

Relationship between the optimal solutions of least squares regularized with L0-norm and constrained by k-sparsity

Mila Nikolova

▶ To cite this version:

Mila Nikolova. Relationship between the optimal solutions of least squares regularized with L0-norm and constrained by k-sparsity. 2014. hal-00944006v1

HAL Id: hal-00944006 https://hal.science/hal-00944006v1

Preprint submitted on 10 Feb 2014 (v1), last revised 27 Aug 2017 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Relationship between the optimal solutions of least squares regularized with ℓ_0 -norm and constrained by k-sparsity

Mila NIKOLOVA

CMLA, CNRS, ENS Cachan, 61 Avenue du Président Wilson, 94230 Cachan, France Email: nikolova@cmla.ens-cachan.fr

Abstract. Given an $M \times N$ real-valued matrix A with M < N and a data-vector d, consider that d must be expressed as a linear combination of a small number of basis vectors taken from A. Two popular options to find the sought-after sparse solution are (1) to minimize the least-squares *regularized* with the counting function $\|\cdot\|_0$ (called usually the ℓ_0 -norm) via a trade-off parameter $\beta > 0$, and (2) to solve the least-squares *constrained* by k-sparsity, i.e. $\|\cdot\|_0 \leq k$. This work provides an exhaustive description of the relationship between the optimal solutions of these two nonconvex (combinatorial) optimization problems. Small-size exact numerical tests give a flavour of the meaning of the obtained theoretical results.

Keywords: ℓ_0 -regularization; k-sparsity constraint; quasi-equivalence between nonconvex problems; optimal solution analysis; parameter selection; sparse signal recovery; under-determined linear systems.

1 Introduction

The recovery of sparse objects (e.g., signals, images) or representations $u \in \mathbb{R}^{N}$ using a few basis vectors from incomplete and possibly inaccurate data $d \in \mathbb{R}^{N}$ is a tremendously growing topic, especially with the recent progress in compressed sensing [13, 8, 15, 7, 36, 17]. The most natural way to measure sparsity is the counting function $\|\cdot\|_{0}$, called usually the ℓ_{0} -norm

$$||u||_{0} := \sharp \left\{ i \in \{0, 1, \cdots, \mathsf{N}\} : u[i] \neq 0 \right\},$$
(1.1)

where \sharp denotes cardinality and u[i] stands for the *i*th components of u. We consider a frame (a dictionary) $A \in \mathbb{R}^{M \times N}$ with M < N where M and N are fixed.

Two popular options to find a sparse solution \hat{u} are defined by the following optimization problems: • the $\|\cdot\|_0$ -regularised problem where one looks for minimizers of $\mathcal{F}_{\beta} : \mathbb{R}^{\mathsf{N}} \to \mathbb{R}$ given by

$$(\mathcal{R}_{\beta}) \qquad \qquad \mathcal{F}_{\beta}(u) := \|Au - d\|_{2}^{2} + \beta \|u\|_{0} , \quad \beta > 0 , \qquad (1.2)$$

where $\beta > 0$ is a regularization parameter;

• the k-sparsity constrained minimization problem defined by

$$(\mathcal{C}_{\mathbf{k}}) \qquad \qquad \min_{u \in \mathbb{R}^{\mathsf{N}}} \|Au - d\|_2^2 , \quad \text{subject to} \quad \|u\|_0 \leq \mathsf{k} , \qquad (1.3)$$

where k is a fixed integer. As usual, a vector u is said to be k-sparse if $||u||_0 \leq k$.

Finding an optimal solution of these problems is NP-hard in general [12, 35]. We note that recent advances in stochastic optimization can or could make these tasks feasible [34].

In the literature these problems are often considered as somehow "equivalent"; see, e.g. [4, p. 631]. The goal of this work is to clarify the connection between the optimal solutions of (\mathcal{R}_{β}) and of (\mathcal{C}_{k}) . More precisely, we look for guarantees that for a k and some values $\beta > 0$, (\mathcal{R}_{β}) and (\mathcal{C}_{k}) have exactly the same optimal set. Since (\mathcal{R}_{β}) and (\mathcal{C}_{k}) are nonconvex problems, our goal is highly non trivial.

1.1 Related work

The amount of papers dealing with problems (\mathcal{R}_{β}) and (\mathcal{C}_{k}) is huge. We present a brief summary that helps to position the goals of our work.

On algorithms. The solutions of (\mathcal{R}_{β}) and (\mathcal{C}_{k}) are usually approximated by greedy pursuit, relaxation of the $\|\cdot\|_{0}$ penalty often combined with nonconvex minimization [18, 25, 19, 10, 22], as well as direct optimization [29, 33, 1]. Tropp and Wright [36] gave a comprehensive overview, mainly focused on greedy pursuits and convex relaxation. These algorithms require strong assumptions on A, e.g., RIP or bounds on spark(A), and on the sparsity of the solution. Iterative thresholding algorithms has become quite popular after the local convergence results of Blumensath and Davies [4], further expanded by the authors in [5, 6]. Recent results has enabled the RIP assumption to be lighten [26, 3, 9].

Problem (\mathcal{R}_{β}) is a particular case of an objective whose global minimizer is computed in finite time with high probability by the stochastic continuation algorithm conceived by Robini, Lachal and Magnin [32] and refined by Robini and Magnin in [33]. Recently, Robini and Reissman [34] extended the methodology to general (combinatirial) objectives and gave results on the probability for global convergence versus the running time. So [34] can be adapted to solve optimally problems (\mathcal{C}_k) as well. **Some applications.** Problem (\mathcal{R}_{β}) has been widely considered for subset selection [29, 4], model selection [25], variable selection [23], feature selection [30, 18], signal and image reconstruction [21, 19, 10, 37, 14]. Problem (\mathcal{C}_k) involves a natural sparse coding constraint; it is well known as the k-best term approximation model [13, 11]. It has been used for low-rank matrix decomposition [2], sparse inverse problems [6], dictionary learning [16], among ohers.

Comparison between $\|\cdot\|_0$ -related problems. Here are few references. Fung and Mangasarian [20] consider the problem: minimize $\|u\|_p$ subject to Au = d, $Bu \ge b$ and $\|u\|_{\infty} \le 1$, where $p \in [0, 1)$, and B and b are a matrix and a vector, respectively. They prove that the $\|u\|_0$ -problem is equivalent to the $\|u\|_p$ -problem for a sufficiently small p > 0. Malgouyres and Nikolova [27] focus on the approximation performances of the problem: minimize $\|u\|_0$ subject to $\|Au - d\| \le \tau$. They give a geometrical description of the data sets $d \in \mathbb{R}^M$ yielding an optimal solution of (\mathcal{C}_k) .

1.2 Our goals and contributions

In this work we provide an exhaustive description of the connection between the optimal solutions of the two nonconvex, combinatorial problems (\mathcal{R}_{β}) and (\mathcal{C}_{k}), stated in (1.2) and (1.3), respectively. This goal is achieved using simple mathematical tools. Our main results are summarized below.

- There is an integer $\mathsf{L} \leq \mathsf{M}$ (dependent on A and on d) for which it holds that: (a) For any $\mathsf{k} \leq \mathsf{L}$, any optimal solution \hat{u} of $(\mathcal{C}_{\mathsf{k}})$ obeys $\|\hat{u}\|_{0} = \mathsf{k}$ and the columns of A indexed by the support of \hat{u} are linearly independent; (b) For any $\beta > 0$, any global minimizer \hat{u} of \mathcal{F}_{β} verifies $\|\hat{u}\|_{0} \leq \mathsf{L}$.
- We exhibit critical values β_k , $k \in \{0, \dots, L\}$, and we prove that for any k, $(\mathcal{R}_{\beta}) \forall \beta \in (\beta_k, \beta_{k-1})$ and (\mathcal{C}_k) have the same optimal set *if and only if* $\{\beta_k\}$ is strictly decreasing. But for any $k \leq L 1$ and $\beta = \beta_k$, the optimal set of (\mathcal{R}_{β}) is the union of the (disjoint) optimal sets of (\mathcal{C}_k) and (\mathcal{C}_{k+1}) . Thus when $\{\beta_k\}$ is strictly decreasing, we can say that (\mathcal{R}_{β}) and (\mathcal{C}_k) are *quasi-equivalent*.
- It is shown that $\{\beta_k\}$ can be oscillating, relying on A or d. Then there is a subset $\{k_n\}$ so that for any n and for any $\beta > 0$, any global minimizer \hat{u} of \mathcal{F}_{β} is not an optimal solution of (\mathcal{C}_{k_n}) and $\|\hat{u}\|_0 \neq k_n$. In such a case, only partial quasi-equivalence can hold: for $k \notin \{k_n\}$, there are $\{\beta'_k, \beta'_{k-1}\}$ and $\{\overline{b}, \underline{b}\}$ so that (\mathcal{R}_{β}) for any $\beta \in (\beta'_k, \beta'_{k-1})$ and (\mathcal{C}_k) share the same optimal set if $\overline{b} \ge \beta'_{k-1} > \beta'_k \ge \underline{b}$.
- The union of all global minimizers of F_β for all β > 0 is *included* in the union of all optimal solutions of (C_k) for k ∈ {0, · · · , L}.

1.3 Outline of the paper

Results relating the optimality conditions for (\mathcal{R}_{β}) and (\mathcal{C}_{k}) are derived in section 2. In particular, useful properties on the optimal sets of (\mathcal{C}_{k}) are exhibited in subsection 2.2. Necessary and sufficient conditions for quasi-equivalence between problems (\mathcal{R}_{β}) and (\mathcal{C}_{k}) are provided in section 3. Otherwise, partial equivalence occurs which is also examined. Some facts on the critical parameter values are given in section 4. In section 5, small-size exact numerical tests illustrate the main results of the paper.

1.4 Main notation and definitions

To simplify the notation, the ℓ_2 -norm is systematically denoted by

$$\|\cdot\| := \|\cdot\|_2$$

Let n be any positive integer. The identity operator on \mathbb{R}^n is denoted by I_n . We denote by \mathbb{I}_n and \mathbb{I}_n^0 the totally and strictly ordered index sets

$$\mathbb{I}_{n} := (\{1, \cdots, n\}, <) \quad \text{and} \quad \mathbb{I}_{n}^{0} := (\{0, 1, \cdots, n\}, <) , \qquad (1.4)$$

where the symbol < stands for the natural order of integers. Thus any subset $\omega \subseteq \mathbb{I}_n$ is also totally and strictly ordered. Without this precision, the expressions in (1.6) and (1.7) below are ambiguous.

For any $u \in \mathbb{R}^{\mathsf{N}}$, the support $\sigma(u)$ of u is defined by

$$\sigma(u) := \left\{ i \in \mathbb{I}_{\mathsf{N}} : u[i] \neq 0 \right\} \subseteq \mathbb{I}_{\mathsf{N}} .$$
(1.5)

The *i*th column in a matrix $A \in \mathbb{R}^{M \times N}$ is denoted by a_i . For a matrix $A \in \mathbb{R}^{M \times N}$ and a vector $u \in \mathbb{R}^N$, with any $\omega \subseteq \mathbb{I}_N$, we associate the *submatrix* A_{ω} and the *subvector* u_{ω} given by

$$A_{\omega} := \left(a_{\omega[1]}, \cdots, a_{\omega[\sharp\omega]}\right) \in \mathbb{R}^{\mathsf{M} \times \sharp \omega} , \qquad (1.6)$$

$$u_{\omega} := \left(u[\omega[1]], \cdots, u[\omega[\sharp\omega]] \right) \in \mathbb{R}^{\sharp\omega} , \qquad (1.7)$$

respectively, as well as the zero padding operator $Z_{\omega} : \mathbb{R}^{\sharp \omega} \to \mathbb{R}^{\mathsf{N}}$ given by

$$u = Z_{\omega}(u_{\omega}) \quad u[i] = \begin{cases} 0 & \text{if } i \notin \omega ,\\ u_{\omega}[k] & \text{for the unique } k \text{ such that } \omega[k] = i. \end{cases}$$
(1.8)

Using (1.5) and the notation in (1.6)-(1.7), for any $u \in \mathbb{R}^{N}$ we have

$$\omega \in \mathbb{I}_{\mathsf{N}} \text{ and } \omega \supseteq \sigma(u) \implies Au = A_{\omega}u_{\omega} \text{ and } u = Z_{\omega}(u_{\omega}) .$$
 (1.9)

The superscript "T" denotes transposed. For definiteness, we set $A_{\omega}^T := (A_{\omega})^T$ and $A_{\omega}^{-1} := (A_{\omega})^{-1}$.

Example 1 Let $A = (a_1, a_2, a_3, a_4)$ and $u = (1, 0, 1, 0)^T$. Then $\sigma := \sigma(u) = \{1, 3\}$. Let $\omega = \{1, 2, 3\} \supset \sigma$. Clearly, $Au = A_{\sigma}u_{\sigma} = A_{\omega}u_{\omega} = a_1 + a_3$.

Remark 1 For (C_k) we have to consider also two trivial cases: k = 0 because \mathcal{F}_{β} always has a strict (local) minimum at $\hat{u} = 0$ [31, Lemma 2.2] and $k = \mathsf{M}$ since \mathcal{F}_{β} can have strict (local) minimizers \tilde{u} with $\|\tilde{u}\|_0 = \mathsf{M}$ [31, Proposition 3.9]. According to the value of β , \hat{u} or \tilde{u} can be global minimizers of \mathcal{F}_{β} .

In order to unify the presentation, we adopt the definitions: $A_{\varnothing} := [] \in \mathbb{R}^{M \times 0}$ and rank $(A_{\varnothing}) := 0$. Then all claims hold when k = 0 for (\mathcal{C}_k) and when the optimal set of (\mathcal{R}_β) is null.

We shall consider the standard hypothesis on A stated below.

H1 The matrix $A \in \mathbb{R}^{M \times N}$ satisfies rank(A) = M < N.

It is systematically assumed that $d \neq 0$ to prevents from considering other trivial cases.

2 Preliminary results

In this section we derive simple tests relating the optimality conditions for (\mathcal{R}_{β}) and for (\mathcal{C}_k) . This task needs a few developments. Some results on (\mathcal{R}_{β}) obtained in [31] are used. We shall often refer to the constrained quadratic optimization problem stated in subsection 2.1.

2.1 A constrained quadratic optimization problem

Given $d \in \mathbb{R}^{\mathsf{M}}$ and $\omega \subseteq \mathbb{I}_{\mathsf{N}}$, problem (\mathcal{P}_{ω}) reads as:

$$(\mathcal{P}_{\omega}) \qquad \qquad \min_{u \in \mathbb{R}^{\mathsf{N}}} \|Au - d\|^2, \quad \text{subject to} \quad u[i] = 0 \quad \forall \ i \in \mathbb{I}_{\mathsf{N}} \setminus \omega .$$

$$(2.1)$$

Using the notation in (1.6), (1.7) and (1.8), the following equivalence is obvious and useful:

$$\left[\ \widehat{u} \in \mathbb{R}^{\mathsf{N}} \text{ solves } (\mathcal{P}_{\omega}) \ \right] \quad \Leftrightarrow \quad \left[\ \widehat{u} = Z_{\omega} \left(\widehat{u}_{\omega} \right) \text{ and } \widehat{u}_{\omega} \text{ solves } \min_{v \in \mathbb{R}^{\sharp \, \omega}} \left\| A_{\omega} v - d \right\|^2 \right].$$
(2.2)

The optimality conditions for the quadratic problem on the right side of (2.2) amount to solving the normal equation relevant to A_{ω} , i.e. to finding a $v \in \mathbb{R}^{\sharp \omega}$ satisfying $A_{\omega}^{T}A_{\omega}v = A_{\omega}^{T}d$. Such a v always exists; see e.g., [28]. Therefore for any $d \in \mathbb{R}^{\mathsf{M}}$ and for any $\omega \subset \mathbb{I}_{\mathsf{N}}$ problem (\mathcal{P}_{ω}) has solutions.

Note that any \hat{u} solving (\mathcal{P}_{ω}) for some $\omega \in \mathbb{I}_{\mathsf{N}}$ is a (local) minimizer of \mathcal{F}_{β} [31, Proposition 2.3].

2.2 On the optimal solutions of problem (C_k)

The set of the supports of all k-sparse vectors reads as

$$\Theta_{\mathbf{k}} := \bigcup_{\mathbf{n}=0}^{\mathbf{k}} \left\{ \ \omega \subset \mathbb{I}_{\mathsf{N}} : \ \sharp \, \omega = \mathbf{n} \right\} .$$

$$(2.3)$$

Using (\mathcal{P}_{ω}) and this notation, for any k, problem (\mathcal{C}_k) in (1.3) equivalently reads as

$$(\mathcal{C}_{k}) \qquad \begin{aligned} \|A\widehat{u} - d\|^{2} &= \min_{\omega \in \Theta_{k}} \left\{ \|A\widetilde{u} - d\|^{2} : \widetilde{u} \text{ solves } (\mathcal{P}_{\omega}) \text{ for } \omega \in \Theta_{k} \right\} \\ &= \min_{\omega \in \Theta_{k}} \left\{ \|A_{\omega}\widetilde{u}_{\omega} - d\|^{2} : \widetilde{u} \text{ solves } (\mathcal{P}_{\omega}) \text{ for } \omega \in \Theta_{k} \right\}. \end{aligned}$$

$$(2.4)$$

We first verify the existence of optimal solution of (\mathcal{C}_k) .

Lemma 1 For any $k \in \mathbb{I}^0_N$, the optimal set of problem (\mathcal{C}_k) is nonempty.

Proof. Consider the equivalent formulation of (\mathcal{C}_k) in (2.4). For $k \in \mathbb{I}^0_N$, define $\theta^{\omega} \in \mathbb{R}_+$ as

 $\theta^{\omega} := \|A\widetilde{u} - d\|^2$, where \widetilde{u} solves (\mathcal{P}_{ω}) for $\omega \in \Theta_k$.

The facts that $\sharp \Theta_k$ is finite and that (\mathcal{P}_{ω}) has solutions for any $\omega \in \Theta_k \subset \mathbb{I}_N$ ensure that the set $\{\theta^{\omega} : \omega \in \Theta_k\}$ is nonempty and finite. Then the number $\widehat{\theta} := \min\{\theta^{\omega} : \omega \in \Theta_k\}$ is uniquely defined and there exists \widehat{u} such that $\|A\widehat{u} - d\|^2 = \widehat{\theta}$; so \widehat{u} is an optimal solution of (\mathcal{C}_k) .

By Lemma 1, for any $k \in \mathbb{I}_{N}^{0}$ the optimal value $\theta_{d}(k)$ of problem (\mathcal{C}_{k}) is well defined:

$$\theta_d(\mathbf{k}) := \|A\widehat{u} - d\|^2 \quad \text{where} \quad \widehat{u} \text{ is an optimal solution of } (\mathcal{C}_{\mathbf{k}}).$$
(2.5)

The optimal set of any problem (\mathcal{C}_k) is denoted by

$$\widehat{C}_{k} := \left\{ \widehat{u} \in \mathbb{R}^{\mathsf{N}} : \widehat{u} \text{ is an optimal solution of } (\mathcal{C}_{k}) \right\} .$$
(2.6)

If (\mathcal{C}_k) has a unique solution \hat{u} , then clearly $\widehat{C}_k = {\hat{u}}$.

Below we prove that the sequence $\{\theta_d(\mathbf{k})\}_{\mathbf{k}}$ is indeed decreasing.

Lemma 2 Let $d \in \mathbb{R}^{\mathsf{M}}$. Then $\theta_d(0) = ||d||^2$ and

$$\theta_d(\mathbf{k}-1) \ge \theta_d(\mathbf{k}) \quad \forall \mathbf{k} \ge 1 .$$
(2.7)

If H1 holds, then $\theta_d(\mathsf{M}) = 0$ and $\theta_d(k) = 0$ for any $k > \mathsf{M}$.

Proof. It is obvious that $\theta_d(0) = ||d||^2$. Let $\hat{u} \in \widehat{C}_k$ for $k \in \mathbb{I}_N$. Set $\hat{\sigma} := \sigma(\hat{u})$. From (2.4) one has

$$\theta_d(\mathbf{k}) = \|A_{\widehat{\sigma}}\widehat{u}_{\widehat{\sigma}} - d\|^2 \leqslant \|A_{\omega}u_{\omega} - d\|^2 \quad \forall \ \omega \in \Theta_n \ \forall \ u_{\omega} \in \mathbb{R}^{\sharp\omega}, \ \forall \ n \leqslant \mathbf{k} .$$
(2.8)

Consequently, $\theta_d(\mathbf{k}) \leq \theta_d(\mathbf{k} - \mathbf{n})$ for any $\mathbf{n} \in \mathbb{I}_k$, which proves (2.7). From H1, there exists $\omega \subset \mathbb{I}_N$ such that rank $(A_\omega) = \mathsf{M} = \#\omega$. Then $\widehat{u}_\omega = (A_\omega)^{-1}d$ leads to $||A_\omega \widehat{u}_\omega - d||^2 = 0 = \theta_d(\mathsf{M})$. This, combined with (2.7), shows that $\theta_d(\mathbf{k}) = 0$ for any $\mathbf{k} > \mathsf{M}$.

We verify that if $\hat{u} \in \widehat{C}_k$ is an unconstrained solution, then \hat{u} solves exactly Au = d. Lemma 3 Let H1 hold. For $k \in \mathbb{I}_M$, assume that (\mathcal{C}_k) has an optimal solution \hat{u} obeying

$$\|\widehat{u}\|_0 = \mathbf{k} - \mathbf{n} \quad \text{for} \quad \mathbf{n} \ge 1 \ . \tag{2.9}$$

Then

$$A\widehat{u} = d . (2.10)$$

Further, $\hat{u} \in \widehat{C}_{m}$ and $\theta_{d}(m) = 0$ for any $m \ge k - n$. **Proof.** Set $\hat{\sigma} := \sigma(\hat{u})$ then $\sharp \hat{\sigma} = k - n$. Recalling that $A_{\widehat{\sigma}} \hat{u}_{\widehat{\sigma}} = A \hat{u}$, define $z \in \mathbb{R}^{M}$ by

$$z := A\widehat{u} - d = A_{\widehat{\sigma}}\widehat{u}_{\widehat{\sigma}} - d .$$
(2.11)

Assume that (2.10) fails, i.e.

$$z \neq 0. \tag{2.12}$$

Since by (2.4) \hat{u} solves $(\mathcal{P}_{\hat{\sigma}})$, one has $A_{\hat{\sigma}}^T(A_{\hat{\sigma}}\hat{u}_{\hat{\sigma}} - d) = 0$ which combined with (2.11) leads to $A_{\hat{\sigma}}^T z = 0$. Select a $\tilde{\sigma} \subseteq \hat{\sigma}$ yielding rank $(A_{\tilde{\sigma}}) = r := \operatorname{rank}(A_{\hat{\sigma}})$; recall that $r \leq k - n < M$. By H1, there is $\omega \in \mathbb{I}_N$ such that $\omega \not\supseteq \tilde{\sigma}$ and rank $(A_{\omega}) = M = \#\omega$. Then $A_{\omega}^T z \neq 0$ by (2.12). So there is $m \in \omega \setminus \hat{\sigma}$ obeying

$$\langle a_{\rm m}, z \rangle \neq 0$$

Clearly, $a_{\rm m}$ is linearly independent of range $(A_{\hat{\sigma}})$. One has

$$\widehat{u}_{\mathrm{m}} := \frac{\langle a_{\mathrm{m}}, z \rangle}{\|a_{\mathrm{m}}\|^2} \quad \Rightarrow \quad \widehat{u}_{\mathrm{m}} \langle a_{\mathrm{m}}, z \rangle > 0 \;. \tag{2.13}$$

Using the definition of z in (2.11), one derives

$$\begin{split} \|A_{\widehat{\sigma}}\widehat{u}_{\widehat{\sigma}} + a_{\mathrm{m}}\widehat{u}_{\mathrm{m}} - d\|^{2} &= \|z + a_{\mathrm{m}}\widehat{u}_{\mathrm{m}}\|^{2} - \|z\|^{2} = \|a_{\mathrm{m}}\|^{2}\widehat{u}_{\mathrm{m}}^{2} - 2\widehat{u}_{\mathrm{m}}\langle z, \, a_{\mathrm{m}}\rangle \\ \left[\text{ by } (2.13) \right] &= \frac{\widehat{u}_{\mathrm{m}}}{\|a_{\mathrm{m}}\|^{2}} \big(\langle a_{\mathrm{m}}, z \rangle - 2\langle a_{\mathrm{m}}, z \rangle \big) = -\frac{\widehat{u}_{\mathrm{m}}\langle a_{\mathrm{m}}, z \rangle}{\|a_{\mathrm{m}}\|^{2}} < 0 \; . \end{split}$$

Hence any optimal solution \hat{u} of (\mathcal{C}_k) satisfies $\|\hat{u}\|_0 > \sharp \hat{\sigma} = k - n$. But this contradicts (2.9); hence the assumption in (2.12) fails. This proves (2.10). Then $\hat{u} \in \widehat{C}_{k-n}$ since $\theta_d(k-n) = 0$. By Lemma 2, for any $m \ge n - k$ one has $\theta_d(m) = 0$ and $\hat{u} \in \widehat{C}_m$.

Corollary 1 Let H1 hold. For some $k \in \mathbb{I}^0_M$, suppose that $\widehat{u} \in \widehat{C}_k$. Then

$$heta_d(\mathbf{k}) > 0 \quad \Rightarrow \quad \|\widehat{u}\|_0 = \mathbf{k} \; .$$

Proof. The case k = 0 is trivial. Focus on $k \ge 1$. If $\|\hat{u}\|_0 = k - n$ for $n \in \mathbb{I}_k$, Lemma 3 shows that $\theta_d(k) = 0$. This contradicts the fact that $\theta_d(k) > 0$. It follows that $\|\hat{u}\|_0 = k$.

Given A satisfying H1 and $d \neq 0$, we introduce the constant

$$\mathsf{L} := \max \left\{ \mathbf{k} \in \mathbb{I}_{\mathsf{M}} : \theta_d(\mathbf{k}) > 0 \right\} + 1 .$$
(2.14)

Since $\theta_d(\cdot)$ is decreasing (Lemma 2), the constant L is uniquely defined. From the same lemma, $\theta_d(M) = 0$, hence $L \leq M$. Note that the constant L relies on A or d.

Remark 2 One has $L \leq M - 1$ if d = Au for $||u||_0 \leq M - 1$. Then d belongs to a subspace of \mathbb{R}^M of dimension $||u||_0$ which is a negligible subset of \mathbb{R}^M . Usual noisy data range on the whole \mathbb{R}^M and L = M.

Lemma 4 Let H1 be satisfied and \lfloor read as in (2.14). If \hat{u} is an optimal solution of (C_{L}) , then

$$\theta_d(\mathsf{L}) = 0$$
 and $\|\widehat{u}\|_0 = \mathsf{L}$.

Proof. From (2.14), $\theta_d(\mathsf{L}) = ||A\hat{u} - d||^2 = 0$. If $||\hat{u}||_0 = \mathsf{L} - n$ for $n \ge 1$, then \hat{u} also satisfies $\hat{u} \in \widehat{\mathsf{C}}_{\mathsf{L}-n}$ and $\theta_d(\mathsf{L}-n) = 0$ by Lemma 3. But this contradicts the definition of L . Hence $||\hat{u}||_0 = \mathsf{L}$.

The result on the optimal solutions of (\mathcal{C}_k) below is important.

Lemma 5 Let H1 hold. For $\mathbf{k} \in \mathbb{I}^0_{\mathsf{L}}$, suppose that $\widehat{u} \in \widehat{C}_{\mathsf{k}}$. Set $\widehat{\sigma} := \sigma(\widehat{u})$. Then

$$\operatorname{rank}\left(A_{\widehat{\sigma}}\right) = \sharp \widehat{\sigma} \ . \tag{2.15}$$

Proof. If k = 0, (2.15) holds. The proof is by contradiction. Suppose that (2.15) fails for $k \ge 1$, i.e.,

$$\operatorname{rank}(A_{\widehat{\sigma}}) \leqslant \sharp \widehat{\sigma} - 1 . \tag{2.16}$$

The rank-nullity theorem [28] entails that dim ker $(A_{\widehat{\sigma}}) = \sharp \widehat{\sigma} - \operatorname{rank} (A_{\widehat{\sigma}}) \ge 1$. We can take an arbitrary $v_{\widehat{\sigma}} \in \ker (A_{\widehat{\sigma}}) \setminus \{0\}$, set $v := Z_{\widehat{\sigma}} (v_{\widehat{\sigma}})$ and select an $i \in \widehat{\sigma}$ obeying $v[i] \neq 0$. Define \widetilde{u} by

$$\widetilde{u} := \widehat{u} - \widehat{u}[i] \frac{v}{v[i]}$$

Clearly, $\widetilde{u}[i]=0$ and $\widehat{u}[i]\neq 0$, so $\widetilde{\sigma}:=\sigma\left(\widetilde{u}\right)\subsetneqq \widehat{\sigma},$ which leads to

$$\|\widetilde{u}\|_0 \leqslant \|\widehat{u}\|_0 - 1 . \tag{2.17}$$

From $v_{\widehat{\sigma}} \frac{\widehat{u}[i]}{v[i]} \in \ker(A_{\widehat{\sigma}})$ one has $A\widehat{u} = A_{\widehat{\sigma}}\widehat{u}_{\widehat{\sigma}} = A_{\widehat{\sigma}}\left(\widehat{u}_{\widehat{\sigma}} - v_{\widehat{\sigma}}\frac{\widehat{u}[i]}{v[i]}\right) = A_{\widehat{\sigma}}\widetilde{u}_{\widehat{\sigma}} = A_{\widetilde{\sigma}}\widetilde{u}_{\widetilde{\sigma}} = A\widetilde{u}$. Then $\theta_d(\mathbf{k}) = ||A\widehat{u} - d||^2 = ||A\widetilde{u} - d||^2$. (2.18) Consequently, \tilde{u} is also an optimal solution of (\mathcal{C}_k) which by (2.17) satisfies

$$\|\widetilde{u}\|_0 = \mathbf{k} - \mathbf{n}$$
 for $\mathbf{n} := \|\widehat{u}\|_0 - \|\widetilde{u}\|_0 \ge 1$.

From Lemma 3, $\tilde{u} \in \widehat{C}_{k-n}$ and $\theta_d(k-n) = 0$. This result contradicts the fact that by (2.14), one has $\theta_d(\mathsf{L}-n) > 0$ for any $n \ge 1$. Hence the assumption in (2.16) fails which proves the lemma.

Remark 3 The algorithm aimed at solving (C_k) proposed in [4] was shown in [4, Lemma 6] to produce, under certain conditions, solutions that fulfill the necessary optimality condition in (2.15).

Based on Lemma 5, we focus on all M-row full column rank submatrices of A. All supports $\omega \subset \mathbb{I}_N$ corresponding to such submatrices are described below:

$$\Omega_{\mathbf{k}} := \left\{ \ \omega \subset \mathbb{I}_{\mathsf{N}} : \ \sharp \ \omega = \mathbf{k} = \operatorname{rank}(A_{\omega}) \ \right\} \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{M}}^{0} \quad \text{and} \quad \Omega := \bigcup_{\mathbf{k}=0}^{\mathsf{M}} \Omega_{\mathbf{k}} .$$
(2.19)

Theorem 1 Let H1 be satisfied and L read according to (2.14). Then

$$\widehat{u} \text{ is an optimal solution of } (\mathcal{C}_{k}) \text{ for } k \in \mathbb{I}^{0}_{\mathsf{L}} \implies \|\widehat{u}\|_{0} = k \text{ and } \sigma(\widehat{u}) \in \Omega_{k}.$$
(2.20)

Further, if $\widehat{u} \in \widehat{C}_{\mathsf{L}}$, then $\widehat{u} \in \bigcap_{k=\mathsf{L}}^{\mathsf{N}} \widehat{C}_{k}$.

Proof. For any $k \in \mathbb{I}^0_{\mathsf{L}}$, Lemma 5 shows that $\sigma(\hat{u}) \in \Omega_k$. If $k = \mathsf{L}$, $\|\hat{u}\|_0 = \mathsf{L}$ from Lemma 4. Let $k \leq \mathsf{L} - 1$. From the definition of L in (2.14), $\theta_d(k) > 0$, which by Corollary 1 shows that $\|\hat{u}\|_0 = k$. The last claim follows directly from Lemmas 2 and Lemma 4.

We note that problem $(\mathcal{C}_{\mathsf{M}})$ is unconstrained and has $\sharp \Omega_{\mathsf{M}}$ optimal solutions.

Remark 4 Let H1 hold. By Theorem 1, for any $k \in \mathbb{I}^0_M$, problem (\mathcal{C}_k) equivalently reads as

$$(\mathcal{C}_{\mathbf{k}}) \qquad \min_{\omega \in \Omega_{\mathbf{k}}} \left\{ \|A\widetilde{u} - d\|^2 : \widetilde{u} \text{ solves } (\mathcal{P}_{\omega}) \text{ for } \omega \in \Omega_{\mathbf{k}} \right\}.$$

$$(2.21)$$

For a given k, the formulation of (\mathcal{C}_k) in (2.4) suggests that getting an optimal solution of (\mathcal{C}_k) needs to compare the values of $\# \Theta_k = \sum_{n=0}^k \# \Theta_n$ different solutions of (\mathcal{P}_ω) . The new formulation in (2.21) shows that in fact, the values of only $\# \Omega_k \leq \# \Theta_k$ solutions of (\mathcal{P}_ω) , for $\omega \in \Omega_k$, must be compared. Correspondingly, the optimal value of (\mathcal{C}_k) , introduced in (2.5), satisfies

$$\theta_d(\mathbf{k}) = \min \left\{ \|A_\omega u_\omega - d\|^2 : \omega \in \Omega_\mathbf{k} \right\} \quad \forall \ \mathbf{k} \in \mathbb{I}^0_\mathsf{M} \ .$$

Another direct and useful consequence of Theorem 1 is stated below.

 $\textbf{Corollary 2} \ \textit{Let H1 hold.} \ \textit{Then } \widehat{C}_k \cap \widehat{C}_n = \varnothing \ \textit{for all } (k,n) \in \mathbb{I}^0_L \ \textit{such that } k \neq n.$

In words, if \hat{u} solves optimally (C_k) for $k \leq L$, then \hat{u} cannot be an optimal solution of (C_n) for any $n \neq k$ obeying $n \leq L$.

2.3 Problem (\mathcal{P}_{ω}) – a bridge between problems (\mathcal{R}_{β}) and (\mathcal{C}_{k})

We recall that a (local) minimizer \hat{u} of \mathcal{F}_{β} is strict if there is a neighborhood $\mathcal{O} \subset \mathbb{R}^{N}$, containing \hat{u} , such that $\mathcal{F}_{\beta}(\hat{u}) < \mathcal{F}_{\beta}(u)$ for any $u \in \mathcal{O}$. Obviously, such a minimizer \hat{u} is isolated.

Using the definition of Ω in (2.19), we introduce the set $U \subset \mathbb{R}^{\mathsf{N}}$ given by

$$U = \bigcup_{\omega \in \Omega} \{ \widetilde{u} \in \mathbb{R}^{\mathsf{N}} : \widetilde{u} \text{ solves } (\mathcal{P}_{\omega}) \text{ for } \omega \in \Omega \} .$$
(2.22)

Lemma 6 Let $d \in \mathbb{R}^{\mathsf{M}}$ and $\beta > 0$. Then

$$\hat{u}$$
 is a strict (local) minimizer of $\mathcal{F}_{\beta} \iff \hat{u} \in \mathbf{U}$. (2.23)

Proof. From [31, Theorem 3.2], \hat{u} is a strict (local) minimizers of \mathcal{F}_{β} if and only if \hat{u} solves $\mathcal{P}_{\hat{\sigma}}$ for $\hat{\sigma} := \sigma(\hat{u}) \in \Omega$; hence $\hat{u} \in U$. And [31, Corollary 3.3] tells us that if \hat{u} solves (\mathcal{P}_{ω}) for $\omega \in \Omega$ (i.e., if $\hat{u} \in U$) then \hat{u} is a strict (local) minimizer of \mathcal{F}_{β} . The proof is complete.

Now we partition U in (2.22) according to

$$\mathbf{U} = \bigcup_{\mathbf{k}=0}^{\mathsf{M}} \mathbf{U}_{\mathbf{k}} \quad \text{where} \quad \mathbf{U}_{\mathbf{k}} := \bigcup_{\omega \in \Omega} \left\{ \widetilde{u} \in \mathbb{R}^{\mathsf{N}} : \ \widetilde{u} \text{ solves } (\mathcal{P}_{\omega}) \text{ for } \omega \in \Omega \text{ and } \|\widetilde{u}\|_{0} = \mathbf{k} \right\} \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{M}}^{\mathsf{0}} \text{ . } (2.24)$$

Lemma 7 Let H1 be satisfied. Then $\widehat{C}_k \subset U_k, \ \forall \ k \in \mathbb{I}^0_L$.

Proof. Let $\hat{u} \in \widehat{C}_k$ for $k \in \mathbb{I}^0_L$. Set $\hat{\sigma} := \sigma(\hat{u})$. The formulation of (\mathcal{C}_k) in (2.21), combined with Theorem 1 shows that \hat{u} solves (\mathcal{P}_{ω}) for $\omega := \hat{\sigma} \in \Omega_k \subset \Omega$ and that $\|\hat{u}\|_0 = k$. Hence $\hat{u} \in U_k$. \Box

Lemma 8 Let H1 be satisfied and let $\beta > 0$.

(i) Let $\widehat{u} \in \widehat{C}_k$ for $k \in \mathbb{I}^0_{\mathsf{l}}$. Then

$$\mathcal{F}_{\beta}(\widehat{u}) = \theta_d(\mathbf{k}) + \beta \mathbf{k} \qquad \forall \ \widehat{u} \in \widehat{\mathbf{C}}_{\mathbf{k}} ; \qquad (2.25)$$

$$\mathcal{F}_{\beta}(\widetilde{u}) > \mathcal{F}_{\beta}(\widehat{u}) \qquad \forall \ \widetilde{u} \in \mathbf{U}_{\mathbf{k}} \setminus \widehat{\mathbf{C}}_{\mathbf{k}} .$$
(2.26)

(ii) Let $\widehat{u} \in \widehat{C}_{\mathsf{L}}$. If $\mathsf{L} \leq \mathsf{M} - 1$, then

$$n \in \{L + 1, \cdots, M\}$$
 and $\widetilde{u} \in U_n \implies \mathcal{F}_{\beta}(\widetilde{u}) > \theta_d(L) + \beta L = \mathcal{F}_{\beta}(\widehat{u})$. (2.27)

Proof. (i). Using that $k \in \mathbb{I}^0_L$, Theorem 1 shows that $\|\widehat{u}\|_0 = k$. This leads to (2.25). If $\widetilde{u} \in U_k \setminus \widehat{C}_k$, then $\|\widetilde{u}\|_0 = k$ from the definition of U_k and \widetilde{u} is not an optimal solution of (\mathcal{C}_k) , hence

$$\widetilde{u} \in \mathcal{U}_k \setminus \widehat{\mathcal{C}}_k \quad \Rightarrow \quad \|A\widetilde{u} - d\|^2 > \theta_d(k) \;.$$

(ii). The definition of L in (2.14) entails that $\theta_d(n) = \theta_d(L) = 0, \forall n \ge L + 1$. Therefore

$$n \ge L+1$$
 and $\widetilde{u} \in U_n \implies \mathcal{F}_{\beta}(\widetilde{u}) = ||A\widetilde{u} - d||^2 + \beta n > \theta_d(L) + \beta L$.

2.4 Joint optimality conditions for (\mathcal{C}_k) and (\mathcal{R}_β)

We shall use the following result on \mathcal{F}_{β} :

Theorem 2 (Nikolova, [31, Theorem 4.4]) Let $d \in \mathbb{R}^{\mathsf{M}}$ and $\beta > 0$. Then

- (i) \mathcal{F}_{β} has a global minimizer: there exists $\widehat{u} \in \mathbb{R}^{\mathsf{N}}$ such that $\min_{u \in \mathbb{R}^{\mathsf{N}}} \mathcal{F}_{\beta}(u) = \mathcal{F}_{\beta}(\widehat{u}) \leqslant \mathcal{F}_{\beta}(u), \forall u \in \mathbb{R}^{\mathsf{N}};$
- (ii) If \hat{u} is a global minimizer of \mathcal{F}_{β} , then \hat{u} is a strict minimizer of \mathcal{F}_{β} , i.e. $\sigma(\hat{u}) \in \Omega$.

The optimal set of an objective \mathcal{F}_{β} with regularization parameter $\beta > 0$ is denoted by

$$\widehat{\mathbf{F}}_{\beta} := \left\{ \widehat{u} \in \mathbb{R}^{\mathsf{N}} : \widehat{u} \text{ is a global minimizer of } \mathcal{F}_{\beta} \text{ for a given } \beta > 0 \right\} .$$
(2.28)

Our first result relating the optimal sets of (\mathcal{R}_{β}) and (\mathcal{C}_{k}) is given below.

Proposition 1 Let H1 hold and let $\beta > 0$. Then

$$\widehat{u} \in \widehat{\mathcal{F}}_{\beta} \implies \widehat{u} \in \widehat{\mathcal{C}}_{k} \text{ for } k := \|\widehat{u}\|_{0} \in \mathbb{I}^{0}_{\mathsf{L}}.$$
 (2.29)

Proof. From Theorem 2(ii), \hat{u} is a strict minimizer of \mathcal{F}_{β} . Then $\hat{u} \in U$ by Lemma 6 and $\sigma(\hat{u}) \in \Omega$. Set $\mathbf{k} := \|\hat{u}\|_0$. By the definition of U_k in (2.24), $\hat{u} \in U_k$. Further, $\mathbf{k} \leq \mathsf{L}$ because otherwise $\hat{u} \notin \widehat{F}_{\beta}$ by Lemma 8(ii). And Lemma 8(i) shows that if $\hat{u} \in \widehat{F}_{\beta}$, then $\hat{u} \notin U_k \setminus \widehat{C}_k$. Therefore $\hat{u} \in \widehat{C}_k$. \Box

We denote by \widehat{C} the collection of all optimal solutions of problems (\mathcal{C}_k) for $k \in \mathbb{I}^0_1$:

$$\widehat{\mathbf{C}} := \bigcup_{\mathbf{k}=0}^{\mathsf{L}} \widehat{\mathbf{C}}_{\mathbf{k}} , \qquad (2.30)$$

where all \widehat{C}_k 's read as in (2.6). Likewise, \widehat{F} is the set of all global minimizers of \mathcal{F}_{β} for all $\beta > 0$:

$$\widehat{\mathbf{F}} := \bigcup_{\beta > 0} \widehat{\mathbf{F}}_{\beta} \ . \tag{2.31}$$

With these notation, the next claim is an important direct consequence of Proposition 1. **Theorem 3** Let H1 hold. Then $\widehat{F} \subset \widehat{C}$.

Proof. Let $\hat{u} \in \bigcup_{\beta>0} \hat{F}_{\beta}$ for some $\beta > 0$, hence $\hat{u} \in \hat{F}$. By Proposition 1 and (2.30), $\hat{u} \in \hat{C}$.

Remark 5 By [31, Corollary 3.3], each solution of problem (\mathcal{P}_{ω}) , for any $\omega \in \Omega$, is a strict (local) minimizer of \mathcal{F}_{β} . So \mathcal{F}_{β} typically has numerous strict (local) minimizers. Among them, only those that solve optimally problems (\mathcal{C}_k) for $k \in \mathbb{I}^0_{\mathsf{L}}$ could be global minimizers of \mathcal{F}_{β} for some $\beta > 0$.

Next we give the main tool to compare the optimal sets of problems (C_k) and (\mathcal{R}_{β}) . **Theorem 4** Let H1 hold, and let $k \in \mathbb{I}^0_L$ and $\beta > 0$. Suppose that $\widehat{u} \in \widehat{C}_k$ and that

$$\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) > 0 \qquad \forall \ \overline{u} \in \widehat{C} \setminus \widehat{C}_{k} \ .$$
(2.32)

Then

$$u \in \mathbb{R}^{\mathsf{N}} \setminus \widehat{\mathcal{C}}_{\mathsf{k}} \quad \Rightarrow \quad \mathcal{F}_{\beta}(u) > \mathcal{F}_{\beta}(\widehat{u}) \quad \forall \ \widehat{u} \in \widehat{\mathcal{C}}_{\mathsf{k}} ;$$

$$(2.33)$$

in other words, any $\widehat{u} \in \widehat{C}_k$ is a global minimizer of \mathcal{F}_{β} .

Proof. By (2.25) in Lemma 8(i) one has

$$\mathcal{F}_{\beta}(\widehat{u}) = \theta_d(\mathbf{k}) + \beta \mathbf{k} \quad \forall \ \widehat{u} \in \widehat{C}_{\mathbf{k}} .$$

$$(2.34)$$

The proof is conducted by contradiction. So suppose that (2.33) fails, that is

$$\mathcal{F}_{\beta}(\widehat{u}) \ge \mathcal{F}_{\beta}(\widetilde{u}) \quad \forall \ \widehat{u} \in \widehat{C}_{k} \quad \text{for some} \quad \widetilde{u} \in \mathbb{R}^{\mathsf{N}} \setminus \widehat{C}_{k} \ .$$
(2.35)

From Theorem 2(i), \mathcal{F}_{β} has a global minimizer, say $\overline{u} \in \widehat{F}_{\beta}$, which obeys $\overline{u} \in \widehat{C}$ by Theorem 3. Hence

$$u \in \mathbb{R}^{\mathsf{N}} \quad \Rightarrow \quad \mathcal{F}_{\beta}(u) \geqslant \mathcal{F}_{\beta}(\widehat{u}) \geqslant \mathcal{F}_{\beta}(\overline{u}) \geqslant \mathcal{F}_{\beta}(\overline{u}) \quad \forall \ \widehat{u} \in \widehat{\mathcal{C}}_{\mathsf{k}} \quad \text{for some} \quad \overline{u} \in \widehat{\mathcal{C}} \ .$$
(2.36)

• Let $\overline{u} \in \widehat{C}_k$. From (2.34) and (2.36) one has $\mathcal{F}_{\beta}(\widehat{u}) = \mathcal{F}_{\beta}(\overline{u})$, hence $\widetilde{u} \in \widehat{F}_{\beta}$. By (2.35) and Theorem 3 it follows that $\widetilde{u} \in \widehat{C} \setminus \widehat{C}_k$. Hence

$$\mathcal{F}_{\!\beta}(\widehat{u}) = \mathcal{F}_{\!\beta}(\widetilde{u}) \quad \forall \ \widehat{u} \in \widehat{C}_k \quad \text{for some} \quad \widetilde{u} \in \widehat{C} \setminus \widehat{C}_k \ .$$

This result contradicts (2.32). Hence the assumption in (2.35) fails.

• Otherwise $\overline{u} \in \widehat{C} \setminus \widehat{C}_k$. This, combined with (2.36), leads to

$$\mathcal{F}_{\beta}(\widehat{u}) \geq \mathcal{F}_{\beta}(\overline{u}) \quad \forall \ \widehat{u} \in \widehat{C}_{k} \quad \text{for some} \quad \overline{u} \in \widehat{C} \setminus \widehat{C}_{k} .$$

$$(2.37)$$

The last result contradicts the condition in (2.32), hence the assumption in (2.35) fails.

3 The same optimal set for (\mathcal{C}_k) and (\mathcal{R}_{β})

In this section we develop our findings on the connection between the optimal solutions of problems (C_k) and (\mathcal{R}_β) . We shall use the previously obtained Corollary 2, Lemma 8, and Theorems 3 and 4.

3.1 Critical parameter values

Remark 6 Let $\widehat{u} \in \widehat{C}_k$ and let $\overline{u} \in \widehat{C}_{k+1}$. The equality $\mathcal{F}_{\beta}(\widehat{u}) = \mathcal{F}_{\beta}(\overline{u})$ equivalently reads as

$$\mathcal{F}_{\beta}(\widehat{u}) = \theta_d(\mathbf{k}) + \beta \mathbf{k} = \theta_d(\mathbf{k}+1) + \beta(\mathbf{k}+1) = \mathcal{F}_{\beta}(\overline{u})$$

by Lemma 8(i). Then for $\beta := \beta_k := \theta_d(k) - \theta_d(k+1)$ one finds $\mathcal{F}_{\beta}(\widehat{u}) = \mathcal{F}_{\beta}(\overline{u})$.

For $d \in \mathbb{R}^{\mathsf{M}}$ given, this remark suggests the following set of $\mathsf{M} + 1$ constants to be introduced:

$$\beta_k := \theta_d(\mathbf{k}) - \theta_d(\mathbf{k}+1) , \quad \forall \mathbf{k} \in \mathbb{I}^0_{\mathsf{M}} .$$
(3.1)

A few facts on $\{\beta_k\}$ are given next.

Remark 7 Let H1 hold. Using Lemma 2, $\beta_k \ge 0$ for $\forall k \in \mathbb{I}^0_M$. Recall that $d \neq 0$.

(a) From H1, there is $n \in \mathbb{I}_N$ such that $\langle a_n, d \rangle \neq 0$. Set $\widehat{u}_n = \arg \min_{v \in \mathbb{R}} ||a_n v - d||^2 \in \mathbb{R}$. Clearly,

$$\widehat{u}_{n} = \frac{\langle a_{n}, d \rangle}{\|a_{n}\|^{2}} \neq 0 \quad \text{and} \quad \theta_{d}(1) \leqslant \|a_{n} \, \widehat{u}_{n} - d\|^{2} = \|d\|^{2} - \frac{\langle a_{n}, d \rangle^{2}}{\|a_{n}\|^{2}} < \theta_{d}(0) = \|d\|^{2} \; .$$

Then (3.1) yields

$$\beta_0 := \theta_d(0) - \theta_d(1) > 0 .$$
(3.2)

To unify the notation, we set $\beta_{-1} := +\infty$.

(b) From the definition of L in 2.14, $\theta_d(L-1) > 0$ and $\theta_d(k) = 0$ if $k \ge L$. So (3.1) leads to

$$\beta_{\mathsf{L}-1} > 0 \quad \text{and} \quad \beta_{\mathsf{L}} = 0 \ . \tag{3.3}$$

And if L < M, one has $\beta_k = 0$ for any $k \in \{L + 1, \dots, M\}$.

The next claim gives a flavor on the role of $\{\beta_k\}$ as introduced in (3.1).

Lemma 9 Let H1 hold. Assume that \mathcal{F}_{β} has a global minimum at $\widehat{u} \in \widehat{C}_k$. Then $\beta \in [\beta_k, \beta_{k-1}]$.

Proof. Let $\overline{u} \in \widehat{C}_{k+1}$ and $\widetilde{u} \in \widehat{C}_{k-1}$. Since $\widehat{u} \in \widehat{F}_{\beta}$ for some $\beta > 0$, the following conditions must hold:

$$\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) \ge 0 \quad \text{and} \quad \mathcal{F}_{\beta}(\widetilde{u}) - \mathcal{F}_{\beta}(\widehat{u}) \ge 0 .$$
 (3.4)

Combining this with (2.25) in Lemma 8(i) leads to

$$\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \theta_{d}(\mathbf{k}+1) - \theta_{d}(\mathbf{k}) + \beta = -\beta_{\mathbf{k}} + \beta \ge 0,
\mathcal{F}_{\beta}(\widetilde{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \theta_{d}(\mathbf{k}-1) - \theta_{d}(\mathbf{k}) - \beta = \beta_{\mathbf{k}-1} - \beta \ge 0.$$
(3.5)

Hence β must satisfy $\beta_k \leq \beta \leq \beta_{k-1}$.

The relation below is quite practical:

$$\beta_{\mathbf{k}} + \beta_{\mathbf{k}+1} + \dots + \beta_{\mathbf{k}+n} = \theta_d(\mathbf{k}) - \theta_d(\mathbf{k}+n+1) , \quad \forall \ \mathbf{k} \in \mathbb{I}^0_{\mathsf{M}-1} , \quad \forall \ \mathbf{n} \in \mathbb{I}^0_{\mathsf{M}-\mathbf{k}-1} .$$
(3.6)

Indeed, $\sum_{m=k}^{k+n} \beta_m = \theta_d(k) - \theta_d(k+1) + \theta_d(k+1) - \theta_d(k) + \dots + \theta_d(k+n-1) - \theta_d(k+n) + \theta_d(k+n) + \theta_d(k+n) - \theta_d(k+n+1)$. For n = 0, (3.6) amounts to the definition of β_k in (3.1).

3.2 Particular cases

We exhibit a set of values for β so that (\mathcal{C}_k) and (\mathcal{R}_β) have the same optimal set.

Theorem 5 Let H1 hold and L be defined according to (2.14). For $k \in \mathbb{I}^0_L$ assume that

$$\overline{b}_{k-1} := \min_{n=1}^{k} \beta_{k-n} \ge \beta_{k-1} > \beta_k \ge \max_{n=0}^{L-k} \beta_{k+n} =: \underline{b}_k , \qquad (3.7)$$

where all β_k read as in (3.1). Statements (i) and (ii) below are equivalent:

(i) \hat{u} is an optimal solution of (C_k) ;

(ii) \hat{u} is a global minimizer of \mathcal{F}_{β} for $\beta \in (\beta_k, \beta_{k-1})$.

Proof. We break the proof into two parts.

 $[(i) \Rightarrow (ii)]$. To prove the claim, we test the sufficient condition for global minimizer of \mathcal{F}_{β} in Theorem 4. Recall that by Lemma 8(i), if $\tilde{u} \in \widehat{C}_n$ for $n \in \mathbb{I}^0_L$, then $\mathcal{F}_{\beta}(\tilde{u}) = \theta_d(n) + \beta n$. Let $\hat{u} \in \widehat{C}_k$.

• Let $k \in \mathbb{I}_{\mathsf{L}}$ and let $\overline{u} \in \widehat{C}_{k-n}$ for $n \in \mathbb{I}_k$. Then

$$\forall \mathbf{n} \in \mathbb{I}_{\mathbf{k}} \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \theta_{d}(\mathbf{k} - \mathbf{n}) - \theta_{d}(\mathbf{k}) - \mathbf{n}\beta$$

$$\left[\text{ by } (3.6) \right] = \beta_{\mathbf{k} - \mathbf{n}} + \dots + \beta_{\mathbf{k} - 1} - \mathbf{n}\beta$$

$$= \sum_{\mathbf{m}=1}^{\mathbf{n}} (\beta_{k-\mathbf{m}} - \beta)$$

$$(3.8)$$

$$\left[\beta < \beta_{k-1} \leqslant \overline{b}_{k-1} \quad \text{by (3.7)} \right] > 0.$$

$$(3.9)$$

• Consider that $k \in \mathbb{I}^0_{\mathsf{L}-1}$ and let $\overline{u} \in \widehat{C}_{k+n}$ for $n \in \mathbb{I}_{\mathsf{L}-k}$. Then

$$\forall \mathbf{n} \in \mathbb{I}_{\mathsf{L}-\mathsf{k}} \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \theta_d(\mathsf{k}+\mathsf{n}) - \theta_d(\mathsf{k}) + \mathsf{n}\beta$$

$$\left[\text{ by } (3.6) \right] = -\beta_{\mathsf{k}+\mathsf{n}-1} - \dots - \beta_{\mathsf{k}} + \mathsf{n}\beta$$

$$= \sum_{\mathsf{m}=0}^{\mathsf{n}-1} (\beta - \beta_{\mathsf{k}+\mathsf{m}})$$

$$(3.10)$$

$$\left[\beta > \beta_{k} \ge \underline{b}_{k} \text{ by } (3.7)\right] > 0.$$

$$(3.11)$$

Inserting (3.11) and (3.9) in (2.32) in Theorem 4 shows that $\hat{u} \in \widehat{F}_{\beta}$.

[(ii) \Rightarrow (i)]. Since $\hat{u} \in \hat{F}$, Theorem 3 shows that $\hat{u} \in \hat{C}$, i.e. that $\hat{u} \in \hat{C}_n$ for some $n \in \mathbb{I}^0_L$ which depends on β . We will show that any $\overline{u} \in \hat{C}_n$, $n \neq k$, cannot be global minimizer of \mathcal{F}_{β} for $\beta \in (\beta_k, \beta_{k-1})$.

Let $\widehat{u} \in \widehat{C}_k$. A necessary condition for \mathcal{F}_{β} to have a global minimum at $\overline{u} \in \widehat{C}_n$, $n \neq k$ is that

$$\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) \leqslant 0 \quad \text{for some } \overline{u} \in \left(\bigcup_{n=1}^{k} \widehat{C}_{k-n}\right) \bigcup \left(\bigcup_{n=1}^{k-k} \widehat{C}_{k+n}\right) .$$
(3.12)

• Using (3.8), the necessary condition (3.12) for $\overline{u} \in \bigcup_{n=1}^{k} \widehat{C}_{k-n}$ reads as

$$\overline{u} \in \widehat{C}_{k-n} \quad n \in \mathbb{I}_k \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \sum_{m=1}^n (\beta_{k-m} - \beta) \leqslant 0 \; .$$

According to this inequality, combined with (3.7), β must fulfill

$$\beta \ge \frac{1}{n} \sum_{m=1}^{n} \beta_{k-m} \ge \beta_{k-1} .$$
(3.13)

• From (3.10), the necessary condition (3.12) for $\overline{u} \in \bigcup_{n=1}^{L-k} \widehat{C}_{k+n}$ is equivalent to

$$\overline{u} \in \widehat{\mathcal{C}}_{k+n} \quad n \in \mathbb{I}_{\mathsf{L}-k} \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \sum_{m=0}^{n-1} (\beta - \beta_{k+m}) \leqslant 0$$

This inequality, combined with (3.7), show that β must satisfy

$$\beta \leqslant \frac{1}{n} \sum_{m=0}^{n-1} \beta_{k+m} \leqslant \beta_k .$$
(3.14)

Combining (3.14) and (3.13) yields $\beta_{k-1} \leq \beta \leq \beta_k$ which contradicts (3.7).

Let us slightly modify the condition in (3.7):

Lemma 10 Let H1 hold and let $k \in I_{L-1}$. For $p \in \{0, \dots, k-1\}$ assume that

$$\overline{b}_{k-p-1} := \min_{n=1}^{k-p} \beta_{k-p-n} \geqslant \beta_{k-p-1} > \beta_{k-p} = \dots = \beta_k > \beta_{k+1} \geqslant \max_{n=1}^{k-k} \beta_{k+n} =: \underline{b}_{k+1} .$$
(3.15)

(i) If
$$\beta = \beta_k$$
 then $\widehat{F}_{\beta} = \bigcup_{n=k-p}^{k+1} \widehat{C}_n$ where $\widehat{C}_n \cap \widehat{C}_m = \emptyset$ for any $m \neq n$ obeying $(m, n) \in \{k-p\cdots, k+1\}$.

(ii) If $p \ge 1$ then \mathcal{F}_{β} can have a global minimum at $\widehat{u} \in \widehat{C}_k$ only if $\beta = \beta_k$.

Proof. Let $\overline{u} \in \widehat{C}_{k-n}$ for $n \in \mathbb{I}_k$. By (3.8) and (3.15) we have $\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = 0$ for any $n \in \{1, \dots, p\}$, while $\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) > 0$ for any $n \in \{p + 1, \dots, k - p\}$. Let now $\overline{u} \in \widehat{C}_{k+n}$ for $n \in \mathbb{I}_{\mathsf{L}-\mathsf{k}}$. From (3.10) and (3.15), $\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = 0$ for n = 1 whereas $\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) > 0$ for any $n \in \{2, \dots, \mathsf{L}-\mathsf{k}\}$. Hence \mathcal{F}_{β} has a global minimizer for any $\widehat{u} \in \widehat{C}_{\mathsf{k}-\mathsf{p}} \cup \cdots \cup \widehat{C}_{\mathsf{k}+1}$. The rest of claim (i) follows from Theorem 3. By Lemma 9, $\widehat{u} \in \widehat{C}_k$ can satisfy $\widehat{u} \in \widehat{F}_{\beta}$ only if $\beta_k \leq \beta \leq \beta_{\mathsf{k}-1}$. Since $p \geq 1$, we find $\beta = \beta_{\mathsf{k}} = \beta_{\mathsf{k}-1}$.

According to the facts on β_k delivered in section 4, the case $\beta_k = \beta_{k-1}$ should be quite exceptional. Another possibility is that \mathcal{F}_{β} can never have global minimizers with a desired ℓ_0 -norm.

Lemma 11 Let H1 be satisfied. Suppose that there are $k \in \mathbb{I}^0_{\mathsf{L}-1}$ and $m \in \mathbb{I}^0_{\mathsf{L}-k-1}$ such that

$$n \in \{0, \cdots, m\} \quad \Rightarrow \quad f_k(n) := \frac{1}{n+1} \sum_{p=0}^n \beta_{k-1+p} < \beta_{k+n} .$$
 (3.16)

 $\textit{Then any } \widehat{u} \in \widehat{F} \textit{ satisfies } \widehat{u} \in \widehat{C} \setminus \bigcup_{n=0}^{m} \widehat{C}_{k+n} \textit{ and } \|\widehat{u}\|_{0} \not\in \{k, \cdots, k+m\}.$

Proof. Observe that by (3.6),

$$f_{\mathbf{k}}(\mathbf{n}) = \frac{\theta_d(\mathbf{k}-1) - \theta_d(\mathbf{k}+\mathbf{n})}{\mathbf{n}+1}$$

The proof is by contradiction. For $n \leq m$, assume that \mathcal{F}_{β} has a global minimizer \hat{u} satisfying $\hat{u} \in \widehat{C}_{k+n}$. Let $\overline{u} \in \widehat{C}_{k+n+1}$ and let $\tilde{u} \in \widehat{C}_{k-1}$. Then the necessary conditions below must be satisfied:

$$\begin{split} \mathcal{F}_{\!\beta}(\overline{u}) &- \mathcal{F}_{\!\beta}(\widehat{u}) &= \theta_d(\mathbf{k} + \mathbf{n} + 1) - \theta_d(\mathbf{k} + \mathbf{n}) + \beta = -\beta_{\mathbf{k} + \mathbf{n}} + \beta \ge 0 \ , \\ \mathcal{F}_{\!\beta}(\widetilde{u}) &- \mathcal{F}_{\!\beta}(\widehat{u}) &= \theta_d(\mathbf{k} - 1) - \theta_d(\mathbf{k} + \mathbf{n}) - (\mathbf{n} + 1)\beta = (\mathbf{n} + 1)f_{\mathbf{k}}(\mathbf{n}) - (\mathbf{n} + 1)\beta \ge 0 \ . \end{split}$$

One obtains $\beta_{k+n} \leq \beta \leq f_k(n)$, which contradicts (3.16). This proves the lemma.

Since $\beta_0 > 0$ and $\beta_{\mathsf{L}} = 0$ (Remark 7), if (3.16) occurs, the sequence $\{\beta_k\}$ defined in (3.1) oscillates.

3.3 Necessary and sufficient conditions for quasi-equivalence

Theorem 6 Let H1 hold and L be defined according to (2.14). Then

$$\mathbf{k} \in \mathbb{I}^{0}_{\mathsf{L}} \quad \Rightarrow \quad \left[\ \widehat{\mathbf{u}} \in \widehat{\mathbf{C}}_{\mathsf{k}} \quad \Longleftrightarrow \quad \widehat{\mathbf{u}} \in \widehat{\mathbf{F}}_{\beta} \ for \ \beta \in (\beta_{\mathsf{k}}, \beta_{\mathsf{k}-1}) \ \right]$$
(3.17)

if and only if

$$\beta_0 > \beta_1 > \dots > \beta_{\mathsf{L}-1} > \beta_{\mathsf{L}} . \tag{3.18}$$

Proof. Let (3.18) hold. Then the condition on β_k given in (3.7), Theorem 5 is satisfied for any k. Applying Theorem 5 for any $k \in \mathbb{I}^0_L$ proves (3.17).

From Remark 7, see (3.3), $\beta_{L-1} > \beta_L = 0$ in all cases. To see that (3.18) is necessary for all other values of k, we argue by contradiction. Suppose there is $k \in \mathbb{I}_{L-1}$ so that $\beta_{k-1} \leq \beta_k$.

- The case $\beta_{k-1} < \beta_k$ corresponds to m = 0 in (3.16), Lemma 11. So (3.17) fails by this lemma.
- Let $\beta_{k-1} = \beta_k$. Using Lemma 10 for p = 1 yields $\widehat{F}_{\beta} = \widehat{C}_{k-1} \cup \widehat{C}_k \cup \widehat{C}_{k+1}$ with $\widehat{C}_{k-1} \cap \widehat{C}_k = \widehat{C}_k \cap \widehat{C}_{k+1} = \emptyset$. So (3.17) fails.

Naturally, the boundary cases $\beta = \beta_k$ for $k \in \mathbb{I}_{L-1}$ arise the curiosity.

Proposition 2 Let H1 hold. Assume that (3.18) is satisfied. Let $k \in \mathbb{I}_{L-1}$. Then

$$\beta = \beta_{\mathbf{k}} \quad \Rightarrow \quad \widehat{\mathbf{F}}_{\beta} = \widehat{\mathbf{C}}_{\mathbf{k}} \cup \widehat{\mathbf{C}}_{\mathbf{k}+1} \quad where \quad \widehat{\mathbf{C}}_{\mathbf{k}} \cap \widehat{\mathbf{C}}_{\mathbf{k}+1} = \emptyset$$

Proof. Applying Lemma 10 for p = 0 proves the proposition.

Under the condition in (3.18), we can say that problems (\mathcal{C}_k) and (\mathcal{R}_β) are quasi-equivalent: we have a partition $\mathbb{R}_+ = \bigcup_{k=0}^{\mathsf{L}} (\beta_{k-1}, \beta_k]$ so that

- For every $k \in \mathbb{I}_{l}^{0}$, problems (\mathcal{C}_{k}) and (\mathcal{R}_{β}) for $\beta \in (\beta_{k-1}, \beta_{k})$ have exactly the same optimal set;
- For each $\beta \in \{\beta_k\}_{k=0}^{L-1}$ there is no equivalence since Proposition 2 holds.

3.4 Partial quasi-equivalence

Remark 8 The condition in (3.18) reads as

$$\beta_{k-1} > \beta_k \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \theta_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}+1) \right) \quad \forall \ \mathbf{k} \in \mathbb{I}_{\mathsf{L}-1} \quad \Leftrightarrow \quad \mathbf{h}_d(\mathbf{k}) < \frac{1}{2} \left(\theta_d(\mathbf{k}-1) + \theta_d(\mathbf{k}) \right)$$

Its realization seems unstable, relying on A or d; see Lemmas 10 and 11, and the tests in section 5.

Theorem 7 Let H1 hold. For $k \ge 1$ and $m \in \{k + 2, \dots, L\}$, assume that the following holds: m-1

(a) If
$$\overline{u} \in \bigcup_{n=k+1} \widehat{C}_n$$
 then for any $\beta > 0$, \overline{u} is not a global minimizer of \mathcal{F}_{β} ;

(b) The critical parameter value $\overline{\beta}_{k,m}$ given by

$$\overline{\beta}_{\mathbf{k},\mathbf{m}} := \frac{\theta_d(\mathbf{k}) - \theta_d(\mathbf{m})}{\mathbf{m} - \mathbf{k}} \tag{3.19}$$

satisfies

$$\overline{b}_{k-1} := \min_{n=1}^{k} \beta_{k-n} \ge \beta_{k-1} > \overline{\beta}_{k,m} > \beta_{m} \ge \max_{n=0}^{L-m} \beta_{m+n} =: \underline{b}_{m} .$$

$$(3.20)$$

Then one has the following equivalences:

- (i) $\widehat{u} \in \widehat{C}_{m} \iff \widehat{u} \text{ is a global minimizer of } \mathcal{F}_{\beta} \text{ for } \beta \in (\beta_{m}, \overline{\beta}_{k,m});$
- (ii) $\widehat{u} \in \widehat{C}_k \iff \widehat{u} \text{ is a global minimizer of } \mathcal{F}_{\beta} \text{ for } \beta \in (\overline{\beta}_{k,m}, \beta_{k-1}).$

Proof. We present only the proof of (i), since (ii) is proven likewise. It is split in two parts. [\Rightarrow] Let $\hat{u} \in \widehat{C}_m$ and let $\beta \in (\beta_m, \overline{\beta}_{k,m})$.

• Let $\overline{u} \in \widehat{C}_{k-n}$ for $n \ge 0$. From (3.19) it follows that

$$n = 0 \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \theta_d(\mathbf{k}) - \theta_d(\mathbf{m}) - (\mathbf{m} - \mathbf{k})\beta$$
$$= (\mathbf{m} - \mathbf{k})(\overline{\beta}_{\mathbf{k},\mathbf{m}} - \beta)$$
(3.21)

$$[by (3.20)] > 0.$$
 (3.22)

Consider next that $n \ge 1$.

$$\forall \mathbf{n} \in \mathbb{I}_{\mathbf{k}} \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \theta_{d}(\mathbf{k} - \mathbf{n}) - \theta_{d}(\mathbf{m}) - (\mathbf{m} - \mathbf{k} + \mathbf{n}) \beta$$

$$= \theta_{d}(\mathbf{k} - \mathbf{n}) - \theta_{d}(\mathbf{k}) + \theta_{d}(\mathbf{k}) - \theta_{d}(\mathbf{m}) - (\mathbf{m} - \mathbf{k})\beta - \mathbf{n} \beta$$

$$\left[\text{ by } (3.19) \text{ or by } (3.6) \right] = (\mathbf{m} - \mathbf{k})(\overline{\beta}_{\mathbf{k},\mathbf{m}} - \beta) + \theta_{d}(\mathbf{k} - \mathbf{n}) - \theta_{d}(\mathbf{k}) - \mathbf{n} \beta$$

$$\left[\text{ by } (3.8) \right] = (\mathbf{m} - \mathbf{k})(\overline{\beta}_{\mathbf{k},\mathbf{m}} - \beta) + \sum_{p=1}^{n} (\beta_{\mathbf{k}-p} - \beta)$$

$$(3.23)$$

$$[by (3.20)] > 0.$$
 (3.24)

• Let $\overline{u} \in \widehat{C}_{m+n}$ for $n \ge 1$.

$$\forall \mathbf{n} \in \mathbb{I}_{\mathsf{L}-\mathbf{m}} \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = \quad \theta_d(\mathbf{m} + \mathbf{n}) - \theta_d(\mathbf{m}) + \mathbf{n}\,\beta$$
$$\left[\text{ by (3.10) or by (3.6)} \right] = \sum_{\mathbf{p}=0}^{\mathbf{n}-1} (\beta - \beta_{\mathbf{m}+\mathbf{p}}) \tag{3.25}$$

$$[by (3.20)] > 0.$$
 (3.26)

From (3.22), (3.24) and (3.26), $\hat{u} \in \widehat{F}_{\beta}$ according to Theorem 4.

 $[\leftarrow]$ Let $\beta \in (\beta_m, \overline{\beta}_{k,m})$ and let $\widehat{u} \in \widehat{C}_m$. By Theorem 3 and assumption (a), $\widehat{F} \subset \widehat{C} \setminus \bigcup_{n=k+1}^{m-1} \widehat{C}_n$. Suppose that \mathcal{F}_{β} has a global minimum at $\overline{u} \in \widehat{C}_p$ for $p \neq m$. Then necessarily

$$\mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) \leqslant 0 \quad \text{for some } \overline{u} \in \left(\bigcup_{n=0}^{k} \widehat{C}_{k-n}\right) \bigcup \left(\bigcup_{n=1}^{\mathsf{L}-\mathsf{m}} \widehat{C}_{\mathsf{m}+n}\right) .$$
(3.27)

• We examine (3.27) for $\overline{u} \in \bigcup_{n=0}^{k} \widehat{C}_{k-n}$. Combining (3.21) and (3.27) yields

$$\overline{u} \in \widehat{C}_{k} \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = (m-k)(\overline{\beta}_{k,m} - \beta) \leqslant 0 \; .$$

Then β must satisfy

$$\beta \geqslant \overline{\beta}_{k,m} . \tag{3.28}$$

Further, using (3.23) and (3.27) lead to

$$\overline{u} \in \widehat{C}_{k-n} \quad n \in \mathbb{I}_k \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = (m-k)\overline{\beta}_{k,m} + \sum_{p=1}^n \beta_{k-p} - (m-k+n)\beta \leqslant 0 \; .$$

This inequality, combined with (3.20) shows that

$$\beta \ge \frac{1}{m-k+n} \left((m-k)\overline{\beta}_{k,m} + \sum_{p=1}^{n} \beta_{k-p} \right) \ge \frac{(m-k)\overline{\beta}_{k,m} + n\beta_{k-1}}{m-k+n} > \overline{\beta}_{k,m} .$$
(3.29)

• Using (3.25), the condition (3.27) for $\overline{u} \in \bigcup_{n=1}^{\mathsf{L}-m} \widehat{C}_{m+n}$ is equivalent to

$$\overline{u} \in \widehat{C}_{m+n} \quad n \in \mathbb{I}_{\mathsf{L}-m} \quad \Rightarrow \quad \mathcal{F}_{\beta}(\overline{u}) - \mathcal{F}_{\beta}(\widehat{u}) = n \beta - \sum_{p=0}^{n-1} \beta_{m+p} \leqslant 0 \ .$$

By this inequality and (3.20), β must fulfill

$$\beta \leqslant \frac{1}{n} \sum_{p=0}^{n-1} \beta_{m+p} \leqslant \beta_m .$$
(3.30)

Combining the results in (3.28), (3.29) and (3.30) with assumption (a) shows that \mathcal{F}_{β} for $\beta \in (\beta_m, \overline{\beta}_{k,m})$ cannot have a global minimum at $\overline{u} \in \widehat{C}_p$ if $p \in \{0, \dots, k\} \cup \{m + 1, \dots, L\}$.

Remark 9 Likewise Remark 6, for $\beta = \overline{\beta}_{k,m}$ one has $\mathcal{F}_{\beta}(\widehat{u}) = \mathcal{F}_{\beta}(\widetilde{u})$, so if (a)-(b) hold, one finds $\widehat{F}_{\beta} = \widehat{C}_{k} \cup \widehat{C}_{m}$ with $\widehat{C}_{k} \cap \widehat{C}_{m} = \emptyset$; see Corollary 2 and Proposition 2.

Example 2 Let $\beta_{k-1} < \beta_k$ for $k \in \mathbb{I}_{L-1}$. Then by Lemma 11 for any $\beta > 0$, any global minimizer \hat{u} of \mathcal{F}_{β} obeys $\hat{u} \notin \hat{C}_k$ and hence $\|\hat{u}\|_0 \neq k$ by Theorem 1. Assume that

$$\min_{n=2}^{k} \beta_{k-n} \geqslant \beta_{k-2} > \overline{\beta}_{k-1,k+1} := \frac{\theta_d(k-1) - \theta_d(k+1)}{2} > \beta_{k+1} \geqslant \max_{n=1}^{k-k} \beta_{k+n} .$$
(3.31)

Here $\overline{\beta}_{k-1,k+1}$ is calculated according to (3.19). Theorems 7 and 1 show that

$$\begin{split} & \widehat{u} \text{ is a global minimizer of } \mathcal{F}_{\!\beta} \text{ for } \beta \in (\beta_{k+1}, \overline{\beta}_{k\!-\!1,k\!+\!1}) \quad \Leftrightarrow \quad \widehat{u} \in \widehat{C}_{k+1} \text{ and } \|\widehat{u}\|_0 = k+1 \text{ ,} \\ & \widetilde{u} \text{ is a global minimizer of } \mathcal{F}_{\!\beta} \text{ for } \beta \in (\overline{\beta}_{k\!-\!1,k\!+\!1}, \beta_{k\!-\!2}) \quad \Leftrightarrow \quad \widetilde{u} \in \widehat{C}_{k-1} \text{ and } \|\widetilde{u}\|_0 = k-1 \text{ .} \end{split}$$

For $\beta = \overline{\beta}_{k-1,k+1}$ one has $\widehat{F}_{\beta} = (\mathcal{C}_{k-1}) \cup (\mathcal{C}_{k+1}).$

4 On the critical parameter values

From Theorem 1 and Theorem 3, any optimal solution \hat{u} of problems (\mathcal{R}_{β}) and (\mathcal{C}_{k}) in (1.2) and (2.4) is a solutions of problem (\mathcal{P}_{ω}) for $\omega := \sigma(\hat{u}) \in \Omega$. Then \hat{u} is of the form

$$\widehat{u} = Z_{\omega}(\widehat{u}_{\omega}) \quad \text{where} \quad \widehat{u}_{\omega} = \left(A_{\omega}^T A_{\omega}\right)^{-1} A_{\omega}^T d .$$
(4.1)

Remark 10 The optimal solutions \hat{u} of (\mathcal{R}_{β}) and (\mathcal{C}_{k}) should in general be sensitive to noise since their non-null part $\hat{u}_{\sigma(\hat{u})}$ minimizes a non-regularized least-squares objective relying on $A_{\sigma(\hat{u})}$ and d.

With any $\omega \in \Omega$ we associate a matrix B_{ω} whose columns are an orthonormal basis for A_{ω} , that is

$$B^T_{\omega}B_{\omega} = I_{\sharp\omega}$$
 and $\operatorname{range}(B_{\omega}) = \operatorname{range}(A_{\omega})$. (4.2)

The orthogonal projector Π_{ω} onto the subspace spanned by the columns of A_{ω} reads as

$$\Pi_{\omega} = B_{\omega} B_{\omega}^T . \tag{4.3}$$

For $\omega \in \Omega$, one has $\Pi_{\omega} = A_{\omega} \left(A_{\omega}^T A_{\omega} \right)^{-1} A_{\omega}^T$; see, e.g., [28]. Then

$$\widehat{u} \in \widehat{\mathcal{C}}_{\mathbf{k}} \text{ for } \mathbf{k} \in \mathbb{I}^{0}_{\mathsf{L}} \text{ and } \widehat{\sigma} := \sigma(\widehat{u}) \implies \theta_{d}(\mathbf{k}) = \|(I - \Pi_{\widehat{\sigma}})d\|^{2}.$$
 (4.4)

Using the definition of Ω_k in (2.19), we introduce the subsets of \mathbb{R}^M given below:

$$\mathbf{E}_{\mathbf{k}} := \bigcup_{\omega \in \Omega_{\mathbf{k}}} \ker \left(A_{\omega}^{T} \right) \quad \text{and} \quad \mathbf{G}_{\mathbf{k}} := \bigcup_{\omega \in \Omega_{\mathbf{k}}} \operatorname{range} \left(A_{\omega} \right) \ . \tag{4.5}$$

Clearly, $\mathrm{G}_{\mathsf{M}}=\mathbb{R}^{\mathsf{M}}$ and $\mathrm{E}_{\mathsf{M}}=\varnothing$ by H1.

Lemma 12 Let H1 hold and $d \neq 0$.

(i) Let $k \in \{2, \dots, M-1\}$. Then

$$d \in \mathbb{R}^{\mathsf{M}} \setminus \mathcal{E}_{\mathsf{k}} \quad \Rightarrow \quad \theta_d(\mathsf{k}-1) > \theta_d(\mathsf{k}) \;.$$

(ii) Let $k \in \{1, \dots, M-1\}$. Then

$$d \in \mathbb{R}^{\mathsf{M}} \setminus \mathcal{G}_{\mathsf{k}} \quad \Leftrightarrow \quad \theta_d(\mathsf{k}) > 0$$
.

Proof. (i) Let $\hat{u} \in \widehat{C}_{k-1}$. Set $\hat{\sigma} := \sigma(\hat{u})$. From Theorem 1 $\hat{\sigma} \in \Omega_{k-1}$ and then

$$\exists n \in \mathbb{I}_{\mathsf{N}} \setminus \widehat{\sigma} \quad \text{such that} \quad \omega := \widehat{\sigma} \cup \{n\} \in \Omega_k \;.$$

Obviously, $\theta_d(\mathbf{k}) \leq T(\mathbf{k}) := \|(I - \Pi_{\omega})d\|^2$. Using the notation in (4.2), it follows that (see, e.g. [24])

$$\exists b_{\mathbf{k}} \in \operatorname{range}(A_{\omega}) \quad \text{such that} \quad B_{\omega} = [B_{\widehat{\sigma}} \mid b_{\mathbf{k}}] \;.$$

By (4.3), one has $\Pi_{\omega} = B_{\widehat{\sigma}}B_{\widehat{\sigma}}^T + b_{\mathbf{k}}b_{\mathbf{k}}^T$. Therefore

$$\theta_d(\mathbf{k}-1) - \theta_d(\mathbf{k}) \ge \theta_d(\mathbf{k}-1) - T(\mathbf{k}) = d^T \left(\Pi_\omega - \Pi_{\widehat{\sigma}} \right) d = \langle b_{\mathbf{k}}, d \rangle^2 .$$

From $d \in \mathbb{R}^{\mathsf{M}} \setminus \mathcal{E}_{\mathsf{k}}$ we have $d \notin (\operatorname{range}(A_{\omega}))^{\perp}$. Hence $\langle b_{\mathsf{k}}, d \rangle^2 > 0$. (ii) Let $d \in \mathbb{R}^{\mathsf{M}} \setminus \mathcal{G}_{\mathsf{k}}$ and let $\widehat{u} \in \widehat{\mathcal{C}}_{\mathsf{k}}$. Set $\widehat{\sigma} := \sigma(\widehat{u})$. Form Theorem 1, $\widehat{\sigma} \in \Omega_{\mathsf{k}}$. Since $(I - \Pi_{\widehat{\sigma}})$ is the orthogonal projector onto $(\operatorname{range}(A_{\widehat{\sigma}}))^{\perp}$, having $d \notin \operatorname{range}(A_{\omega})$ leads to

$$\theta_d(\mathbf{k}) = ||A\hat{u} - d||^2 = ||(I - \Pi_{\hat{\sigma}})d||^2 > 0$$

Conversely, let $\theta_d(\mathbf{k}) > 0$. By Theorem 1, the support of any optimal solution of $(\mathcal{C}_{\mathbf{k}})$ belongs to $\Omega_{\mathbf{k}}$. To get a contradiction, suppose that $d \in \mathbf{G}_{\mathbf{k}}$: then there is $\omega \in \Omega_{\mathbf{k}}$ such that $d \in \operatorname{range}(A_{\omega})$ and for $u_{\omega} = (A_{\omega}^T A_{\omega})^{-1} A_{\omega}^T d$ one has $||A_{\omega} u_{\omega} - d||^2 = ||(I - \Pi_{\omega})d||^2 = 0$.

Observe that the condition on d in Lemma 12(i) is a strong sufficient condition.

Proposition 3 Let H1 hold and $d \in \mathbb{R}^{\mathsf{M}} \setminus (\mathsf{E}_2 \cup \mathsf{G}_{\mathsf{L}-1})$. Then the critical parameters β_k in (3.1) obey

$$\beta_k > 0 \quad \forall \ \mathbf{k} \in \mathbb{I}^0_{\mathsf{L}-1} \quad \text{and} \quad \beta_k = 0 \quad \forall \ \mathbf{k} \ge \mathsf{L} \ .$$

Proof. Let $k \in \mathbb{I}_{L-1}$. Let $\omega \in \Omega_k$, i.e., $\operatorname{rank}(A_\omega) = k$. Then for any $\overline{\omega} \subset \omega$ such that $\sharp \overline{\omega} = k - 1$ one has $\overline{\omega} \in \Omega_{k-1}$. Since $\operatorname{range}(A_{\overline{\omega}}) \subset \operatorname{range}(A_\omega)$, one has $(\mathbb{R}^M \setminus G_{k-1}) \supseteq (\mathbb{R}^M \setminus G_k)$ by (4.5). Hence

$$d \in \mathbb{R}^{\mathsf{M}} \setminus \mathcal{G}_{\mathsf{L}-1} \quad \Rightarrow \quad \theta_d(\mathbf{k}) > 0 \quad \forall \ \mathbf{k} \in \mathbb{I}^0_{\mathsf{L}-1}$$

and $\theta_d(\mathsf{L}) = 0$ by (2.14). From ker $(A_{\omega}^T) \subset \text{ker}(A_{\overline{\omega}}^T)$, one has $(\mathbb{R}^{\mathsf{M}} \setminus \mathsf{E}_k) \not\supseteq (\mathbb{R}^{\mathsf{M}} \setminus \mathsf{E}_{k-1})$; see (4.5). This, combined with Lemma 12(i) and the definition of β_k in (3.1) shows that

$$d \in \mathbb{R}^{\mathsf{M}} \setminus \mathcal{E}_2 \quad \Rightarrow \quad \beta_{\mathsf{k}-1} = \theta_d(\mathsf{k}-1) - \theta_d(\mathsf{k}) > 0 \quad \forall \, \mathsf{k} \in \{2, \cdots, \mathsf{L}\} \; .$$

And $\beta_0 > 0$ by Remark 7; see (3.2).

Remark 11 The subset E_2 is a finite union of vector subspaces of dimension M - 2. Likewise, G_{L-1} is a finite union of vector subspaces of dimension $L - 1 \leq M - 1$. Hence $E_2 \cup G_{L-1}$ is closed in \mathbb{R}^M and its Lebesgue measure in \mathbb{R}^M is null. So data located in $E_2 \cup G_{L-1}$ are *highly* exceptional. Conversely, $\mathbb{R}^M \setminus (E_2 \cup G_{L-1})$ is open and dense in \mathbb{R}^M , so we usually have data living in this subset.

5 Numerical tests

Here we summarize the outcome of a series of experiments corresponding to different matrices $A \in \mathbb{R}^{M \times N}$ for $(M, N) \in \{(5, 10), (10, 20)\}$, original vectors $u_o \in \mathbb{R}^N$ and data samples $d = Au_o(+\text{noise})$. All results were calculated using an exhaustive combinatorial search. In all experiments we carried out, the following facts were observed:

- All claims concerning (\mathcal{C}_k) (Lemma 3, Theorem 1, Proposition 1, Theorem 3) were confirmed.
- For noisy data every time we had L = M; see Remark 2.
- We always had $\beta_k > 0, \forall k \in \mathbb{I}_{L-1}^0$ and $\beta_L = 0$, which is the general case by Proposition 3.
- For any original u_o there are many A and $d = Au_o(+\text{noise})$, and for any A there are many d so that the critical parameter sequence $\{\beta_k\}$ defined in (3.1) is either strictly decreasing or oscillating. In all cases the conditions for partial or quasi-equivalence (Theorems 5, 6 and 7) were corroborated.
- The numerical instabilities, evoked in Remark 10, were always present.

Next we present in detail three experiments for (M, N) = (5, 10) where

$$A = \begin{pmatrix} 13.94 & 16.36 & 4.88 & -3.09 & -15.42 & 1.31 & -3.18 & -12.13 & -4.26 & -10.09 \\ 7.06 & -6.48 & -9.07 & -8.37 & -2.72 & -17.42 & -5.83 & -3.81 & 3.87 & -1.80 \\ 11.63 & 6.73 & -4.75 & -6.28 & 3.42 & 6.68 & -1.64 & 13.23 & 9.03 & -20.27 \\ -7.54 & 12.74 & -6.66 & 5.01 & 4.84 & 8.98 & -9.35 & 3.85 & 7.18 & 4.09 \\ 3.22 & -10.40 & -5.02 & 16.70 & 9.53 & -5.49 & 11.88 & -3.62 & 17.36 & 7.34 \end{pmatrix}$$
$$u_o = \begin{pmatrix} 0 & \mathbf{4} & 0 & 0 & \mathbf{0} & \mathbf{9} & 0 & \mathbf{0} & \mathbf{3} & \mathbf{0} \end{pmatrix}^T.$$
(5.1)

The entries of A follow a nearly normal distribution with variance 10. One has $\operatorname{rank}(A) = \mathsf{M} = 5$, so H1 holds. Problem (\mathcal{C}_{M}) is unconstrained with $\sharp \Omega_{\mathsf{M}} = 252$ optimal solutions; none of them is shown.

Noise-free data Data is given by

$$d = Au_o = \begin{pmatrix} 64.45 & -171.09 & 114.13 & 153.32 & -38.93 \end{pmatrix}^T .$$
 (5.2)

Since data are noise-free and $||u_o||_0 = 3$, it is clear that $\hat{u} := u_0$ is an optimal solution to problems

Table 1: The optimal set of (\mathcal{C}_k) for $k \in \mathbb{I}_3^0$ where *d* is given in (5.2). For k = 3, one has exact recovery, $\hat{u} = u_o$; see (5.1). The values of β_k and $\overline{\beta}_{1,3}$ are given in (5.3) and (5.4), respectively.

k	Optimal solution of (\mathcal{C}_k)										Global min. of \mathcal{F}_{β}	$ heta_d(\mathrm{k})$
3	0	4	0	0	0	9	0	0	3	0	$\beta \in (0, \overline{\beta}_{1,3})$	0
2	0	3.25	0	0	0	9.29	0	0	0	0	no	3968
1	0	0	0	0	0	11.76	0	0	0	0	$\beta \in (\overline{\beta}_{1,3}, \beta_0)$	7745
0	0	0	0	0	0	0	0	0	0	0	$\beta > \beta_0$	7.147×10^4

 (\mathcal{C}_3) , (\mathcal{C}_4) and (\mathcal{C}_5) with $\theta_d(3) = \theta_d(4) = \theta_d(5) = 0$. So $\mathsf{L} = 3$; see (2.14). The other optimal values are seen in Table 1. By Theorem 3, any $\hat{u} \in \widehat{\mathsf{F}}$ obeys $\|\hat{u}\|_0 \leq 3$. The critical parameters $\{\beta_k\}$ in (3.1) are

$$\beta_0 = 6.373 \times 10^4, \ \beta_1 = 3777, \ \beta_2 = 3968, \ \beta_3 = 0.$$
 (5.3)

Since $\beta_2 > \beta_1$, Lemma 11 for m = 0 tells us that any $\hat{u} \in \widehat{F}$ obeys $\hat{u} \notin \widehat{C}_3$ and $\|\hat{u}\|_0 \neq 2$. We compute $\overline{\beta}_{1,3}$ according to (3.19) and verify that (3.20) is satisfied:

$$\beta_0 > \overline{\beta}_{1,3} := \frac{1}{2} (\theta_d(1) - \theta_d(3)) = 3872.46 > \beta_3 .$$
(5.4)

By Theorem 7, $\widehat{\mathcal{C}}_3 = \{ \widehat{\mathcal{F}}_{\beta} : \beta \in (\beta_3, \overline{\beta}_{1,3}) \}$, as well as $\widehat{\mathcal{C}}_1 = \{ \widehat{\mathcal{F}}_{\beta} : \beta \in (\overline{\beta}_{1,3}, \beta_0) \}$.

Noisy data 1. Data are corrupted with nearly normal, centered, i.i.d. noise and SNR= 32.32 dB:

$$d = \begin{pmatrix} 69.13 & -171.95 & 113.74 & 150.27 & -36.09 \end{pmatrix}^T .$$
 (5.5)

The optimal solutions are given in Table 2. Obviously, L = M = 5. The critical values $\{\beta_k\}$ read

Table 2: The optimal value and solution of (C_k) for $k \in \mathbb{I}_4$ where *d* is given in (5.5). The values of β_k and $\overline{\beta}_{1,3}$ are given in (5.6) and (5.7), respectively.

k	$ heta_d({ m k})$			С	Global min. of \mathcal{F}_{β}							
4	0.0681	0	4.40	0	0	0	8.71	0.54	0	2.95	0	$\beta \in (\beta_4, \beta_3)$
3	36.31	0	4.09	0	0	0	8.88	0	0	3.01	0	$\beta \in (\beta_3, \overline{\beta}_{1,3})$
2	4039	0	3.33	0	0	0	9.17	0	0	0	0	no
1	8012	0	0	0	0	0	11.71	0	0	0	0	$\beta \in (\overline{\beta}_{1,3}, \beta_0)$
0	7.117×10^4	0	0	0	0	0	0	0	0	0	0	$\beta > \beta_0$

 $\beta_0 = 6.315 \times 10^4 \quad \beta_1 = 3973 \quad \beta_2 = 4003 \quad \beta_3 = 36.25 \quad \beta_4 = 0.0681 \quad \beta_5 = 0 .$ (5.6)

On has $\beta_2 > \beta_1$; by Lemma 11 for m = 0, any $\hat{u} \in \widehat{F}$ verifies $\hat{u} \notin \widehat{C}_2$ and $\|\hat{u}\|_0 \neq 2$. Using Theorem 7,

$$\beta_0 > \overline{\beta}_{1,3} := \frac{1}{2} (\theta_d(1) - \theta_d(3)) = 3987.6848 > \beta_3 > \beta_4 > \beta_5 , \qquad (5.7)$$

so $\widehat{\mathcal{C}}_3 = \{ \widehat{\mathcal{F}}_{\beta} : \beta \in (\beta_3, \overline{\beta}_{1,3}) \}$ and $\widehat{\mathcal{C}}_1 = \{ \widehat{\mathcal{F}}_{\beta} : \beta \in (\overline{\beta}_{1,3}, \beta_0) \}$. Further, $\widehat{\mathcal{C}}_5 = \{ \widehat{\mathcal{F}}_{\beta} : \beta \in (\beta_4, 0) \}$.

Noisy data 2. The noise is nearly normal, centered, i.i.d., SNR= 25.74 dB:

$$d = \begin{pmatrix} 66.67 & -169.08 & 101.56 & 149.38 & -39.50 \end{pmatrix}^T .$$
 (5.8)

The critical values $\{\beta_k\}$ introduced in (3.1) read as

Table 3: The optimal values and solutions of (\mathcal{C}_k) for $k \in \mathbb{I}_4$ where *d* is given in (5.8). Here $\{\beta_k\}$ is strictly decreasing, see (5.9), so (\mathcal{R}_β) and (\mathcal{C}_k) are quasi-equivalent.

k	$ heta_d(\mathbf{k})$					Global min. of \mathcal{F}_{β}						
4	0.02588	0	8.54	0	0	4.49	4.90	2.73	0	0	0	$\beta \in (\beta_4, \beta_3)$
3	72.76	0	3.93	0	0	0	8.70	0	0	2.63	0	$\beta \in (\beta_3, \beta_2)$
2	3110	0	3.27	0	0	0	8.95	0	0	0	0	$\beta \in (\beta_2, \beta_1)$
1	6935	0	0	0	0	0	11.44	0	0	0	0	$\beta \in (\beta_1, \beta_0)$
0	$6.7 imes 10^4$	0	0	0	0	0	0	0	0	0	0	$\beta > \beta_0$

$$\beta_0 = 6.029 \times 10^4 \quad \beta_1 = 3825 \quad \beta_2 = 3037 \quad \beta_3 = 72.73 \quad \beta_4 = 0.02588 \quad \beta_5 = 0 .$$
 (5.9)

The sequence $\{\beta_k\}$ is strictly decreasing, so (\mathcal{R}_β) and (\mathcal{C}_k) are quasi-equivalent (see Theorem 6).

6 Conclusions and future work

The obtention of a complete description of the relationship between the optimal solutions of nonconvex problems is in general unapparent task. We have fully clarified the relationship between the optimal solutions of least-squares regularized by $\|\cdot\|_0$ via a parameter $\beta > 0$ (problem (\mathcal{R}_β)) and constrained by k-sparsity (problem (\mathcal{C}_k)). New facts on the optimal solutions of (\mathcal{C}_k) and (\mathcal{R}_β) were given. They can help the refinement or the conception of algorithms. We exhibited critical values $\{\beta_k\}$ so that (\mathcal{C}_k) and (\mathcal{R}_β) for $\beta \in (\beta_k, \beta_{k-1})$ share exactly the same optimal set. But full equivalence (in a Lagrangian sense, as for convex problems) is impossible because for these critical values there is no equivalence. Further, there can be subsets of integers $\{k_n\}$ so that for any n, any optimal solution \hat{u} of (\mathcal{R}_β) for any $\beta > 0$ fulfills $\|\hat{u}\|_0 \neq k_n$, whereas any optimal solution \tilde{u} of \mathcal{C}_{k_n} obeys $\|\tilde{u}\|_0 = k_n$. All these $\{\beta_k\}$ and $\{k_n\}$ are sensitive to A or to d. Our comparative results can clarify a proper choice between models (\mathcal{R}_β) and (\mathcal{C}_k) in applications. Extensions to penalties of the form $\|Du\|_0$ for D a linear operator, or to low rank matrix recovery, seem important.

Acknowledgments

Our work was supported by the "FMJH Program Gaspard Monge in optimization and operation research", and by the support to this program from EDF.

References

- H. ATTOUCH, J. BOLTE, AND B. F. SVAITER, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forwardbackward splitting, and regularized gausseidel methods, Math. Program., 137 (2013).
- [2] E. VAN DEN BERG AND M. P. FRIEDLANDER, Sparse optimization with least-squares constraints, SIAM J. Optim., 21 (2011), pp. 1201–1229.
- [3] D. BLANCHARD, C. CARTIS, J. TANNER, AND A. THOMPSON, *Phase transitions for greedy* sparse approximation algorithms, Appl. Comput. Harmon. Anal., 30 (2011), pp. 188–203.
- [4] T. BLUMENSATH AND M. DAVIES, Iterative thresholding for sparse approximations, J. Fourier Anal. Appl., 14 (2008), pp. 629–654.
- T. BLUMENSATH AND M. DAVIES, Iterative hard thresholding for compressed sensing, Appl. Comput. Harmon. Anal., 27 (2009), pp. 265–274.
- [6] T. BLUMENSATH AND M.E. DAVIES, Normalized iterative hard thresholding: Guaranteed stability and performance, IEEE J. Sel. Topics Signal Process., 4 (2010), pp. 298–309.

- [7] A. M. BRUCKSTEIN, D. L. DONOHO, AND M. ELAD, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 51 (2009), pp. 34–81.
- [8] E. CANDÈS, J. ROMBERG, AND T. TAO, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509.
- [9] C. CARTIS AND A. THOMPSON, A new and improved quantitative recovery analysis for iterative hard thresholding algorithms in compressed sensing, arXiv:1309.5406, (2013).
- [10] E. CHOUZENOUX, A. JEZIERSKA, J.-C. PESQUET, AND H. TALBOT, A majorize-minimize subspace approach for $\ell_2 - \ell_0$ image regularization, SIAM J. Imaging Sci., 6 (2013), pp. 563–591.
- [11] A. COHEN, W. DAHMIEN, AND R. A. DEVORE, Compressed sensing and best k-term approximation, J. Amer. Math. Soc., 22 (2009), pp. 211–231.
- [12] G. DAVIS, S. MALLAT, AND M. AVELLANEDA, *Adaptive greedy approximations*, Constructive approximation, 13 (1997), pp. 57–98.
- [13] R. A. DEVORE, Nonlinear approximation, Acta Numerica, 7 (1998).
- [14] B. DONG AND Y. ZHANG, An efficient algorithm for ℓ_0 minimization in wavelet frame based image restoration, J. Sci. Comput., 54 (2013).
- [15] D.L. DONOHO, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
- [16] M. ELAD AND M. AHARON, Image denoising via learned dictionaries and sparse representation, in Computer Vision and Pattern Recognition, vol. 1, IEEE, 2006, pp. 895–900.
- [17] Y. C. ELDAR AND G. KUTYNIOK, Compressed Sensing: Theory and Applications, Cambridge Univ. Press, 2012.
- [18] J. FAN AND R. LI, Statistical challenges with high dimensionality: feature selection in knowledge discovery, in Proc. Intern. Congr. Math., vol. 3, Eur. Math. Soc., Zürich, 2006, pp. 595–622.
- [19] M. FORNASIER AND R. WARD, Iterative thresholding meets free-discontinuity problems, Found. Comput. Math., 10 (2010), pp. 527–567.
- [20] G. M. FUNG AND O. L. MANGASARIAN, Equivalence of minimal l₀- and l_p-norm solutions of linear equalities, inequalities and linear programs for sufficiently small p, J. Optim. Theory Appl., 151 (2011), pp. 1–10.
- [21] J. HAUPT AND R. NOWAK, Signal reconstruction from noisy random projections, IEEE Trans. Inform. Theory, 52 (2006), pp. 4036–4048.

- [22] Y. JIAO, B. JIN, AND X. LU, A primal dual active set algorithm for a class of nonconvex sparsity optimization, arXiv:1310.1147v1, (2013).
- [23] Y. LIU AND Y. WU, Variable selection via a combination of the l_0 and l_1 penalties, J. Comp. Graph. Stat., 16 (2007), pp. 782–798.
- [24] D.G. LUENBERGER, Optimization by Vector Space Methods, Wiley, J., New York, 1ed., 1969.
- [25] J. LV AND Y. FAN, A unified approach to model selection and sparse recovery using regularized least squares, The Annals of Statistics, 37 (2009).
- [26] A. MALEKI AND D. L. DONOHO, Optimally tuned iterative reconstruction algorithms for compressed sensing, IEEE J. Sel. Topics Signal Process., 4 (2010), pp. 330–341.
- [27] F. MALGOUYRES AND M. NIKOLOVA, Average performance of the sparsest approximation using a general dictionary, Numer. Funct. Anal. Optim., 32 (2011), pp. 768–805.
- [28] C. D. MEYER, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- [29] A. J. MILLER, Subset Selection in Regression, Chapman and Hall, London, U.K., 2ed., 2002.
- [30] J. NEUMANN, C. SCHÖRR, AND G. STEIDL, Combined SVM-based Feature Selection and classification, Machine Learning 61, 2005, pp. 129–150.
- [31] M. NIKOLOVA, Description of the minimizers of least squares regularized with lo-norm. uniqueness of the global minimizer, SIAM J. Imaging Sci., 6 (2013), pp. 904–937.
- [32] M.C. ROBINI, A. LACHAL, AND I.E. MAGNIN, A stochastic continuation approach to piecewise constant reconstruction, IEEE Trans. Image Process., 16 (2007), pp. 2576–2589.
- [33] M. C. ROBINI AND I. E. MAGNIN, Optimization by stochastic continuation, SIAMJ. Imaging Sci., 3 (2010), pp. 1096–1121.
- [34] M. C. ROBINI AND P.-J. REISSMAN, From simulated annealing to stochastic continuation: a new trend in combinatorial optimization, J. Global Optim., 56 (2013), pp. 185–215.
- [35] J.A. TROPP, Just relax: convex programming methods for identifying sparse signals in noise, IEEE Trans. Inform. Theory, 52 (2006), pp. 1030–1051.
- [36] J. TROPP AND S. J. WRIGHT, Computational methods for sparse solution of linear inverse problems, Proc. IEEE, 98 (2010), pp. 948–958.
- [37] Y. ZHANG, B. DONG, AND Z. LU, l₀ minimization of wavelet frame based image restoration, Mathematics of Computation, 82 (2013), pp. 995–1015.