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Abstract. Given an M×N real-valued matrix A with M < N and a data-vector d, consider that d should

be expressed as a linear combination of a small number of basis vectors taken from A. Two popular options

to find the sought-after sparse solution are problem (Rβ) – to minimize the least-squares regularized with

the counting function ∥ . ∥0 (called usually the ℓ0-norm) via a trade-off parameter β > 0, and problem (Ck)

– to solve the least-squares constrained by k-sparsity, i.e. ∥ . ∥0 6 k.

Our focus is on the sets of globally optimal solutions (called “optimal solution sets”) of problems (Ck)

and (Rβ). We analyse in depth the relationship between the optimal solution sets of these two nonconvex

(combinatorial) problems. These problems are shown to be quasi-equivalent in the following sense. There

is a set J ⊆ {0, . . . ,M} and a strictly decreasing sequence {βk}k∈J of parameters that partitions R+ into

size(J) proper intervals. For every β inside the k’th interval, problem (Rβ) and problem (Ck) have the

same optimal solution set. This holds for any k ∈ J. Problems (Ck) and (Rβ) are fully quasi-equivalent

if J = {0, . . . ,M}. All βk’s and J are obtained from the optimal values of problems (Ck). The optimal

values of problems (Ck) and (Rβ) are analyzed. The optimal solution sets of both problems are shown to be

composed of a finite number of isolated points. Under mild assumptions, these sets are singletons if k < M.

Examples and small-size exact numerical tests illustrate the obtained theoretical results.

Keywords: ℓ0-regularization; k-sparsity constraint; globally optimal solutions; optimal solution analysis; parameter

selection; quasi-equivalence between nonconvex problems; sparse signal recovery; under-determined linear systems.

1 Introduction

The recovery of sparse objects (e.g., signals, images) or representations u ∈ RN using a few basis vectors

from incomplete and possibly inaccurate data d ∈ RN is a tremendously growing topic, especially with

the recent progress in compressed sensing [14, 9, 16, 8, 38, 18]. The most natural way to measure

sparsity is the counting function ∥ . ∥0, called usually the ℓ0-norm

∥u∥0 := ♯
{
i ∈ {0, 1, · · · ,N} : u[i] ̸= 0

}
, (1)
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where ♯ S is the number of elements in the set S and u[i] stands for the ith components of u. We

consider a frame (a dictionary) A ∈ RM×N with M < N for fixed M and N.

Two popular options to find a sparse solution û are defined by the following optimization problems:

• the k-sparsity constrained minimization problem

(Ck) min
u∈RN

∥Au− d∥22 , subject to ∥u∥0 6 k ; (2)

• the ∥ · ∥0-regularised minimization given by Fβ : RN → R below

(Rβ) Fβ(u) := ∥Au− d∥22 + β∥u∥0 , β > 0 , (3)

where β > 0 is a regularization parameter.

Even though overlooked for several decades, problems (Ck) and (Rβ) were essentially considered

from a numerical standpoint. The relationship between these problems has never been studied in a

systematic way. A footnote in [5, p. 631] mentions the relation between (Ck) and (Rβ) in that there is

a β, depending on d and k, so that these problems have the same solution.

The goal of this work is to analyze in depth the connections between the globally optimal solution

sets of (Ck) and of (Rβ). As usual, we say “optimal set” or “optimal solutions” (respectively, “optimal

values”) for globally optimal solutions (respectively, globally optimal values) [36, 2]. The optimal sets

and the optimal values for the problems we consider are given below. Let d ∈ RM.

− In problem (Ck) for k ∈ I0N the constraint set of reads as
{
u ∈ RN

∣∣ ∥u∥0 6 k
}
, so we have

optimal value θk := inf
{
∥Au− d∥2

∣∣ u ∈ RN and ∥u∥0 6 k
}
, (4)

set of optimal solutions Ĉ k :=
{

u ∈ RN and ∥u∥0 6 k
∣∣ ∥Au− d∥2 = θk

}
. (5)

− In problem (Rβ) for β > 0 one has

optimal value fβ := inf
{
Fβ(u) | u ∈ RN

}
, (6)

set of optimal solutions R̂β :=
{
u ∈ RN

∣∣ Fβ(u) = fβ

}
. (7)

We anticipate that for any d ∈ RN, one has Ĉ k ̸= ∅, ∀ k > 0 and R̂β ̸= ∅, ∀ β > 0 (Lemma 1 and

Theorem 2(b), respectively). Thus, our goal is to explore the relationship between the optimal sets Ĉ k

and R̂β. To this end, we adopt a common assumption on A:

H1. The matrix A ∈ RM×N satisfies rank(A) = M < N.

It is systematically assumed that d ̸= 0.

The quite standard Definition 1 shall be used to evaluate the extent of some properties.
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Definition 1. A property is generic on RM if it holds on a subset of RM \S where S is closed in RM

and its Lebesgue measure in RM is null.

A generic property is clearly stronger than a property that holds only with probability one because

RM \S contains a dense open subset of RM.

Finding an optimal solution of problems (Ck) and (Rβ) is NP-hard in general [13, 37]. Let us mention

that recent advances in stochastic optimization have made these problems tractable [35].

1.1 Related work

The amount of papers dealing with problems (Ck) and (Rβ) is huge. We present a brief summary that

helps to position the goals of our work.

On algorithms. The solutions of (Ck) and (Rβ) are usually approximated by greedy pursuit, relax-

ation of the ∥ · ∥0 penalty often combined with nonconvex minimization [19, 27, 20, 11, 23], as well as

direct optimization [30, 34, 1]. Tropp and Wright [38] gave a comprehensive overview, mainly focused

on greedy pursuits and convex relaxation. These algorithms require strong assumptions, e.g., RIP,

bounds on spark(A) and on the sparsity of the solution. Iterative thresholding algorithms has become

quite popular after the local convergence results of Blumensath and Davies [5], further expanded by

the authors in [6, 7]. Recent results allow to alleviate the RIP condition [28, 4, 10].

Problem (Rβ) is a particular case of an objective whose global minimizer is computed in finite

time with high probability by the stochastic continuation algorithm conceived by Robini, Lachal and

Magnin [33] and refined by Robini and Magnin in [34]. Recently, Robini and Reissman [35] extended

the methodology to general combinatorial objectives and gave results on the probability for global

convergence versus the running time. So [35] can be adapted to solve optimally problem (Ck) as well.

Some applications. Problem (Ck) involves a natural sparse coding constraint; it is well known as

the k-best term approximation model [14, 12]. It has been used for low-rank matrix decomposition [3],

sparse inverse problems [7], dictionary learning [17], among many others. Problem (Rβ) has been widely

considered for subset selection [30, 5], model selection [27], variable selection [24], feature selection [31,

19], signal and image reconstruction [22, 20, 11, 39, 15].

Comparison between ∥ . ∥0-related problems. Here are few references. The analysis of Lorenz [25,

sec. 5.2.] holds for infinite dimensional ℓp-spaces. The author shows that the regularized ∥ · ∥0 problem

can have an empty optimal set and that the minimization of ∥u∥0 subject to ∥Au − d∥ 6 τ can yield

an infinite number of solutions. In finite dimensional real spaces, Fung and Mangasarian [21] consider

the minimization of ∥u∥p subject to Au = d, Bu > b and ∥u∥∞ 6 1 for p ∈ [0, 1), where B and b are a

matrix and a vector, respectively. They prove that the ∥u∥0-problem is equivalent to the ∥u∥p-problem

for a sufficiently small p > 0.
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1.2 Main contributions and Outline

This work provides an in-depth analysis of the relationship between the sets of globally optimal solutions

(called optimal sets) of the two nonconvex (combinatorial) problems (Ck) and (Rβ), formulated in (2)

and (3), respectively. Their optimal sets, specified in (5) and (7), are always nonempty (Lemma 1 and

Theorem 2). Our main results are summarized below.

(a) Given A and d, let L 6 M be the least integer so that the optimal value of Ĉ L is θL = 0. For any

k 6 L, any optimal solution û of (Ck) obeys ∥û∥0 = k and the M × k submatrix formed from the

columns of A with indices in supp(û) has full column rank (Theorem 1). For any β > 0, any global

minimizer û of Fβ is an optimal solution of (Ck) for k ∈ I0L (Theorem 4); hence ∥û∥0 6 L.

We emphasize that in a generic sense, L = M (Proposition 6 and Remark 9).

(b) Necessary and sufficient conditions for optimality of (Rβ) in terms of the optimal sets of (Ck) are

derived (Theorem 5). This is the key to finding the links between the optimal sets of (Ck) and (Rβ).

The results in (a) and (b) are developed in section 2.

(c) A sequence of critical parameter values {βk, βU
k }Lk=0 is proposed using the optimal values {θk}Lk=0

of (Ck) (Definition 2). It holds that the optimal set of (Ck) is included in (respectively, equal to)

the optimal set of (Rβ) if and only if βk 6 β 6 βU
k (respectively, βk < β < βU

k ) (Theorem 6).

(d) Problems (Ck) and (Rβ) are quasi-equivalent in the following sense. Let J :=
{
k ∈ I0L | βk < βU

k

}
and

JE := {m ∈ I0L | βm = βU
m}. One has {βm}m∈JE ⊂ {βk}k∈J, {0, L} ∈ J and by setting J = {kn}n>0,

βU
kn

= βkn−1 and {βkn}n>0 is strictly decreasing (Proposition 2). For any β ∈
(
βkn , βkn−1

)
problem

(Rβ) and problem (Ckn) have the same optimal set. For β = βkn , the optimal set of (Rβ) contains

the optimal sets of (Ckn) and
(
Ckn+1

)
, and those of (Cm) for m ∈ {JE | βm = βkn} (Theorem 7, our

main result). This quasi-equivalence, described in (8), holds if and only if k ∈ J:

Ĉkn
∪ Ĉkn+1

∪ Ĉ0
kn︸ ︷︷ ︸

R̂β = Ĉ L Ĉkn+1 ↑ Ĉkn Ĉ0

0 = βL < . . . < βkn+1 < βkn < βkn−1 < . . . < βk0 < +∞ ,

(8)

where Ĉ0
kn

:=
∪

{m∈JE |βm=βkn}
Ĉm. Further, {JE | βm = βkn} = {m ∈ JE | kn < m < kn+1} (Lemma 7).

In a generic sense, JE is empty (Proposition 4) in which case all Ĉ0
kn
’s in (8) are empty.

The sequence {βk}k∈J is characterized in Proposition 3: it is the largest strictly decreasing subse-

quence of {βk} in Definition 2 containing β0.

(e) One has J = I0L, i.e., problem (Ck) and problem (Rβ) for any β ∈ (βk, βk−1) have the same optimal set

if and only if {βk}Lk=0 in Definition 2 is strictly decreasing (Theorem 8). In this case, βk = θk−θk+1

for all k, and we say that (Rβ) and (Ck) are fully quasi-equivalent.

The results on {βk} and (J, JE) are established in section 3 and quasi-equivalence in section 4.
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(f) The optimal values θk of problem (Ck) generically form a strictly decreasing sequence (Proposi-

tion 6). Necessary and sufficient conditions for optimality of β 7→ fβ are deduced. See section 5.

(g) The optimal sets of problems (Ck) and (Rβ) are composed out of a finite number of isolated points

(Theorem 9, section 6). For k 6 min{L,M− 1} and for β > βk∗ , where βk∗ is the next to last entry

of {βk}k∈J, the optimal solutions of (Ck) and of (Rβ) are generically unique (subsection 6.1).

Exact numerical tests for (M,N) = (5, 10) illustrate all theoretical findings in section 7. We used

Monte Carlo tests on the parameters βk in Definition 2. We always had L = M and {βk}Mk=0 was strictly

decreasing in more than 93% of the cases. We emphasize that our tests are on small-size problems.

1.3 Notation

For ease of presentation, the ℓ2-norm is systematically denoted by

∥ . ∥ := ∥ . ∥2 .

Let n be a positive integer. We denote by In and I0n the totally and strictly ordered index sets

In :=
(
{1, . . . , n}, <

)
and I0n :=

(
{0, 1, . . . , n}, <

)
, (9)

where the symbol < stands for the natural order of integers. Thus any subset ω ⊆ In is also totally and

strictly ordered. Without this precision, some formulas will be ambiguous; e.g., (12) below.

For any u ∈ RN, the support of u is defined by

supp(u) :=
{
i ∈ IN

∣∣ u[i] ̸= 0
}
⊆ IN . (10)

As usual, a vector u is said to be k-sparse if ∥u∥0 = ♯ (supp(u)) 6 k.

Remark 1. For (Ck) we consider also two trivial cases: k = 0 because Fβ always has a strict (local)

minimum at û = 0 and k = M since Fβ can have strict (local) minimizers ũ with ∥ũ∥0 = M [32].

According to the value of β, û or ũ can be global minimizers of Fβ. ♢

General notation

• The ith column in matrix A ∈ RM×N is denoted by ai, i.e., A =
(
a1, . . . , aN

)
.

• For A ∈ RM×N and u ∈ RN, with any ω ⊆ IN, the associated submatrix Aω and subvector uω read as

Aω :=
(
aω[1], . . . , aω[ ♯ ω]

)
∈ RM× ♯ ω and uω :=

(
u
[
ω[1]

]
, . . . , u

[
ω[ ♯ ω]

])T

∈ R ♯ ω , (11)

respectively, where the superscript T means transposed. By (10) and (11), for any u ∈ RN one has

ω ∈ IN and ω ⊇ supp(u) =⇒ Au = Aωuω . (12)
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• We also set AT
ω := (Aω)

T and A−1
ω := (Aω)

−1.

• In view of Remark 1, to unify the presentation we set A∅ := [ ] ∈ RM×0 and rank (A∅) := 0.

• I stands for the identity operator (usually on RM) .

• 0 denotes a vector of zeros in a real space of arbitrary dimension > 1.

• Ωk := {ω ⊂ IN | ♯ ω = k = rank (Aω)} lists the k-length subsets ω ∈ I0N obeying rank (Aω) = k.

Notation for problems (Ck) and (Rβ)

• L := min
{
k ∈ IN

∣∣ θk = 0
}
where θk is the optimal value of (Ck), see (4).

• Ĉ :=

L∪
k=0

Ĉ k where Ĉ k is the set of optimal solutions of (Ck), see (5).

• R̂ :=
∪
β>0

R̂β where R̂β is the optimal solution set of (Rβ) (the global minimizers of Fβ), see (7).

• βk, β
U
k for k ∈ I0L – critical parameter values, Definition 2 (section 3).

• J ⊆ I0L – the integers k ∈ I0L such that βk < βU
k and Ĉ k = R̂β for β ∈

(
βk, β

U
k

)
by Theorem 6.

• JE $ I0L – the integers m ∈ I0L leading to βm = βU
m. The superscript E in JE evokes equality.

2 Common optimality conditions for (Ck) and (Rβ)

Here we present results aimed to establish relations between the optimality conditions for problems

(Ck) and (Rβ). The proofs of nearly all statements in this section are outlined in Appendix 9.1.

Given d ∈ RM and ω ⊆ IN, consider the following constrained quadratic optimization problem:

(Pω) min
u∈RN

∥Au− d∥2 , subject to u[i] = 0 ∀ i ∈ I0N \ω . (13)

Obviously, the convex problem (Pω) is related to problems (Ck) and (Rβ). Since problem (Pω) has

solutions for any d ∈ RM and for any ω ⊂ IN, it is a good tool for analyzing the nonconvex combinatorial

problems (Ck) and (Rβ). We shall use it mainly in this section and in section 6.

We beginwith a study of the optimal sets of problem (Ck). For problem (Rβ) wewill use known results.

2.1 On the optimal solutions of problem (Ck)

The set of all ω ∈ IN with at most k different components reads as

Σk :=

k∪
n=0

{
ω ⊂ IN

∣∣∣ ♯ ω = n
}
. (14)

Clearly, Σk lists the supports of all k-sparse vectors in RN. The constraint set of (Ck) in (2) also reads as{
u ∈ RN

∣∣ supp(u) ∈ Σk

}
(15)
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and the corresponding optimal set Ĉ k in (5) is

Ĉ k =
{
u ∈ RN, supp(u) ∈ Σk

∣∣∣ ∥Au− d∥2 = θk

}
. (16)

A central question is to know whether problem (Ck) admits an optimal solution.

Lemma 1. Let d ∈ RM. For any k ∈ I0N one has Ĉ k ̸= ∅, i.e. (Ck) always has an optimal solution.

Using (Pω) in (13) and (15), it follows the optimal value θk of (Ck) equals

θk = min
{
∥Aũ− d∥2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Σk

}
. (17)

At this point, we need the following simple lemma.

Lemma 2. Let d ∈ RM. Then θ0 = ∥d∥2 and {θk}k>0 is decreasing. If H1 holds, θk = 0 ∀ k > M.

The next lemma has a pivotal role in this work.

Lemma 3. Let H1 hold. For k ∈ IM, assume that (Ck) has an optimal solution û obeying

∥û∥0 = k− n for n > 1 . (18)

Then Aû = d . Furthermore,

θm = 0 and û ∈ Ĉm ∀ m > k− n .

Based on Lemma 3 and assuming that H1 holds, we introduce the constant

L := min
{
k ∈ IN | θk = 0

}
. (19)

L is uniquely defined since { θk} is decreasing with L 6 M because θM = 0 (Lemma 2). We emphasize

that L relies on A and on d but that L = M generically (Proposition 6(b) and Remark 9) .

Example 1. One has L 6 M − 1 if d = Au for ∥u∥0 6 M − 1. Then d belongs to a subspace of RM of

dimension ∥u∥0 which has null Lebesgue measure in RM. Usual data range on the whole RM and L = M.

Theorem 1. Let H1 be satisfied and L read according to (19). Then

û ∈ Ĉ k for k ∈ I0L =⇒ ∥û∥0 = k = rank (Aσ̂) for σ̂ := supp(û) . (20)

Furthermore, Ĉ L ⊂ Ĉ k ∀ k > L .

Theorem 1 gives a necessary condition for an optimal solution of (Ck) for k ∈ I0L.

The algorithm aimed at solving (Ck) proposed in [5] was shown in [5, Lemma 6] to produce, under

certain conditions, solutions that fulfill this necessary condition.

The optimal sets Ĉ k for k > L are of limited interest: they have ℓ0-norms in {L, · · · , k}, can be nonstrict

if they solve (Pω) for an ω so that Aω does not have full column rank; they always contain Ĉ L.
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Remark 2. [On Assumption H1] This usual assumption ensures that A is rich enough to represent any

d ∈ RM. It is also needed to prove the pivotal Lemma 3 and Theorem 1. ♢

A direct and useful consequence of Theorem 1 is stated below.

Corollary 1. Let H1 hold. Then Ĉ k ∩ Ĉ n = ∅ for all (k, n) ∈ ( I0L )2 such that k ̸= n.

If û solves optimally (Ck) for k 6 L, then û is not an optimal solution of (Cn) for n 6 L, n ̸= k.

By Theorem 1, many subsets in {Σk}Nk=0 are not the supports of optimal solutions sets of (Ck). Ac-

cordingly, we focus only on the subsets ω ⊂ I0N with exactly k entries such that rank (Aω) = k:

Ωk :=
{
ω ⊂ IN | ♯ ω = k = rank (Aω)

}
. (21)

Remark 3. Let H1 hold. By Theorem 1, for any k ∈ I0L, the optimal value of problem (Ck) obeys

θk = min
{
∥Aũ− d∥2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Ωk

}
(22)

and the corresponding set of optimal solutions satisfies

Ĉ k =
{
u ∈ RN, supp(u) ∈ Ωk

∣∣∣ ∥Au− d∥2 = θk

}
. (23)

The fact that ♯Ωk ≪ ♯Σk may be interesting. ♢

2.2 Necessary and sufficient conditions for optimality of (Rβ) in terms of (Ck)

First we cite several results on problem (Rβ), used in what follows. It worths noting that û ∈ RN is a

(local) minimizer of Fβ if and only if û solves (Pω) for some ω ⊂ I0N [32]. For reminder, û is a strict (local)

minimizer of Fβ if there is a neighborhood O ∋ û so that Fβ(û) < Fβ(u) for any u ∈ O \{û}.

Theorem 2 ([32] Theorem 4.4). Let d ∈ RM and let β > 0.

(a) R̂β ̸= ∅, i.e. Fβ always has a global minimizer.

(b) If û is a global minimizer of Fβ, then û is a strict minimizer.

The global minimizers of Fβ being strict, we want to select those strict minimizers of Fβ that can also

be global minimizers. With the notation in (21), the strict minimizers of Fβ are characterised next.

Theorem 3 ([32], Theorem 3.2). Let d ∈ RM and β > 0. A point û ∈ RN is a strict (local) minimizer

of Fβ if and only if its support ω := supp(û) satisfies ♯ ω = rank (Aω).

Corollary 2 ([32] Corollary 3.3). Let d ∈ RM and let û solve (Pω) for ω ∈ Ωk where k ∈ I0M. Then û

is a strict (local) minimizer of Fβ for any β > 0.
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These facts, together with the results on (Ck) obtained in § 2.1, will enable us to derive common

optimality conditions for (Rβ) and for (Ck) in Theorem 5. Proposition 1 relates the optimal sets and the

optimal values of (Ck) and (Rβ). It helps to develop this section.

Proposition 1. Let H1 hold and let β > 0.

(a) For any k ∈ I0L it holds that

Fβ(û) = θk + β k ∀ û ∈ Ĉ k .

(b) û ∈ R̂β =⇒ û ∈ Ĉ k where k := ∥û∥0 ∈ I0L .

(c) û ∈ R̂β =⇒ Ĉ k ⊆ R̂β for k := ∥û∥0 ∈ I0L .

By (c), the global minimizers of Fβ are composed of some optimal sets Ĉ k only for k 6 L.

The claim in Lemma 4 is usually false for ordinary subsets C and R.

Lemma 4. Let H1 hold. For any β > 0 and for any k ∈ I0N one has

Ĉ k ̸⊆ R̂β ⇐⇒ R̂β ∩ Ĉ k = ∅ .

We denote by Ĉ the collection of all optimal solutions of problems (Ck) for k ∈ I0L and likewise, by R̂

– the set of all global minimizers of Fβ for all β > 0:

Ĉ :=

L∪
k=0

Ĉ k and R̂ :=
∪
β>0

R̂β . (24)

With this notation, the Theorem 4 is an important consequence of Proposition 1(b).

Theorem 4. Let H1 hold. Then R̂ ⊂ Ĉ .

Theorem 4 shows that when β ranges on (0,+∞), Fβ can have at most L + 1 different sets of global

minimizers which are optimal solutions of (Ck) for k ∈ {0, . . . , L}. Even though Ĉ k ̸= ∅ for any k > 0,

if k > L+ 1, then ∀ β > 0, the entries of Ĉ k are not global minimizers of Fβ; i.e.,

Ĉ k ∩ R̂ = ∅ ∀ k > L+ 1 .

Remark 4. Let β > 0 and k ∈ I0N. Since R̂β is the set of the global minimizers of Fβ, it is clear that

Ĉ k ⊆ R̂β ⇐⇒ Fβ(u) > Fβ(û) ∀ û ∈ Ĉ k ∀ u ∈ RN ;

Ĉ k = R̂β ⇐⇒ Fβ(u) > Fβ(û) ∀ û ∈ Ĉ k ∀ u ∈ RN \ Ĉ k .

The next theorem provides the basic tool to compare the optimal sets of problems (Ck) and (Rβ).

Theorem 5. Let H1 hold and let β > 0. For any k ∈ I0L the following holds:
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(a) Ĉ k ⊆ R̂β if and only if

Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉ k ∀ u ∈ Ĉ ; (25)

(b) Ĉ k = R̂β if and only if

Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉ k ∀ u ∈ Ĉ \ Ĉ k . (26)

Proof . From Remark 4 it is straightforward that

Ĉ k ⊆ R̂β (resp., Ĉ k = R̂β) =⇒ Fβ(u)−Fβ(û) > 0 ∀ u ∈ Ĉ (resp., > 0, ∀ u ∈ Ĉ \ Ĉ k) ∀ û ∈ Ĉ k .

The rest of the proof is by contraposition.

(a) Assume that Ĉ k ̸⊆ R̂β. Then Ĉ k ∩ R̂β = ∅ by Lemma 4. Since R̂β ̸= ∅ (Theorem 2(a)),

Proposition 1(c) entails that there exists n ∈ I0L \ {k} such that Ĉ n ⊆ R̂β. It follows that

Fβ(û) > Fβ(u) ∀ û ∈ Ĉ k ∀ u ∈ Ĉ n . (27)

The obtained inequality contradicts (25).

(b) Let Ĉ k ̸= R̂β. This, together with R̂β ̸= ∅, implies that there is u ∈ R̂β such that u ̸∈ Ĉ k. Using

Proposition 1(c) shows that Ĉ n ⊆ R̂β for n := ∥u∥0 ∈ I0L where n ̸= k. Therefore

Fβ(û) > Fβ(u) ∀ û ∈ Ĉ k ∀ u ∈ Ĉ n ,

where Ĉ k ∩ Ĉ n = ∅ (see Corollary 1). This result contradicts (26). �

Theorem 5 is the key to finding the links between the optimal sets of (Ck) and (Rβ): it provides necessary

and sufficient conditions for optimality of (Rβ) only in terms of the optimal sets of {(Ck)}Lk=0.

A simple useful claim is stated next.

Lemma 5. Let H1 hold. Let (k, k + p) ∈
(
I0L
)2

for p > 1. The following implications holds:

Ĉk ⊆ R̂β

(
respectively Ĉk = R̂β

)
and Ĉk+p = R̂β′

(
respectively Ĉk+p ⊆ R̂β′

)
=⇒ β′ < β .

This lemma confirms the intuition that when β increases on (0,+∞), the optimal sets R̂β are

given by a subsequence of
{
Ĉ k

}
with decreasing indexes.
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3 Exact connections between the optimal sets of (Ck) and (Rβ)

3.1 Optimal sets versus parameter values

Definition 2. (Critical parameter values) Let L be as in (19). We define
(
βk, β

U
k

)
by

βk := max

{
θk − θk+n

n
| n ∈ {1, . . . , L− k}

}
∀ k ∈ I0L−1 and βL = 0 , (28)

βU
k := min

{
θk−n − θk

n
| n ∈ {1, . . . , k}

}
∀ k ∈ IL and βU

0 ≡ β−1 := +∞ . (29)

The superscript U in (29) suggests that βU
k can be an upper bound.

Remark 5. Since d ̸= 0, one has β0 < βU
0 and βL < βU

L . Indeed, Definition 2 shows that

βU
L =

L
min
n=1

θL−n

n
> 0 = βL. Further, β0 < βU

0 because β0 is finite. ♢

The theorem below is an important consequence of Theorem 5 and Definition 2.

Theorem 6. Let H1 hold. Then ∀ k ∈ I0L it holds that

(a) Ĉ k ⊆ R̂β if and only if


β0 6 β < βU

0 for k = 0 ;

βk 6 β 6 βU
k for k ∈ {1, . . . , L− 1} ;

βL < β 6 βU
L for k = L .

(b) Ĉ k = R̂β if and only if βk < β < βU
k .

Proof . We use the equalities below coming from Proposition 1(a):

− If û ∈ Ĉ k for k ∈ I0L−1, then

∀ n ∈ IL−k ∀ u ∈ Ĉ k+n Fβ(u)−Fβ(û) = θk+n − θk + nβ = n

(
β − θk − θk+n

n

)
. (30)

− If û ∈ Ĉ k for k ∈ IL, then

∀ n ∈ Ik ∀ u ∈ Ĉ k−n Fβ(u)−Fβ(û) = θk−n − θk − nβ = n

(
θk−n − θk

n
− β

)
. (31)

Theorem 5 equivalently reads as given in (33) and (32) below:

∀ k ∈ I0L
[
Ĉ k ⊆ R̂β ⇐⇒ Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉ k ∀ u ∈ Ĉ

]
. (32)

∀ k ∈ I0L
[
Ĉ k = R̂β ⇐⇒ Fβ(u)−Fβ(û) > 0 ∀ û ∈ Ĉ k ∀ u ∈ Ĉ \ Ĉ k

]
. (33)

(a) Consider the expression below:
∀ k ∈ I0L−1 β > θk − θk+n

n
∀ n ∈ IL−k ⇐⇒ β > βk ;

∀ k ∈ IL β 6 θk−n − θk
n

∀ n ∈ Ik ⇐⇒ β 6 βU
k .

(34)

From (30) the first system in the middle column in (34) is equivalent to Fβ(u) − Fβ(û) > 0, ∀ û ∈

Ĉ k, ∀ u ∈ Ĉ k+n, ∀ n ∈ IL−k. Using (31), the second system in the middle column in (34) is equivalent

11



to Fβ(u) − Fβ(û) > 0, ∀ û ∈ Ĉ k, ∀ u ∈ Ĉ k−n, ∀ n ∈ Ik. The equivalence between the middle column

and the third column in (34) follows from Definition 2. We have thus obtained for any k ∈ I0L that

Fβ(u)−Fβ(û) > 0, ∀ û ∈ Ĉ k, ∀ u ∈ Ĉ if and only if


βk 6 β 6 βU

k for k ∈ IL−1

β0 6 β for k = 0
β 6 βU

L for k = L

For k = 0, the necessary and sufficient condition is β > β0 which is equivalent to β0 6 β < +∞ =: βU
0 .

For k = L, the obtained necessary and sufficient condition is β 6 βU
L which condition is the same as

βL := 0 < β 6 βU
L . This proves (a).

(b) In the same way one proves that (33) holds if and only if all inequalities in (34) are replaced by strict

inequalities. This establishes (b). �

3.2 Critical parameters for the global minimizers of (Rβ)

Since the global minimizers of Fβ are always in Ĉ (Theorem 4), we are interested in the indexes k for

which there exist values of β such thatFβ has global minimizers containing Ĉ k. Their set is obtained from

Theorem 6. This set is split into J and JE as it follows:

J :=
{
k ∈ I0L | βk < βU

k

}
and JE :=

{
k ∈ I0L | βk = βU

k

}
. (35)

Set

p := ♯ J− 1 and J = {k0, k1, . . . , kp} with kn−1 < kn ∀ (kn−1, kn) ∈ J2 . (36)

By Definition 2 and Remark 5 we have

{k0 = 0, kp = L} ∈ J2 where βU
k0 ≡ βU

0 = +∞ and βkp ≡ βL = 0 . (37)

The next claim is a cautionary consequence of Theorems 4 and 6.

Lemma 6. Let H1 hold. One has R̂ ∩ Ĉ k = ∅ if and only if k ∈ I0N \ {J ∪ JE} .

Clearly, R̂ =
∪

k∈{J∪JE}̂

C k . A simplification of the parameters
{
βk, β

U
k

}
k∈J∪JE is derived next.

Proposition 2. Let H1 hold and
{
βk, β

U
k

}
be as in Definition 2. Set βk−1 := βU

k0
= +∞ . Then:

(a) { βm | m ∈ JE} ⊂
{
βkn

∣∣ kn ∈ J \ {kp}
}
;

(b) βkn < βU
kn = βkn−1 if and only if (kn−1, kn) ∈ J2 ;

(c)

(
p−1∪
n=0

[
βkn , βkn−1

])
∪
[
βk0 , βk−1

)
= R+ .

Proof . From Theorem 6(b), R̂β = Ĉ kn if and only if β ∈
(
βkn , β

U
kn

)
; and from the definition of J in (35),(

βkn , β
U
kn

)
̸= ∅ if and only if kn ∈ J. This, together with Lemma 5 shows that

βkn < βU
kn 6 βkn−1 < βU

kn−1
if and only if (kn−1, kn) ∈ J2 . (38)
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Now we need to locate βm, ∀ m ∈ JE. By (37), βm ̸∈ {βU
k0
, βkp}. From Theorem 6(b), βm ̸∈

(
βkn , β

U
kn

)
for

any kn ∈ J. These facts, together with (37), show that

∀ m ∈ JE ∃ kn ∈ J \ {kp} such that βm ∈
[
βU
kn , βkn−1

]
. (39)

Since R̂β ̸= ∅, if βU
kn

< βkn−1 in (38), Proposition 1(c) implies that for β ∈
(
βU
kn
, βkn−1

)
\ {βm} there is

n ̸∈ {J ∪ JE} obeying Ĉ n ⊂ R̂β, in contradiction to Lemma 6. Then (38) and (39) become

βkn < βU
kn = βkn−1 < βU

kn−1
if and only if (kn−1, kn) ∈ J2 , (40)

∀ m ∈ JE ∃ kn ∈ J \ {kp} such that βm = βkn .

These results prove (a) and (b). Together (a) and (b) lead to (c). �

It is worth emphasizing that {βk}k∈J is strictly decreasing and that its first entry is β0.

In Example 2 we designed a “pathological” sequence {θk}Lk=0 that illustrates all singular cases that

could occur (in particular, the case βk = βU
k in Definition 2 which is unlikely by Proposition 4).

Example 2. Let {θk}Lk=0 for L = 6 reads as

θ0 = 39 θ1 = 33 θ2 = 23 θ3 = 15 θ4 = 11 θ5 = 3 θ6 = 0 . (41)

According to Definition 2 the sequences
{
βk, β

U
k

}6
k=0

are given by

β0 = 8 β1 = 10 β2 = 8 β3 = 6 β4 = 8 β5 = 3 β6 = 0

βU
0 = +∞ βU

1 = 6 βU
2 = 8 βU

3 = 8 βU
4 = 4 βU

5 = 6 βU
6 = 3

(42)

Then the sets J and JE in (35) are given by J = { 0, 3, 5, 6 } and JE = { 2 } . Obviously, Proposition 2

holds. Further, it is easily seen that {βk}k∈J = { 8, 6, 3, 0 } is the largest strictly decreasing subsequence

of {βk}6k=0 with β0 as its first entry. ♢

The proofs of the other statements in this subsection are delegated to Appendix 9.2.

We want to know how {βk}k∈I0L is related to {βk}k∈J. It worths to recall that 0 ∈ J (Remark 82).

Proposition 3. Let H1 hold and {βk}Lk=0 reads as in Definition 2. Then {βk}k∈J is the largest strictly

decreasing subsequence of {βk}Lk=0 whose first entry is β0.

In order to better clarify the repartition of {βm |m ∈ JE}, we examine the (possibly empty) subsets

JE
kn := {m ∈ JE | βm = βkn} ∀ kn ∈ J . (43)

Lemma 7. Let H1 hold. The sets JE
kn

in (43) fulfill JE
L = ∅, and for any kn ∈ J \ {L}

JE
kn = {m ∈ JE | kn < m < kn+1} . (44)
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In view of Definition 2, the intuition suggests that the set JE should be “very small”.

Proposition 4. Let H1 hold and {βk, βU
k }Lk=0 be as in Definition 2. There exists a finite union of

vector subspaces of dimension 6 M− 1, denoted by S, such that

d ∈ RM \ S =⇒ βk ̸= βU
k ∀ k ∈ I0L .

Data generically live in RM \S. So βk ̸= βU
k ∀ k ∈ I0L in Definition 2 and JE = ∅ hold generically.

4 Quasi-equivalences between the optimal sets of (Ck) and (Rβ)

4.1 The general case: necessary and sufficient conditions

From Definition 2 and Remark 5, the set J in (35)-(36) cannot be empty. Our main result follows.

Theorem 7. Let H1 hold, {βk}Lk=0 be as in Definition 2 and J as in (35)-(36). Set βk−1 := βU
k0

= +∞.

Ĉ kn =
{

R̂β

∣∣ β ∈
(
βkn , βkn−1

)}
(45)

and for kn ̸= L R̂βkn
= Ĉkn ∪ Ĉkn+1∪

 ∪
m∈JEkn

Ĉm

 where JE
kn = {m ∈ JE | βm = βkn}

and Ĉk ∩ Ĉn = ∅ ∀ (k, n) ∈
(
{kn, kn+1} ∪ JE

kn

)2
, k ̸= n ,

(46)

if and only if {kn}n>0 = J.

Proof . By Proposition 2, for any kn ∈ J one has βkn = βm , ∀ m ∈ JE
kn

where JE
kn

is given in

(43). Applying Theorem 6(a) yields Ĉkn ∪ Ĉkn+1 ∪
(∪

m∈JEkn
Ĉm

)
⊆ R̂βkn

. Further, βkn ̸= βn ∀ n ∈

{J ∪ JE} \
{
kn ∪ JE

kn

}
and Ĉ n ∩ R̂βkn

= ∅ ∀ n ̸∈ {J ∪ JE} by Lemma 6. Hence the equality for R̂βkn
in

(46). The last result in (46) comes from Corollary 1.

Proposition 2(b) shows that
(
βkn , β

U
kn

)
=
(
βkn , βkn−1

)
̸= ∅ if and only if {kn}n>0 = J. Then Theo-

rem 6(b) implies that (45) holds if and only if {kn}n>0 = J. �

Theorem 7 shows that a quasi-equivalence between problems (Ck) and (Rβ) always exists – as

illustrated in (8). For the ♯ J − 1 isolated values {βk}k∈J \ {L} problem (Rβ) has typically two

(and up to 1 + kn+1 − kn if JE
kn

̸= ∅) optimal solutions.

Remark 6. In view of Proposition 3, it will be interesting to have some statistical knowledge on {θk}

that could help to estimate the largest strictly decreasing subsequence of {βk}Lk=0. ♢

Example 3. [Continuation of Example 2] Let {βk}6k=0, J and JE be as in Example 2. We recall that

J = { 0, 3, 5, 6 } and that JE = { 2 }, so JE
0 = {2} and JE

k = ∅ otherwise. By Theorem 7 one has

Ĉ0 =
{
R̂β

∣∣β∈(8,+∞)
}

Ĉ3 =
{
R̂β

∣∣β∈(6, 8)
}

Ĉ5 =
{
R̂β

∣∣β∈(3, 6)
}

Ĉ6 =
{
R̂β

∣∣β∈(0, 3)
}
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and R̂β=8 = Ĉ 0 ∪ Ĉ 2 ∪ Ĉ 3 R̂β=6 = Ĉ 3 ∪ Ĉ 5 R̂β=3 = Ĉ 5 ∪ Ĉ 6 .

The next Corollary 3 is easy to verify using {θk}6k=0 and the relevant set J in Example 2. ♢

The statement below contains important precisions on the parameter values in Definition 2.

Corollary 3. Let H1 hold and J be as in (35)-(36). The parameters
(
βkn , β

U
kn

)
in Definition 2 obey

βkn =
θkn − θkn+1

kn+1 − kn
if kn < L and βL = 0 , (47)

and βkn < βU
kn = βkn−1 with βk−1 := βU

0 = +∞ , (48)

if and only if {kn}n>0 = J.

Proof . Let û ∈ Ĉkn and ũ ∈ Ĉkn+1 for kn ∈ J \ {L}. Theorem 7 shows that Fβkn
(û) = Fβkn

(ũ), i.e.,

θkn + βkn kn = θkn+1 + βkn kn+1 .

Hence the value of βkn in (47). The second result in (47) follows from Proposition 2(b).

For any k ∈ I0L \ J, (47)–(48) cannot hold by the definitions of J and of JE. �

For any m ∈ JE
kn
, see (43), we also have Fβm(u) = Fβkn

(û) for any u ∈ Ĉm since βm = βkn .

4.2 Full quasi-equivalence: necessary and sufficient conditions

Here we explore the case of full quasi-equivalence between (Ck) and (Rβ), i.e. J = I0L.

Proposition 5. Let H1 hold. Let J be defined according to (35).

(a) If the sequence {βk}Lk=0 in Definition 2 is strictly decreasing, then its entries read as

βk = θk − θk+1 ∀ k ∈ I0L−1 and βL = 0 (49)

(b) J = I0L if and only if the sequence {βk}Lk=0 in (49) is strictly decreasing.

Proof . (a) Since {βk}Lk=0 is strictly decreasing, Proposition 3 shows that the set J in (35) is given by

J = I0L. Applying (47) in Corollary 3 with kn = k and kn+1 = k + 1 delivers the formula in (49).

(b) Assume that {βk}Lk=0 in (49) is strictly decreasing. Then βk in (49) satisfy (47) for any k ∈ J = I0L.

By setting βU
k := βk−1, (48) holds for any (k, k− 1) ∈ J2. Hence, J = I0L by Corollary 3.

Conversely, let J = I0L. Then J =
{
k ∈ I0L | βk < βU

k

}
= I0L where {βk, βU

k }Lk=0 are as in Definition 2.

Applying Proposition 2(b) to {βk}k∈J shows that

βk < βU
k = βk−1 ∀ (k− 1, k) ∈ J2 = ( IL)2 ;

i.e., {βk}Lk=0 in Definition 2 is strictly decreasing. Hence {βk}Lk=0 in (49) is strictly decreasing by (a). �

Proposition 5(a) can also be proven using induction.
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Theorem 8. Let H1 hold. Let {βk}Lk=0 read as in (49) and set β−1 = +∞. Then

∀ k ∈ I0L Ĉ k =
{

R̂β

∣∣ β ∈ (βk, βk−1)
}

(50)

and ∀ k ∈ I0L−1 R̂βk
= Ĉk ∪ Ĉk+1 where Ĉk ∩ Ĉk+1 = ∅ , (51)

if and only if the sequence {βk}Lk=0 in (49) is strictly decreasing.

Proof . Let {βk}Lk=0 in (49) be strictly decreasing. Then J = I0L by Lemma 5(b). So, JE = ∅ in (35) and

JE
k = ∅ in Lemma 7. The results in (50) and in (51) follow directly from Theorem 7.

Conversely, (50)-(51) means J = I0L. Then {βk}Lk=0 in (49) is strictly decreasing by Proposition 5(b). �

Remark 7. [Continuation of Remark 6] The condition that {βk}Lk=0 in (49) is strictly decreasing reads as

βk−1 > βk ∀ k ∈ IL−1 ⇐⇒ θk <
1

2
( θk−1 + θk+1) ∀ k ∈ IL−1 .

Its realization depends on A and on d. We refer to section 7 for some numerical tests.

5 On the optimal values of (Ck) and (Rβ)

The proofs of the statements in this section are outlined in Appendix 9.3.

Remark 8. [Continuation of Remark 3.] For k ∈ I0L let û ∈ Ĉ k; set σ̂ := supp(û). Using Theorem 1 and

the notation in (21), σ̂ ∈ Ωk. Denoting by Πσ̂ the orthogonal projector onto range (Aσ̂),

θk = dT(I −Πσ̂) d where Πσ̂ = Aσ̂ (A
T

σ̂Aσ̂)
−1AT

σ̂ . (52)

The optimal value θk in (22), Remark 3, equivalently reads as θk = min
{
dT(I −Πω) d

∣∣ ω ∈ Ωk

}
. ♢

Using the definition of Ωk in (21), we introduce the subsets of RM given below:

Ek :=
∪

ω∈Ωk

range (Aω)
⊥ and Gk :=

∪
ω∈Ωk

range (Aω) . (53)

Clearly, E0 = GM = RM and EM = G0 = ∅ by H1.

The next Proposition 6 gives interesting results on {θk}Mk=0 in connection with d ∈ RM.

Proposition 6. Let H1 hold. Let L′ 6 M be arbitrarily fixed. Then

(a) θk > 0 ∀ k 6 L′ − 1 ⇐⇒ d ∈ RM \GL′−1 ;

(b) d ∈ RM \ (E2 ∪GL′−1) =⇒ θk−1 > θk ∀ k ∈ IL′ .

Proposition 6(a) shows that the constant L in (19) corresponds to d ∈ GL \GL−1.

Remark 9. The subsets E2 and GM−1 are finite unions of vector subspaces of dimensions M − 2 and

M− 1, respectively. Hence, d ∈ RM \ (E2 ∪GM−1) is a generic property.
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Therefore, {θk}Mk=0 is strictly decreasing and L = M generically. ♢

By Proposition 1(a) and Theorem 4, for any β > 0 the optimal value of problem (Rβ) in (6) reads as

fβ = min
{
θk + β k | k ∈ I0L

}
. (54)

The claim below is a direct consequence of this observation and of Theorem 7.

Corollary 4. Let H1 hold and J read as in (35). The application β 7→ fβ : (0,+∞) → R fulfills

(a)

{
fβ = θkn + β kn

= Fβ(û) ∀ û ∈ Ĉ kn

if and only if β ∈


[βk0 , +∞) for k0 = 0 ;[
βkn , βkn−1

]
for kn ∈ J \ {0, L} ;(

0, βkp−1

]
for kp = L .

(b) β 7→ fβ is continuous and concave.

(c) fβ kn−1
> fβ kn

∀ (kn−1, kn) ∈ (J)2 , fβk0
= θk0 = fβ ∀ β > βk0 and fβk0

> fβ ∀ β < βk0.

fβ is affine increasing on each interval (βkn , βkn−1) with upward kinks at kn ∈ J \ {L} and bounded by θ0.

6 Geometry of the optimal sets of (Rβ) and of (Ck)

For the convex surrogates of problems (Ck) and (Rβ) where ∥u∥0 is replaced by ∥u∥1, it is well known that

the optimal sets are convex closed with possibly a a continuum of solutions.

Theorem 9. Let H1 hold. For any β > 0 and for any k ∈ I0L, each optimal set R̂β and Ĉ k is finite.

Proof . From Remark 3, û ∈ Ĉ k solves problem (Pω) for ω := supp(û) where ω ∈ Ωk (Theorem 1 and the

notation in (21)). Since (Pω) has a unique solution for each ω ∈ Ωk (given by (AT
ωAω)

−1AT
ωd), it follows

that this û is unique. Therefore, if Ĉ k is not a singleton, then each optimal solution belonging to Ĉ k is the

unique solution of (Pω) for a different ω ∈ Ωk. Hence ♯ Ĉ k is finite (with ♯ Ĉ k 6 ♯Ωk). This, together

with Theorem 7, shows that ♯ R̂β is finite for every β > 0. �

For any β > 0 and k ∈ I0L the optimal sets of problems (Ck) and (Rβ) are composed out of a

certain finite number of isolated points.

6.1 Uniqueness of the optimal solutions of (Ck) and (Rβ)

If L = M, Remark 3 shows that ♯ ĈM = ♯ΩM and by Remark 5, M ∈ J in which case Theorem 7 yields

♯
{
R̂β | β ∈ (0, βk∗ ]

}
> ♯ ĈM where βk∗ is the next to last entry of {βk}k∈J; see (36).

Let k 6 min{L,M − 1} and (û, ũ) ∈
(
Ĉk

)2
for û ̸= ũ. Set σ̂ := supp(û) and σ̃ := supp(ũ). By

Theorem 1, (σ̂, σ̃) ∈ (Ωk)
2. Then

θk = ∥Aσ̂ûσ̂ − d∥2 = ∥Aσ̃ũσ̃ − d∥2 where σ̂ ̸= σ̃ .
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The expression for θk in (52) shows that

∥Aσ̂ûσ̂ − d∥2 − ∥Aσ̃ũσ̃ − d∥2 = dT (Πσ̃ −Πσ̂) d = 0 . (55)

The last equality in (55) suggests that Ĉ k can be a singleton under the assumption H⋆ below.

H⋆. For K 6 M− 1 fixed, A ∈ RM×N obeys Πω ̸= Πω ∀ (ω, ω) ∈ (Ωk)
2 , ω ̸= ω ∀ k ∈ IK .

H⋆ is a generic property (Definition 1) of all matrices in RM×N [32, Theorem 5.3]. If H⋆ holds, the set

∆K :=
∪K

k=1

∪
(ω,ω)∈(Ωk)

2

{
g ∈ RM

∣∣ ω ̸= ω and g ∈ ker (Πω −Πω)
}

is a finite union of vector subspaces of dimension 6 M− 1, so data generically live in RM \∆K.

Under the generic assumptions H⋆ and d ∈ RM \∆K, (55) shows that problem (Ck) ∀ k ∈ IK has

a unique optimal solution. Using that {βk}k∈J is strictly decreasing, we set K′ := max {k ∈ J | k 6 K}.

Under the assumptions given above, Theorem 7 implies that problem (Rβ) has a unique optimal solution

for any β ∈ (βK′ ,+∞) \ {βk}k∈J and hence generically for any β > βK′ since {βk}k∈J is finite.

For k 6 M− 1 and for β > βk∗ , where βk∗ is the next to last entry of {βk}k∈J, problems (Ck)

and (Rβ) are generically singletons.

For the sake of generality, we did not consider the assumptions evoked in this subsection.

7 Numerical tests

Here we present two kind of experiments using matrices A ∈ RM×N for (M,N) = (5, 10), original vectors

uo ∈ RN and data samples d = Auo(+noise) with two different goals:

• to get a rough idea on behaviour of the parameters βk in Definition 2;

• to verify and illustrate our theoretical findings.

All results were calculated using an exhaustive combinatorial search.

7.1 Monte Carlo experiments on {βk} with 105 tests for (M,N) = (5, 10)

We realized two experiments, each one composed of 105 trials with (M,N) = (5, 10). In each trial, the

“original” uo ∈ RN had a random support on {1, . . . ,N} satisfying ∥uo∥0 6 M − 1 = 4 with mean 3.79.

The coefficients of eachA and the non-zero entries of each uo were independent and identically distributed

(i.i.d.). Data were obtained as d = Auo+ i.i.d. centered Gaussian noise. In each trial we computed

the exact optimal values {θk} and then computed (βk, β
U
k ) according to Definition 2. We considered two

different distributions for A and for the non-zero entries of uo.

− Experiment N (0,10). All coefficients of each A and all non-zero entries of uo had a normal distri-

bution with mean 0 and variance 10. The SNR in dB was in [10, 61] with mean value 33.75 dB.

− Experiment Uni [0,10]. The coefficients of A and of uosupp(uo) were uniform on [0, 10]. We had SNR

in [20, 55] with a mean of 28.95 dB.
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Observations In these experiments, the following facts were observed:

• We had L = M in each trial which confirms Proposition 6(b) and Remark 9;

• {θk}Mk=0 was always strictly decreasing – as expected from Proposition 6;

• We never found βm = βU
m, so the set JE in (35) was always empty; see Proposition 4.

The other results in percentage are shown in Tab. 1 where Nk reads as

Nk := ♯
{
k ∈ I0M | βk > βk−1

}
. (56)

In both experiments, the sequence {βk}Mk=0 in Definition 2 was strictly decreasing in a huge amount

Table 1: Results on the behaviour of {βk} in Definition 2 for two experiments, each one composed of 105

random trials. For k > 3 we had Nk = 0.

βk < βk−1,∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR)

N (0, 10) 93.681 % 6.254 % 0.065 % 33.75

Uni [0, 10] 98.783 % 1.216 % 0.001 % 28.95

of cases; by Proposition 5(a) in all these cases {βk}Mk=0 equals the sequence in (49) and the full quasi-

equivalence in Theorem 8 holds. One should suppose that these percentages are high because of the small

size of the matrices. Anyway, these percentages clearly depend on the distribution of the coefficients.

7.2 Tests on the quasi-equivalence with a selected matrix and selected data

Next we present in detail three experiments for (M,N) = (5, 10) where

A =


13.94 16.36 4.88 −3.09 −15.42 1.31 −3.18 −12.13 −4.26 −10.09
7.06 −6.48 −9.07 −8.37 −2.72 −17.42 −5.83 −3.81 3.87 −1.80
11.63 6.73 −4.75 −6.28 3.42 6.68 −1.64 13.23 9.03 −20.27
−7.54 12.74 −6.66 5.01 4.84 8.98 −9.35 3.85 7.18 4.09
3.22 −10.40 −5.02 16.70 9.53 −5.49 11.88 −3.62 17.36 7.34


uo =

(
0 4 0 0 0 9 0 0 3 0

)T
. (57)

The entries ofA follow a nearly normal distribution. The coefficients ofA, uo, and d in (58), (60) and (62)

are exact. H1 holds since rank(A) = M = 5. Problem (CM) has ♯ΩM = 252 optimal solutions; none of

them is shown. We have β0 < βU
0 = +∞ (Remark 5), so Ĉ0 =

{
R̂β |β > β0

}
in all cases (Theorem 6).

In the tests presented below the optimal set of (Ck) for k 6 M− 1 is a singleton (see § 6.1).

In order to illustrate various cases of quasi-equivalence, we selected a “pathological” couple (A, uo) in

(57) that behaves very badly compared to Tab. 1. Results for 105 random trials are shown in Tab. 2.
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Table 2: The behaviour of {βk} in Definition 2 for an experiment with 105 trials where A and uo are given
by (57) d = Auo+ i.i.d. centered Gaussian noise. We had Nk = 0, ∀ k > 3.

βk < βk−1, ∀ k ∈ I0M Nk = 1 Nk = 2 mean(SNR)

A, uo in (57) 29.41 % 70.59 % 0 % 36.25

Noise-free data According to (57), data read as

d = Auo =
(
64.45 −171.09 114.13 153.32 −38.93

)T
. (58)

Since data are noise-free and ∥uo∥0 = 3, clearly û = u0 is an optimal solution to problems (Ck) with θk = 0

for k ∈ {3, 4, 5} and L = 3. The other optimal values θk are seen in Tab. 3. By Theorem 4, any û ∈ R̂

obeys ∥û∥0 6 3. The critical parameters {βk} by Definition 2 are

β3 = 0 < βU
3 = β1 = 3872.46 < βU

1 = β0 = 63729 and β2 = 3968 > βU
2 = 3776.82 . (59)

βk > βU
k only for k = 2, so J = {0, 1, 3} in (35). By Lemma 6, R̂∩Ĉ k = ∅ for k ∈ {2, 4, 5}. By Theorem 7,

Ĉ3 =
{
R̂β | β ∈ (β3, β1)

}
and Ĉ1 =

{
R̂β | β ∈ (β1, β0)

}
. The numerical results are seen in Tab. 3.

Table 3: The optimal values θk and the optimal sets of (Ck) for k ∈ I03 where d is as in (58). The values of

βk are given in (59). We recall that R̂β is the optimal set of problem (Rβ).

k θk Ĉ k = the optimal solution of (Ck), singleton Ĉ k = R̂β

3
2
1
0

0
3968
7745
71474

0 4 0 0 0 9 0 0 3 0
0 3.25 0 0 0 9.29 0 0 0 0
0 0 0 0 0 11.76 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β3, β1)
no

β ∈ (β1, β0)
β > β0

Noisy data 1. Data are corrupted with nearly normal, centered, i.i.d. noise and SNR= 32.32 dB:

d =
(
69.13 −171.95 113.74 150.27 −36.09

)T
. (60)

The optimal values θk of problems (Ck) in Tab. 4 with θ5 = 0 yield L = M = 5. From Definition 2,

β5 = 0 < βU
5 = β4 = 0.068 < βU

4 = β3 = 36.25 < βU
3 = β1 = 3987.68 < βU

1 = β0 = 63154 , (61)

while β2 = 4002.83 > βU
2 = 3972.54. Hence, J = I05 \ {2} in (35) and {βk}k∈J confirms Propositions 2 and

3. By Lemma 6, R̂ ∩ Ĉ2 = ∅ and by Theorem 7, Ĉ5 =
{
R̂β |β ∈ (0, β4)

}
, Ĉ4 =

{
R̂β |β ∈ (β4, β3)

}
,

Ĉ3 =
{
R̂β |β ∈ (β3, β1)

}
and Ĉ1 =

{
R̂β |β ∈ (β1, β0)

}
. The numerical tests are shown in Tab. 4.
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Table 4: The optimal values θk and the optimal solutions of (Ck) for k ∈ I04 where d is given in (60). The

values of βk are given in (61). We recall that R̂β is the set of the global minimizers of Fβ.

k θk Ĉ k = the optimal solution of (Ck), singleton Ĉ k = R̂β

4
3
2
1
0

0.068
36.31
4039
8012
71166

0 4.40 0 0 0 8.71 0.54 0 2.95 0
0 4.09 0 0 0 8.88 0 0 3.01 0
0 3.33 0 0 0 9.17 0 0 0 0
0 0 0 0 0 11.71 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)
β ∈ (β3, β1)

no
β ∈ (β1, β0)

β > β0

Noisy data 2. The noise is nearly normal, centered, i.i.d., SNR= 25.74 dB:

d =
(
66.67 −169.08 101.56 149.38 −39.50

)T
. (62)

The optimal values {θk} in Tab. 5 show that L = M. The sequence {βk} by Definition 2 reads as

β0 = 60287 β1 = 3825 β2 = 3037.1 β3 = 72.734 β4 = 0.0259 β5 = 0 . (63)

This {βk} is strictly decreasing and clearly it equals {βk} in (49), as claimed in Proposition 5(a). From

Theorem 8, problems (Ck) and (Rβ) are fully quasi-equivalent. This is confirmed by the tests in Tab. 5.

Table 5: The optimal values and solutions of (Ck) for k ∈ I4 where d is given in (62). Here {βk} is strictly
decreasing, see (63), so (Ck) and (Rβ) are fully quasi-equivalent.

k θk Ĉ k = the optimal solution of (Ck), singleton Ĉ k = R̂β

4
3
2
1
0

0.0259
72.76
3109.86
6934.85
67222

0 8.54 0 0 4.59 4.90 2.73 0 0 0
0 3.93 0 0 0 8.70 0 0 2.63 0
0 3.27 0 0 0 8.95 0 0 0 0
0 0 0 0 0 11.44 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)
β ∈ (β3, β2)
β ∈ (β2, β1)
β ∈ (β1, β0)

β > β0

8 Conclusions and open questions

Wehave analyzed the relationship between the optimal solutions of least-squares constrained by k-sparsity

(problem (Ck) in (2)) and regularized by ∥ · ∥0 via a parameter β > 0 (problem (Rβ) in (3)). These

problems were shown to be quasi-equivalent in the sense explained in (d) and (8) in § 1.2. This issue was

quite surprising for us. Other interesting results were listed in the same § 1.2 (Main contributions). Our

theoretical findings pose intriguing questions, of both a theoretical and practical flavor.

• The obtained results can clarify a proper choice between models (Ck) and (Rβ) in applications. If one

needs optimal solutions with a fixed number of nonzero entries, (Ck) is obviously the best choice. If only

information on the perturbations is available, (Rβ) is a more flexible option.
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• Many algorithms are built on good knowledge on the optimal solutions. One can expect our detailed

results to give rise to innovative and efficient algorithms enabling one to compute relevant solutions.

• It will be interesting to obtain some statistical knowledge on the optimal values of problem (Ck) that can

help to clarify the largest strictly decreasing subsequence of critical parameter values. TheMonte-Carlo

tests in § 7.1 have shown that its length depends on the statistics of the matrix A and the data d.

• Extensions to penalties of the form ∥Du∥0 forD a linear operator, or to low rank matrix recovery, seem

important. The preliminary step should involve an extension of the knowledge on the optimal solutions

of (Ck) and (Rβ) to these more complex penalties.

Hopefully, these problems will be addressed in future work.

9 Appendix

9.1 Proofs relevant to section 2

Proof of Proposition 1. Using (Pω) in (13) and (15), the optimal value of (Ck) for any k is given by

θk = inf
{
∥Aũ− d∥2 where ũ ∈ RN solves (Pω)

∣∣∣ ω ∈ Σk

}
.

For k ∈ I0N and ω ∈ Σk, define θ
ω > 0 by

θω := ∥Aũ− d∥2 where ũ solves (Pω) for ω ∈ Σk . (64)

The set of numbers {θω | ω ∈ Σk} is nonempty and finite. Then θk = min{θω | ω ∈ Σk} is well defined.

By (64) there exists û ∈ RN such that ∥Aû− d∥2 = θk. Hence û ∈ Ĉ k and thus Ĉ k ̸= ∅.

Proof of Lemma 2 Clearly, θ0 = ∥d∥2. Since Σk−n ⊂ Σk, ∀ n ∈ I0k it follows from (13) and (17) that

θk 6 ∥Au− d∥2 ∀ u ∈ RN such that supp(u) ∈ Σk−n, ∀ n ∈ I0k . (65)

So, θk 6 θk−n, ∀ n ∈ Ik. If H1 holds, ∃ ω ∈ ΣM meeting rank (Aω) = M = ♯ ω. Then ∥Aû− d∥2 = θM = 0

for û given by ûω = (Aω)
−1d and ûIN \ω = 0. Hence θk = 0, ∀ k > M.

Proof of Lemma 3 Set σ̂ := supp(û); by (18), ♯ σ̂ = ∥û∥0 = k− n. Define z ∈ RM by

z := Aû− d = Aσ̂ûσ̂ − d , (66)

where we recall that Aσ̂ûσ̂ = Aû . The proof is by contraposition. So, assume that Aû ̸= d; i.e.,

z ̸= 0. (67)

Since û solves (Pσ̂), one hasA
T

σ̂(Aσ̂ûσ̂−d) = 0 which, together with (66) leads toAT

σ̂z = 0 . Select a σ̃ ⊆ σ̂

yielding rank (Aσ̃) = r := rank(Aσ̂); then r 6 k − n < M. By H1, there is ω ⊂ IN such that ω ' σ̃ and
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rank (Aω) = M = ♯ ω. Since ⟨an, z⟩ = 0 for any n ∈ σ̃, σ̂ \ σ̃ ̸⊂ ω and AT
ωz ̸= 0 by (67), there is m ∈ ω \ σ̂

obeying ⟨am, z⟩ ̸= 0 . Clearly, am is linearly independent of range(Aσ̂). One has

ûm :=
⟨am, z⟩
∥am∥2

=⇒ ûm ⟨am, z⟩ > 0 .

Using the definition of z in (66), we obtain

∥Aσ̂ûσ̂ + amûm − d∥2 − ∥Aσ̂ûσ̂ − d∥2 = ∥z + amûm∥2 − ∥z∥2 = ∥am∥2û2m − 2ûm⟨z, am⟩

=
ûm

∥am∥2
(
⟨am, z⟩ − 2⟨am, z⟩

)
= − ûm ⟨am, z⟩

∥am∥2
< 0 ,

a contradiction to (18). Hence ∥Aû− d∥2 = 0. This combined with supp(û) ∈ Σk−n yields θk−n = 0 and

û ∈ Ĉ k−n. For any m > n− k one has θm = 0 by Lemma 2 and û ∈ Ĉm because Σm ⊃ Σk−n.

9.1.1 Proofs of Theorem 1 and Corollary 1

We begin with two auxiliary claims.

Corollary 5. Let H1 hold. Then
[
k ∈ I0L and û ∈ Ĉ k =⇒ ∥û∥0 = k

]
.

Proof . The case k = 0 being trivial we focus on k ∈ IL. Assume that ∥û∥0 = k − n for n > 1. Then

θk−n = 0 by Lemma 3 which contradicts the definition of L in (19) because k 6 L. Hence n = 0. �

Lemma 8. Let H1 hold. Consider that û ∈ Ĉ k for k ∈ I0L. Set σ̂ := supp(û). Then

rank (Aσ̂) = ♯ σ̂ ≡ ∥û∥0 . (68)

Proof . One has ∥û∥0 = k by Corollary 5. For k = 0 (68) is obvious. Suppose that (68) fails for k > 1:

rank (Aσ̂) 6 ♯ σ̂ − 1 . (69)

The rank-nullity theorem [29] entails that dim ker (Aσ̂) = ♯ σ̂− rank (Aσ̂) > 1 .We can take an arbitrary

vσ̂ ∈ ker (Aσ̂) \ {0}, set vIN \ σ̂ := 0 and select an i ∈ σ̂ in order to define ũ by

ũ := û− û[i]
v

v[i]
.

Clearly, ũ[i] = 0 and û[i] ̸= 0 , so σ̃ := supp (ũ) $ σ̂, which leads to

∥ũ∥0 = k− n for n := ∥û∥0 − ∥ũ∥0 > 1 . (70)

From vσ̂
û[i]

v[i]
∈ ker (Aσ̂) one has Aû = Aσ̂ûσ̂ = Aσ̂

(
ûσ̂ − vσ̂

û[i]

v[i]

)
= Aσ̂ũσ̂ = Aσ̃ũσ̃ = Aũ . Then

θk = ∥Aû− d∥2 = ∥Aũ− d∥2 . (71)

This, together with the fact that supp(ũ) ∈ Σk shows that ũ ∈ Ĉ k. Thus ũ ∈ Ĉ k and ∥ũ∥0 6 k − 1 by

(70), in contradiction to Corollary 5. So the assumption in (69) fails. �

Proof of Theorem 1. Let û ∈ Ĉ k for k ∈ I0L. By Corollary 5 and Lemma 8, rank (Aσ̂) = k = ∥û∥0
where σ̂ := supp(û); hence (20). The last claim follows from Lemma 3 and Corollary 5.

Proof of Corollary 1 Let û ∈ Ĉ k and u ∈ Ĉ n for (k,n) ∈ ( I0L )2, k ̸= n. By Theorem 1, ∥û∥0 = k and

∥u∥0 = n, hence the result.
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9.1.2 Proofs relevant to subsection 2.2

Lemmas 9, 10 and 11 below help to prove Proposition 1. With the notation in (21), it is suitable to set

Ω :=

M∪
k=0

Ωk .

Lemma 9. Let d ∈ RM and β > 0. Then

û is a strict (local) minimizer of Fβ ⇐⇒ û ∈ U :=
∪
ω∈Ω

{ũ ∈ RN solves (Pω) for ω ∈ Ω}. (72)

Proof . Let û is a strict (local) minimizers of Fβ. Then û solves (Pω) for ω := supp(û). By Theorem 3

ω ∈ Ω and thus û ∈ U. Conversely, any û ∈ U is a strict (local) minimizer of Fβ by Corollary 2. �

Now we partition U in (72) as follows:

U =

M∪
k=0

Uk where Uk :=
∪
ω∈Ω

{
ũ ∈ RN solves (Pω) for ω ∈ Ω and ∥ũ∥0 = k

}
. (73)

Lemma 10. Let H1 be satisfied and L be as in (19). Then Ĉ k ⊂ Uk ∀ k ∈ I0L .

Proof . Let û ∈ Ĉ k for k ∈ I0L. Set ω := supp(û). The expression for Ĉ k in (23) and Theorem 1 show that

û solves (Pω) for ω ∈ Ωk ⊂ Ω and that ∥û∥0 = k. Hence û ∈ Uk. �

Lemma 11. Let H1 hold, L be as in (19) and let β > 0.

(a) Let k ∈ I0L. Then

Fβ(û) = θk + β k ∀ û ∈ Ĉ k ; (74)

Fβ(ũ) > Fβ(û) ∀ ũ ∈ Uk \ Ĉ k . (75)

(b) Let û ∈ Ĉ L. If L 6 M− 1, then

Fβ(ũ) > θL + β L = Fβ(û) ∀ ũ ∈ Un for ∀ n ∈ {L+ 1, · · · ,M} ; (76)

and thus any ũ ∈ Un for ∀ n ∈ {L+ 1, · · · ,M} obeys ũ ̸∈ R̂β for any β > 0.

Proof . From the definition of Uk in (73), if Uk ̸= ∅, then ∥ũ∥0 = k for any ũ ∈ Uk.

(a) Since k ∈ I0L, Ĉ k ⊂ Uk by Lemma 10. Any û ∈ Ĉ k yields ∥Aû−d∥2 = θk, hence (74). Any ũ ∈ Uk \ Ĉ k

is not an optimal solution of (Ck), so ∥Aũ−d∥2 > θk. ThenFβ(ũ) = ∥Aũ−d∥2+β k > θk+β k = Fβ(û) .

(b) By the definition of L, θn = θL = 0, ∀ n > L. It follows that for any ũ ∈ Un, ∀ n > L + 1 one has

Fβ(ũ) = ∥Aũ− d∥2 + βn > θL + βL = βL . Clearly, such a ũ cannot be global minimizer of Fβ. �

Proof of Proposition 1. (a) The statement follows from Lemma 11(a).

(b-(c) Let û ∈ R̂β. Then û is a strict minimizer of Fβ (Theorem 2(b)) and û ∈ U by Lemma 9. Set
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k := ∥û∥0; then û ∈ Uk according to (73). In addition, k 6 L because otherwise û ̸∈ R̂β by Lemma 11(b).

Also, û ∈ R̂β means that fβ = Fβ(û) is the optimal value of problem (Rβ). Then û ∈ Ĉ k by Lemma 11(a).

Further, by item (a) in this proposition, fβ = Fβ(û) for any û ∈ Ĉ k. Thus, Ĉ k ⊆ R̂β.

Proof of Lemma 4. The backward implication is obvious. We focus on the forward one. For k > L,

one has Ĉ k ∩ R̂β = ∅, ∀ β > 0 from Lemma 11(b). For k ∈ I0L, we proceed by contraposition. Assume

that Ĉ k ∩ R̂β ̸= ∅, i.e., there exists û ∈ Ĉ k ∩ R̂β. Then Ĉ k ⊆ R̂β by Proposition 1(c).

Proof of Theorem 4. By Proposition 1(b), any û ∈ R̂β satisfies û ∈ Ĉ k for k 6 L and thus û ∈ Ĉ.

Therefore, R̂β ⊂ Ĉ. The same holds for any β > 0 which proves the theorem.

Proof of Lemma 5 By Remark 4, Ĉk ⊆ R̂β implies Fβ(û) 6 Fβ(u) ∀ û ∈ Ĉk ∀ u ∈ Ĉk+p . Using

Proposition 1(a) this inequality reads as θk + β k 6 θk+p + β (k + p) , which leads to

β > θk − θk+p

p
. (77)

On the other hand, Ĉk+p = R̂β′ entails Fβ′(u) < Fβ′(û) ∀ u ∈ Ĉk+p ∀ û ∈ Ĉk . Therefore

θk+p + β′ (k + p) < θk + β′ k ⇒ β′ <
θk − θk+p

p
. (78)

Comparing (78) and (77) proves the first part of the lemma. The proof of second one is similar.

9.2 Proofs relevant to subsection 3.2

Proof of Lemma 6 The definition of J and JE shows that

k ∈ I0L and βk > βU
k ⇐⇒ k ∈ I0L \ {J ∪ JE} .

By Theorem 6(a), Ĉ k ̸⊆ R̂β, ∀ β > 0, if and only if k ∈ I0L \ {J ∪ JE}. By Lemma 4, Ĉ k ̸⊆ R̂β means

Ĉ k ∩ R̂β = ∅, ∀ β > 0. This, together with Ĉk ∩ R̂ = ∅, ∀ k > L+ 1 by Theorem 4, proves the claim.

Proof of Proposition 3 Let J∗ ⊂ I0L be such that {βk}k∈J∗ is the largest strictly decreasing subse-

quence of {βk}Lk=0 in Definition 2 containing β0. From Proposition 2(b), J ⊆ J∗. To get a contradiction,

assume that J $ J∗. For m ̸∈ J, we consider that {J ∪ {m}} is ordered in an increasing way.

− Let m ∈ JE for JE as given in (35). By Proposition 2(a) there is kn ∈ J such that βkn = βm. Then{
βk | k ∈ J ∪ {m}

}
is not strictly decreasing, hence {J ∪ {m}} ̸⊂ J∗.

− Otherwise, let J∗ ⊆ {J ∪ {m}} for m ∈ I0L \ {J ∪ JE}. Since {βk}k∈J∗ is strictly decreasing and 0 ∈ J,

there are (kn−1, kn) ∈ (J)2 such that kn−1 < m < kn and βkn < βm < βkn−1 . From Theorem 6(b) and

Proposition 2(b), one has R̂β = Ĉ kn if and only if β ∈
(
βkn , βkn−1

)
. It follows that (see Remark 4)

Fβm(u) > Fβm(û) ∀ u ∈ Ĉm ∀ û ∈ Ĉ kn ,
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which by Proposition 1(a) reads as θm + βmm > θ kn + βm kn. Consequently,

βm <
θm − θ kn

kn −m
.

Since kn > m, Definition 2 shows that βm > θm − θ kn

kn −m
. Hence the desired contradiction.

Proof of Lemma 7 Let m ∈ JE. Theorem 6(a) shows that Ĉm ⊂ R̂βm . By the definition of J and

Theorem 6(b), Ĉkn = R̂β if and only if βkn < β < βU
kn
. Assume that m < kn. Then Lemma 5 shows that

βm > β. It follows that βm > βkn and hence βm ̸= βkn . This, together with (43), yields

{m ∈ JE | m < kn} ∩ JE
kn = ∅ . (79)

By Theorem 6(b) and Proposition 2(b), Ĉkn+1 = R̂β if and only if β ∈
(
βkn+1 , β

U
kn+1

)
=
(
βkn+1 , βkn

)
.

Consider that m > kn+1. Then Lemma 5 shows that βm < β and thus βm < βkn . Consequently,

{m ∈ JE | m > kn+1} ∩ JE
kn = ∅ . (80)

Jointly (79), (80) and J ∩ JE = ∅ prove (44). Finally, βkp ≡ βL = 0 in (37) shows that JE
L = ∅.

Proof of Proposition 4 For k ∈ {0, L}, see Remark 5. Consider S given by

S :=
L−1∪
k=1

Sk where Sk :=
L−k∪
n=1

k∪
m=1

∪
ω∈Ωk

∪
ω∈Ωk+n

∪
ω̂∈Ωk−m

ker
(
mΠω + nΠω̂ − (n + m)Πω

)
. (81)

Let k ∈ IL−1. Since rank (Πω) = k, rank (Πω) = k + n and rank (Πω̂) = k −m, we are guaranteed that

mΠω + nΠω̂ − (n + m)Πω ̸= 0 and thus dim
(
ker (mΠω + nΠω̂ − (n + m)Πω)

)
6 M − 1. Hence, S is a

finite union of vector subspaces of dimension 6 M− 1.

There exists n ∈ {1, . . . , L − k} such that βk =
θk − θk+n

n
. By Theorem 1, there are ω ∈ Ωk and

ω ∈ Ωk+n obeying θk = dT(I−Πω)d and θk+n = dT(I−Πω)d. Similarly, there is m ∈ {1, . . . , k} satisfying

βU
k =

θk−m − θk
m

and ω̂ ∈ Ωk−m such that θk−m = dT(I −Πω̂)d. Assume that βk = βU
k , i.e.,

0 = βk − βU
k =

dT(Πω −Πω)d

n
− dT(Πω −Πω̂)d

m
=

dT
(
mΠω + nΠω̂ − (m + n)Πω

)
d

nm
.

Since the term between the big parentheses is non-null, it follows that

d ∈ ker (mΠω + nΠω̂ − (n + m)Πω) ⊂ Sk ;

a contradiction to the assumption that d ̸∈ S.
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9.3 Proofs of the statements in section 5

9.3.1 Proof of Proposition 6

We shall use the two lemmas stated below.

Lemma 12. Let H1 hold and let k ∈ {1, . . . ,M− 1}. Then

d ∈ RM \Gk ⇐⇒ θk > 0 .

Proof . Let d ∈ RM \Gk and let û ∈ Ĉ k. Set σ̂ := supp(û). By Theorem 1 and the notation Ωk in (21),

σ̂ ∈ Ωk. Since (I −Πσ̂) is the orthogonal projector onto (range(Aσ̂))
⊥, one has

d ∈ RM \Gk =⇒ d ̸∈ range(Aσ̂) and d ̸= 0 =⇒ θk = ∥Aû− d∥2 = dT(I −Πσ̂) d > 0 .

Conversely, let θk > 0. If d ∈ Gk, there is ω ∈ Ωk meeting d ∈ range(Aω). For uω = (AT
ωAω)

−1AT
ωd one

has ∥Aωuω − d∥2 = dT(I −Πω) d = 0, a contradiction to θk > 0. �

Lemma 13. Let H1 hold and let Ek be given by (53). For any k > 2 such that θk−1 > 0 one has

θk−1 > θk ∀ d ∈ RM \Ek .

Proof . Let û ∈ Ĉ k−1 and θk−1 > 0. Set σ̂ := supp(û) and denote by Bσ̂ a matrix whose columns

form an orthonormal basis for Aσ̂. From Theorem 1, σ̂ ∈ Ω k−1. By H1, there is n ∈ IN \ σ̂ such that

ω := σ̂ ∪ { n} ∈ Ωk . Then there is bk ∈ range(Aω) such that Bω = (Bσ̂ , bk) forms an orthonormal basis

for Aω (see, e.g., [26]). The orthogonal projectors onto range(Aσ̂) and range(Aω) are Πσ̂ = Bσ̂B
T

σ̂ and

Πω = BωB
T
ω = Bσ̂B

T

σ̂ + bkb
T
k , respectively. Clearly, θk 6 T k := dT(I −Πω) d. Applying (52) yields

θk−1 − θk > θk−1 − T k = dT (Πω −Πσ̂) d = ⟨bk, d⟩2 .

Since d ∈ RM \Ek, one has d ̸= 0 and d ̸∈
(
range

(
(Bσ̂ , bk)

))⊥
. Hence ⟨bk, d⟩2 > 0. �

Remark 10. Let H1 hold. If d ̸= 0, there is n ∈ IN meeting ⟨an, d⟩ ̸= 0. Set ûn = argmin
v∈R

∥an v − d∥2.

Then

ûn =
⟨an, d⟩
∥an∥2

̸= 0 and θ1 6 ∥an ûn − d∥2 = ∥d∥2 − ⟨an, d⟩2

∥an∥2
< θ0 = ∥d∥2 .

Proof of Proposition 6 (a) Let d ∈ RM \GL′−1. By Lemma 12, θL′−1 > 0. Since {θk} is decreasing

(Lemma 2), one has θk > 0 ∀ k 6 L′ − 1. Conversely, if d ̸∈ RM \GL′−1, then θL′−1 = 0 by Lemma 12.

(b) Using (a)

d ∈ RM \ (E2 ∪GL′−1) =⇒ θk > 0 ∀ k ∈ IL′−1 . (82)

Since d ∈ RM \ (E2 ∪GL′−1) one has d ̸= 0. Using Remark 10,

d ∈ RM \ (E2 ∪GL′−1) =⇒ θ0 > θ1 . (83)
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Let k ∈ IL′ . For any ω ∈ Ωk and ω $ ω with ♯ ω = k− 1 one has ω ∈ Ωk−1 and range(Aω) $ range(Aω).

Since (range(Aω))
⊥ % (range(Aω))

⊥ we obtain
(
RM \Ek

)
%
(
RM \Ek−1

)
for any k ∈ {2, . . . , L′}. Using

Lemma 13 together with (83) and (82) shows that

d ∈ RM \ (E2 ∪GL′−1) =⇒ θk−1 > θk > 0 ∀ k ∈ IL′−1 and θL′−1 > θL′ .

9.3.2 Proof of Corollary 4.

(a) follows from Theorem 7 and Proposition 1(a).

(b) By (54), fβ is the lower envelope of L+ 1 affine increasing functions. Hence (b).

(c) One has β kn(kn+1 − kn) = θkn − θkn+1 and {β kn}
p
n=0 strictly decreasing by Corollary 3. Then

fβ kn
− fβ kn+1

= θkn − θkn+1 + βknkn −
(
βkn −

(
β kn − βkn+1

))
kn+1 (84)

= θkn − θkn+1 + βkn(kn − kn+1) +
(
βkn − βkn+1

)
kn+1 =

(
β kn − βkn+1

)
kn+1 > 0 .

Since k0 = 0, see (37), fβk0
= θk0 = fβ, ∀ β > βk0 . Using (a) and (84) yields fβk0

> fβ, ∀ β < βk0 .
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