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Boundary Element Method for Transient Viscoelastic Flow: 

The MPTT Model@ 

BENYEBKA BOU-SAID (Member, STLE) and PASCAL EHRET 
Institut National des Sciences Appliquees 
Laboratoire de Mecanique des Contacts 

69621 Villeurbanne, Cedex, France 

This /m/1er deals with the modelling of viscoelastic flows in lran­

sil!nl regimes using the Modified Phan Tien and Tanner (MPTJ) 

model. This model is the most recent one which can predict stress 

ovmJhoot in unsteady shear flow and is based on the description of 

the liquid microstmcture rather than empirical and mathematical 

d1melo/nnenls. Here, the analysis of the squeeze film between parallel 

/1/ates is f1resented. It is an alternative in quantifying and under­

standing the two main factors which may enhance the carrying ca­

/mcity (inertia effect and viscoelastic behavior) situation which can 

occu,; for instance, in the case of overloading in journal bearings. 

A bo1111druy element method is used here to model such complex flow. 

The main factors have been extracted and the restrictions due lo a 

rough estimate of the lubricants flow are shown. 

KEY WORDS 
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INTRODUCTION 

Modern lubricants generally incorporate a range of addi­
tives including soluble long-chain polymers. These are called 
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NOMENCLATURE 

11 parameter of the MPTT model 
L length of the contact 
/,//,0 ratio of length of the contact to the minimum film 

thickness 
/ time 
I r(S) trace of matrix S 
U; velocity component 

viscosity index (VI) improvers and were originally introduced 
to limit the drop in viscosity of the base oils with temperature. 
However, due to these polymers, the oil behavior becomes 
non-Newtonian. The most widely rec'.ognized influence is the 
shear-thinning effect which results in a decrease of viscosity 
at high shear rate 105-108 s- 1 (J). This effect on its own 
should reduce the magnitude of the drag force and, in ad­
dition, the load. However, several experiments in dynamically 
and steadily loaded bearings (2)-( 4) have shown that the use 
of additive oils not only reduces the friction coefficient but 
also increases the carrying capacity compared to Newtonian 
oils. 

Recent correlations between the rheological parameters of 
the lubricant and the minimum film thickness, in an oper­
ating bearing, have further supported the argument of the 
significance of viscoelastic effects i11 improving characteristics 
(J), (5). Several studies (J), (6)-(8) address the effect of 
the extensional stresses due to severe leakage in the case of 
a short bearing. Such stresse,s would give additional normal 
stresses on the shaft. However, Lodge ( 9) notes that the mea­
surement of the first normal stress difference is not high 
enough, to predict an ad_ditional viscoelastic contribution 
comparable to the viscous contribution. Other arguments 
have also been put forward, such as those of Bouldin and 
Berker (JO), who suspect t�at the cavitation phenomena may 
be influential. There is no overall consensus to explain the 
enhancement of the carrying capacity and the decrease in 
friction coefficient due to a lack of clear theoretical justifi­
cation. However, the theoretical basis reveals several major 
difficulties in defining the response of the fluid: 

v,,
= squeeze velocity of the upper surtace 

W; Weissemberg number 
X; coordinate in the i direction 
V gradient operator 
E parameter of the MPTT model 
r parameter of the MPIT model 
}\ relaxation time 
B;j 

Kronecker symbol 
t parameter of the MPTT model 
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l. The choice of a correct constitutive law.
2. The evaluation of the inertia terms.
3. The search for a proper boundary condition which will

take into account cavitation with a viscoelastic fluid.
4. The analysis of the effect of temperature and pressure

on the viscosity.
5. The resolution of a time-dependent problem by consid­

ering these previous points.
Furthermore, because the stresses are a priori unknown, it

becomes difficult to simplify the equations in the same way
as in the lubrication theory (J J) and to solve the flow in a
complex journal bearing directly. In order to simplify this
analysis and to keep a realistic transient viscoelastic problem,
consideration or the squeeze film between parallel plates pre­
sents one alternative in quantifying and in understanding the
two main factors which may enhance the load: the inertia
e!Tcct and the viscoelastic behavior. This flow may be re­
garded as the main component in lubrication mechanisms
where the load, or the velocities, suddenly change as a func­
tion of time. Such conditions arc present in crankshaft jour­
nal bearings or occur when the fracture or a component gen­
erates a sudden overload, e.g., the loss of a blade from a
turbine shaft.

From a numerical point of view, the research of a global
method in order to solve problems involving viscoelastic flows
leads to the elimination of the finite difference because it is
specific for only one single rheological law and only one sin­
gle domain of resolmion. Nevertheless, an alternative is pro­
posed with the integral methods such as the finite clement
and boundary element methods which give more possibilities
to solve these kinds of problems. During the past IO years, a
lot of problems related to viscoelastic flows have been solved
using the finite element method as it offers specific attractive
advantages from the scientific and industrial points of view.
Nevertheless, this method presents some deficiencies when
strong nonlinearities appear from the rheological laws. A
good compromise between the complexity of the resolution
and the general aspect of the problem can be given by the
boundary clement method formulated by Bush et al. (/ 2).
The non-linearities here are averaged on the entire domain
of resolution and are treated as pseudo-forces. Furthermore
the numerous works in Refs. ( 12)-( / 9) have shown the
strength of the numerical scheme which comes essentially
from the continuum equation, which is implicitly taken into
account, and the uncoupling of the equilibrium equations
from the constitutive equation.

INTEGRAL FORMULATION 

Basic Equations 

The authors consider here the case of an isothermal lam­
inar flow of a viscoelastic incompressible fluid in a domain
n of boundary <I). In a Galilean system of axis, using Cartesian
coordinates, the equilib1·ium equations and the equation of
continuity read:

i)"f.. 
____!_}_ 

ax, 
+ p( f; - n;) 0 rn 

iJU;
ax; 0 [2] 

where f; are the components of the volumic forces, a; are the
· U iJU; 'J' h f I Iconvecuve terms k-, ij are t e components o t 1c tota 

oxk 

stress tensor, and p is the specific mass.
The fluid is a viscoelastic liquid. Only one mode of relax­

ation is considered in this numerical approach. The rheolog­
ical law is of the Maxwell type. It can be described with the
following general differential equation:

[3]

where S;1 arc the components of the non-linear stress tensor,
R;j arc the components of the tensor which characterizes the
behavior law, D;j are the components of the rate of defor­
mation tensor D = 0.5(L + //) and/, = V uT the transposed
velocity vector gradient, // is an arbitrary pressure, 'Y\., is the
viscosity of the solvent, and A is t.he relaxation time of the
polymer.

0JS;J The differential term � corresponds to an ol�jective de-
rivative of the extra-stress tensor to the time.

Bush et al. have shown (/ 2) that it is possible and prefer­
able to decompose the total stress tensor T;.i in a linear part
and in a second non-linear part ,�i

.i 
during the numerical

treatment. Crochet ct al. also postulate this decomposition
because of the addition of a viscous term in the equilibrium
equations which reduces the numerical instabilities (20).

Therefore, E;.i = S;1 - 2TJ/>;J, where T],, = Tl., + 'Ylf> is the
total viscosity and 'Y\p the viscosity at shear rate equals to zero
for the viscoelastic model. Then, the ratio of viscosities J3 can
be introduced:

13 =

Modified Phan-Tien and Tanner Model (MPTT) 

Reviewing numerous publications (21) shows that both
shear-thinning and other viscoelastic effects where stress over­
shoot appears must be taken into account in transient lubri­
cation prohlems. One of the most recent models which can
predict stress overshoot in 11nsteady shear flow in contrast
with many other works is the !\·!PTT model. As rheological
studies have progressed over the years, they have become in­
creasingly based on the description of the liquid micro­
structure rather than the empirical and mathematical devel­
opment�. Several interpretations have been given to explain
the stress overshoot phenomena ( 22):

• An important resistance to the macromolecule's uncur­
ling which leads to a stretching movement rather than
a global rotation in the lubricant.

• A perturbation of the flow of the lubricant induced by
the macrnmolecules's movement.
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The M PTT model is based on the idea of the effective 
veloc i ty gradient .  It comes from the polymer's network the­
ory. Neverthe less, th is model presents some restrictions due 
to a rough estimate of the lubrican t 's flow ( 22 ) . 

I n  the case of an M PTf model the differential term : � 
can be wri tten as fo l l ows: 

'!l! S
'!l! t

as 

at + u"v.S  - !£.S - S!£1 [4] 

where !£ = L 
expressed as: 

�D. The R ;J tensor from Eq . [3] can be

wi th :  

Also, 

h ( t r ( S) ) = cxp (E� lr (S) ) TJp 

[5]  

[6] 

[ 7] 

where � 1 E 1 n and r arc the parameters of the MPTT model . 

Boundary Conditions 

The external boundary of the domain of the resolution can 
be d ivided i nt o  two parts, as Fig. I shows. 

On 0 the boundary conditions can be written in terms of 
imposed ve locities U; : 

On the second pan 02 , the authors applied a strain vector i ; :  

where n is the  normal outward to  the  surface . 

n 

Fig. 1-Boundary conditions. 

➔ q
U = U

Formulation of the Problem-The Weighted 

Residual Method 

The problem represented by Eqs. [ I ]-(3 ]  can be substi­
tuted for by an equivalent in tegral formulation wh ich can be 
obtained from the weighted residual method. This method 
consists of the evaluation of the U, T and p functions which 
verify the necessary conditions of derivation and in tegration 
on the domain of resolution n and i ts boundary 4> so that 
the in tegral equation defined on 4> and n can be 
determined: 

f (a T;J + p ( f; - a; ) ) U;* d!1 + f a U;ffl' d!1n axj n ax; 
[8] 

= f ( U; - U; ) { t d0 + f ( t ;  - t ; ) U;* d0 
0, 02 

where U* and t* arc the vectorial weighted functions, and 
fr' i s  the scalar weighted function defined on the domain n
and i ts boundary 4>. 

Equation [8] presents three types of in tegrals: 
• The fi rst one on the left-hand side represen ts the

weigh ted residual of the equi l ibrium equations on the
domain n wi th the weigh ted vector function U* .

• The second in tegral corresponds  to the weighted resid­
ual of the equation of continu i ty on the domain !1 with
the weighted scalar function fr .

• The righ t-hand side of Eq. [8 ]  weighs on the boundary
4> the errors of approximation between the approximate
solutions and the boundary conditions wi th the
weighted vectorial functions U* and t* .

The following relations result : 
t f T/j n1 the strain vector

T'i'J - jfl' &;1 + 2TJ ,, D'i'J the stress tensor
l (a U f a u --1<

)Df1 = - -- + --
1 the rate of deformation tensor 2 axj ax; 

In tegrating by parts leads to the fol lowing equation : 
f a u r " f a u; " f * "- T;J-- du - -Ji"du + p ( f; - a; ) U ; du n axj n ax; l l  [9]

= f ( U· - U) t* d0 - J t · U*d0 - f t · U*d0
l t l l I I I 

0, 0 ,  0 2 

After some man ipulations on the two first in tegrals on the 
right-hand side, one obtains the following reciprocity princ ip le :  

f a u* f au T .-' d!1 - -'jfl'df! !1 I) axj nax i 
f a u f a u* f a u* T;* -' df! - -1-J1d!1 + 1:· ; .-1- df! n J axj ll ax; ll J axj 

In tegrating by parts again and in troducing the resu l t  in  Eq . [8] . one finally obtai ns the fol lowing equation :  
3



I 
J au* 

- UdO - -' pdO
fl 0Xj I {l OX; 

I p ( f;  - a,) U;*<iO 
ll 

[ l l ]

A particular solution U* to supress the first term of the 
left-hand side of Eq. [ 1 1 ) must now he found. Then, the un­
knowns U and t only appear in the boundary in tegrals. This 
can he done by finding the fundamental solution . Thus U*, 
t* and P* have to satisfy the following equations: 

i!T;"j(P,Q) 
UXj 

0 

[ 1 2] 

[ 1 3] 

The index k indicates the direction of application of the 
concen trated force. This problem involves: 

P: source point, point  of the domain where the concen­trated force is applied. 
Q: description point, point of the domain where the ve­

locities and the stresses induced by the concentrated 
force are evaluated. 

.a.: the delta dirac function: 
.a.(P,Q)  = 0 i f  P ;tf Q 
.a.(P,Q)  = oo if P = Q 

The analytical solution of this particular flow is well de­
fined U* is usually known as Stokeslet. When the flow is bi­
dimensional and if r is the distance between the source poin t  
P and the description poin t  Q,  the velocity Cartesian com­
ponents of the Stokeslet are given by: 

.L. 

Fig. 2-Fundamental solution. 

➔ 
Uxy (P,Q') 

-....,_ ___ ...,..Uxx (P,Q') 

U*· = _l ( 
h; 47rTJn 

[ 14) 

In the same way, when n is the outward normal to the 
surface located at the point Q and ( Q,i1,s) a direct ortho­
normal referential, as shown in Fig. 2, the Cartesian com po• 
nents of the stress vector read: 

* I ( ar iir iir )1
,, 

- - - - - -j - 'Tr T  dn dXk iJxj 
[ l  5]

In this expression, the index j refers to the Cartesian com• 
ponent of the velocity vector or the stress vector and the 
index k to the direction of the application of the force. 
Boundary Integral Equation 

Using the equilibrium equations of the Stokeslet. [ 1 2] and substituting in Eq. [ 1 1 ] the following is obtained: 

J p (f; (Q)  - a;( Q ) ) Uk� (P, Q ) dO 
!! 

where k = 1 ,2 . 

E, ( Q) hi ' rlfl f aU* ( P Q) 
!l J <IXj 

[ 1 6] 

When the source point P and the description point Q 
are the same, the in tegrals on fl and <I> require specific treat• 
ment ( 22) . 
Numerical Procedure 

Equation [ 16] gives a relation between the velocity vector 
of an arbitrary poin t  of the domain, namely the source point 
P, and the velocity and stress vectors at the boundary. A nu­
merical approximation using a discretization fo1· the domain 
0 as well as the boundary <I> is needed (22) .  The domain 0 
is divided i n  cells and a l inear approximation for the hound• 
ary <I> is used here as shown in Fig. 3. The nonlinear terms are treated as pseudo-forces and the discretization gives the 
following non l inear system: 

[A ]{X} [B] { Y} + {b}

Fig. 3-Discretization. 

[ l 7)

• Nodes in
the domain

D Nodes at the 
boundary 
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where {X} represents the vector of unknowns, { Y} represents 
the known values of the velocity and stress vectors on the 
boundary, and {b} is a vector including the contribution of 
the nonlinear terms. An iterative scheme is needed to obtain 
the final solution. 

RESULTS 

MPTT Model-The Squeeze Film Problem 

The behavior of a viscoelastic fluid differs strongly from a 
Newtonian one (anisotropic normal stresses, stress overshoot, 
relaxation, etc.) . It is described by fluid reactions, e.g., in the 
journal bearing, which can not be only resolved in terms of 
shear stresses and hydrostatic pressure generation. Then, if 
one considers, for example, overloading the effect of normal 
stresses, the consideralion or four signi ficant regions; shown 
in Fig. 4, is required: 

I .  The shearing zone which is  located at the fi lm  forma­
tion where the Couett.e flow is predominan t. Aniso­
tropic normal stresses are generated there. 

2. The stretching region which is located in the conver­
gen t  zone near the min imum fi l m  thickness area. The
fluid particle tr.!jectories are complex and can be noted
for the h igh eccen tricities by a recirculated flow phe­
nomenon. The flow is essentially of Lhe Poiseui l le type.
The effect of stretching resistance is dominant.

3. The squeeze effect wh ich is located at the minimum
fi lm thickness region. Due to the sudden movement of
the shaft to the housing, the fluid is suddenly squeezed
between two surfaces. The inertia effects as wel l  as the
relaxation time and the stress overshoot are strongly
present.

4. The cavitation region which takes place in the divergent
zone where the pressure is less than the atmospheric one
which leads to the rupture of the lubricant flow ( 23) .

The modell ing of these problems is very com plex. Never­
theless one can concentrate their attention by looking for the 
reaction of the fluid to a sudden overload to the squeeze fi lm 

Fig. 4-Solutlons I n  a Journal bearing in the case of overloading. 

problem thus to extract the main factors. In this area the 
viscoelastic effects as well as the i nertia ones are dominant. 

Squeeze Film at Constant Speed 

The aim of this approach is to point out the influence of 
the different  parameters of the MPTT model and then to 
l i nk  the microstructural aspects to more global quantities rep-­
resented mainly by the fluid reaction.

The fluid parameters are the following: W; = 0.4, E = 0, 
13 = 0.5, L/h0 5. 

Figure 5 present.� the load evolution for five values of !;: 
I; 0 ( fl u id of Oldroyd-B type) ,  I; = 0. 1 ,  I; = 0.2, I; = 0.3, 
and I; 0.4. Except for I; = 0 the evolution of the load 
against I; presents an evolution greater than that given by a 
Newtonian fluid. This can be explained by the specific reac­
tion of the M PTT fluid which gives an overshoot reaction 
with an ampliLUde increasing with the increase of the param­
eter � (22) .  

Wei.rnnnberg Number Influence (Figure 6) 

The following parameters are used: t = 0.4, E = 0, 13 =

0.5, L/h0 5. The Weissemberg number takes the three 
fol lowing values: W; 0.04, W; = 0.2, W; = 0.4. These values 
correspond respectively to the following relaxation times for 
an upper plate speed equal to V,, = 0.2 ms- 1 and a film
thickness of ho 10-1>  m:  A 10-5 s, A = 5. 10-"  s, A =

1 0-4 s.
Contrary to an Oldryod-B flu id (� = 0) , the magnitude of 

the load increases with the Weissemberg number. At low W; 

1S.Q 

... , 

IS 

Is: 
.... 

"·' 

,u 

1a.s 

T 

0 !; •0.4 

A f; -0,3 

+ !; -0.2 

X ; •0.1 

<> !; -0. 

v Newtonian 

Fig. 5-lnfluence of l; parameter. MPTT fluid: W1 = 0.4, 13 = 0.5, e = 0, 
g 0, g 0.1 , l; 0.2, !; = 0.3, � = 0.4 . 

.,. .

.... 

,e: 
... 

o WI - OA

Is: 31.S A Wl - 0.2 

25.0 + Wl • 0.04 

12,S 
x Newtonlan 

,. 
Q.QO , ... , ... 0,12 

Fig. 6-lnfluence of Weissemberg number. MPTT Fluid: � = 0.4, 13 = 0.5, 
r o, n = 1 ,  w, = 0.04, w, = 0.2, w, = 0.4. 
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values ( W; = 0.4) the fluid reaction leads to a Newtonian 
reaction . For h igher Weissemberg n umbers ( l'\1; = 0.4) ,  the 
load evolution shows an important overshoot. The maxi mum 
is reached when I = 0. 1 2  for th is case. This phenomenon is 
less pronounced for W; = 0.2. 

Influence of 13 Parameter (Figure 7) 
The parameter 13 defines the ratio of the polymer viscosity 

and the total viscosi ty (polymer and so lvent) . When 13 ap­
proaches I the fluid contains only polymer. On the contrary,  
when 13 tends to be zero , the fl uid becomes Newtonian . The 
following parameters have been used: W; = 0.4, s = 0.4,  
E = 0, LI h0 = 5 .  13 takes the fol lowing val ues: 0 ,  0 . 1 ,  0 .3 ,  
0 .5 ,  0. 7 . 

The results show that the d ifference of the load obta ined 
with the Newtonian theory increases when the viscoelastic 
proportion in the fluid increases. 

Influence of the LI ho Ratio (Figure 8) 
Contrary to a Newtonian or an Oldroyd-B fl uid,  the di­

mension less reaction of the MPTT fl uid W( I )  depends on the 
ratio LI h0. The comparison between the resul ts obta ined for 
W; = 0.4, s = 0.4, n = I ,  E = 0, 13 = 0.5 for two va l ues or  
Llho ( five and 1 0) shows that  the load overshoot occurs rap­
idly when LI ho increases and that the magn itude of the over­
shoot becomes more important  when Llh 0 increases. These 
resu l ts can be explained by the fact that when the ratio 
LI ho i ncreases the rates of deformation become h igher. 
Then ,  the viscoelastic effects are strengthened. 

Squeeze Film at Constant Load 
The infl uence of the different parameters for the M PTT 

fluid has been shown in the case of a squeeze fi lm problem 
at constant speed. Nevertheless it  is the study of the squeeze 

lCG,O 

.... 

IS 

13: ....

.... 

O.o:, 0.0t c,c, �.,J O . IP  G.:i<: C.l! 

o 13-0.7

,. 13-0.s

� ... 13-0,3 .... 
X !3-0.1 
<> 13-0 Newtonian 

Fig. 7-lnfluence of 13 parameter. MPTT Fluid: W1 = 0.4, � = 0.4, n = 1 ,  
E = 0, l3 = 0, l3 = 0.3, l3 = 0.5, l3 = 0.7. 

o r-5.

A r-1 0.
+ Newtonian

Fig. &-Influence of Uh0 parameter. MPTT Fluid: W1 = 0.4, � = 0.4, 13 = 

0.5, n = 1 ,  E = 0, Uh0 = 5, Uh0 = 10. 

fi lm at constant load which is closest to the case of a shaft 
submi tted to a sudden load.  The authors have to add to the 
system of Eqs. [ I ] - [3 ]  a new equation which describes the 
upper plate movement. It takes the fol lowing form: 

W( l) nu id + W;mposcd [ 1 8] 

where m is the mass of the upper plate ,  h( t) re presents fi lm 
th ickness, W( l) 11 1 1 ;c1 is the fl u id  reaction , and W;mposcd rep­
resents imposed load constant in time.  

The in i tial cond i t ions are 

• At time o- the fluid is in the rest, the stress state is n i l .
• At time o + the  upper surface moves at ½1 velocity.

The dimens ionless num bers used are the fol lowing:

I .  The flu id characteristics: s, 11 , E and 13.
2 . The We issemberg number defined at the in itial time:

''<)W; = A -
h o  

3 . T h e  ratio /,/ h0 .

4. The dimension less mass: m.

2 
__ m __ '1<1 
�"\Jcw10 1 1 ia 1 1  ho 

5 . The d imension less im posed load :
H'i ,11p<>scd

H'imposcd = �•l• Newto1 1 i : u 1

�\/Newton ian  is taken as a reference. I t  represents the reac­
tion of a Newton ian fluid of TJ 11 = lls + llt, viscosity to a 
squeeze flow at the i n i tial t ime:  

\1�'\Jcwlo 1 1 ia 1 1  [ 1 9] 

A numerical scheme of expl ic it  Euler type is used to obtain 
the position, the ve locity and the acceleration of the upper 
surface at each t ime step .  

Two cases have been considered for MPTT fluid :  

l .  The imposed load conesponds to the weight of the up­
per plate. The acceleration at I = 0 is equal to  0 ,  m = 

8 1 .5 , W; mposcd = 1 . 
2. The im posed load corresponds to the weight of the up­

per  sol id .  The  reaction of the  flu id is taken equal to 
zero at I = 0 and then the acceleration is different from 
zero, 111 = J 63 , W; mposcd = 1 .  

The parameters for the MPTT model arc taken as: 13 
0 .5 , E = 0, Llho = 5 .  

Case A (Figures 9 and I 0) 
Two values of W; have been considered: W; = 0.04 and 

W; = 0.4 .  The authors take 0.4 and 0 for s values (Oldroyd­
B fl u id ) .  

The instan taneous reaction of the viscoelastic fl uid is only 
coming from the solvent. Then at t = o + contrary to a New­
tonian fl uid of the same viscosity ,  the fl uid reaction cannot 
balance the imposed load : W ( I = 0) fluid = 0.5 W;mposcd . 
This leads to an acce leration of the upper plate at I = o + 

induced by the relaxation time of the viscoelastic flu id .  
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Fig. 9-h( I), iii, = 81.5, W1mpoaod = 1 ;  MPTT Fluid. 

,OD 

I� 
ll.O 

)( 

� 
l:::E ..•

.. 

··•

•1.0 

.. '·' ,., ,., , .. ,., D.e D.7 

o E-0.4 Wl-0.4 

A E-0.4 Wl-0.04 

+ E-0. Wl-0.4 

x E-0. Wi-0.04 

o Newtonian 

0 E•0.4 Wl-0.4 

A E-0.4 Wl-0.04 
+ E-0. Wl-0.4 

x E-0. Wl-0.04 

0 Newtonian
-------

Fig. 10-Mass x Acceleration = iii = 81.5, Wimooaod = 1 ;  MPTT Fluid. 

When W; = 0.04 the plate acceleration is rapidly counter­
balanced by the fluid reaction which is slightly greater than 
the Newtonian reaction. The authors did not note a strong 
di fference between the cases � = 0 and � = 0.4 compared 
to the Newtonian one. The relaxation time is sufficient to 
a ffect the evolution of the load which stays similar to the one 
obtained with a Newtonian fluid. Distinct di fferences are ob­
tained with W; = 0.4. However, this value is I O  times greater 
than the usual relaxation times of lubricants with additives. 

Ca.1·1, 11 (FiK11 n!.1· I I and 12) 

Only the cases for � = 0.4 have been treated. For W; = 
0.04 one finds the Newton ian aspect. The case W; = 0.4 sti l l  
shows a decl ine of the plate movement. 

Squeeze Film at Constant Load Superimposed on a 

Couette Flow (Figures 1 3-1 5) 

The lower plate moves at a translation speed u1, .  This re­
sults in the drag effect present in the bearing problem. The 
upper plate has a squeeze velocity due to a venical load con­
stall l. in time. One must conside1· for this sLUdy a new dimen­
sion less number u1,; Vi, and any symmetry cannot be as­
sumccl . The domain extends to 2 L, the length of the plate.
The authors consider here /,/ ho = 5. The boundary con di�
t.ions arc then modified.

Case A has been considered. This is the case where the
di fferences between the viscoelastic behavior and the New­
tonian one arc the most prominent. The following parame­

ters fr1r the M Prr fl uid have been taken:  W; = 0.4, 13 = 0.5
and e = 0.

When � = 0 (Oldroyd-B fl uid) , the cases u1,; \1<1 = 0 and 
U

1
,; \'c, = I O  give the same results. The effect of the normal 

e ... 
I.<: .. ,

... 
D,I 

... 
D,D D,I D.J D.J ... 

f 

,., •·• a., 

o £-0.4 Wl-0.4 

A £-0.4 Wl-0.04 

+ Newtonian

Fig. 1 1-h(t), iii, = 1 63, W1m00_, = 2; MPTT Fluid. 
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II) 
II) 

I� 

20» 

10.0 

D D  

·10.0 

-20.o•-1---+-----+---+--....... --+---I 
0.0 0,1 LJ .. , ... LI LI .., 

o £-0.4 Wl-0.4 

A £-0:4 Wl-0.04 

+ Newtonian

Fig. 1 2-Mass X Acceleration = iii = 163, W,mpoNd = 2; MPTT Fluid. 

lx= O 

U = 0 V = Vp (t) 

V=VNewtonlan ------+--<._.._ __ .._ __ ..__

lxx= O  
V=VNewtonlan 
ht 

.. 
80 cells 
56 nodes on the boundary 

Fig. 13-Domaln of study and boundary conditions. 

" -+---l---+--....... -.....j,---l�-,-....---1 
.. , 0.1 I.I D.1 

o E-0.4 Uj>2 

A E-0.4 IJj>O 

+ E-0. Uj>10
X E-0. Up-0 

o Newtonian Ui>10

v Newtonian Up-0 

Fig. 14-h( I), m, = 81 .5, Wimoo_, = 1 ;  Newtonian fluid, MPTT fluid W1 

= 0.4, 13 = 0.5, n = 1 ,  E = 0, t = O and t = 0.4. 

stresses generated by the Couette flow is not significant. 
For e = 0.4 the additional shearing coming from the lower 

plate sliding movement increases the rnagniLUde of the nor-
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0 £-0.4 Up-2 
, .. 

J ,. £-0.4 Up-0 
" .. 

11 
+ £-0. Op-1 0 

• • ,. £-0. Op-o 

•.. 0 Newtonian Up-1 0 
-------

4 .  v Newtonian Up-0 

.... ... ... . .. .. , , .. .. . " .. ,

Flg. 1 5-Mass x Acceleration, m = 81 .5, Wimpoaed = 1 ;  Newtonian fluid, 
MPTT fluid W1 = 0.4, 13 = 0.5, n = 1, { = 0, { = 0 and { = 0.4. 

mal stresses. This leads to an increase of the upper plate 
decl ine .  

CONCLUSION 

A boundary e lement  method has been developed to study 
the transient viscoelastic flows. The viscoelastic terms have 
been considered as pseudo-forces. Taking into account  these 
terms requ i res a numerical approach .  The reso lution proce­
dure is based on a perturbation method of a Newtonian flow 
without inertia  terms. This  method does not al low the study 
of flows with strong non l ineari ties ( h igh Weissemberg num­
ber or Reynolds number) .  Nevertheless, with this method, 
the authors confirm the importance of the stress overshoot 
in the squeeze film problems: 

• At constant speed a larger value of the carrying capac i ty
is obtained compared to the Newtonian case .

• At constant load an important  dec l ine of the upper plate
is obtained due to the viscoe lastic effects.

These results have been obtained with a re laxation t ime 1 0  
times greater  than usual and with a �  parameter not equal to 
zero due to the existence a second difference of the normal 
stresses .  The hypothesis of such a fluid gives a solution to the 
problem of overloading on a shaft in i ts housing. Then, i t  
can decline the  shaft movement and avoid the  generation of  
important pressure bu i ld  up in the  fi lm. 

The authors note that the MPTT model cannot be used 
successful ly for h igh shear stresses in squeeze film problems. 
A microstructural analysis shows that the simplic ity of the 
MPTT model i s  obtained using restrictive hypotheses con­
cern ing the modification of the polymer networks under 
quick sol icitations. 
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