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Abstract. Given an M × N real-valued matrix A with M < N and a data-vector d, consider that d

must be expressed as a linear combination of a small number of basis vectors taken from A. Two popular

options to find the sought-after sparse solution are (1) to minimize the least-squares regularized with the

counting function ∥ · ∥0 (called usually the ℓ0-norm) via a trade-off parameter β > 0, and (2) to solve the

least-squares constrained by k-sparsity, i.e. ∥ · ∥0 6 k. This work provides an exhaustive description of the

relationship between the optimal solutions of these two nonconvex (combinatorial) optimization problems.

Small-size exact numerical tests give a flavour of the meaning of the obtained theoretical results.

Keywords: ℓ0-regularization; k-sparsity constraint; quasi-equivalence between nonconvex problems; optimal so-

lution analysis; parameter selection; sparse signal recovery; under-determined linear systems.

1 Introduction

The recovery of sparse objects (e.g., signals, images) or representations u ∈ RN using a few basis vectors

from incomplete and possibly inaccurate data d ∈ RN is a tremendously growing topic, especially with

the recent progress in compressed sensing [13, 8, 15, 7, 36, 17]. The most natural way to measure

sparsity is the counting function ∥ · ∥0, called usually the ℓ0-norm

∥u∥0 := ♯
{
i ∈ {0, 1, · · · ,N} : u[i] ̸= 0

}
, (1.1)

where ♯ denotes cardinality and u[i] stands for the ith components of u. We consider a frame (a

dictionary) A ∈ RM×N with M < N where M and N are fixed.

Two popular options to find a sparse solution û are defined by the following optimization problems:

• the ∥ · ∥0-regularised problem where one looks for minimizers of Fβ : RN → R given by

(Rβ) Fβ(u) := ∥Au− d∥22 + β∥u∥0 , β > 0 , (1.2)

where β > 0 is a regularization parameter;

• the k-sparsity constrained minimization problem defined by

(Ck) min
u∈RN

∥Au− d∥22 , subject to ∥u∥0 6 k , (1.3)

where k is a fixed integer. As usual, a vector u is said to be k-sparse if ∥u∥0 6 k.
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Finding an optimal solution of these problems is NP-hard in general [12, 35]. We note that recent

advances in stochastic optimization can or could make these tasks feasible [34].

In the literature these problems are often considered as somehow “equivalent”; see, e.g. [4, p. 631].

The goal of this work is to clarify the connection between the optimal solutions of (Rβ) and of (Ck).

More precisely, we look for guarantees that for a k and some values β > 0, (Rβ) and (Ck) have exactly

the same optimal set. Since (Rβ) and (Ck) are nonconvex problems, our goal is highly non trivial.

1.1 Related work

The amount of papers dealing with problems (Rβ) and (Ck) is huge. We present a brief summary that

helps to position the goals of our work.

On algorithms. The solutions of (Rβ) and (Ck) are usually approximated by greedy pursuit, relax-

ation of the ∥ · ∥0 penalty often combined with nonconvex minimization [18, 25, 19, 10, 22], as well as

direct optimization [29, 33, 1]. Tropp and Wright [36] gave a comprehensive overview, mainly focused

on greedy pursuits and convex relaxation. These algorithms require strong assumptions on A, e.g., RIP

or bounds on spark(A), and on the sparsity of the solution. Iterative thresholding algorithms has be-

come quite popular after the local convergence results of Blumensath and Davies [4], further expanded

by the authors in [5, 6]. Recent results has enabled the RIP assumption to be lighten [26, 3, 9].

Problem (Rβ) is a particular case of an objective whose global minimizer is computed in finite

time with high probability by the stochastic continuation algorithm conceived by Robini, Lachal and

Magnin [32] and refined by Robini and Magnin in [33]. Recently, Robini and Reissman [34] extended

the methodology to general (combinatirial) objectives and gave results on the probability for global

convergence versus the running time. So [34] can be adapted to solve optimally problems (Ck) as well.

Some applications. Problem (Rβ) has been widely considered for subset selection [29, 4], model

selection [25], variable selection [23], feature selection [30, 18], signal and image reconstruction [21, 19,

10, 37, 14]. Problem (Ck) involves a natural sparse coding constraint; it is well known as the k-best

term approximation model [13, 11]. It has been used for low-rank matrix decomposition [2], sparse

inverse problems [6], dictionary learning [16], among ohers.

Comparison between ∥ · ∥0-related problems. Here are few references. Fung and Mangasar-

ian [20] consider the problem: minimize ∥u∥p subject to Au = d, Bu > b and ∥u∥∞ 6 1, where

p ∈ [0, 1), and B and b are a matrix and a vector, respectively. They prove that the ∥u∥0-problem is

equivalent to the ∥u∥p-problem for a sufficiently small p > 0. Malgouyres and Nikolova [27] focus on

the approximation performances of the problem: minimize ∥u∥0 subject to ∥Au− d∥ 6 τ . They give a

geometrical description of the data sets d ∈ RM yielding an optimal solution of (Ck).
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1.2 Our goals and contributions

In this work we provide an exhaustive description of the connection between the optimal solutions of

the two nonconvex, combinatorial problems (Rβ) and (Ck), stated in (1.2) and (1.3), respectively. This

goal is achieved using simple mathematical tools. Our main results are summarized below.

• There is an integer L 6 M (dependent on A and on d) for which it holds that: (a) For any k 6 L,

any optimal solution û of (Ck) obeys ∥û∥0 = k and the columns of A indexed by the support of û are

linearly independent; (b) For any β > 0, any global minimizer û of Fβ verifies ∥û∥0 6 L.

• We exhibit critical values βk, k ∈ {0, · · · , L}, and we prove that for any k, (Rβ) ∀ β ∈ (βk, βk−1) and

(Ck) have the same optimal set if and only if {βk} is strictly decreasing. But for any k 6 L− 1 and

β = βk, the optimal set of (Rβ) is the union of the (disjoint) optimal sets of (Ck) and (Ck+1). Thus

when {βk} is strictly decreasing, we can say that (Rβ) and (Ck) are quasi-equivalent.

• It is shown that {βk} can be oscillating, relying on A or d. Then there is a subset {kn} so that for any

n and for any β > 0, any global minimizer û of Fβ is not an optimal solution of (Ckn) and ∥û∥0 ̸= kn.

In such a case, only partial quasi-equivalence can hold: for k ̸∈ {kn}, there are {β′
k, β

′
k−1} and {b, b}

so that (Rβ) for any β ∈ (β′
k, β

′
k−1) and (Ck) share the same optimal set if b > β′

k−1 > β′
k > b.

• The union of all global minimizers of Fβ for all β > 0 is included in the union of all optimal solutions

of (Ck) for k ∈ {0, · · · , L}.

1.3 Outline of the paper

Results relating the optimality conditions for (Rβ) and (Ck) are derived in section 2. In particular,

useful properties on the optimal sets of (Ck) are exhibited in subsection 2.2. Necessary and sufficient

conditions for quasi-equivalence between problems (Rβ) and (Ck) are provided in section 3. Otherwise,

partial equivalence occurs which is also examined. Some facts on the critical parameter values are given

in section 4. In section 5, small-size exact numerical tests illustrate the main results of the paper.

1.4 Main notation and definitions

To simplify the notation, the ℓ2-norm is systematically denoted by

∥ · ∥ := ∥ · ∥2 .

Let n be any positive integer. The identity operator on Rn is denoted by In. We denote by In and I0n
the totally and strictly ordered index sets

In :=
(
{1, · · · , n}, <

)
and I0n :=

(
{0, 1, · · · , n}, <

)
, (1.4)

where the symbol < stands for the natural order of integers. Thus any subset ω ⊆ In is also totally and

strictly ordered. Without this precision, the expressions in (1.6) and (1.7) below are ambiguous.
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For any u ∈ RN, the support σ(u) of u is defined by

σ(u) :=
{
i ∈ IN : u[i] ̸= 0

}
⊆ IN . (1.5)

The ith column in a matrix A ∈ RM×N is denoted by ai. For a matrix A ∈ RM×N and a vector

u ∈ RN, with any ω ⊆ IN, we associate the submatrix Aω and the subvector uω given by

Aω :=
(
aω[1], · · · , aω[ ♯ ω]

)
∈ RM× ♯ ω , (1.6)

uω :=
(
u
[
ω[1]

]
, · · · , u

[
ω[ ♯ ω]

])
∈ R ♯ ω , (1.7)

respectively, as well as the zero padding operator Zω : R ♯ ω → RN given by

u = Zω (uω) u[i] =

{
0 if i ̸∈ ω ,
uω[k] for the unique k such that ω[k] = i.

(1.8)

Using (1.5) and the notation in (1.6)-(1.7), for any u ∈ RN we have

ω ∈ IN and ω ⊇ σ(u) ⇒ Au = Aωuω and u = Zω (uω) . (1.9)

The superscript “T ” denotes transposed. For definiteness, we set AT
ω := (Aω)

T and A−1
ω := (Aω)

−1.

Example 1 Let A = (a1, a2, a3, a4) and u = (1, 0, 1, 0)T . Then σ := σ(u) = {1, 3}. Let ω = {1, 2, 3} ⊃

σ. Clearly, Au = Aσuσ = Aωuω = a1 + a3.

Remark 1 For (Ck) we have to consider also two trivial cases: k = 0 because Fβ always has a strict

(local) minimum at û = 0 [31, Lemma 2.2] and k = M since Fβ can have strict (local) minimizers ũ with

∥ũ∥0 = M [31, Proposition 3.9]. According to the value of β, û or ũ can be global minimizers of Fβ.

In order to unify the presentation, we adopt the definitions: A∅ := [ ] ∈ RM×0 and rank (A∅) := 0.

Then all claims hold when k = 0 for (Ck) and when the optimal set of (Rβ) is null.

We shall consider the standard hypothesis on A stated below.

H1 The matrix A ∈ RM×N satisfies rank(A) = M < N.

It is systematically assumed that d ̸= 0 to prevents from considering other trivial cases.

2 Preliminary results

In this section we derive simple tests relating the optimality conditions for (Rβ) and for (Ck). This task

needs a few developments. Some results on (Rβ) obtained in [31] are used. We shall often refer to the

constrained quadratic optimization problem stated in subsection 2.1.
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2.1 A constrained quadratic optimization problem

Given d ∈ RM and ω ⊆ IN, problem (Pω) reads as:

(Pω) min
u∈RN

∥Au− d∥2 , subject to u[i] = 0 ∀ i ∈ IN \ω . (2.1)

Using the notation in (1.6), (1.7) and (1.8), the following equivalence is obvious and useful:[
û ∈ RN solves (Pω)

]
⇔

[
û = Zω (ûω) and ûω solves min

v∈R ♯ ω
∥Aωv − d∥2

]
. (2.2)

The optimality conditions for the quadratic problem on the right side of (2.2) amount to solving the

normal equation relevant to Aω, i.e. to finding a v ∈ R ♯ ω satisfying AT
ωAωv = AT

ωd. Such a v always

exists; see e.g., [28]. Therefore for any d ∈ RM and for any ω ⊂ IN problem (Pω) has solutions.

Note that any û solving (Pω) for some ω ∈ IN is a (local) minimizer of Fβ [31, Proposition 2.3].

2.2 On the optimal solutions of problem (Ck)

The set of the supports of all k-sparse vectors reads as

Θk :=

k∪
n=0

{
ω ⊂ IN : ♯ ω = n

}
. (2.3)

Using (Pω) and this notation, for any k, problem (Ck) in (1.3) equivalently reads as

(Ck)
∥Aû− d∥2 = min

ω∈Θk

{
∥Aũ− d∥2 : ũ solves (Pω) for ω ∈ Θk

}
= min

ω∈Θk

{
∥Aωũω − d∥2 : ũ solves (Pω) for ω ∈ Θk

}
.

(2.4)

We first verify the existence of optimal solution of (Ck).

Lemma 1 For any k ∈ I0N, the optimal set of problem (Ck) is nonempty.

Proof. Consider the equivalent formulation of (Ck) in (2.4). For k ∈ I0N, define θω ∈ R+ as

θω := ∥Aũ− d∥2 , where ũ solves (Pω) for ω ∈ Θk .

The facts that ♯Θk is finite and that (Pω) has solutions for any ω ∈ Θk ⊂ IN ensure that the set

{θω : ω ∈ Θk} is nonempty and finite. Then the number θ̂ := min{θω : ω ∈ Θk} is uniquely defined

and there exists û such that ∥Aû− d∥2 = θ̂; so û is an optimal solution of (Ck). �

By Lemma 1, for any k ∈ I0N the optimal value θd(k) of problem (Ck) is well defined:

θd(k) := ∥Aû− d∥2 where û is an optimal solution of (Ck) . (2.5)

The optimal set of any problem (Ck) is denoted by

Ĉ k :=
{
û ∈ RN : û is an optimal solution of (Ck)

}
. (2.6)

If (Ck) has a unique solution û, then clearly Ĉ k = {û}.

Below we prove that the sequence {θd(k)}k is indeed decreasing.
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Lemma 2 Let d ∈ RM. Then θd(0) = ∥d∥2 and

θd(k− 1) > θd(k) ∀ k > 1 . (2.7)

If H1 holds, then θd(M) = 0 and θd(k) = 0 for any k > M.

Proof. It is obvious that θd(0) = ∥d∥2 . Let û ∈ Ĉ k for k ∈ IN. Set σ̂ := σ(û). From (2.4) one has

θd(k) = ∥Aσ̂ûσ̂ − d∥2 6 ∥Aωuω − d∥2 ∀ ω ∈ Θn ∀ uω ∈ R ♯ ω, ∀ n 6 k . (2.8)

Consequently, θd(k) 6 θd(k− n) for any n ∈ Ik , which proves (2.7). From H1, there exists ω ⊂ IN such

that rank (Aω) = M = ♯ ω. Then ûω = (Aω)
−1d leads to ∥Aωûω − d∥2 = 0 = θd(M). This, combined

with (2.7), shows that θd(k) = 0 for any k > M. �

We verify that if û ∈ Ĉ k is an unconstrained solution, then û solves exactly Au = d.

Lemma 3 Let H1 hold. For k ∈ IM, assume that (Ck) has an optimal solution û obeying

∥û∥0 = k− n for n > 1 . (2.9)

Then

Aû = d . (2.10)

Further, û ∈ Ĉm and θd(m) = 0 for any m > k− n.

Proof. Set σ̂ := σ(û) then ♯ σ̂ = k− n. Recalling that Aσ̂ûσ̂ = Aû , define z ∈ RM by

z := Aû− d = Aσ̂ûσ̂ − d . (2.11)

Assume that (2.10) fails, i.e.

z ̸= 0. (2.12)

Since by (2.4) û solves (Pσ̂), one has A
T
σ̂ (Aσ̂ûσ̂ − d) = 0 which combined with (2.11) leads to AT

σ̂ z = 0 .

Select a σ̃ ⊆ σ̂ yielding rank (Aσ̃) = r := rank(Aσ̂); recall that r 6 k− n < M. By H1, there is ω ∈ IN
such that ω ' σ̃ and rank (Aω) = M = ♯ ω. Then AT

ωz ̸= 0 by (2.12). So there is m ∈ ω \ σ̂ obeying

⟨am, z⟩ ̸= 0 .

Clearly, am is linearly independent of range(Aσ̂). One has

ûm :=
⟨am, z⟩
∥am∥2

⇒ ûm ⟨am, z⟩ > 0 . (2.13)

Using the definition of z in (2.11), one derives

∥Aσ̂ûσ̂ + amûm − d∥2 − ∥Aσ̂ûσ̂ − d∥2 = ∥z + amûm∥2 − ∥z∥2 = ∥am∥2û2m − 2ûm⟨z, am⟩[
by (2.13)

]
=

ûm
∥am∥2

(
⟨am, z⟩ − 2⟨am, z⟩

)
= − ûm ⟨am, z⟩

∥am∥2
< 0 .

Hence any optimal solution û of (Ck) satisfies ∥û∥0 > ♯ σ̂ = k− n. But this contradicts (2.9); hence the

assumption in (2.12) fails. This proves (2.10). Then û ∈ Ĉ k−n since θd(k − n) = 0. By Lemma 2, for

any m > n− k one has θd(m) = 0 and û ∈ Ĉm. �
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Corollary 1 Let H1 hold. For some k ∈ I0M, suppose that û ∈ Ĉ k. Then

θd(k) > 0 ⇒ ∥û∥0 = k .

Proof. The case k = 0 is trivial. Focus on k > 1. If ∥û∥0 = k − n for n ∈ Ik, Lemma 3 shows that

θd(k) = 0. This contradicts the fact that θd(k) > 0. It follows that ∥û∥0 = k. �

Given A satisfying H1 and d ̸= 0, we introduce the constant

L := max
{
k ∈ IM : θd(k) > 0

}
+ 1 . (2.14)

Since θd(·) is decreasing (Lemma 2), the constant L is uniquely defined. From the same lemma, θd(M) =

0, hence L 6 M. Note that the constant L relies on A or d.

Remark 2 One has L 6 M − 1 if d = Au for ∥u∥0 6 M − 1. Then d belongs to a subspace of RM of

dimension ∥u∥0 which is a negligible subset of RM. Usual noisy data range on the whole RM and L = M.

Lemma 4 Let H1 be satisfied and L read as in (2.14). If û is an optimal solution of (CL), then

θd(L) = 0 and ∥û∥0 = L .

Proof. From (2.14), θd(L) = ∥Aû− d∥2 = 0. If ∥û∥0 = L− n for n > 1, then û also satisfies û ∈ ĈL−n

and θd(L− n) = 0 by Lemma 3. But this contradicts the definition of L. Hence ∥û∥0 = L. �

The result on the optimal solutions of (Ck) below is important.

Lemma 5 Let H1 hold. For k ∈ I0L, suppose that û ∈ Ĉ k. Set σ̂ := σ(û). Then

rank (Aσ̂) = ♯ σ̂ . (2.15)

Proof. If k = 0 , (2.15) holds. The proof is by contradiction. Suppose that (2.15) fails for k > 1, i.e.,

rank (Aσ̂) 6 ♯ σ̂ − 1 . (2.16)

The rank-nullity theorem [28] entails that dim ker (Aσ̂) = ♯ σ̂−rank (Aσ̂) > 1 .We can take an arbitrary

vσ̂ ∈ ker (Aσ̂) \ {0}, set v := Zσ̂ (vσ̂) and select an i ∈ σ̂ obeying v[i] ̸= 0. Define ũ by

ũ := û− û[i]
v

v[i]
.

Clearly, ũ[i] = 0 and û[i] ̸= 0 , so σ̃ := σ (ũ) $ σ̂, which leads to

∥ũ∥0 6 ∥û∥0 − 1 . (2.17)

From vσ̂
û[i]

v[i]
∈ ker (Aσ̂) one has Aû = Aσ̂ûσ̂ = Aσ̂

(
ûσ̂ − vσ̂

û[i]

v[i]

)
= Aσ̂ũσ̂ = Aσ̃ũσ̃ = Aũ . Then

θd(k) = ∥Aû− d∥2 = ∥Aũ− d∥2 . (2.18)
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Consequently, ũ is also an optimal solution of (Ck) which by (2.17) satisfies

∥ũ∥0 = k− n for n := ∥û∥0 − ∥ũ∥0 > 1 .

From Lemma 3, ũ ∈ Ĉ k−n and θd(k − n) = 0. This result contradicts the fact that by (2.14), one has

θd(L− n) > 0 for any n > 1. Hence the assumption in (2.16) fails which proves the lemma. �

Remark 3 The algorithm aimed at solving (Ck) proposed in [4] was shown in [4, Lemma 6] to produce,

under certain conditions, solutions that fulfill the necessary optimality condition in (2.15).

Based on Lemma 5, we focus on all M-row full column rank submatrices of A. All supports ω ⊂ IN
corresponding to such submatrices are described below:

Ωk :=
{
ω ⊂ IN : ♯ ω = k = rank (Aω)

}
∀ k ∈ I0M and Ω :=

M∪
k=0

Ωk . (2.19)

Theorem 1 Let H1 be satisfied and L read according to (2.14). Then

û is an optimal solution of (Ck) for k ∈ I0L ⇒ ∥û∥0 = k and σ(û) ∈ Ωk . (2.20)

Further, if û ∈ Ĉ L, then û ∈
∩N

k=L Ĉ k.

Proof. For any k ∈ I0L, Lemma 5 shows that σ(û) ∈ Ωk. If k = L, ∥û∥0 = L from Lemma 4. Let

k 6 L − 1. From the definition of L in (2.14), θd(k) > 0, which by Corollary 1 shows that ∥û∥0 = k.

The last claim follows directly from Lemmas 2 and Lemma 4. �

We note that problem (CM) is unconstrained and has ♯ΩM optimal solutions.

Remark 4 Let H1 hold. By Theorem 1, for any k ∈ I0M, problem (Ck) equivalently reads as

(Ck) min
ω∈Ωk

{
∥Aũ− d∥2 : ũ solves (Pω) for ω ∈ Ωk

}
. (2.21)

For a given k, the formulation of (Ck) in (2.4) suggests that getting an optimal solution of (Ck) needs

to compare the values of ♯Θk =
∑k

n=0 ♯Θn different solutions of (Pω). The new formulation in (2.21)

shows that in fact, the values of only ♯Ωk 6 ♯Θk solutions of (Pω), for ω ∈ Ωk, must be compared.

Correspondingly, the optimal value of (Ck), introduced in (2.5), satisfies

θd(k) = min
{
∥Aωuω − d∥2 : ω ∈ Ωk

}
∀ k ∈ I0M .

Another direct and useful consequence of Theorem 1 is stated below.

Corollary 2 Let H1 hold. Then Ĉ k ∩ Ĉ n = ∅ for all (k, n) ∈ I0L such that k ̸= n.

In words, if û solves optimally (Ck) for k 6 L, then û cannot be an optimal solution of (Cn) for any

n ̸= k obeying n 6 L.
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2.3 Problem (Pω) – a bridge between problems (Rβ) and (Ck)

We recall that a (local) minimizer û of Fβ is strict if there is a neighborhood O ⊂ RN, containing û,

such that Fβ(û) < Fβ(u) for any u ∈ O. Obviously, such a minimizer û is isolated.

Using the definition of Ω in (2.19), we introduce the set U ⊂ RN given by

U =
∪
ω∈Ω

{ũ ∈ RN : ũ solves (Pω) for ω ∈ Ω} . (2.22)

Lemma 6 Let d ∈ RM and β > 0. Then

û is a strict (local) minimizer of Fβ ⇔ û ∈ U . (2.23)

Proof. From [31, Theorem 3.2], û is a strict (local) minimizers of Fβ if and only if û solves Pσ̂ for

σ̂ := σ(û) ∈ Ω; hence û ∈ U. And [31, Corollary 3.3] tells us that if û solves (Pω) for ω ∈ Ω (i.e., if

û ∈ U) then û is a strict (local) minimizer of Fβ. The proof is complete. �

Now we partition U in (2.22) according to

U =
M∪
k=0

Uk where Uk :=
∪
ω∈Ω

{
ũ ∈ RN : ũ solves (Pω) for ω ∈ Ω and ∥ũ∥0 = k

}
∀ k ∈ I0M . (2.24)

Lemma 7 Let H1 be satisfied. Then Ĉ k ⊂ Uk, ∀ k ∈ I0L .

Proof. Let û ∈ Ĉ k for k ∈ I0L. Set σ̂ := σ(û). The formulation of (Ck) in (2.21), combined with

Theorem 1 shows that û solves (Pω) for ω := σ̂ ∈ Ωk ⊂ Ω and that ∥û∥0 = k. Hence û ∈ Uk. �

Lemma 8 Let H1 be satisfied and let β > 0.

(i) Let û ∈ Ĉ k for k ∈ I0L. Then

Fβ(û) = θd(k) + βk ∀ û ∈ Ĉ k ; (2.25)

Fβ(ũ) > Fβ(û) ∀ ũ ∈ Uk \ Ĉ k . (2.26)

(ii) Let û ∈ Ĉ L. If L 6 M− 1, then

n ∈ {L+ 1, · · · ,M} and ũ ∈ Un ⇒ Fβ(ũ) > θd(L) + βL = Fβ(û) . (2.27)

Proof. (i). Using that k ∈ I0L, Theorem 1 shows that ∥û∥0 = k. This leads to (2.25). If ũ ∈ Uk \ Ĉ k,

then ∥ũ∥0 = k from the definition of Uk and ũ is not an optimal solution of (Ck), hence

ũ ∈ Uk \ Ĉ k ⇒ ∥Aũ− d∥2 > θd(k) .

(ii). The definition of L in (2.14) entails that θd(n) = θd(L) = 0, ∀ n > L+ 1 . Therefore

n > L+ 1 and ũ ∈ Un ⇒ Fβ(ũ) = ∥Aũ− d∥2 + βn > θd(L) + βL . �
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2.4 Joint optimality conditions for (Ck) and (Rβ)

We shall use the following result on Fβ:

Theorem 2 (Nikolova, [31, Theorem 4.4]) Let d ∈ RM and β > 0. Then

(i) Fβ has a global minimizer: there exists û ∈ RN such that min
u∈RN

Fβ(u) = Fβ(û) 6 Fβ(u), ∀ u ∈ RN;

(ii) If û is a global minimizer of Fβ, then û is a strict minimizer of Fβ, i.e. σ(û) ∈ Ω.

The optimal set of an objective Fβ with regularization parameter β > 0 is denoted by

F̂β :=
{
û ∈ RN : û is a global minimizer of Fβ for a given β > 0

}
. (2.28)

Our first result relating the optimal sets of (Rβ) and (Ck) is given below.

Proposition 1 Let H1 hold and let β > 0. Then

û ∈ F̂β =⇒ û ∈ Ĉ k for k := ∥û∥0 ∈ I0L . (2.29)

Proof. From Theorem 2(ii), û is a strict minimizer of Fβ. Then û ∈ U by Lemma 6 and σ(û) ∈ Ω.

Set k := ∥û∥0. By the definition of Uk in (2.24), û ∈ Uk. Further, k 6 L because otherwise û ̸∈ F̂β by

Lemma 8(ii). And Lemma 8(i) shows that if û ∈ F̂β, then û ̸∈ Uk \ Ĉ k. Therefore û ∈ Ĉ k. �

We denote by Ĉ the collection of all optimal solutions of problems (Ck) for k ∈ I0L:

Ĉ :=
L∪

k=0

Ĉ k , (2.30)

where all Ĉ k’s read as in (2.6). Likewise, F̂ is the set of all global minimizers of Fβ for all β > 0:

F̂ :=
∪
β>0

F̂β . (2.31)

With these notation, the next claim is an important direct consequence of Proposition 1.

Theorem 3 Let H1 hold. Then F̂ ⊂ Ĉ .

Proof. Let û ∈
∪

β>0 F̂β for some β > 0, hence û ∈ F̂. By Proposition 1 and (2.30), û ∈ Ĉ. �

Remark 5 By [31, Corollary 3.3], each solution of problem (Pω), for any ω ∈ Ω, is a strict (local)

minimizer of Fβ. So Fβ typically has numerous strict (local) minimizers. Among them, only those that

solve optimally problems (Ck) for k ∈ I0L could be global minimizers of Fβ for some β > 0.

Next we give the main tool to compare the optimal sets of problems (Ck) and (Rβ).

Theorem 4 Let H1 hold, and let k ∈ I0L and β > 0. Suppose that û ∈ Ĉ k and that

Fβ(u)−Fβ(û) > 0 ∀ u ∈ Ĉ \ Ĉ k . (2.32)

Then

u ∈ RN \ Ĉ k ⇒ Fβ(u) > Fβ(û) ∀ û ∈ Ĉ k ; (2.33)

in other words, any û ∈ Ĉ k is a global minimizer of Fβ.
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Proof. By (2.25) in Lemma 8(i) one has

Fβ(û) = θd(k) + βk ∀ û ∈ Ĉ k . (2.34)

The proof is conducted by contradiction. So suppose that (2.33) fails, that is

Fβ(û) > Fβ(ũ) ∀ û ∈ Ĉ k for some ũ ∈ RN \ Ĉ k . (2.35)

From Theorem 2(i), Fβ has a global minimizer, say u ∈ F̂β, which obeys u ∈ Ĉ by Theorem 3. Hence

u ∈ RN ⇒ Fβ(u) > Fβ(û) > Fβ(ũ) > Fβ(u) ∀ û ∈ Ĉ k for some u ∈ Ĉ . (2.36)

• Let u ∈ Ĉ k. From (2.34) and (2.36) one has Fβ(û) = Fβ(ũ) = Fβ(u), hence ũ ∈ F̂β. By (2.35) and

Theorem 3 it follows that ũ ∈ Ĉ \ Ĉ k. Hence

Fβ(û) = Fβ(ũ) ∀ û ∈ Ĉ k for some ũ ∈ Ĉ \ Ĉ k .

This result contradicts (2.32). Hence the assumption in (2.35) fails.

• Otherwise u ∈ Ĉ \ Ĉ k. This, combined with (2.36), leads to

Fβ(û) > Fβ(u) ∀ û ∈ Ĉ k for some u ∈ Ĉ \ Ĉ k . (2.37)

The last result contradicts the condition in (2.32), hence the assumption in (2.35) fails. �

3 The same optimal set for (Ck) and (Rβ)

In this section we develop our findings on the connection between the optimal solutions of problems

(Ck) and (Rβ). We shall use the previously obtained Corollary 2, Lemma 8, and Theorems 3 and 4.

3.1 Critical parameter values

Remark 6 Let û ∈ Ĉ k and let u ∈ Ĉ k+1. The equality Fβ(û) = Fβ(u) equivalently reads as

Fβ(û) = θd(k) + βk = θd(k + 1) + β(k + 1) = Fβ(u) ,

by Lemma 8(i). Then for β := βk := θd(k)− θd(k + 1) one finds Fβ(û) = Fβ(u).

For d ∈ RM given, this remark suggests the following set of M+ 1 constants to be introduced:

βk := θd(k)− θd(k + 1) , ∀ k ∈ I0M . (3.1)

A few facts on {βk} are given next.

Remark 7 Let H1 hold. Using Lemma 2, βk > 0 for ∀ k ∈ I0M . Recall that d ̸= 0.
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(a) From H1, there is n ∈ IN such that ⟨an, d⟩ ̸= 0. Set ûn = argmin
v∈R

∥an v − d∥2 ∈ R. Clearly,

ûn =
⟨an, d⟩
∥an∥2

̸= 0 and θd(1) 6 ∥an ûn − d∥2 = ∥d∥2 − ⟨an, d⟩2

∥an∥2
< θd(0) = ∥d∥2 .

Then (3.1) yields

β0 := θd(0)− θd(1) > 0 . (3.2)

To unify the notation, we set β−1 := +∞.

(b) From the definition of L in 2.14, θd(L− 1) > 0 and θd(k) = 0 if k > L. So (3.1) leads to

βL−1 > 0 and βL = 0 . (3.3)

And if L < M, one has βk = 0 for any k ∈ {L+ 1, · · · ,M}.

The next claim gives a flavor on the role of {βk} as introduced in (3.1).

Lemma 9 Let H1 hold. Assume that Fβ has a global minimum at û ∈ Ĉ k. Then β ∈ [βk, βk−1].

Proof. Let u ∈ Ĉ k+1 and ũ ∈ Ĉ k−1. Since û ∈ F̂β for some β > 0, the following conditions must hold:

Fβ(u)−Fβ(û) > 0 and Fβ(ũ)−Fβ(û) > 0 . (3.4)

Combining this with (2.25) in Lemma 8(i) leads to

Fβ(u)−Fβ(û) = θd(k + 1)− θd(k) + β = −βk + β > 0 ,

Fβ(ũ)−Fβ(û) = θd(k− 1)− θd(k)− β = βk−1 − β > 0 .
(3.5)

Hence β must satisfy βk 6 β 6 βk−1 . �

The relation below is quite practical:

βk + βk+1 + · · ·+ βk+n = θd(k)− θd(k + n + 1) , ∀ k ∈ I0M−1 , ∀ n ∈ I0M−k−1 . (3.6)

Indeed,
∑k+n

m=k βm = θd(k) − θd(k + 1) + θd(k + 1) − θd(k) + · · · + θd(k + n − 1) − θd(k + n) + θd(k +

n)− θd(k + n + 1). For n = 0, (3.6) amounts to the definition of βk in (3.1).

3.2 Particular cases

We exhibit a set of values for β so that (Ck) and (Rβ) have the same optimal set.

Theorem 5 Let H1 hold and L be defined according to (2.14). For k ∈ I0L assume that

bk−1 :=
k

min
n=1

βk−n > βk−1 > βk > L−k
max
n=0

βk+n =: b k , (3.7)

where all βk read as in (3.1). Statements (i) and (ii) below are equivalent:

(i) û is an optimal solution of (Ck) ;
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(ii) û is a global minimizer of Fβ for β ∈ (βk, βk−1).

Proof. We break the proof into two parts.

[(i)⇒ (ii)]. To prove the claim, we test the sufficient condition for global minimizer of Fβ in Theorem 4.

Recall that by Lemma 8(i), if ũ ∈ Ĉ n for n ∈ I0L, then Fβ(ũ) = θd(n) + βn. Let û ∈ Ĉ k.

• Let k ∈ IL and let u ∈ Ĉ k−n for n ∈ Ik. Then

∀ n ∈ Ik ⇒ Fβ(u)−Fβ(û) = θd(k− n)− θd(k)− nβ[
by (3.6)

]
= βk−n + · · ·+ βk−1 − nβ

=

n∑
m=1

(βk−m − β) (3.8)[
β < βk−1 6 b k−1 by (3.7)

]
> 0 . (3.9)

• Consider that k ∈ I0L−1 and let u ∈ Ĉ k+n for n ∈ IL−k. Then

∀ n ∈ IL−k ⇒ Fβ(u)−Fβ(û) = θd(k + n)− θd(k) + nβ[
by (3.6)

]
= −βk+n−1 − · · · − βk + nβ

=

n−1∑
m=0

(β − βk+m) (3.10)[
β > βk > b k by (3.7)

]
> 0 . (3.11)

Inserting (3.11) and (3.9) in (2.32) in Theorem 4 shows that û ∈ F̂β.

[(ii) ⇒ (i)]. Since û ∈ F̂, Theorem 3 shows that û ∈ Ĉ, i.e. that û ∈ Ĉ n for some n ∈ I0L which depends

on β. We will show that any u ∈ Ĉ n, n ̸= k, cannot be global minimizer of Fβ for β ∈ (βk, βk−1).

Let û ∈ Ĉ k. A necessary condition for Fβ to have a global minimum at u ∈ Ĉ n, n ̸= k is that

Fβ(u)−Fβ(û) 6 0 for some u ∈

(
k∪

n=1

Ĉ k−n

) ∪ (
L−k∪
n=1

Ĉ k+n

)
. (3.12)

• Using (3.8), the necessary condition (3.12) for u ∈
∪k

n=1 Ĉ k−n reads as

u ∈ Ĉ k−n n ∈ Ik ⇒ Fβ(u)−Fβ(û) =
n∑

m=1

(βk−m − β) 6 0 .

According to this inequality, combined with (3.7), β must fulfill

β > 1

n

n∑
m=1

βk−m > βk−1 . (3.13)

• From (3.10), the necessary condition (3.12) for u ∈
∪L−k

n=1 Ĉ k+n is equivalent to

u ∈ Ĉ k+n n ∈ IL−k ⇒ Fβ(u)−Fβ(û) =
n−1∑
m=0

(β − βk+m) 6 0 .
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This inequality, combined with (3.7), show that β must satisfy

β 6 1

n

n−1∑
m=0

βk+m 6 βk . (3.14)

Combining (3.14) and (3.13) yields βk−1 6 β 6 βk which contradicts (3.7). �

Let us slightly modify the condition in (3.7):

Lemma 10 Let H1 hold and let k ∈ IL−1. For p ∈ {0, · · · , k− 1} assume that

b k−p−1 :=
k−p

min
n=1

βk−p−n > βk−p−1 > βk−p = · · · = βk > βk+1 >
L−k
max
n=1

βk+n =: b k+1 . (3.15)

(i) If β = βk then F̂β =
k+1∪

n=k−p

Ĉ n where Ĉ n∩Ĉm = ∅ for any m ̸= n obeying (m, n) ∈ {k−p · · · , k+1}.

(ii) If p > 1 then Fβ can have a global minimum at û ∈ Ĉ k only if β = βk.

Proof. Let u ∈ Ĉ k−n for n ∈ Ik. By (3.8) and (3.15) we have Fβ(u)−Fβ(û) = 0 for any n ∈ {1, · · · , p},

while Fβ(u) − Fβ(û) > 0 for any n ∈ {p + 1, · · · , k− p}. Let now u ∈ Ĉ k+n for n ∈ IL−k. From (3.10)

and (3.15), Fβ(u) − Fβ(û) = 0 for n = 1 whereas Fβ(u) − Fβ(û) > 0 for any n ∈ {2, · · · , L − k}. Hence

Fβ has a global minimizer for any û ∈ Ĉ k−p ∪ · · · ∪ Ĉ k+1. The rest of claim (i) follows from Theorem 3.

By Lemma 9, û ∈ Ĉ k can satisfy û ∈ F̂β only if βk 6 β 6 βk−1. Since p > 1, we find β = βk = βk−1. �

According to the facts on βk delivered in section 4, the case βk = βk−1 should be quite exceptional.

Another possibility is that Fβ can never have global minimizers with a desired ℓ0-norm.

Lemma 11 Let H1 be satisfied. Suppose that there are k ∈ I0L−1 and m ∈ I0L−k−1 such that

n ∈ {0, · · · ,m} ⇒ fk(n) :=
1

n + 1

n∑
p=0

βk−1+p < βk+n . (3.16)

Then any û ∈ F̂ satisfies û ∈ Ĉ \
m∪

n=0

Ĉ k+n and ∥û∥0 ̸∈ {k, · · · , k + m}.

Proof. Observe that by (3.6),

fk(n) =
θd(k− 1)− θd(k + n)

n + 1
.

The proof is by contradiction. For n 6 m, assume that Fβ has a global minimizer û satisfying û ∈ Ĉ k+n.

Let u ∈ Ĉ k+n+1 and let ũ ∈ Ĉ k−1. Then the necessary conditions below must be satisfied:

Fβ(u)−Fβ(û) = θd(k + n + 1)− θd(k + n) + β = −βk+n + β > 0 ,

Fβ(ũ)−Fβ(û) = θd(k− 1)− θd(k + n)− (n + 1)β = (n + 1)fk(n)− (n + 1)β > 0 .

One obtains βk+n 6 β 6 fk(n), which contradicts (3.16). This proves the lemma. �

Since β0 > 0 and βL = 0 (Remark 7), if (3.16) occurs, the sequence {βk} defined in (3.1) oscillates.

14



3.3 Necessary and sufficient conditions for quasi-equivalernce

Theorem 6 Let H1 hold and L be defined according to (2.14). Then

k ∈ I0L ⇒
[
û ∈ Ĉ k ⇐⇒ û ∈ F̂β for β ∈ (βk, βk−1)

]
(3.17)

if and only if

β0 > β1 > · · · > βL−1 > βL . (3.18)

Proof. Let (3.18) hold. Then the condition on βk given in (3.7), Theorem 5 is satisfied for any k.

Applying Theorem 5 for any k ∈ I0L proves (3.17).

From Remark 7, see (3.3), βL−1 > βL = 0 in all cases. To see that (3.18) is necessary for all other

values of k, we argue by contradiction. Suppose there is k ∈ IL−1 so that βk−1 6 βk.

• The case βk−1 < βk corresponds to m = 0 in (3.16), Lemma 11. So (3.17) fails by this lemma.

• Let βk−1 = βk. Using Lemma 10 for p = 1 yields F̂β = Ĉ k−1 ∪ Ĉ k ∪ Ĉ k+1 with Ĉ k−1 ∩ Ĉ k =

Ĉ k ∩ Ĉ k+1 = ∅. So (3.17) fails. �

Naturally, the boundary cases β = βk for k ∈ IL−1 arise the curiosity.

Proposition 2 Let H1 hold. Assume that (3.18) is satisfied. Let k ∈ IL−1. Then

β = βk ⇒ F̂β = Ĉ k ∪ Ĉ k+1 where Ĉ k ∩ Ĉ k+1 = ∅ .

Proof. Applying Lemma 10 for p = 0 proves the proposition. �

Under the condition in (3.18), we can say that problems (Ck) and (Rβ) are quasi-equivalent: we

have a partition R+ =

L∪
k=0

(βk−1, βk] so that

• For every k ∈ I0L, problems (Ck) and (Rβ) for β ∈ (βk−1, βk) have exactly the same optimal set;

• For each β ∈ {βk}L−1
k=0 there is no equivalence since Proposition 2 holds.

3.4 Partial quasi-equivalence

Remark 8 The condition in (3.18) reads as

βk−1 > βk ∀ k ∈ IL−1 ⇔ θd(k) <
1

2
(θd(k− 1) + θd(k + 1)) ∀ k ∈ IL−1 .

Its realization seems unstable, relying on A or d; see Lemmas 10 and 11, and the tests in section 5.

Theorem 7 Let H1 hold. For k > 1 and m ∈ {k + 2, · · · , L}, assume that the following holds:

(a) If u ∈
m−1∪

n=k+1

Ĉ n then for any β > 0, u is not a global minimizer of Fβ;
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(b) The critical parameter value βk,m given by

βk,m :=
θd(k)− θd(m)

m− k
(3.19)

satisfies

b k−1 :=
k

min
n=1

βk−n > βk−1 > βk,m > βm > L−m
max
n=0

βm+n =: bm . (3.20)

Then one has the following equivalences:

(i) û ∈ Ĉm ⇐⇒ û is a global minimizer of Fβ for β ∈ (βm, βk,m);

(ii) û ∈ Ĉ k ⇐⇒ û is a global minimizer of Fβ for β ∈ (βk,m, βk−1).

Proof. We present only the proof of (i), since (ii) is proven likewise. It is split in two parts.

[ ⇒ ] Let û ∈ Ĉm and let β ∈ (βm, βk,m).

• Let u ∈ Ĉ k−n for n > 0. From (3.19) it follows that

n = 0 ⇒ Fβ(u)−Fβ(û) = θd(k)− θd(m)− (m− k)β

= (m− k)(βk,m − β) (3.21)[
by (3.20)

]
> 0 . (3.22)

Consider next that n > 1.

∀ n ∈ Ik ⇒ Fβ(u)−Fβ(û) = θd(k− n)− θd(m)− (m− k + n)β

= θd(k− n)− θd(k) + θd(k)− θd(m)− (m− k)β − nβ[
by (3.19) or by (3.6)

]
= (m− k)(βk,m − β) + θd(k− n)− θd(k)− nβ[

by (3.8)
]

= (m− k)(βk,m − β) +
n∑

p=1

(βk−p − β) (3.23)[
by (3.20)

]
> 0 . (3.24)

• Let u ∈ Ĉm+n for n > 1.

∀ n ∈ IL−m ⇒ Fβ(u)−Fβ(û) = θd(m + n)− θd(m) + nβ[
by (3.10) or by (3.6)

]
=

n−1∑
p=0

(β − βm+p) (3.25)[
by (3.20)

]
> 0 . (3.26)

From (3.22), (3.24) and (3.26), û ∈ F̂β according to Theorem 4.

[⇐ ] Let β ∈ (βm, βk,m) and let û ∈ Ĉm. By Theorem 3 and assumption (a), F̂ ⊂ Ĉ \
∪m−1

n=k+1 Ĉ n.

Suppose that Fβ has a global minimum at u ∈ Ĉ p for p ̸= m. Then necessarily

Fβ(u)−Fβ(û) 6 0 for some u ∈

(
k∪

n=0

Ĉ k−n

) ∪ (
L−m∪
n=1

Ĉm+n

)
. (3.27)
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• We examine (3.27) for u ∈
∪k

n=0 Ĉ k−n. Combining (3.21) and (3.27) yields

u ∈ Ĉ k ⇒ Fβ(u)−Fβ(û) = (m− k)(βk,m − β) 6 0 .

Then β must satisfy

β > βk,m . (3.28)

Further, using (3.23) and (3.27) lead to

u ∈ Ĉ k−n n ∈ Ik ⇒ Fβ(u)−Fβ(û) = (m− k)βk,m +
n∑

p=1

βk−p − (m− k + n)β 6 0 .

This inequality, combined with (3.20) shows that

β > 1

m− k + n

(m− k)βk,m +
n∑

p=1

βk−p

 >
(m− k)βk,m + nβk−1

m− k + n
> βk,m . (3.29)

• Using (3.25), the condition (3.27) for u ∈
∪L−m

n=1 Ĉm+n is equivalent to

u ∈ Ĉm+n n ∈ IL−m ⇒ Fβ(u)−Fβ(û) = nβ −
n−1∑
p=0

βm+p 6 0 .

By this inequality and (3.20), β must fulfill

β 6 1

n

n−1∑
p=0

βm+p 6 βm . (3.30)

Combining the results in (3.28), (3.29) and (3.30) with assumption (a) shows that Fβ for β ∈ (βm, βk,m)

cannot have a global minimum at u ∈ Ĉ p if p ∈ {0, · · · , k} ∪ {m+ 1, · · · , L}. �

Remark 9 Likewise Remark 6, for β = βk,m one has Fβ(û) = Fβ(ũ), so if (a)-(b) hold, one finds

F̂β = Ĉ k ∪ Ĉm with Ĉ k ∩ Ĉm = ∅; see Corollary 2 and Proposition 2.

Example 2 Let βk−1 < βk for k ∈ IL−1. Then by Lemma 11 for any β > 0, any global minimizer û of

Fβ obeys û ̸∈ Ĉ k and hence ∥û∥0 ̸= k by Theorem 1. Assume that

k
min
n=2

βk−n > βk−2 > βk−1,k+1 :=
θd(k− 1)− θd(k + 1)

2
> βk+1 >

L−k
max
n=1

βk+n . (3.31)

Here βk−1,k+1 is calculated according to (3.19). Theorems 7 and 1 show that

û is a global minimizer of Fβ for β ∈ (βk+1, βk−1,k+1) ⇔ û ∈ Ĉ k+1 and ∥û∥0 = k + 1 ,

ũ is a global minimizer of Fβ for β ∈ (βk−1,k+1, βk−2) ⇔ ũ ∈ Ĉ k−1 and ∥ũ∥0 = k− 1 .

For β = βk−1,k+1 one has F̂β = (Ck−1) ∪ (Ck+1).
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4 On the critical parameter values

From Theorem 1 and Theorem 3, any optimal solution û of problems (Rβ) and (Ck) in (1.2) and (2.4)

is a solutions of problem (Pω) for ω := σ(û) ∈ Ω. Then û is of the form

û = Zω(ûω) where ûω =
(
AT

ωAω

)−1
AT

ωd . (4.1)

Remark 10 The optimal solutions û of (Rβ) and (Ck) should in general be sensitive to noise since

their non-null part ûσ(û) minimizes a non-regularized least-squares objective relying on Aσ(û) and d.

With any ω ∈ Ω we associate a matrix Bω whose columns are an orthonormal basis for Aω, that is

BT
ωBω = I ♯ ω and range(Bω) = range(Aω) . (4.2)

The orthogonal projector Πω onto the subspace spanned by the columns of Aω reads as

Πω = BωB
T
ω . (4.3)

For ω ∈ Ω, one has Πω = Aω

(
AT

ωAω

)−1
AT

ω ; see, e.g., [28]. Then

û ∈ Ĉ k for k ∈ I0L and σ̂ := σ(û) ⇒ θd(k) = ∥(I −Πσ̂)d∥2 . (4.4)

Using the definition of Ωk in (2.19), we introduce the subsets of RM given below:

Ek :=
∪

ω∈Ωk

ker
(
AT

ω

)
and Gk :=

∪
ω∈Ωk

range (Aω) . (4.5)

Clearly, GM = RM and EM = ∅ by H1.

Lemma 12 Let H1 hold and d ̸= 0.

(i) Let k ∈ {2, · · · ,M− 1}. Then

d ∈ RM \Ek ⇒ θd(k− 1) > θd(k) .

(ii) Let k ∈ {1, · · · ,M− 1}. Then

d ∈ RM \Gk ⇔ θd(k) > 0 .

Proof. (i) Let û ∈ Ĉ k−1. Set σ̂ := σ(û). From Theorem 1 σ̂ ∈ Ωk−1 and then

∃ n ∈ IN \ σ̂ such that ω := σ̂ ∪ { n} ∈ Ωk .

Obviously, θd(k) 6 T (k) := ∥(I −Πω)d∥2 . Using the notation in (4.2), it follows that (see, e.g. [24])

∃ bk ∈ range(Aω) such that Bω = [Bσ̂ | bk] .
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By (4.3), one has Πω = Bσ̂B
T
σ̂ + bkb

T
k . Therefore

θd(k− 1)− θd(k) > θd(k− 1)− T (k) = dT (Πω −Πσ̂) d = ⟨bk, d⟩2 .

From d ∈ RM \Ek we have d ̸∈ (range(Aω))
⊥. Hence ⟨bk, d⟩2 > 0.

(ii) Let d ∈ RM \Gk and let û ∈ Ĉ k. Set σ̂ := σ(û). Form Theorem 1, σ̂ ∈ Ωk. Since (I − Πσ̂) is the

orthogonal projector onto (range(Aσ̂))
⊥, having d ̸∈ range(Aω) leads to

θd(k) = ∥Aû− d∥2 = ∥(I −Πσ̂)d∥2 > 0 .

Conversely, let θd(k) > 0. By Theorem 1, the support of any optimal solution of (Ck) belongs to Ωk.

To get a contradiction, suppose that d ∈ Gk: then there is ω ∈ Ωk such that d ∈ range(Aω) and for

uω =
(
AT

ωAω

)−1
AT

ωd one has ∥Aωuω − d∥2 = ∥(I −Πω)d∥2 = 0. �

Observe that the condition on d in Lemma 12(i) is a strong sufficient condition.

Proposition 3 Let H1 hold and d ∈ RM \ (E2 ∪GL−1). Then the critical parameters βk in (3.1) obey

βk > 0 ∀ k ∈ I0L−1 and βk = 0 ∀ k > L .

Proof. Let k ∈ IL−1. Let ω ∈ Ωk, i.e., rank(Aω) = k. Than for any ω ⊂ ω such that ♯ ω = k − 1 one

has ω ∈ Ωk−1. Since range(Aω) ⊂ range(Aω), one has
(
RM \Gk−1

)
%
(
RM \Gk

)
by (4.5). Hence

d ∈ RM \GL−1 ⇒ θd(k) > 0 ∀ k ∈ I0L−1

and θd(L) = 0 by (2.14). From ker(AT
ω ) ⊂ ker(AT

ω ), one has
(
RM \Ek

)
%
(
RM \Ek−1

)
; see (4.5). This,

combined with Lemma 12(i) and the definition of βk in (3.1) shows that

d ∈ RM \E2 ⇒ βk−1 = θd(k− 1)− θd(k) > 0 ∀ k ∈ {2, · · · , L} .

And β0 > 0 by Remark 7; see (3.2). �

Remark 11 The subset E2 is a finite union of vector subspaces of dimension M− 2. Likewise, GL−1 is

a finite union of vector subspaces of dimension L− 1 6 M− 1. Hence E2 ∪GL−1 is closed in RM and its

Lebesgue measure in RM is null. So data located in E2 ∪ GL−1 are highly exceptional. Conversely,

RM \ (E2 ∪GL−1) is open and dense in RM, so we usually have data living in this subset.

5 Numerical tests

Here we summarize the outcome of a series of experiments corresponding to different matricesA ∈ RM×N

for (M,N) ∈
{
(5, 10), (10, 20)

}
, original vectors uo ∈ RN and data samples d = Auo(+noise). All

results were calculated using an exhaustive combinatorial search. In all experiments we carried out,

the following facts were observed:

19



• All claims concerning (Ck) (Lemma 3, Theorem 1, Proposition 1, Theorem 3) were confirmed.

• For noisy data every time we had L = M; see Remark 2.

• We always had βk > 0, ∀ k ∈ I0L−1 and βL = 0, which is the general case by Proposition 3.

• For any original uo there are many A and d = Auo(+noise), and for any A there are many d so that

the critical parameter sequence {βk} defined in (3.1) is either strictly decreasing or oscillating. In all

cases the conditions for partial or quasi-equivalence (Theorems 5, 6 and 7) were corroborated.

• The numerical instabilities, evoked in Remark 10, were always present.

Next we present in detail three experiments for (M,N) = (5, 10) where

A =


13.94 16.36 4.88 −3.09 −15.42 1.31 −3.18 −12.13 −4.26 −10.09
7.06 −6.48 −9.07 −8.37 −2.72 −17.42 −5.83 −3.81 3.87 −1.80
11.63 6.73 −4.75 −6.28 3.42 6.68 −1.64 13.23 9.03 −20.27
−7.54 12.74 −6.66 5.01 4.84 8.98 −9.35 3.85 7.18 4.09
3.22 −10.40 −5.02 16.70 9.53 −5.49 11.88 −3.62 17.36 7.34


uo =

(
0 4 0 0 0 9 0 0 3 0

)T
. (5.1)

The entries of A follow a nearly normal distribution with variance 10. One has rank(A) = M = 5, so

H1 holds. Problem (CM) is unconstrained with ♯ΩM = 252 optimal solutions; none of them is shown.

Noise-free data Data is given by

d = Auo =
(
64.45 −171.09 114.13 153.32 −38.93

)T
. (5.2)

Since data are noise-free and ∥uo∥0 = 3, it is clear that û := u0 is an optimal solution to problems

Table 1: The optimal set of (Ck) for k ∈ I03 where d is given in (5.2). For k = 3, one has exact recovery,
û = uo; see (5.1). The values of βk and β1,3 are given in (5.3) and (5.4), respectively.

k Optimal solution of (Ck) Global min. of Fβ θd(k)

3
2
1
0

0 4 0 0 0 9 0 0 3 0
0 3.25 0 0 0 9.29 0 0 0 0
0 0 0 0 0 11.76 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (0, β1,3)

no

β ∈ (β1,3, β0)

β > β0

0
3968
7745

7.147× 104

(C3), (C4) and (C5) with θd(3) = θd(4) = θd(5) = 0. So L = 3; see (2.14). The other optimal values are

seen in Table 1. By Theorem 3, any û ∈ F̂ obeys ∥û∥0 6 3. The critical parameters {βk} in (3.1) are

β0 = 6.373× 104, β1 = 3777, β2 = 3968, β3 = 0 . (5.3)

Since β2 > β1, Lemma 11 for m = 0 tells us that any û ∈ F̂ obeys û ̸∈ Ĉ3 and ∥û∥0 ̸= 2. We compute

β1,3 according to (3.19) and verify that (3.20) is satisfied:

β0 > β1,3 :=
1

2
(θd(1)− θd(3)) = 3872.46 > β3 . (5.4)

By Theorem 7, Ĉ3 =
{
F̂β : β ∈ (β3, β1,3)

}
, as well as Ĉ1 =

{
F̂β : β ∈ (β1,3, β0)

}
.
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Noisy data 1. Data are corrupted with nearly normal, centered, i.i.d. noise and SNR= 32.32 dB:

d =
(
69.13 −171.95 113.74 150.27 −36.09

)T
. (5.5)

The optimal solutions are given in Table 2. Obviously, L = M = 5. The critical values {βk} read

Table 2: The optimal value and solution of (Ck) for k ∈ I4 where d is given in (5.5). The values of βk
and β1,3 are given in (5.6) and (5.7), respectively.

k θd(k) Optimal solution of (Ck) Global min. of Fβ
4
3
2
1
0

0.0681
36.31
4039
8012

7.117× 104

0 4.40 0 0 0 8.71 0.54 0 2.95 0
0 4.09 0 0 0 8.88 0 0 3.01 0
0 3.33 0 0 0 9.17 0 0 0 0
0 0 0 0 0 11.71 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)

β ∈ (β3, β1,3)

no

β ∈ (β1,3, β0)

β > β0

β0 = 6.315× 104 β1 = 3973 β2 = 4003 β3 = 36.25 β4 = 0.0681 β5 = 0 . (5.6)

On has β2 > β1; by Lemma 11 for m = 0, any û ∈ F̂ verifies û ̸∈ Ĉ2 and ∥û∥0 ̸= 2. Using Theorem 7,

β0 > β1,3 :=
1

2
(θd(1)− θd(3)) = 3987.6848 > β3 > β4 > β5 , (5.7)

so Ĉ3 =
{
F̂β : β ∈ (β3, β1,3)

}
and Ĉ1 =

{
F̂β : β ∈ (β1,3, β0)

}
. Further, Ĉ5 =

{
F̂β : β ∈ (β4, 0)

}
.

Noisy data 2. The noise is nearly normal, centered, i.i.d., SNR= 25.74 dB:

d =
(
66.67 −169.08 101.56 149.38 −39.50

)T
. (5.8)

The critical values {βk} introduced in (3.1) read as

Table 3: The optimal values and solutions of (Ck) for k ∈ I4 where d is given in (5.8). Here {βk} is
strictly decreasing, see (5.9), so (Rβ) and (Ck) are quasi-equivalent.

k θd(k) Optimal solution of (Ck) Global min. of Fβ
4
3
2
1
0

0.02588
72.76
3110
6935

6.7× 104

0 8.54 0 0 4.49 4.90 2.73 0 0 0
0 3.93 0 0 0 8.70 0 0 2.63 0
0 3.27 0 0 0 8.95 0 0 0 0
0 0 0 0 0 11.44 0 0 0 0
0 0 0 0 0 0 0 0 0 0

β ∈ (β4, β3)
β ∈ (β3, β2)
β ∈ (β2, β1)
β ∈ (β1, β0)

β > β0

β0 = 6.029× 104 β1 = 3825 β2 = 3037 β3 = 72.73 β4 = 0.02588 β5 = 0 . (5.9)

The sequence {βk} is strictly decreasing, so (Rβ) and (Ck) are quasi-equivalent (see Theorem 6).
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6 Conclusions and future work

The obtention of a complete description of the relationship between the optimal solutions of nonconvex

problems is in general unapparent task. We have fully clarified the relationship between the optimal

solutions of least-squares regularized by ∥ · ∥0 via a parameter β > 0 (problem (Rβ)) and constrained

by k-sparsity (problem (Ck)). New facts on the optimal solutions of (Ck) and (Rβ) were given. They

can help the refinement or the conception of algorithms. We exhibited critical values {βk} so that (Ck)

and (Rβ) for β ∈ (βk, βk−1) share exactly the same optimal set. But full equivalence (in a Lagrangian

sense, as for convex problems) is impossible because for these critical values there is no equivalence.

Further, there can be subsets of integers {kn} so that for any n, any optimal solution û of (Rβ) for any

β > 0 fulfills ∥û∥0 ̸= kn, whereas any optimal solution ũ of Ckn obeys ∥ũ∥0 = kn. All these {βk} and

{kn} are sensitive to A or to d. Our comparative results can clarify a proper choice between models

(Rβ) and (Ck) in applications. Extensions to penalties of the form ∥Du∥0 for D a linear operator, or to

low rank matrix recovery, seem important.
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