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Homogenization is a formal mathematical two-scale averaging process that can be ap-plied 
to roughness problems and can replace previous heuristic averaging procedures, which 
have sometimes led to ambiguous results. This procedure was previously math-ematically 
developed and applied to compressible flow problems. The purpose of this paper is the 
development of a special form of Reynolds equation for such homogenized conditions 
applied to the incompressible Newtonian case. The equation allows the calcu-lation of the 
operating characteristics of a contact by taking into account the local geometry of surfaces 
while making a substantial improvement in computing time. The method allows for the 
study of rough surfaces, but requires considerably fewer calculated points than for 
traditional deterministic discretization methods.

1 Introduction

An understanding of the influence of roughness on the surface
of machine elements during lubrication can contribute to an im-
provement of the performance of the device and an increase in the
lifespan of the mechanism. In turn, proper prediction of the per-
formance of a lubricated contact depends on a rigorous character-
ization of the involved surfaces and on a sufficiently accurate
representation of the lubricant flow behavior. When the operating
conditions are severe, i.e., the fluid films are very thin, the effect
of roughness is all the more significant.

As is well known, the development of the theory of lubrication
for thin films first appeared in 1886 with the mathematical model
established by Reynolds. The governing equation, which can be
written in various forms, is a second-order elliptic partial differ-
ential equation for the pressure, with the surface film shape enter-
ing as part of known variable coefficients. The Reynolds equation
does not usually admit to analytical solutions, and the complexity
of surfaces due to roughness is one of many complications that
require numerical approaches. In this study, our contribution is to
set up a new model that takes into account the surface roughness
phenomena by using a new technique of calculation known as
homogenization, which will be explained shortly. Taking into ac-
count the roughness of surfaces in the study of lubrication can be
done considering the statistical parameters of roughness. There are
a number of papers in the literature that could be characterized as
using stochastic analysis @1–14# ~considering some sort of aver-
aged surface properties!, and another group that uses deterministic
analysis of a specific surface description @15–20#. For our con-
cerns, we introduce a third methodology called homogenized
analysis @21–23#, which amounts to dividing the problem into two
parts: a local problem ~i.e., the roughness! and a homogenized
problem for the global properties. This approach will be discussed
to illustrate its advantages as well as its disadvantages compared
to the others.

2 Homogenization Analysis

The approach of homogenization amounts to rewriting the
problem as two others: a local problem and a homogenized prob-

lem. The coefficients of the homogenized problem depend on the
solution of the local problem. The difficulty of this technique lies
in the decoupling of the two problems, starting from the homog-
enized problem because of the presence of nonlinearities. The
coefficients of the homogenized problem can be calculated only
after treatment of the former.

In 2000, this technique was developed and was applied to the
compressible Reynolds equation by Buscaglia and Jaı̈ @21#. It was
further revealed that this method is well adapted to the problems
with an anisotropic roughness @22,23#. It is also a technique that
does not require a very fine grid account for the effect of rough-
ness. Roughness is taken into account during the calculation of the
local problem, where less computing time is required compared to
deterministic techniques. To see the advantages of this approach,
Fig. 1 is shown, based on the compressible flow analysis of Jaı̈
and Bou-Saı̈ @23#.

From this figure we can observe that the stochastic analysis
does not capture the directional aspect of the roughness ~i.e., the
pressure is symmetric about the midplane!. As for the determinis-
tic analysis, it accurately portrays the pressure shape, but requires
a very high number of discretization points to do so. On the other
hand, the results obtained from homogenized analysis accurately
capture the shape and magnitude of the pressure field but with
considerably less numerical effort.

In Sec. 3, this technique will be applied to a Newtonian incom-
pressible flow analysis to obtain the homogenized Reynolds equa-
tion.

3 Homogenized Reynolds Equation

We begin with the incompressible Reynolds equation

¹~h3¹p !5L
]h

]x1

(1)

where p(x ,y) is the pressure, h(x ,y) the film thickness, the vis-
cosity is m, sliding occurs only in the x direction at speed V , and
L56mV . The coordinates of the Cartesian reference system are
x5x1 , y5x2 , z5x3 , and the domain is V5(x1 ,x2) ~see Fig. 2!.
We introduce the concept of local coordinates by writing
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The symbol h0 denotes the global film thickness, and d is the
roughness contribution. The latter is a periodic function of period
«51/nr , where nr is the ‘‘roughness number’’ or the number of
roughness cycles across the contact ~in an order-of-magnitude
sense!.

Let us introduce the concept of local variables setting (j1 ,j2)
5(x1 /« ,x2 /«) and make an asymptotic development of the pres-
sure by writing

p~x1 ,x2!5p0~x1 ,x2!1«p1~x1 ,x2 ,j1 ,j2!1«2p2~x1 ,x2 ,j1 ,j2!

1¯ (3)

where p1 ,p2 , . . . are periodic functions of the variables (j1 ,j2).
We use the following rule of differentiation
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and substitute Eq. ~3! into Eq. ~1!. We then gather terms of power

of « and obtain the following equations for powers «0, «1, and «2,
respectively:
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with ¹x and ¹j , respectively, equivalent to (]/]x1 ,]/]x2) and
(]/]j1 ,]/]j2). To uncouple p0 and p1 the following local prob-
lems are considered in terms of the roughness coordinates and the
auxiliary variables w1 , w2 , and w3 ,

2¹j•~h3¹jw1!5

]h3

]j1

2¹j•~h3¹jw2!5

]h3

]j2 (8)
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The boundary conditions for the local problems are that w1 , w2 ,
and w3 equal zero on the boundary and are periodic functions.
The following relation is postulated to exist between p1 w1 , w2 ,
and w3 and the partial derivatives of p0 :

p15w1

]p0

]x1

1w2

]p0

]x2

1w31C~x1 ,x2! (9)

By substituting this expression in Eq. ~5! and integrating with
respect to j, we obtain the homogenized Reynolds equation:

2¹•~@A#¹p0!5¹•@u# in the domain V , p050 on ]V
(10)

Fig. 1 Comparison of roughness methodologies—dimensionless pressure

Fig. 2 Schematic of film coordinates
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The notation of Eq. ~11! is that we integrate the roughness vari-
ables (j1 ,j2) over their domain J. Thus, one obtains the local
problems @Eqs. ~8! and ~9!# and the homogenized problem @Eqs.
~10! and ~11!#. These problems do not have analytical solutions,
thus it is necessary to use numerical techniques.

4 Geometry of the Contact

Before carrying out the calculation of the homogenized pres-
sure, it is necessary to define the geometry of the contact. The
height of film can be written as

h5h0~x1!1d~j1 ,j2! (12)

In turn, for demonstration, we use a parabolic cylinder contact

h05hmin1

x2

2R
(13)

This film shape is the parabolic cylinder approximation to a highly
loaded journal bearing contact. All the characteristics of the con-
tact have been nondimensionalized, and we use the following pa-
rameter values: hmin51, m51, V51, R51, a50.3 hmin rough-
ness amplitude, Lx /Ly51 ~the ‘‘unwrapped’’ contact is
rectangular!. The roughness configurations have been obtained us-
ing the following roughness description:

d5a sinS 2p
Lxj11Lyj2

Lx1Ly
D5a sinS 2pnr

Lxx1Lyy

Lx1Ly
D (14)

In Eq. ~14! above, Lx51 and Ly50 represents transverse rough-
ness, Lx50 and Ly51 represents longitudinal roughness, with
anisotropic roughness being characterized by intermediate values
~see Fig. 3!.

5 Results

We can see in Fig. 4 that the deterministic solution becomes
erratic when the number of roughness cycles becomes significant.
This is due to numerical error. Thus to have a well-behaved de-
terministic solution, it is necessary to increase the number of dis-
cretization points. However, we notice that the homogenized so-
lution remains insensitive to this variation in roughness number.

We notice that for low roughness number, the deterministic
solution remains far away from the homogenized solution ~see
Fig. 5!. A reduction in the height of roughness peaks allows the
two solutions to converge. Thus, this makes it possible to validate
the model in the case of low amplitudes of roughness.

We observe the three-dimensional pressure field for nr540 and
a50.3 hmin in the homogenized and deterministic cases ~see Fig.
6!. We note that the direction of roughness is evident in the ho-

Fig. 3 Geometry of the global film thickness and roughness

Fig. 4 Dimensionless pressure profile variation with roughness number
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mogenized pressure field ~i.e., the pressure field is skewed due to
the roughness orientation!, which is expected in a physical sense.

6 Conclusions

After analysis of the various results, we can draw several con-
clusions on this method of calculation. Homogenization makes it
possible to obtain pressure fields for rough surfaces, using far
fewer calculation points than for deterministic methods, while
capturing important nonsymmetric features often missed by heu-
ristic averaging. We note that the higher the period of roughness,
the more the deterministic solution approaches the homogenized
solution, which makes it possible to validate the model under the
conditions where the number of roughness cycles is large.

For small roughness amplitude ~compared to the minimum
height of the film! and a significant number of roughness peaks,
the homogenized analysis remains effective regardless of the type
of roughness. Under these conditions this technique gives a good
physical insight as to the distribution of pressure on the surface of
contact. For anisotropic roughness, the technique of the homog-
enization is essential to give realistic information on the amplitude
and the direction of roughness, contrary to the traditional ~stochas-
tic! approaches, which prove to be defective in this case.
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