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Boundary Element Method for Transient Viscoelastic Flow:
The MPTT Model® :

BENYEBKA BOU-SAID (Member, STLE) and PASCAL EHRET
Institut National des Sciences Appliquees

Laboratoire de Mecanique des Contacts
69621 Villeurbanne, Cedex, France

This paper deals with the modelling of viscoelastic flows in tran-
sient regimes using the Modified Phan Tien and Tanner (MPTT)
model. This model is the most recent one which can predict stress
overshoot in unsteady shear flow and is based on the description of
the liquid microstructure rather than empirical and mathematical
developments. Here, the analysis of the squeeze film between parallel
plates is presented. It is an alternative in quantifying and under-
standing the two main factors which may enhance the carying ca-
pacity (inertia effect and viscoelastic behavior) situation which can
occur, for instance, in the case of overloading in jowrnal bearings.
A boundary element method is used here to model such complex flow.
The main factors have been extracted and the restrictions due to a

rough estimalte of the lubricant’s flow are shown.
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INTRODUCTION

Modern lubricants generally incorporate a range of addi-
tives including soluble long-chain polymers. These are called
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viscosity index (VI) improvers and were originally introduced
to limit the drop in viscosity of the base oils with temperature.
However, due to these polymers, thé oil behavior becomes
non-Newtonian. The most widely recognized influence is the
shear-thinning effect which results in a decrease of viscosity
at high shear rate 10°-108s~! (1). This effect on its own
should reduce the magnitude of the drag force and, in ad-
dition, the load. However, several experiments in dynamically
and steadily loaded bearings (2)-(4) have shown that the use
of additive oils not only reduces the friction coefficient but
also increases the carrying capacity compared to Newtonian
oils.

Recent correlations between the rheological parameters of
the lubricant and the minimum film thickness, in an oper-
ating bearing, have further supported the argument of the
significance of viscoelastic effects in improving characteristics
(3), (5). Several studies (3), (6)-(8) address the effect of
the extensional stresses due to severe leakage in the case of
a short bearing. Such stresses would give additional normal
stresses on the shaft. However, Lodge (9) notes that the mea-
surement of the first normal stress difference is not high
enough to predict an additional viscoelastic contribution
comparable to the viscous contribution. Other arguments
have also been put forward, such as those of Bouldin and
Berker (10), who suspect that the cavitation phenomena may
be influential. There is no overall consensus to explain the
enhancement of the carrying capacity and the decrease in
friction coefficient due to a lack of clear theoretical justifi-
cation. However, the theoretical basis reveals several major
difficulties in defining the response of the fluid:

NOMENCLATURE

n = parameter of the MPTT model

L = length of the contact

I./hy = ratio of length of the contact to the minimum film
thickness

! = time
tr(S) = trace of matrix §
u; = velocity component

V, = squeeze velocity of the upper surtace
W, = Weissemberg number

x; = coordinate in the i direction

v = gradient operator

€ = parameter of the MPTT model

r = parameter of the MPTT model

A = relaxation time

8;; = Kronecker symbol

13 = parameter of the MPTT model



1. The choice of a correct constitutive law.

2. The evaluation of the inertia terms.

3. The search for a proper boundary condition which will
take into account cavitation with a viscoelastic fluid.

4. The analysis of the effect of temperature and pressure
on the viscosity.

5. The resolution of a time-dependent problem by consid-
ering these previous points.

Furthermore, because the stresses are a priori unknown, it
becomes difficult to simplify the equations in the same way
as in the lubrication theory (1) and to solve the flow in a
complex journal bearing directly. In order to simplify this
analysis and to keep a realistic transient viscoelastic problem,
consideration of the squeeze film between parallcl plates pre-
sents one alternative in quantifying and in understanding the
two main factors which may enhance the load: the inertia
effect and the viscoclastic behavior. This flow may be re-
garded as the main component in lubrication mechanisms
where the load, or the velocities, suddenly change as a func-
tion of time. Such conditions are present in crankshaft jour-
nal bearings or occur when the fracture of a component gen-
crates a sudden overload, e.g., the loss of a blade from a
turbine shaft.

From a numerical point of view, the research of a global
method in order to solve problems involving viscoelastic flows
leads to the elimination of the finite difference because it is
specific for only one single rheological law and only one sin-
gle domain of resolution. Nevertheless, an alternative is pro-
posed with the integral methods such as the finite element
and boundary element methods which give more possibilities
to solve these kinds of problems. During the past 10 years, a
lot of problems related to viscoelastic flows have been solved
using the finite element method as it offers specific attractive
advantages from the scientific and industrial points of view.
Nevertheless, this method presents some deficiencies when
strong nonlinearities appear from the rheological laws. A
good compromise between the complexity of the resolution
and the general aspect of the problem can be given by the
boundary element method formulated by Bush eval. (/2).
The non-linearities here are averaged on the entire domain
of resolution and are treated as pseudo-forces. Furthermore
the numerous works in Refs. (12)=(7/9) have shown the
strength of the numerical scheme which comes essentially
from the continuum equation, which is implicitly taken into
account, and the uncoupling of the equilibrium equations
from the constitutive equation.

INTEGRAL FORMULATION

Basic Equations

The authors consider here the case of an isothermal lam-
inar flow of a viscoelastic incompressible fluid in a domain
Qof boundary ¢. In a Galilean system of axis, using Cartesian
coordinates, the equilibrium equations and the equation of
continuity read:
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where f; are the components of the volumic forces, a; arc the

. W .
convective terms U;,a—', I;j are the components of the total
X

stress tensor, and p is the specific mass.

The fluid is a viscoclastic liquid. Only one mode of relax-
ation is considered in this numerical approach. The rheolog-
ical law is of the Maxwell type. It can be described with the
following general differential equation:

T V8 + 20D + S
25y
m + R,-j =0

where §;; are the components of the non-linear stress tensor,
R;jare the components of the tensor which characterizes the
behavior law, l)ij are the components of the rate of delor-
mation tensor D = 0.5(L + L') and L. = VU the transposed
velocity vector gradient, §’ is an arbitrary pressure, 4, is the
viscosity of the solvent, and X is the relaxation time of the
polymer.

DS;;
The differential term ‘Z)T(j corresponds to an objective de-

rivative of the extra-stress tensor to the time.
Bush et al. have shown (/2) that it is possible and prefer-

i
and in a second non-linear part £;; during the numerical

able to decompose the total stress tensor 7;;in a lincar part
treatment. Crochet etal. also postulate this decomposition
because of the addition of a viscous term in the equilibrium
equations which reduces the numerical instabilities (20).

Therefore, k= S,-j - Qn,,l);j, wheren, = 0, + Mp is the
total viscosity and m, the viscosity at shear rate cquals to zero
for the viscoelastic model. Then, the ratio of viscosities B can
be introduced:
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TI/I + U&
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Modified Phan-Tien and Tanner Model (MPTT)

Reviewing numerous publications (2/) shows that both
shear-thinning and other viscoclastic effects where stress over-
shoot appears must be taken into account in transient lubri-
cation problems. One of the most recent models which can
predict stress overshoot in unsteady shear flow in contrast
with many other works is the MPTT model. As rheological
studies have progressed over the years, they have become in-
creasingly based on the description of the liquid micro-
structure rather than the empirical and mathematical devel-
opments. Several interpretations have been given to explain
the stress overshoot phenomena (22):

® An important resistance to the macromolecule’s uncur-
ling which leads to a stretching movement rather than
a global rotation in the lubricant.

® A perturbation of the flow of the lubricant induced by
the macromolecules’s movement.



The MPTT model is based on the idea of the effective
velocity gradient. It comes from the polymer’s network the-
ory. Nevertheless, this model presents some restrictions due
to a rough estimate of the lubricant’s flow (22).

. . . 19)]
In the casc of an MPTT model the differential term —

9t
can be written as follows:
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where & = L — ED. The Rjj tensor from Eq. [8] can be

expressed as:

Rij = h(tr($))S; = 2n()D; (5]
with:
A
h(tr(S)) = cxp(s—lr(S)) [6]
n/)
Also,
— A2
03 = L+ 8@ - OMY in ¥2 =202 (7]
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where €€, n and I" are the parameters of the MPTT model.

Boundary Conditions

The external boundary of the domain of the resolution can
be divided into two parts, as Fig. | shows.

On & the boundary conditions can be written in terms of
imposed velocities U;:

-U; = U;on @&,
On the second part &y, the authors applied a strain
veetor £
—; = Il/”’_] = [,’ on @2

where » is the normal outward to the surface.

Fig. 1—Boundary conditions.

Formulation of the Problem—The Weighted
Residual Method

The problem represented by Egs. [1]-[3] can be substi-
tuted for by an equivalent integral formulation which can be
obtained from the weighted residual method. This method
consists of the evaluation of the U, 7"and p functions which
verify the necessary conditions of derivation and integration
on the domain of resolution € and its boundary ® so that
the integral equation defined on ® and Q can be
determined:

I<%+ p(fi —

= f (U, — U)FdD + f (L; — ;) U*dD
2 @y

)U*dﬂ + f xp*dﬂ
(l
(8]

where U* and (¢* are the vectorial weighted functions, and
p* is the scalar weighted function defined on the domain Q
and its boundary .

Equation [8] presents three types of integrals:

® The first one on the left-hand side represents the
weighted residual of the equilibrium equations on the
domain £ with the weighted vector function U*.

® The second integral corresponds to the weighted resid-
ual of the equation of continuity on the domain Q with
the weighted scalar function p*.

® The right-hand side of Eq. [8] weighs on the boundary
® the errors of approximation between the approximate
solutions and the boundary conditions with the
weighted vectorial functions U* and (*.

The following relations result:

tf = 17 n; the strain vector
17; = =p*y; + 21],,1)}"]- the stress tensor
*
1/9U* aU75
D} = —(_' + —Z ] the rate of deformation tensor
2 8.\'] ax,-

Integrating by parts leads to the following equation:

aU¥
—f T,=dQ
9} ax

=f (U, — U)t*dDd —J ;U*dD —f L;U*dD
] [2]] Dy

- f —/)*dQ + f p(fi = a)UtdQ
(l Q [9]

After some manipulations on the two first integrals on the
right-hand side, one obtains the following reciprocity
principle:

AL f a0
fﬁ jax nax;p*

2U} . aup
- fﬂl,j?a—dﬂ - [ Zewa + [ BRdn

o 0x; 0 I

[10]

Integrating by parts again and introducing the result in
Eq. [8], one finally obtains the following equation:
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A particular solution U* to supress the first term of the
left-hand side of Eq. [11] must now be found. Then, the un-
knowns U and ¢ only appear in the boundary integrals. This
can be done by finding the fundamental solution. Thus U*,
t* and #* have to satisfy the following equations:

STHP®)
ij o )
T TARQ [12]
WP _ [13]
3.’6‘5

The index k indicates the direction of application of the
concentrated force. This problem involves:

P: source point, point of the domain where the concen-
trated force is applied.

Q: description point, point of the domain where the ve-
locities and the stresses induced by the concentrated
force are evaluated.

A: the delta dirac function:

A(PQ) = 0if P~ Q
A(P,Q) = =ifP=Q

The analytical solution of this particular flow is well de-
fined U* is usually known as Stokeslet. When the flow is bi-
dimensional and if ris the distance between the source point
P and the description point Q, the velocity Cartesian com-
ponents of the Stokeslet are given by:

tx (P.Q)

->
Uyy (P.O)
-

Uyx (P,Q)

[}

Fig. 2—Fundamental solution.
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In the same way, when n is the outward normal to the
surface located at the point Q and (Q,?z,}) a direct ortho-
normal referential, as shown in Fig. 2, the Cartesian com po-
nents of the stress vector read:

1 (dr or or
G- Lz 2 ) "

wr\dn dx, Ax;

In this expression, the index j refers to the Cartesian com-
ponent of the velocity vector or the stress vector and the
index k to the direction of the application of the force.

Boundary Integral Equation

Using the equilibrium equations of the Stokeslet [12] and
substituting in Eq. [11] the following is obtained:

84, Ui(P) = jnp<f,~<Q> — a(Q) U5 (P.Q)dQ
aUE(PQ)
an

- f Q) A0 [16]

- f 7.(P,Q) Uy(0) dD +f L(Q) U (P,Q) A
7] 7]

where &k = 1,2.

When the source point P and the description point Q
are the same, the integrals on ) and ® require specific treat-
ment (22).

Numerical Procedure

Equation [16] gives a relation between the velocity vector
of an arbitrary point of the domain, namely the source point
P, and the velocity and stress vectors at the boundary. A nu-
merical approximation using a discretization {or the domain
Q as well as the boundary ® is needed (22). The domain ()
is divided in cells and a linear approximation for the bound-
ary @ is used here as shown in Fig. 3. The nonlinear terms
are treated as pseudo-forces and the discretization gives the
following nonlinear system:

AKX} = [B{Y} + {8} (17)

@ Nodes in
the domain

{1 Nodes at the
boundary

Fig. 3—Discretization.
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where {X} represents the vector of unknowns, {¥} represents
the known values of the velocity and stress vectors on the
boundary, and {#} is a vector including the contribution of
the nonlinear terms. An iterative scheme is needed to obtain
the final solution.

RESULTS
MPTT Model—The Squeeze Film Problem

The behavior of a viscoelastic fluid differs strongly from a
Newtonian one (anisotropic normal stresses, stress overshoot,
relaxation, etc.). It is described by fluid reactions, c.g., in the
journal bearing, which can not be only resolved in terms of
shear stresses and hydrostatic pressure generation. Then, if
one considers, for example, overloading the effiect of normal
stresses, the consideration of four significant regions; shown
in Fig. 4, is required:

1. The shearing zonc which is located at the film forma-
tion where the Couctte flow is predominant. Aniso-
tropic normal stresses are generated there.

e

The strewching region which is located in the conver-

gent zone near the minimum flm thickness area. The

fluid particle trajectories are complex and can be noted
for the high cccentricities by a recirculated (low phe-
nomenon. The flow is essentally of the Poiscuille type.

The effect of stretching resistance is dominant.

8. The squeeze eflfect which is located at the minimum
film thickness region. Duc to the sudden movement of
the shaft to the housing, the fluid is suddenly squeezed
bewween two surfaces. The inertia cffects as well as the
relaxation time and the stress overshoot are strongly
present,

4. The cavitation region which takes place in the divergent

2one where the pressure is less than the atmospheric one

which leads to the rupture of the lubricant flow (23).

The modelling of these problems is very complex. Never-

theless one can concentrate their attention by looking for the
reaction of the (luid to a sudden overload to the squceze film

shearing

housing

4 cavitation

Fig. &—Solutlons in a journal bearing in the case of overloading.

problem thus to extract the main factors. In this area the
viscoelastic effiects as well as the inertia ones are dominant.

Squeeze Film at Constant Speed

The aim of this approach is to point out the influence of
the different parameters of the MPTT model and then to
link the microstructural aspects to more global quantities rep-
resented mainly by the fluid reaction.

The fluid parameters are the (ollowing: W, = 0.4, & = 0,
B =05, L/hy = 5.

Figure 5 presents the load evolution for five values of &:
£ = 0 (fluid of Oldroyd-B type), £ = 0.1, £ = 0.2, § = 0.3,
and £ = 0.4. Except for £ = 0 the evolution of the load
against € presents an evolution greater than that given by a
Newtonian fluid. This can be explained by the specific reac-
tion of the MPTT fluid which gives an overshoot reaction
with an amplitude increasing with the increase of the param-
eter § (22).

Weissemnberg Number Influence (Figure 6)

The following parameters are used: £ = 0.4,€ = 0,B =
0.5, L./hg = 5. The Weissemberg number takes the three
lfellowing values: W, = 0.04, W; = 0.2, W; = 0.4. These values
correspond respectively to the following relaxation times for
an upper plate speed equal to V), = 0.2 ms~! and a film
thickness of g = 107%m: N = 10775, A = 5107%s, A =
10745,

Contrary to an Oldryod-B fluid (§ = 0), the magnitude of
the load increases with the Weissemberg number. At low W;

7%.0 . 3
! P o £+0.4
ws | £
= f a § -0.3
B g _;/’/// L 502
RN == -
/// C L il ,/.v‘7 x_g.-......
#a z, ’X/ Lol U B )
va T LT
e ’g’é‘{ﬁ'v'wl ! 7 v Newtonian
qp— : e = e
] i |
T P PR o: Gm ow e

Fig. 5—Influence of £ parameter. MPTT fluid: W, = 0.4,8 = 0.5,¢ = 0,
£=0,6=01,&=02¢&=03E =04

V50 ¢ m————

= * L/ ~ol_ / o oWi-0.4
= - =T awi-02
2 il +Wi-0.04
25.0 Ly + . 0.
/ /-—-ss"'ﬁ =7 I i
TS W2 . wi l x tigwt_t_;n an
* 0.00 [0 2] 0.2 LXTY 20 boe oz ox:

Fig. 6—Influence of Weissemberg number. MPTT Fluid: £ = 0.4, = 0.5,
e=0,n=1W,=0.04W,= 02, W, =04,



values (W; = 0.4) the fluid reaction leads to a Newtonian
reaction. For higher Weissemberg numbers (W; = 0.4), the
load evolution shows an important overshoot. The maximum
is reached when ¢ = 0.12 for this case. This phenomenon is
less pronounced for W; = 0.2.

Influence of B Parameter (Figure 7)

The parameter B defines the ratio of the polymer viscosity
and the total viscosity (polymer and solvent). When 8 ap-
proaches 1 the fluid contains only polymer. On the contrary,
when B tends to be zero, the fluid becomes Newtonian. The
following parameters have been used: W; = 0.4, £ = 04,
g€ =0, L/hy = 5. B takes the following values: 0, 0.1, 0.3,
0.5, 0.7.

The results show that the difference of the load obtained
with the Newtonian theory increases when the viscoclastic
proportion in the fluid increases.

Influence of the I./hy Ratio (Figure 8)

Contrary to a Newtonian or an Oldroyd-B fluid, the di-
mensionless reaction of the MPTT fluid W(/) depends on the
ratio L/hy. The comparison between the results obtained for
W, =04, §E=04,n= 1, = 0, B = 0.5 for two values ol
L/hy (five and 10) shows that the load overshoot occurs rap-
idly when L/h increases and that the magnitude of the over-
shoot becomes more important when L/h increases. These
results can be explained by the fact that when the ratio
L/hy increases the rates of deformation become higher.
Then, the viscoelastic effects are strengthened.

Squeeze Film at Constant load

The influence of the different parameters for the MPTT
fluid has been shown in the case of a squeeze film problem
at constant speed. Nevertheless it is the study of the squeeze

o B-0.7
s £ B0Ss
= B3
x B-0.1
o p-0 Newtonian
o 0.0 ©0.01 c.00 Gz o a.x c.2e az ox
t
Fig. 7—Influence of B parameter. MPTT Fluid: W, = 0.4, £ = 0.4, n = 1,

€=0,8=0p=03p8=05p=07.
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Fig. 8—Influence of L/h, parameter. MPTT Fluid: W, = 0.4,£ = 0.4, =
05, n=1¢=0,Uh, =5, Uh, = 10.

film at constant load which is closest to the case of a shaft
submitted to a sudden load. The authors have to add to the
system of Eqs. [1]-[3] a new equation which describes the
upper plate movement. It takes the following form:

d2h(1)
m
di?

w() fluid + ‘/Vimpnsc(l (18]

where m is the mass of the upper plate, A(f) represents film
thickness, W()qyiq is the fluid reaction, and W, 05.a TEP-
resents imposed load constant in time.

The initial conditions are

® At time 07 the fluid is in the rest, the stress state is nil.
® Attime 07 the upper surface moves at V) velocity.

The dimensionless numbers used are the following:

1. The fluid characteristics: & n, € and B.

2. The Weissemberg number defined at the initial time:
W

ho

. The ratio 1./hy,.

W=

o

. . — m V(;z
4. The dimensionless mass; m = ———— —,
W\chluni:m hO
. The dimensionless imposed load:

— W,

imposed
Wi posed =

ot

A Lo
W Newtonian

Wa
tion of a Newtonian fluid of m,, = m, + y viscosity to a

ewtonian 15 taken as a reference. [t represents the reac-

squeeze flow at the initial time:

_ 8m, Y [P

M/Nc\\‘loni:m - h‘?) B [ 19]

A numerical scheme of explicit Euler type is used to obtain
the position, the velocity and the acceleration of the upper
surface at each time step.

Two cases have been considered for MPTT fluid:

1. The imposed load corresponds to the weight of the up-
per plate. The acceleration at £ = 0 is equal to 0, m =
81.5, ‘/Vimpnsc(l = 1

2. The imposed load corresponds to the weight of the up-
per solid. The reaction of the fluid is taken equal to
zero at ¢ = 0 and then the acceleration is different from
zero, m = 163, W = 1.

imposcd

The parameters for the MPTT model are taken as: B =
05, € =0, L/hy = 5.

Case A (Figures 9 and 10)

Two values of W; have been considered: W; = 0.04 and
W; = 0.4. The authors take 0.4 and 0 for £ values (Oldroyd-
B fluid).

The instantaneous reaction of the viscoelastic fluid is only
coming from the solvent. Then at ¢ = 0* contrary to a New-
tonian fluid of the same viscosity, the fluid reaction cannot
balance the imposed load: W (¢t = 0)guia = 0.5 Winposed-
This leads 1o an acceleration of the upper plate at ¢t = 0*
induced by the relaxation time of the viscoelastic fluid.
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Fig. 10—Mass x Acceleration = m = 815, Wiyp0u0s = 1; MPTT Fluid.

When W, = 0.04 the plate acceleration is rapidly counter-
balanced by the (luid reaction which is slightly greater than
the Newtonian reaction. The authors did not note a strong
difference between the cases § = 0 and £ = 0.4 compared
to the Ncewtonian one. The relaxation time is sufficient to
affect the evolution of the load which stays similar to the one
obtained with a Newtonian fluid. Distinct dilferences are ob-
tained with W; = 0.4. However, this value is 10 times greater
than the usual relaxation times of lubricants with additives.

Case I3 (Figures 11 and 12)

Only the cases for § = 0.4 have been treated. For W, =
(.04 one finds the Newtonian aspect. The case W, = 0.4 still
shows a decline of the plate movement.

Squeeze Film at Constant Load Superimposed on a
Couette Flow (Figures 13—15)

The lower plate moves at a translation speed U,. This re-
sults in the drag cffect present in the bearing problem. The
upper plate has a squeeze velocity due to a vertical load con-
stant in time. One must consider for this study a new dimen-
sionless number U,/ V, and any symmetry cannot be as-
sumed. The domain extends to 27, the length of the plate.
The authors consider here L./khg = 5. The boundary condi-
tions arc then modified.

Casc A has been considered. This is the case where the
differences between the viscoelastic behavior and the New-
tonian one are¢ the most prominent. The following parame-
ters for the MPTT fluid have been taken: W; = 0.4, B = 0.5
and € = 0.

When € = 0 (Oldroyd-B fluid), the cases U/,/V(, = 0 and
U,/ Vy = 10 give the same results. The effect of the normal

0.9 \
= ™ NG <
0.7 "\.'1 \ ~
- \\% 4 0¢-0.4 Wi-0.4
o %M 4 ¢€-0.4 Wi-0.04
0. | Q“"‘“‘ha.. + Newtonian
0.1 . . . .
0.0 [B] 8.2 0.3 [ X] 0.5 b.s 8.7
t
Fig. 11—h(1), M, = 163, Wimposea = 2; MPTT Fluid.
[6]
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1
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stresses generated by the Couctte flow is not significant.
For ¢ = 0.4 the additional shearing coming from the lower
plate sliding movement increases the magnitude of the nor-
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mal stresses. This leads to an increase of the upper plate
decline.

CONCLUSION

A boundary element method has been developed to study
the transient viscoelastic flows. The viscoelastic terms have
been considered as pseudo-forces. Taking into account these
terms requires a numerical approach. The resolution proce-
dure is based on a perturbation method of a Newtonian flow
without inertia terms. This method does not allow the study
of flows with strong nonlinearities (high Weissemberg num-
ber or Reynolds number). Nevertheless, with this method,
the authors confirm the importance of the stress overshoot
in the squeeze film problems:

® At constant speed a larger value of the carrying capacity
is obtained compared to the Newtonian case.

® At constant load an important decline of the upper plate
is obtained due to the viscoelastic effects.

These results have been obtained with a relaxation time 10
times greater than usual and with a £ parameter not equal to
zero due to the existence a second difference of the normal
stresses. The hypothesis of such a fluid gives a solution to the
problem of overloading on a shaft in its housing. Then, it
can decline the shaft movement and avoid the generation of
important pressure build up in the film.

The authors note that the MPTT model cannot be used
successfully for high shear stresses in squeeze film problems.
A microstructural analysis shows that the simplicity of the
MPTT model is obtained using restrictive hypotheses con-
cerning the modification of the polymer networks under
quick solicitations.
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