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This /m/1er deals with the modelling of viscoelastic flows in lran sil!nl regimes using the Modified Phan Tien and Tanner (MPTJ) model. This model is the most recent one which can predict stress ovmJhoot in unsteady shear flow and is based on the description of the liquid microstmcture rather than empirical and mathematical d1melo/nnenls. Here, the analysis of the squeeze fi lm between parallel /1/ates is f1resented. It is an alternative in quantifying and under standing the two main factors which may enhance the carrying ca /mcity (inertia effect and viscoelastic behavior) situation which can occu,; for instance, in the case of ove r loading in journal bearings. A bo1111druy element method is used here to model such complex flow. The main factors have been extracted and the restrictions due lo a rough estimate of the lubricants flow are shown.

INTRODUCTION

Modern lubricants generally incorporate a range of addi tives including soluble long-chain polymers. These are called viscosity index (VI) improvers and were originally introduced to limit the drop in viscosity of the base oils with temperature. However, due to these polymers, the oil behavior becomes non-Newtonian. The most widely rec'.ognized influence is the shear-thinning effect which results in a decrease of viscosity at high shear rate 10 5 -10 8 s-1 (J). This effect on its own should reduce the magnitude of the drag force and, in ad dition, the load. However, several experiments in dynamically and steadily loaded bearings (2)-( 4) have shown that the use of additive oils not only reduces the friction coefficient but also increases the carrying capacity compared to Newtonian oils.

Recent correlations between the rheological parameters of the lubricant and the minimum film thickness, in an oper ating bearing, have further supported the argument of the significance of viscoelastic effects i11 improving characteristics (J), (5). Several studies (J), ( 6)-( 8) address the effect of the extensional stresses due to severe leakage in the case of a short bearing. Such stresse,s would give additional normal stresses on the shaft. However, Lodge ( 9) notes that the mea surement of the first normal stress difference is not high enough, to predict an ad_ ditional viscoelastic contribution comparable to the viscous contribution. Other arguments have also been put forward, such as those of Bouldin and Berker (JO), who suspect t�at the cavitation phenomena may be influential. There is no overall consensus to explain the enhancement of the carrying capacity and the decrease in friction coeffi cient due to a lack of clear theoretical justifi cation. However, the theoretical basis reveals several major difficulties in defining the response of the fluid: v , , = squeeze velocity of the upper surtace Furthermore, because the stresses are a priori unknown, it becomes difficult to simplify the equations in the same way as in the lubrication theory (J J) and to solve the flow in a complex journal bearing directly. In order to simplify this analysis and to keep a realistic transient viscoelastic problem, consideration or the squeeze film between parallel plates pre sents one alternative in quantifying and in understanding the two main factors which may enhance the load: the inertia e!Tcct and the viscoelastic behavior. This flow may be re garded as the main component in lubrication mechanisms where the load, or the velocities, suddenly change as a func tion of time. Such conditions arc present in crankshaft jour nal bearings or occur when the fracture or a component gen erates a sudden overload, e.g., the loss of a blade from a turbine shaft.

From a numerical point of view, the research of a global method in order to solve problems involving viscoelastic flows leads to the elimination of the finite difference because it is specific for only one single rheological law and only one sin gle domain of resolmion. Nevertheless, an alternative is pro posed with the integral methods such as the finite clement and boundary element methods which give more possibilities to solve these kinds of problems. During the past IO years, a lot of problems related to viscoelastic flows have been solved using the finite element method as it offers specific attractive advantages f r om the scientific and industrial points of view. Nevertheless, this method presents some deficiencies when strong nonlinearities appear from the rheological laws. A good compromise between the complexity of the resolution and the general aspect of the problem can be given by the boundary clement method formulated by Bush et al. (/ 2). The non-linearities here are averaged on the entire domain of resolution and are treated as pseudo-forces. Furthermore the numerous works in Refs. ( 12)-( / 9) have shown the strength of the numerical scheme which comes essentially from the continuum equation, which is implicitly taken into account, and the uncoupling of the equilibrium equations from the constitutive equation.

INTEGRAL FORMULATION Basic Equations

The authors consider here the case of an isothermal lam inar flow of a viscoelastic incompressible fluid in a domain n of boundary <I). In a Galilean system of axis, using Cartesian coordinates, the equilib1•ium equations and the equation of continuity read:

i)"f.. ____!_}_ ax, + p( f; -n;) 0 rn iJU ; ax; 0 [2]
where f; are the components of the volumic forces, a; are the • U iJU; 'J' h f I I convecuve terms k-, i j are t e components o t 1c tota ox k stress tensor, and p is the specific mass.

The fluid is a viscoelastic liquid. Only one mode of relax ation is considered in this numerical approach. The rheolog ical law is of the Maxwell type. It can be described with the following general differential equation: [3] where S; 1 arc the components of the non-linear stress tensor, R; j arc the components of the tensor which characterizes the behavior law, D; j are the components of the rate of defor mation tensor D = 0.5(L + //) and/, = V u T the transposed velocity vector gradient, // is an arbitrary pressure, 'Y\., is the viscosity of the solvent, and A is t. he relaxation time of the polymer. The M PTT model is based on the idea of the effective velocity gradient. It comes from the polymer's network the ory. Neve rtheless, th is model presents some restrictions due to a rough estimate of the lubrican t's flow ( 22) .

I n the case of an M PTf model the differential term : � can be written as fo llows:

'!l! S '!l! t as at + u"v. S -!£.S -S!£ 1 [4]
where !£ = L expressed as: �D. The R ; J tensor from Eq. [ 3] can be wi th :

Also, h( t r( S) ) = cxp (E� l r ( S) ) TJp [5]
[6]

[7]

where � 1 E 1 n and r arc the parameters of the MPTT model.

Boundary Conditions

The external boundary of the domain of the resolution can be d ivided i nt o two parts, as Fig. I shows.

On 0 the boun dary conditions can be written in terms of imposed ve locities U;:

On the second pan 0 2 , the authors applied a strain vector i;:

where n is the normal outward to the surface. ➔ q U = U

Form ulation of the Problem-The Weighted Residual Method

The problem represented by Eqs.

[ I ]-(3] can be substi tuted for by an equivalent in tegral formulation which can be obtained from the weighted residual method. This method consists of the evaluation of the U, T and p functions which verify the necessary conditions of derivation and integration on the domain of resolution n and its boundary 4> so that the integral equation defined on 4> and n can be Df 1 = ---+ --1 the rate of deformation tensor 2 ax j ax;

Integrating by parts leads to the following equation :

f a u r " f a u ; " f * " -T; J --du - -Ji"du + p ( f; -a; ) U ; du n ax j n ax ; ll [9 ] = f ( U• -U) t* d0 -J t • U*d0 -f t• U*d0 l t l l I I I 0, 0 , 0 2
After some manipulations on the two first integrals on the right-hand side, one obtains the following reciprocity principle: .a.: the delta dirac function:

f a u* f au T .-' d!1 - -'jfl'df! !1 I) ax j nax i f a u f a u* f a u* T;* -' df! - -1 -J1d!1 + 1:•; .-1 -df! n J
.a.(P, Q ) = 0 i f P ;tf Q .a.(P,Q) = oo if P = Q

The analytical solution of this particular flow is well de fined U* is usually known as Stokeslet. When the flow is bi dimensional and if r is the distance between the source poin t P and the description poin t Q, the velocity Cartesian com ponents of the Stokeslet are given by: . L. In the same way, when n is the outward normal to the surface located at the poi nt Q and ( Q,i1,s) a direct ortho normal referential, as shown in Fig. 2 In this expression, the index j refers to the Cartesian com• ponent of the velocity vector or the stress vector and the index k to the direction of the application of the force.

Boundary Integral Equation

Using the equilibrium equations of the Stokeslet. [ 1 2] and substituting in Eq. [ 1 1 ] the following is obtained:

J p ( f; ( Q ) -a;( Q ) ) U k � (P, Q ) dO !! where k = 1 ,2 . E, ( Q) hi ' rlfl f aU* ( P Q) !l J <I X j [ 1 6]
When the source point P and the description point Q are the same, the integrals on fl and <I> require specific treat• ment ( 22) .

Numerical Procedure

Equation [ 16] gives a relation between the velocity vector of an arbitrary poin t of the domain, namely the source point P, and the velocity and stress vectors at the boundary. A nu merical approximation using a discretization fo1• the domain 0 as well as the boundary <I> is needed ( 22). The domain 0 is divided i n cells and a linear approximation for the hound• ary <I> is used here as shown in Fig. 3. The nonlinear terms are treated as pseudo-forces and the discretization gives the following non linear system: 

RESULTS

MPTT Model-The Squeeze Film Problem

The behavior of a viscoelastic fluid differs strongly from a Newtonian one (anisotropic normal stresses, stress overshoot, relaxation, etc.) . It is described by fluid reactions, e.g., in the journal bearing, which can not be only resolved in terms of shear stresses and hydrostatic pressure generation. Then, if one considers, for example, overloading the effect of normal stresses, the consideralion or four signi ficant regions; shown in Fig. 4, is required: I . The shearing zone which is located at the fil m forma tion where the Couett.e flow is predominan t. Aniso tropic normal stresses are generated there. 2. The stretching region which is located in the conver gen t zone near the minimum fil m thickness area. The fluid particle tr.!jectories are complex and can be noted for the h igh eccen tricities by a recirculated flow phe nomenon. The flow is essentially of Lhe Poiseuille type. The effect of stretching resistance is domi nant. 3. The squeeze effect wh ich is located at the minimum film thickness region. Due to the sudden movement of the shaft to the housing, the fluid is suddenly squeezed between two surfaces. The inertia effects as well as the relaxation time and the stress overshoot are strongly present. 4. The cavitation region which takes place in the divergent zone where the pressure is less than the atmospheric one which leads to the rupture of the lubricant flow ( 23) .

The modelling of these problems is very com plex. Never theless one can concentrate their attention by looking for the reaction of the fluid to a sudden overload to the squeeze fi l m problem thus to extract the main factors. In this area the viscoelastic effects as well as the i nertia ones are dominant.

Squeeze Film at Constant Speed

The aim of this approach is to point out the influence of the different parameters of the MPTT model and then to link the microstructural aspects to more global quantities represented mainly by the fluid reaction.

The fluid parameters are the following: W; = 0.4, E = 0, 13 = 0.5, L/h 0 5. 

Squeeze Film at Constant Load Superimposed on a Couette Flow (Figures 1 3-1 5)

The lower plate moves at a translation speed u 1 ,. This re sults in the drag effect present in the bearing problem. The upper plate has a squeeze velocity due to a venical load con stalll. in time. One must conside1• for this sLUdy a new dimen sion less number u 1 ,; Vi, and any symmetry cannot be as sumccl . The domain extends to 2 L, the length of the plate. The authors consider here /,/ ho = 5. The boundary con di� t.ions arc then modified.

Case A has been considered. This is the case where the differences between the viscoelastic behavior and the New tonian one arc the most prominent. stresses generated by the Couette flow is not significant. For e = 0.4 the additional shearing coming from the lower plate sliding movement increases the rnagniLUde of the nor-

  the MPTT model L length of the contact /,/ /,0 ratio of length of the contact to the minimum film thickness

  MPTT model l. The choice of a correct constitutive law. 2. The evaluation of the inertia terms. 3. The search for a proper boundary condition which will take into account cavitation with a viscoelastic fluid. 4. The analysis of the effect of temperature and pressure on the viscosity. 5. The resolution of a time-dependent problem by consid ering these previous points.

  0J S; J The differential term � corresponds to an ol�jective derivative of the extra-stress tensor to the time. Bush et al. have shown (/ 2) that it is possible and prefer able to decompose the total stress tensor T; . i in a linear part and in a second non-linear part ,�i .i during the numerical treatment. Crochet ct al. also postulate this decomposition because of the addition of a viscous term in the equilibrium equations which reduces the numerical instabilities (20). Therefore, E; .i = S; 1 -2TJ/>; J , where T],, = Tl., + 'Ylf> is the total viscosity and 'Y\ p the viscosity at shear rate equals to zero for the viscoelastic model. Then, the ratio of viscosities J3 can be introduced: 13 = Modified Phan-Tien and Tanner Model (MPTT) Reviewing numerous publications (21) shows that both shear-thinning and other viscoelastic effects where stress over shoot appears must be taken into account in transient lubri cation prohlems. One of the most recent models which can predict stress overshoot in 11nsteady shear flow in contrast with many other works is the !\• !PTT model. As rheological studies have progressed over the years, they have become in creasingly based on the description of the liquid micro structure rather than the empirical and mathematical devel opment�. Several interpretations have been given to explain the stress overshoot phenomena ( 22): • An important resistance to the macromolecule's uncur ling which leads to a stretching movement rather than a global rotation in the lubricant. • A perturbation of the flow of the lubricant induced by the macrnmolecules's movement.
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 1 Fig. 1 -Boundary conditions.

  determined: f ( a T; J + p ( f; -a; ) ) U ;* d!1 + f a U ; ffl' d!1 n ax j n ax; [8] = f ( U; -U; ) {t d0 + f ( t; -t ;) U;* d0 0, 02 where U * and t * arc the vectorial weighted fu nctions, and fr' is the scalar weighted function defined on th e domain n and its boundary 4>. Equation [8] presents three types of integrals: • The fi rst one on the left-hand side represen ts the weigh ted residual of the equilibrium equations on the domain n with the weigh ted vector function U*. • The second integral corresponds to the weighted resid ual of the equation of continuity on th e domain !1 with the weighted scalar function fr . • The righ t-hand side of Eq. [8] weighs on the boundary 4> the errors of approximation between the approximate solutions and the boundary conditions with the weighted vectorial functions U * and t*. The following relations result: tf T/j n 1 the strain vector T'i'J -jfl' &; 1 + 2TJ ,, D'i'J the stress tensor l ( a U f a u --1< )

  ax j ll ax; ll J axj Integrating by parts again and in troducing the resul t in Eq . [8] . one fi nally obtai ns th e following equation: U* to supress the fi rst term of the left-hand side of Eq. [ 1 1 ) must now he found. Then, the un knowns U and t only appear in the boundary integrals. This can he done by finding the fundamental solution. Thus U*, t* and P* have to satisfy the following equations: index k indicates the direction of application of the concen trated force. This problem involves: P: source point, point of the domain where the concen trated force is applied. Q: description point, point of the domain where the ve locities and the stresses induced by the concentrated force are evaluated.
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 2 Fig. 2-Fundamental solution.

  ..,_ ___ ...,.. U xx (P , Q ') U*• = _ l (

  , the Cartesian com po• nents of the stress vector read:

  Fig. 3-Discretization.

  the vector of unknowns, { Y} represents the known values of the velocity and stress vectors on the boundary, and {b} is a vector including the contribution of the nonlinear terms. An iterative scheme is needed to obtain the final solution.

Fig. 4 -

 4 Fig. 4-Solutlons I n a Journal bearing in the case of overloading.

Figure 5

 5 Figure 5 present. � the load evolution for five values of !;: I; 0 ( fl u id of Oldroyd-B type) , I; = 0. 1 , I; = 0.2, I; = 0.3, and I; 0.4. Except for I; = 0 the evolution of the load against I; presents an evolution greater than that given by a Newtonian fluid. This can be explained by the specific reac tion of the M PTT fluid which gives an overshoot reaction with an ampliLUde increasing with the increase of the param eter � (22).Wei. rnnnberg Number Influence (Fi gu re 6)The following parameters are used: t = 0.4, E = 0, 13 = 0.5, L/h 0 5. The Weissemberg number takes the three fol lowing values: W; 0.04, W; = 0.2, W; = 0.4. These values correspond respectively to the following relaxation times for an upper plate speed equal to V,, = 0.2 ms-1 and a film thickness of ho 1 0 -1> m: A

  Fig. 1 1-h(t), iii, = 1 63, W 1m00 _, = 2; MPTT Fluid.

  Fig. 13-Domaln of study and boundary conditions.
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