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n Nonlinear Rotor Dynamic
ffects of Aerodynamic Bearings
ith Simple Flexible Rotors

he last decades have experienced a growing enhancement of aeronautical oil free 
urbomachinery. The classical linear approach of rotor dynamics commonly uses stiffness 
nd damping coefficients to model journal bearings. In the present study, a nonlinear time 
ependant calculation is used for the dynamic simulation of a rotor mounted with 
erodynamic (gas) bearings. A comparison between the two approaches indicates that the 
ynamic behavior of such bearings can be nonlinear in operating ranges where the rotor 
ccentricity reaches high values. In that case, the linear approach may lead to incorrect 
esults and the nonlinear approach should be performed for better rotor dynamic predic-
ion. A numerical procedure which analyzes the dynamic behavior of simple flexible 
otors taking into account the nonlinear (transient regime) characteristics of aerody-namic 
earings is presented. A simple example highlights the needs of nonlinear simu-lations in 
rder to predict dynamic performance in oil-free turbomachinery.

eywords: foil bearings, rotor dynamics, stability, gas lubrication
ntroduction
The designers of turbine engines have always had to deal with

ery severe restrictions concerning weight. Consequently, these
esigners focused on an increase in the specific power involving a
eduction in the size of the machines, and an increase in rotating
peed. In ranges of 30,000 to more than 100,000 rpm, an aerody-
amic �gas bearing� approach seems well adapted compared to the
raditional technological elements which cannot meet certain re-
uirements, e.g., those concerning adequate lifetime. Thus air
earings have received considerable attention in these last decades
nd find increasing applications whenever elevated speeds, low
oads, and a high degree of accuracy are necessary.

There are two operating conditions for aerodynamic bearings
hich are quite distinct: a dry contact-mixed lubrication mode,

nd an aerodynamic lubrication mode. The first condition corre-
ponds to the transient mode and specifically the start-stop phases.
his study deals with the latter behavior, when a complete film of
ir separating the rotating member from the static member is cre-
ted. The determination of the pressure field in the bearings from
he solution of the Reynolds equation in the case of compressible
uids, in particular with perfect gases, has been intensively inves-

igated �1–3�. Air bearing static behavior has been previously
reated by several authors �3–11�.

Once static properties are known, designers must investigate
he dynamic properties of the system consisting of the shaft and
he bearings. In this paper, we will first treat the dynamic behavior
f a rigid shaft mounted symmetrically on two aerodynamic bear-
ngs. Two methods of calculation, linear and nonlinear, are pre-
ented and compared in this simple case. This comparison reveals
ifferences in results according to the loading, particularly in
erms of speed instability and response to an unbalance excitation
orce. This portion of the study will lead us to suspect that the
inear approach may be inadequate in some range of operating
onditions compared to the nonlinear approach. Next, an improve-

1Corresponding author.
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ment taking into account damping within the deformable structure
of the bearings is highlighted. The last part of this study enables
us to improve our understanding of the dynamic behavior of a
deformable shaft by including nonlinear aspects of the problem.

A first model is based on a simplified approach to the problem.
The step by step calculation is validated by comparison with the
traditional linear rotor dynamics analysis. An improvement of this
model is then made possible using the Rayleigh-Ritz method
based on three elementary vibration modes taken for the shaft.
Thus, we can evaluate the influence of the flexibility of the rotor
on its critical engine failure speeds, and also on the level of sta-
bility of the system. The encouraging results of this modeling lead
us to a more complicated finite element method approach. In our
conclusions we will point out the principal results and place the
present contribution in context. Finally, some directions of future
research will be proposed.

Bump Foil Bearing
Many numerical and experimental studies have been concerned

with the static and dynamic characteristics of so-called bump foil
bearings. These works are generally concerned with two separate
issues:

• Tribological phenomena related to the stop/start phases. Dry
friction occurring during these phases is the main cause of
deterioration of the bearings. The texture and shape of the
surfaces and the materials in contact play a major role in
these phenomena �12–15�;

• Development of models to predict aerodynamic bearing per-
formance in terms of carrying capacity, power loss and dy-
namic behavior �3,7,16,17�.

This work is a contribution to the second research area. The
bump foil technology allows us to take a very simple structural
approach to the analysis. The upper foil ensures the continuity of
the profile. The geometry of the bearing and the structural behav-
ior are governed by the springs on which the upper foil is pressed,
see Fig. 1.

Architecture and Geometry. Bump foil bearings present sev-

eral alternatives. Indeed, the number of lobes and foils �for which
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Fig. 1 Bump foil bearing description

he stiffness varies� can be adapted according to the desired per-
ormance. The first bearing developed with this technology con-
isted of a rigid sleeve onto which a corrugated foil and an upper
oil are welded extending along all the bearing circumference.
his foil assembly determines the general profile of the bearing
lm and its deformability �Fig. 1�.
A correct implementation of the fixed deformable structure of

he bearing foil must consider a variation of its structural stiffness
ith the angular position of the considered point �18�. The char-

cteristics of this type of bearing are very close to its rigid coun-
erpart �a smooth journal bearing� and this allows the bearing to
upport high loads,�9,19�.

Aerodynamic Performance. The literature is replete with nu-
erical and experimental work presenting the static and dynamic

erformance of foil bearings �19–30�. The description of their
ehavior follows the same format as for hydrodynamic bearings.
owever, in addition, one has to take into account the effect of

ompressibility of the fluid coupled with the structural deforma-
ion, i.e., an aero-elastic coupling.

The analysis of the foil bearing dynamic behavior can be car-
ied out according to two different methods. In the linear method,
he dynamic coefficients �stiffness and damping matrices� of the
earing are first calculated. Reynolds equation is solved for small
ncrements of relative journal and bearing displacement and ve-
ocity, enabling evaluation of these coefficients. These matrices
re then used to study the rotor dynamics. �31–34�. With the non-
inear method, the rotor dynamic movements are calculated in a
tep by step fashion based on the coupled resolution of Reynolds
quation. This process gives the forces due to the bearings, and
he equations of rotor dynamics �35–38�.

The assumption of small displacements of the shaft center in-
ide the bearing causes the linear analysis to have certain limita-
ions. The method assumes that the variation of aerodynamic force
ith respect to its equilibrium position is nearly linear. A nonlin-

ar analysis calculates the bearing forces at each time step to
tudy the rotor dynamic behavior. No assumptions are needed for
he bearing force evolution �30,39,40�. This type of study is rarely
resented in the literature of foil bearings because of large com-
uter demands in terms of time and memory �41,42�. On the other
and, similar work with incompressible fluids �35,31,43�, con-
rms the importance of considering this type of analysis in certain
perating conditions.
Indeed, some isolated works highlight interesting phenomena

n the specifics of the linear and nonlinear approaches �44–46�.
ccording to these works, the linear approach presents a restricted
eld of validity. It is thus important to investigate this point in
rder to avoid erroneous results.

Bearing Damping. The phenomena related to damping within
he bearing structure are the subject of many numerical and ex-

erimental studies. One of the assumptions used in the past to

2

explain the higher damping of the foil bearings is based on the
presence of internal friction inside the deformable structure. Con-
sequently, to add damping, some researchers assumed it was suf-
ficient to increase the friction coefficient between the foils by
using various types of coatings. Peng and Carpino �47� presented
an analytical study in which they showed that damping in air
bearings increases when the air film stiffens. As the eccentricity or
the load increases the air film becomes stiffer and thus activate the
dry friction between the bump and the housing. This phenomenon
induces additional damping. They noticed that when the air film is
flexible, i.e., when the load is light or the rotational speed is rela-
tively low, ball bearings offer more damping than foil bearings.
On the other hand, for higher load and speed, when the film of air
is stiff, foil bearings provide more damping than their rigid coun-
terparts due to the damping generated by friction between the foils
of the deformable structure �48–50�. Damping can be considered
using a viscous model when the load is small and the temperature
high. Apparently, the addition of internal friction does not have
any notable influence �28�.

Rotor Model. Classical theoretical studies have been interested
in the dynamic characteristics considering the simplified case of a
rigid rotor supported symmetrically by two identical bearings. The
modeling of the dynamic action of the bearings is performed using
the linear approach. Few authors considered the nonsymmetrical
problem with a deformable rotor, and no existing study presents
the direct coupling �with nonlinear analysis of the bearings� be-
tween the dynamic analysis of the rotor and its interaction with
the foil bearings.

Comparison Between Linear and Nonlinear Methods
It is interesting to compare the linear and nonlinear methods to

determine the range of validity. To this end, results in terms of
stability level and unbalance response are given. For simplifica-
tion, a rigid rotor symmetrically mounted on two identical three
lobes rigid bearing is considered. The geometry of the lobes is
circular and no geometrical preload is applied. The main charac-
teristics are given in Table 1. The load on the bearing is only that
of the rotor mass. For the stability study �Fig. 2�, the critical speed
is investigated for different rotor mass values. For the unbalance
study �Fig. 3�, the rotor mass is fixed at 2.25 kg and the mass
unbalance is fixed at 1 g mm.

The results presented in Figs. 2 and 3, thus confirm the nonlin-
ear dynamic behavior of the air bearings according to the operat-
ing range. Concerning stability, at high loads �corresponding to
high eccentricity� the stability threshold given by the linear ap-
proach differs from that given by a nonlinear approach. Concern-
ing response to a mass unbalance, there is a transition between the
ranges where the two methods are in agreement and where they
present strong differences. At high velocity �low values of eccen-
tricity�, the two methods give identical results, but they present
dramatically different results at low velocity �high values of ec-
centricity�.

However, the differences in phenomena observed concerning
the domains of validity of the two approaches remain to be clari-
fied. The definition of the limits of validity of the linear theory is
thus a relevant direction of study for aerodynamic bearings. The
comparison of the results given by linear and nonlinear ap-
proaches, Figs. 2 and 3, highlights the differences between these

Table 1 Data input for the lobed bearing

L /D
D

0.75, 1, 1.25
50 mm

Number of pad 3
Pad angle, deg 110

Radial clearance, �m 50
two methods. The curves obtained are very distinct. These differ-
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nces occur both in term of stability threshold and response to
nbalance. When aerodynamic bearings are highly loaded, it
eems to be more accurate to use the nonlinear analysis.

ccounting for Structural Damping
Following the conclusion of the study where we compared the

inear and nonlinear approaches, we set up a model taking into
ccount a structural damping similar to that presented for the lin-
ar analysis in �51� and �33�, but adapted to nonlinear calculation
26�.

Modeling. This model has been detailed in �52�. The main idea
ere consists in rewriting the balance equations for deformable
earings taking into account the speed of deformation. The com-
ressive forces generated in the air film are balanced by forces
ue to the bearing stiffness �or the compliance Sc� and due to its
amping �viscous damping coefficient per unit of area noted Ce�,
ig. 4.
Starting from the balance forces on the upper foil the expres-

ion of the variation of the pressure field between t and t+dt can
e written as

�Pt+dt − Pt� =
1

Sc
�Ht+dt − Ht� + Ce��dH

dt
�

t→t+dt

− �dH

dt
�

t−dt→t
�

�1�

xpressions of the terms dH /dt described previously are as fol-
ows:

ig. 2 Evolution of critical speed value against the dimension-
ess static load
Fig. 3 Comparison of linear and nonlinear approaches

3

�dH

dt
�

t→t+dt

=
Ht+dt − Hsave

t+dt

�t
and �dH

dt
�

t−dt→t

=
Ht − Hsave

t

�t
�2�

where Hsave
t is the film thickness at time t before deformation, Ht

is the film thickness at time t after deformation, Hsave
t+dt =Ht

+displacement of the shaft between t and t+dt �the film thickness
at time t+dt before deformation�, and Ht+dt is the film thickness at
time t+dt after deformation. From the above, �1� can be expressed
in the following form:

�Pt+dt − Pt� =
1

Sc
�Ht+dt − Ht� + Ce�Ht+dt − Hsave

t+dt

�t
−

Ht − Hsave
t

�t
�

�3�

Therefore, the relation giving the film thickness can be obtained
as

Ht+dt = Ht +
S . �t

�t + Sc . Ce
�Pt+dt − Pt +

Ce

�t
�Hsave

t+dt − Hsave
t �� �4�

This film thickness is then introduced in the Reynolds equation in
order to obtain the pressure field at each time step,

�

��
�PH3�P

��
	t+�t

+
�

�Z
�PH3�P

�Z
	t+�t

= �� �PH

��
�t+�t

+ 2��Pt+�t − Pt

�t
Ht+�t + Pt+�tH

t+�t − Ht

�t
�

�5�

Influence of Damping on the Threshold of Stability. The
structural damping coefficient influence on the stability threshold
is then studied using the set up model. The viscous damping co-
efficient used in the model can be replaced, in an equivalent way,
by the damping coefficient used classically in rotor dynamics
�53,54�,

� =
Ce

2
KM

where: C replaces the viscous damping coefficient Ce, K replaces
the reverse of the compliance coefficient Sc, and M represents the
mass of the rotor assigned to the bearing.

All the studied profiles of the bearings are with three deform-
able smooth lobes �Fig. 5� and all the grooves are identical and
have an extent of 10 deg �Table 2�. We thus have represented the
critical engine failure speed diagram for various values of � asso-
ciated with this profile, Fig. 6. For comparison, we include the
curve corresponding to the rigid profile.

It appears clearly that the addition of damping within the de-
formable structure, brings about a striking increase of the stability
level for a compliant bearing �as for the low values of ��. As
could be expected, the higher the damping coefficient, the higher
the critical speed. Furthermore, the critical speed does not de-

Fig. 4 Sketch of the model
crease further with load increase. The relation between the critical
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ngine failure speed and the static load seems to deviate from
inear behavior and attain increasing polynomial nature.

Comments. In standard approaches the dynamic behavior of a
eformable shaft supported by hydrodynamic bearings or ball
earings, is evaluated with the assumption that the bearing action
s linear. The stiffness and damping matrix of the bearings are
alculated and then introduced into a rotor dynamic computer
ode. This type of coupling is described as “weak.” In the case of
he aerodynamic bearings, we have been able to demonstrate that
linear dynamic analysis can lead to erroneous results according

o the considered operation range.
The nonlinear character of a journal aerodynamic bearing is

hus a significant fact to be considered in order to carry out an
nalysis of the rotor dynamic behavior. Therefore, we propose a
strong” coupling whereby the interaction of the bearings with the
haft is performed directly, step by step in time, in only one mode
f the total calculation. In this first part the rotor was rigid and

Fig. 5 Schematic of three lobed deformable bearing

Table 2 Main calculation characteristics for damping study

L /D 0.667

Number of pad 3
Pad angle, deg 110

Radial clearance, �m 50
Dimensionless compliance 0.2

�=
Cc

2
KM
0, 0.05, 0.1

ig. 6 Critical engine failure speed diagram for various values

f �

4

symmetrically supported by two identical aerodynamic bearings.
It is now interesting to study the behavior of a more realistic

case where the rotor is deformable and the bearings are not sym-
metrically mounted on the rotor. Because the approach presented
is new, we have gradually proceeded towards the more complete
problem of a deformable shaft with a nonlinear action of the jour-
nal aerodynamic bearings. Thus, the first part of the analysis con-
sists of a dynamic model of a simple deformable rotor resulting
from �14�. The Rayleigh-Ritz method with a three mode modal
base is employed.

The dynamic behavior of a rotor mounted on two ball bearings
was then compared to existing results for validation. Subse-
quently, the model was used to study the behavior of a deformable
shaft running on two air bearings. The comparison with a linear
“traditional” dynamic modeling confirmed once again the unique
nonlinear dynamic behavior of the system. Finally, a comparison
between a ball bearing and an air bearing points out the impor-
tance of the bearings on the overall dynamic behavior.

Rotor Dynamic Study With Foil Bearings

Short Description of the Rayleigh-Ritz Model. The Rayleigh-
Ritz model uses a modal base restricted to three simple modes:
pumping �or translation�, pitching �or swinging�, and first bend-
ing, Fig. 7. This modeling constitutes a first approach taking into
account the two rigid body modes and the first bending mode of
the shaft �54�.

The symbol R0 �X ,Y ,Z� indicates the initial frame �Fig. 8�, in
which the rotor axis at rest lies along the Y direction. The rota-
tional speed � is considered constant. The rotor is considered as a
beam and the neutral fiber displacement is studied. Each point on
this fiber has two degrees of freedom that are displacements in the
X and Z directions.

The expressions of the shaft neutral fiber displacements in the X
and Z directions are, respectively, written in the following form:

u�y,t� = fa�y�q1�t� + fb�y�q3�t� + fc�y�q5�t�

= fa�y�q1 + fb�y�q3 + fc�y�q5 �6�

w�y,t� = fa�y�q2�t� + fb�y�q4�t� + fc�y�q6�t�

= fa�y�q2 + fb�y�q4 + fc�y�q6 �7�

where qi are the generalized independent coordinates. The dis-
placement functions, fa, fb, and fc are, respectively, selected to
represent the geometry of the vibration modes: pumping, pitching,
and bending of a beam of constant section supported at its ends,

Fig. 7 Schematic representation of the considered vibration
modes
Fig. 8 Coordinate representation
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fa�y� = 1 �8�

fb�y� = 1 −
2y

L
�9�

fc�y� = sin
�y

L
�10�

he angular displacements � and � of Fig. 8 are small and they
an be approximated by

� =
�w

�y
=

dfa�y�
dy

q2 +
dfb�y�

dy
q4 +

dfc�y�
dy

q6

= ga�y�q2 + gb�y�q4 + gc�y�q6 �11�

nd

� = −
�u

�y
= −

dfa�y�
dy

q1 −
dfb�y�

dy
q3 −

dfc�y�
dy

q5

= − ga�y�q1 − gb�y�q3 − gc�y�q5 �12�

he second order derivatives for u and w displacements are nec-
ssary to express the elastic energy of the shaft,

�2u

�y2 =
d2fa�y�

dy2 q1 +
d2fb�y�

dy2 q3 +
d2fc�y�

dy2 q5

= ha�y�q1 + hb�y�q3 + hc�y�q5 �13�

�2w

�y2 =
d2fa�y�

dy2 q2 +
d2fb�y�

dy2 q4 +
d2fc�y�

dy2 q6

= ha�y�q2 + hb�y�q4 + hc�y�q6 �14�

ne may observe from the above expressions that ga�y�=0 and

a�y�=0 because fa is of zero order. In the same way, hb�y�=0
ecause fb is of order one.
In the calculations below, we will not entirely develop the equa-

ions because manipulations are extensive but straightforward. We
oint out the expressions of various energies which should be
alculated to write the Lagrange equations system �53�.

Disk Element. The disk is considered as symmetrical. Its ki-
etic energy TD can be written in the following way:

TD =
1

2
MD�u̇2 + ẇ2� +

1

2
IDx��̇2 + �̇2� +

1

2
IDy��2 + 2��̇��

�15�

he energy of deformation of the disk is nil since it is considered
s being rigid.

Rotor Element. The rotor elements are considered to be axi-
ymmetric. The expression of kinetic energy TS is as follows:

TS =
	S

2 �
0

L

�u̇2 + ẇ2�dy +
	I

2 �
0

L

��̇2 + �̇2�dy + 	IL�2

+ 2	I��
0

L

�̇�dy �16�

s the term 	IL�2 is constant, we do not have to introduce this
erm in the writing of the Lagrange equations. The energy of
eformation of the shaft, US is written as

US =
EI

2 �
0

L �� �2u

�y2�2

+ � �2v
�y2�2	dy �17�

s the functions ha and hb are nil, the expression of the energy of
eformation of the shaft is written according to the generalized

oordinates,

5

US =
EI

2 �
0

L

hc
2�y�dy�q5

2 + q6
2� �18�

Unbalance. The shaft can be unbalanced. This unbalance is
defined by a mass mu at a distance d to the geometric center of the
shaft. Its kinetic energy is written as

Tu = mud��u̇ cos �t − ẇ sin �t� �19�
Having presented the energies, it is now appropriate to look at the
actions of the ball bearings and/or the air bearings. In addition, to
represent the operation of a shaft on air bearings, the influence of
gravity must be added to the equations.

Ball Bearings. The shaft can possibly be supported by ball
bearings. Their stiffness and damping coefficients are assumed to
be known. The influence of the deflection is neglected, Fig. 9. The
expression of the forces’ virtual work exerted on the shaft is writ-
ten in the following way:


Wrlt = − kxxu
u − kxzw
u − kzzw
w − kzxu
w − cxxu̇
u − cxzẇ
u

− czzẇ
w − czxu̇
w �20�
or


Wrlt = Frltx
u + Frltz
w �21�

where Frltx and Frltz are the components of the generalized forces
of the ball bearing. In matrix form it can be written as

�Frltx

Frltz
	 = − �kxx kxz

kzx kzz
	�u

w
	 − �cxx cxz

czx czz
	� u̇

ẇ
	 �22�

Air Bearings. Taking the air bearings into account in the be-
havior of a shaft requires the expression of the virtual work due to
these bearings. As presented previously, the forces generated by
the air bearings on the shaft depend at the same time on the local
deflection of the rotor on the level of each bearing as well as the
rotational speed. The expression of the virtual work of the forces
generated by an air bearing is as follows:


Wpal = Fpalx
u + Fpalz
w �23�

with Fpalx, Fpalz, the components of the forces generated by the air
bearing on the rotor. The components of the forces generated by
the bearing are calculated at each time step, using Reynolds equa-
tion expressed in dynamic regime �Eq. �5��.

The Reynolds equation provides the field pressure which leads,
upon integration, to the fluid film forces acting in the bearing. This

Fig. 9 Stiffness and damping coefficients of a ball bearing
kind of coupling is detailed in �26� in the case of a rigid rotor
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ymmetrically supported by two air bearings. In order to simplify
alculations, we do not consider misalignment of the bearing gen-
rated by pitching, bending of the shaft or a difference in value of
he magnitude of the static loads applied to the bearings.

Gravity. The action of gravity creates an offset of the rotor in
he air bearings. We consider that the total mass of the shaft exerts
force located at the shaft center of gravity. The expression of the
irtual work due to gravity is as follows:


Wgravity = − Mtotalg
w�ycdg� �24�

ith Mtotal as the total mass of the shaft, g is the acceleration of
ravity, and ycdg is the Y-coordinate of the shaft’s center of
ravity.
We obtain the system of equations by application of the

agrange formalism,

d

dt
� �Tc

�q̇i
� −

�Tc

�qi
+

�U

�qi
= 
Wi �25�

ith i=1–6, Tc being the kinetic energy, U the energy deforma-
ion of the whole shaft components, 
W the total virtual work, and
i the generalized coordinates of the system. Thus we can obtain
he system of equations for the rotor dynamic which can be writ-
en in the following matrix form,

�M��q̈ + �C��q̇ + �K��q = �F �26�

ith �M� the matrix of mass, �C� the matrix governing the gyro-
copic effect and possibly the ball bearing damping, �K� the ma-
rix of the rotor stiffness and possibly the ball bearing stiffness,
F the vector of the external actions �the unbalance, the air bear-
ngs forces and gravity�.

Dimensionless Equations. The system of equations can be
ritten in the following form:

�M̄��Q̈¯  +
1

�
�C̄��Q̇¯  +

1

	L3�2 �K̄��Q̄ = �F̄ �27�

ith the following dimensionless variable definitions:

Q̄i =
qi

C0
, Q̇
¯

i =
q̇i

C0�
, Q̈
¯

i =
q̈i

C0�2 , �M�, Mij =
Mij

	L3 ,

Cij =
Cij

	L3 , F̄i =
Fi

	L3C0�2 �28�

ith time T= t�, � as the rotational speed. The parameter C0
enotes an arbitrary value of the order of the bearing radial clear-
nce. The symbols
 and L, respectively, denote the density and 
he length of the rotor.

This dynamic system must be solved step by step in time to
ake into account the nonlinear variations of aerodynamic bearing
orces in the right hand side member. The numerical integration
cheme is the same as that presented in �26�.

alidation
The results from the model are compared to those given in �14�

or a rotor described in Fig. 10, supported by two ball bearings
Table 3�. In the reference, the rotor is modeled by finite element
ethod with a pseudo-modal reduction.
Four critical speeds are given by the Rayleight Ritz model

Table 4�. The first two critical speeds are very close to the refer-
nce value, Fig. 11. The last two critical speeds are quite different.
n this case, modes three and four involve bending modes that are
ore complex than the first bending mode involved in the
ayleigh-Ritz model. The first two modes are the first bending
ode. This study confirms that the simplified Rayleigh-Ritz
odel gives good results if the rotor bending mode remains
6

simple. Generally, the rotors used in oil-free turbomachinery are
quite stiff, thus considering only rigid and first bending modes is a
reasonable assumption.

Results and Discussion
The Rayleigh-Ritz model will now be used to study the dy-

namic behavior of a deformable shaft supported by air bearings.
Thus we will be able to show the usefulness of this type of analy-
sis while observing, in particular, the influence of the rotor flex-
ibility on the response to an unbalance and the stability threshold
of the system. We consider a solid or hollow shaft of external
length 300 mm and 50 mm of diameter, as shown in Fig. 12. In
the speed range of 2000–18,000 rpm, the dynamic behavior is
close to the symmetrical rigid configuration �Fig. 13�. This rotor
seems too short and thus too stiff to observe deflection phenomena
in the considered speed range. Once again this validates the
Rayleigh-Ritz model. The influence of the bending mode has not
been shown by this example.

To increase the bending mode, a rotor with 900 mm length is
chosen for the rest of the study. The air bearings, as in the pre-
ceding case, are located at 50 mm from the ends of the rotor. The
dynamic calculation of this shaft’s behavior with nonlinear action
of the air bearings gives an interesting response curve to unbal-
ance. We always observe a peak of amplitude towards 4000 rpm.
It is similar to the case of a rigid rotor but a second peak appears
towards 9500 rpm. We compare this response curve in Fig. 14
with that obtained from the symmetrical rigid rotor simple model
in order to highlight the effect of the rotor’s flexibility.

It is interesting to represent the deformation of the rotor for
speeds of 4000 and 9500 rpm, Figs. 15 and 16. These figures give
the representation of the trajectory of the rotor’s center for various
Y-coordinates. We took the precaution to remove the static defor-
mation of the shaft due to gravity, so that the observation of the
deformation in rotation is easier.

It appears clearly that the mode of vibration at the speed of
4000 rpm is of the “rigid body” type because we obtain a very
small twist of the shaft. The amplitude of displacements along the
Z-axis is one third of those along the X-axis, Fig. 15.

For the speed of 9500 rpm, the associated mode of vibration
introduces the inflection of the rotor whose form is complex. It
should be noted that the amplitude of the deformation along the
Z-axis �direction of the weight� is approximately four times higher
than that in the X-direction, Fig. 16.

One can also plot on the same graph the response curves to
unbalance in configuration ball bearings and air bearings, Fig. 17.
It appears that the two curves present notable differences. First of
all, we note that the air damping of the bearings leads to a de-
crease of the amplitude of the rotor center trajectory compared
that of a “ball bearing” configuration �with identical unbalance�.
At high speed, the eccentricity is low, film thickness is high, and
the air bearing stiffness is less than that of a classical ball bearing.
Hence, a part of the second mode energy is in the bearing and not
in the rotor, as with ball bearings. In the air bearing configuration,

Fig. 10 Configuration of the reference case
we thus obtain displacements which are due to both the rigid and
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ending modes. At low speed, a rigid vibration mode is present
ith the air bearing configuration and not with that of the ball
earings. This simple case outlines how bearings influence the
hole dynamic response of the system.

eneral Conclusions
This study of aerodynamic journal bearing dynamic character-

stics has been conducted because it is crucial to understanding
otor dynamic behavior. Initially, the rotor is considered to be
igid and supported symmetrically by two identical radial bear-
ngs. We have shown that the linear modeling, i.e., representing
he bearings with stiffness and damping coefficients, has a re-

Table 3 Data for

Rotor

Disk Thickness,

Disk 1 �l1� 0.05
Disk 2 �l2� 0.05
Disk 3 �l3� 0.06

Bearing stiffness and damping Kxx

Cxx=5
Unbalance
Velocity

Table 4 Critical speeds

Critical speed,
Rayleigh-Ritz

rpm

Critical speed,
Reference

rpm

1 3610 3620
2 3840 3798
3 12850 10018
4 15080 11279
5 ¯ 16785
6 ¯ 24408
7 ¯ 26615

Fig. 11 Dynamic response at y= l2
Fig. 12 Scematic of a hollow shaft with a central disk
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stricted field of validity. For instance, in the case of a three lobe
rigid bearing without geometrical preload, this range is limited to
relative eccentricities lower than 0.65.

Thus, the prediction of the bearing stability threshold and the
response to dynamic excitations can be erroneous if one uses a
linear approach beyond the appropriate limit for this type of aero-
dynamic bearing. In addition, we illustrated the fact that for high
loads the deformable bearing profiles have a lower stability than
their rigid counterparts. Since we were fully aware that this ob-
servation goes against some physical phenomena observed in ex-
periments, we set up a model which takes into account a structural
damping of viscous type in the nonlinear approach. Even with
very low coefficient values of the bearing structural damping, the
level of stability could be increased, in accordance with the phe-
nomena presented in the literature.

Having clearly highlighted the nonlinear character of aerody-
namic bearings dynamic behavior, we considered direct coupling
with a deformable shaft. At this point we developed a calculation

e reference case

=0.2 m, l2=0.5 m, l3=1 m, L=1.3 m

Plain section, �=0.05 m
2�1011 N /m2, 	=7800 kg /m3, =0.3

Inner diam,
m

Outer diam,
m

0.05 0.12
0.05 0.2
0.05 0.2

107 N /m, Kzz=7�107 N /m, Kxz=Kzx=0
102 N /m /s, Czz=7�102 N /m /s, Cxz=Czx=0

200 g mm on disk 2
from 0 to 30000 rpm

Fig. 13 Comparison between the Rayleigh-Ritz model and
rigid rotor model

Fig. 14 Response curve to unbalance. Comparison with the
th

l1

E=

m

=5�
�

rigid case.



b
�
t
r

c
m
h
a
e
s
a
i

F  
b

ased on the Rayleigh-Ritz method using a base of three modes
pumping, pitching, and bending�. Thus, we were able to confirm
he coherence of the obtained results compared to those from the
igid rotor model.

The deformation of the rotor reveals modes of vibrations which
annot be predicted by the rigid model. At low speed, a rigid
ode of vibration is present with the air bearing configuration. At

igh speed we obtain displacements which are due to both rigid
nd bending modes. This simple case brought into light the influ-
nce of the bearing on the dynamic response of the complete
ystem. It appears clearly in the first part of this paper that the
ddition of damping within the deformable structure leads to the
ncrease of the deformable bearing’s stability level.

Fig. 15 Deformation of the rotor at 4000 rpm

Fig. 16 Deformation of the rotor at 9600 rpm

ig. 17 Response curves to unbalance in configuration ball

earings, air bearings with linear and nonlinear action

8

As could be expected, the higher the damping coefficient, the
higher the critical speed. Furthermore, the critical speed does not
decrease further with load increase. The relation between the criti-
cal engine failure speed and the static load seems to deviate from
linear behavior and approach a higher order polynomial form. It is
clear that future work will relate on the one hand to the modeling
of dry friction between the foils and the bumps to properly quan-
tify the damping brought by this process, and on the other hand to
the development of a more realistic rotor dynamic model so as to
properly characterize the dynamic behavior of the whole system.

Nomenclature
C � radial clearance

Cij � damping coefficients
D � bearing diameter
e � bearing eccentricity
E � Young modulus

fa,b,c � displacement functions
Frltx, Frltz � roller bearing forces

Fpalx, Fpalz � bearing forces
g � gravity acceleration
h � film thickness
H � dimensionless film thickness, H=h /C
I � rotor inertia in the X direction

IDx � disk inertia in the X direction
IDy � disk inertia in the Y direction
Kij � bearing stiffness coefficients
Ks � stiffness coefficient of the structure
L � bearing length

M � rotor mass
MD � disk mass

O � bearing center
Oa � shaft center

p � pressure
pa � ambient pressure
P � dimensionless pressure, p /pa
qi � generalized coordinates
R � bearing radius

Ra � shaft radius
Sc � compliance
S � bearing section

S̄c � dimensionless compliance S̄=S�Pa /C�
t � time

T � dimensionless time, T= t�
TS � rotor kinetic energy
TD � disk kinetic energy
TC � total kinetic energy
Tu � unbalance kinetic energy
U1 � speed component in X direction
US � rotor energy deformation

u�y , t�, v, w � shaft displacement in the X, Y, and Z
directions

X, Y, Z � initial frame
x, y, z � local frame

Wo � static load
W � carrying capacity

W̄ � dimensionless carrying capacity, W̄=W / �paLD�
Wdx,y � external dynamic forces


W � virtual work
� � damping coefficient

�, � � rotational speed
�, � � shaft angular displacements

� � bearing number
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