1(a) show

that û solves (Pω) for ω ∈ Ωk ⊂ Ω and that ∥û∥0 = k. Hence û ∈ Uk. �

Lemma 13. Let H1 hold, L be as in (15) and let β > 0.

(a) Let k ∈ I0L. Then

Fβ(û) = ck + β k ∀ û ∈ Ĉk ; (65)

Fβ(ũ) > Fβ(û) ∀ ũ ∈ Uk \ Ĉk . (66)

(b) Let û ∈ ĈL. If L 6 M− 1, then

Fβ(ũ) > cL + β L = Fβ(û) ∀ ũ ∈ Un for ∀ n ∈ {L+ 1, · · · ,M} ; (67)

and thus any ũ ∈ Un for ∀ n ∈ {L+ 1, · · · ,M} obeys ũ ̸∈ R̂β for any β > 0.
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Proof . From the definition of Uk in (64), if Uk ̸= ∅, then ∥ũ∥0 = k for any ũ ∈ Uk.

(a) Since k ∈ I0L, Ĉk ⊂ Uk by Lemma 12. Any û ∈ Ĉk yields ∥Aû−d∥2 = ck, hence (65). Any ũ ∈ Uk \ Ĉk

is not an optimal solution of (Ck), so ∥Aũ−d∥2 > ck. Then Fβ(ũ) = ∥Aũ−d∥2+β k > ck+β k = Fβ(û) .

(b) By the definition of L, cn = cL = 0, ∀ n > L. It follows that for any ũ ∈ Un, ∀ n > L + 1 one has

Fβ(ũ) = ∥Aũ− d∥2 + βn > cL + βL = βL . Such a ũ is not a global minimizer of Fβ. �

Proof of Proposition 1. (a) follows from Lemma 13(a).

(b)-(c) Let û ∈ R̂β. Then û is a strict minimizer of Fβ (Theorem 2(b)) and û ∈ U by Lemma 11.

Set k := ∥û∥0; then û ∈ Uk according to (64). In addition, k 6 L because otherwise û ̸∈ R̂β by

Lemma 13(b). Also, û ∈ R̂β means that Fβ(û) is the optimal value of problem (Rβ). Then û ∈ Ĉk by

Lemma 13(a). Further, û 7→ Fβ(û) is constant for any û ∈ Ĉk; see (65). Therefore, Ĉk ⊆ R̂β.

Proof of Lemma 4. The backward implication is obvious. We focus on the forward one. Let k ∈ I0L;
we proceed by contraposition. Assume that Ĉk∩ R̂β ̸= ∅, i.e., there exists û ∈ Ĉk∩ R̂β. Then Ĉk ⊆ R̂β

by Proposition 1(c), a contradiction to the fact that Ĉk ̸⊆ R̂β.

Proof of Theorem 4. By Proposition 1(b), any û ∈ R̂β satisfies û ∈ Ĉk for k 6 L and thus û ∈ Ĉ.

Therefore, R̂β ⊂ Ĉ. The same holds for any β > 0 which proves the theorem.

Proof of Lemma 5 By Remark 5, Ĉk ⊆ R̂β implies Fβ(û) 6 Fβ(u) ∀ û ∈ Ĉk ∀ u ∈ Ĉk+p . Using

Proposition 1(a) this inequality reads as ck + β k 6 ck+p + β (k + p) , which leads to

β > ck − ck+p

p
. (68)

On the other hand, Ĉk+p = R̂β′ entails Fβ′(u) < Fβ′(û) ∀ u ∈ Ĉk+p ∀ û ∈ Ĉk . Therefore

ck+p + β′ (k + p) < ck + β′ k ⇒ β′ <
ck − ck+p

p
. (69)

Comparing (69) and (68) proves the first part of the lemma. The proof of second one is similar.

B Proofs for parameter values for equality between optimal sets,
section 3

B.1 Proofs for the entire list parameters values, subsection 3.1

Proof of Proposition 2 For k ∈ {0, L} one has βk < βU
k by Remark 6. We recall the notation Ωk

introduced in (17) and that Πω is the orthogonal projector onto range(Aω) given in Remark 4.

There exists n ∈ IL−k such that βk =
ck − ck+n

n
. By Theorem 1, there are ω ∈ Ωk and ω ∈ Ωk+n

obeying ck = dT(I−Πω) d and ck+n = dT(I−Πω) d. Similarly, there is m ∈ Ik satisfying βU
k =

ck−m − ck
m

and ω̂ ∈ Ωk−m such that ck−m = dT(I −Πω̂) d. Then βk − βU
k reads as

βk − βU
k =

dT(Πω −Πω)d

n
− dT(Πω −Πω̂)d

m
(70)

=
dT
(
mΠω + nΠω̂ − (m + n)Πω

)
d

nm
. (71)
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It follows that all d ∈ RM able to yield βk − βU
k = 0 for some k ∈ IL−1 belong to the set S given below:

S :=

L−1∪
k=1

Sk where Sk :=

L−k∪
n=1

k∪
m=1

∪
ω∈Ωk

∪
ω∈Ωk+n

∪
ω̂∈Ωk−m

ker
(
mΠω + nΠω̂ − (n + m)Πω

)
. (72)

Let k ∈ IL−1. Since rank (Πω) = k+n, the SVD of Πω yields an orthonormal matrix Q ∈ RM×M so that

QTΠωQ =

 Ik+n
... 0

· · · · · ·

0
... 0

 .

Observe that QTΠωQ is symmetric semi-positive definite. By setting

P :=
n

m
QTΠω̂Q =

 P0
... P1

· · · · · ·

PT
1

... P2


where P0 is the first (k + n)× (k + n) principal minor of P , we have

rank(mΠω + nΠω̂) = rank
(
Πω +

n

m
Πω̂

)
= rank

(
QT

(
Πω +

n

m
Πω̂

)
Q
)

= rank

 Ik+n + P0
... P1

· · · · · ·

PT
1

... P2

 > k + n . (73)

The rank inequality above comes from the fact that P0 is positive semidefinite and thus Ik+n + P0 is

positive definite; see [28]. This, together with the facts that rank ((n + m) (Πω)) = k and that n > 1

in (73) gives that mΠω +nΠω̂ − (n +m)Πω ̸= 0; hence dim
(
ker (mΠω + nΠω̂ − (n + m)Πω)

)
6 M− 1.

Therefore, S is a finite union of vector subspaces of dimension 6 M− 1.

Finally, if d ∈ RM \S, then βk − βU
k ̸= 0 in (70) because the term in (71) in non-null.

B.2 Proofs for effective parameters values, subsection 3.3

Proof of Lemma 6 The definition of J and JE in (29) shows that

k ∈ I0L and βk > βU
k ⇐⇒ k ∈ I0L \ {J ∪ JE} .

By Theorem 6(a), one has Ĉk ̸⊆ R̂β, ∀ β > 0, if and only if k ∈ I0L \ {J ∪ JE}. By Lemma 4, Ĉk ̸⊆ R̂β

means Ĉk ∩ R̂β = ∅, ∀ β > 0.

Proof of Lemma 7 Let m ∈ JE. Theorem 6(a) shows that Ĉm ⊂ R̂βm . By Theorem 6(b) and

Proposition 3(a), ĈJk = R̂β if and only if βJk < β < βJk−1
. Assume that m < kn. Then Lemma 5

shows that βm > β for any β ∈
(
βJk , βJk−1

)
. It follows that βm ̸= βJk . This, together with (35), yields

{m ∈ JE | m < Jk} ∩ JE
βJk

= ∅ . (74)

Using the same statements, ĈJk+1
= R̂β if and only if β ∈

(
βJk+1

, βJk
)
. Consider that m > Jk+1. From

Lemma 5, βm < β for any β ∈
(
βJk+1

, βJk
)
and thus βm ̸= βJk . Hence

{m ∈ JE | m > Jk+1} ∩ JE
βJk

= ∅ . (75)

Jointly (74), (75) and J ∩ JE = ∅ prove (36). Finally, βkp ≡ βL = 0 in (31) shows that JE
βL

= ∅.
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Proof of Proposition 4 From Definition 4 one has 0 ∈ J and from Proposition 3(a) {βk}k∈J is

strictly decreasing. By Lemma 7 it holds that Jk < m for any m satisfying βJk = βm. Hence J contains

the smallest indexes.

If J = I0L, the result is proved. Consider that J $ I0L. Suppose that there is m ∈ IL \ J such

that {βk}k∈J∗ is strictly decreasing where J∗ denotes the increasingly ordered {J ∪ {m}}. By Proposi-

tion 3(c), m ̸∈ JE. Then m ∈ I0L \ {J ∪ JE}. Since βJk−1
< βJk , ∀ Jk ∈ J, there are (Jk−1, Jk) such that

Jk−1 < m < Jk and βJk < βm < βJk−1
. From Theorem 6(b) and Proposition 3(a), R̂β = ĈJk if and

only if β ∈
(
βJk , βJk−1

)
. Since βm ∈

(
βJk , βJk−1

)
one has

Fβm(u) > Fβm(û) ∀ u ∈ Ĉm ∀ û ∈ ĈJk ,

which yields cm + βmm > cJk + βm Jk (see Proposition 1(a)). Consequently,

βm <
cm − cJk
Jk −m

.

However, using that Jk > m, Definition 3 shows that βm > cm − cJk
Jk −m

, a contradiction.

C Proofs for optimal values of (Ck) and (Rβ), section 5

In order to prove Proposition 5 we shall use Lemmas 14 and 15 given below.

Lemma 14. Let H1 hold and let k ∈ {1, . . . ,M− 1}. Then

d ∈ RM \Gk ⇐⇒ ck > 0 .

Proof . Let d ∈ RM \Gk and let û ∈ Ĉk. Set σ̂ := supp(û). By Theorem 1(a) and the notation Ωk in

(17), σ̂ ∈ Ωk. Since (I −Πσ̂) is the orthogonal projector onto (range(Aσ̂))
⊥, one has

d ∈ RM \Gk =⇒ d ̸∈ range(Aσ̂) and d ̸= 0 =⇒ ck = ∥Aû− d∥2 = dT(I −Πσ̂) d > 0 .

Conversely, let ck > 0. If d ∈ Gk, there is ω ∈ Ωk meeting d ∈ range(Aω). For uω = (AT
ωAω)

−1AT
ωd

one has ∥Aωuω − d∥2 = dT(I −Πω) d = 0, a contradiction to ck > 0. �

Lemma 15. Let H1 hold and let Ek be given by (45). For any k > 1 such that ck−1 > 0 one has

ck−1 > ck ∀ d ∈ RM \Ek .

Proof . From H1, there is n ∈ IN meeting ⟨An, d⟩ ̸= 0. Set ûn = argmin
v∈R

∥An v − d∥2. Then

ûn =
⟨An, d⟩
∥An∥2

̸= 0 and c1 6 ∥An ûn − d∥2 = ∥d∥2 − ⟨An, d⟩2

∥An∥2
< c0 = ∥d∥2 .

Consider that k > 2. Let û ∈ Ĉk−1 and ck−1 > 0. Set σ̂ := supp(û) and denote by Bσ̂ a matrix

whose columns form an orthonormal basis for Aσ̂. From Theorem 1(a), σ̂ ∈ Ω k−1. By H1, there is

n ∈ IN \ σ̂ such that ω := σ̂ ∪ { n} ∈ Ωk . Then there is bk ∈ range(Aω) such that Bω = (Bσ̂ , bk)

forms an orthonormal basis for Aω (Gram-Schmidt theorem, see, e.g., [24]). The orthogonal projectors
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onto range(Aσ̂) and range(Aω) are Πσ̂ = Bσ̂B
T

σ̂ and Πω = BωB
T
ω = Bσ̂B

T

σ̂ + bkb
T
k , respectively. Then

ck 6 ζ k := dT(I −Πω) d. Applying (20) yields

ck−1 − ck > ck−1 − ζ k = dT (Πω −Πσ̂) d = ⟨bk, d⟩2 .

Since d ∈ RM \Ek, one has d ̸∈
(
range

(
(Bσ̂ , bk)

))⊥
. Hence ⟨bk, d⟩2 > 0. �

Proof of Proposition 5 (a) Let d ∈ RM \GL′−1. By Lemma 14, cL′−1 > 0. Since {ck} is decreasing

(Lemma 2), one has ck > 0 ∀ k 6 L′ − 1. Conversely, if d ̸∈ RM \GL′−1, then cL′−1 = 0 by Lemma 14.

(b) Using (a)

d ∈ RM \ (E2 ∪GL′−1) =⇒ ck > 0 ∀ k ∈ I0L′−1 . (76)

Let k ∈ IL′ . For any ω ∈ Ωk and ω $ ω with ♯ ω = k−1 one has ω ∈ Ωk−1 and range(Aω) $ range(Aω).

Since (range(Aω))
⊥ % (range(Aω))

⊥ we obtain
(
RM \Ek

)
%
(
RM \Ek−1

)
for any k ∈ {2, . . . , L′}. Using

Lemma 15 together with (76) shows that

d ∈ RM \ (E2 ∪GL′−1) =⇒ ck−1 > ck > 0 ∀ k ∈ IL′−1 and cL′−1 > cL′ .

Proof of Corollary 2. (a) follows from Theorem 7 and Proposition 1(a).

(b) By (46), rβ is the lower envelope of L+ 1 affine increasing functions. Hence (b).

(c) One has βJk(Jk+1 − Jk) = cJk − cJk+1
and {βJk}

p
k=0 strictly decreasing by Proposition 3. Then

rβJk
− rβJk+1

= cJk − cJk+1
+ βJkJk −

(
βJk −

(
βJk − βJk+1

))
Jk+1 (77)

= cJk − cJk+1
+ βJk(Jk − Jk+1) +

(
βJk − βJk+1

)
Jk+1 =

(
βJk − βJk+1

)
Jk+1 > 0 .

Since J0 = 0, see (31), rβJ0
= cJ0 = rβ, ∀ β > βJ0 . Using (a) and (77) yields rβJ0

> rβ, ∀ β < βJ0 .
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