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The Phan-Thien and Tanner Model Applied to Thin 
Film Spherical Coordinates: Applications for 
Lubrication of Hip Joint Replacement

The Phan-Thien and Tanner (PTT) model is one of the most widely used rheological models. It can properly describe the common 
characteristics of viscoelastic non-Newtonian fluids. There is evidence that synovial fluid in human joints, which also lubri-cates 
artificial joints, is viscoelastic. Modeling the geometry of the total hip replacement, the PTT model is applied in spherical coordinates 
for a thin confined fluid film. A modi-fied Reynolds equation is developed for this geometry. Several simplified illustrative problems are 
solved. The effect of the edge boundary condition on load-carrying normal stress is discussed. Solutions are also obtained for a simple 
squeezing flow. The effect of both the relaxation time and the PTT shear parameter is to reduce the load relative to a Newtonian fluid 
with the same viscosity. This implies that the Newtonian model is not conservative and may overpredict the load capacity. The PTT 
theory is a good candidate model to use for joint replacement lubrication. It is well regarded and derivable from molecular 
considerations. The most important non-Newtonian characteristics can be described with only three primary material parameters.
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1 Introduction

Synovial fluid is a polymeric fluid and, as such, is likely to

exhibit non-Newtonian viscoelastic flow properties. These proper-

ties may include an elastic effect, a shear thinning effect, and a

normal stress effect. Evidence has been reported decades ago by

King �1� and Balazs and Gibbs �2� and was more recently sum-

marized and discussed by Fung �3�. In these references, the vis-

coelastic dynamic storage modulus G� �proportional to fluid elas-

ticity� and loss modulus G� �proportional to viscosity� are

measured. If the synovial fluid were purely viscous, one would

observe that G�=0, but instead these references show that G� and

G� are of the same order of magnitude, from which one could
infer significant fluid elastic effects. Apparently, it remains a con-
troversy as to whether or not these viscoelastic effects are signifi-
cant, but it would certainly seem worthy of study.

There are some recent experimental studies on the non-
Newtonian and viscoelastic properties of synovial fluid. In 2005,
Oda and Sugishita �4� attributed its excellent lubrication proper-
ties in the natural joint to viscoelastic properties. Szwajczak �5� in
2004 reported on studies of hyaluronic acid in which natural and
artificial solutions have exhibited viscoelastic properties. Krause
et al. �6� performed rheological measurements on synovial fluid
and found significant effects. Finally, Oates et al. �7� investigated
the role of rheology in the behavior of a bovine synovial fluid.

The importance of viscoelastic effects in natural human joint
lubrication was perhaps first discussed by Mow and Ateshian �8�.
However, nearly all existing studies of synovial lubrication in ar-
tificial joints are performed with purely viscous fluid models.
Purely viscous fluids may be non-Newtonian in exhibiting viscos-

ity shear thinning, but they do not exhibit normal stress and time
dependence—stress is always in phase with strain rate.

Basic concepts, such as squeeze film lubrication, elastohydro-
dynamic lubrication �EHL�, and boundary lubrication, have con-
tributed to the many possible theories of joint lubrication. Mow et
al. �9� developed a theory that considered several complex factors,
including the dynamics of non-Newtonian synovial fluid flow and
its interaction with the cartilage surface. A description of the thin
spherical film lubrication geometry for the hip prosthesis for rigid
surfaces has been presented by Meyer and Tichy �10�. Several
recent articles have appeared concerning EHL as applied to the
modeling of hip implants �see Liu et al. �11� and Udofia and Jin
�12��.

Various modes of lubrication occur under different operating
conditions and occur simultaneously in most situations during
various cycles of articulation. For instance, Mabuchi and Sasada
�13� used a standard Newtonian EHL approach, but only the
squeezing effect is considered. This approach has been slightly
modified by Hlaváček �14� using a piecewise power law lubricant
in steady rolling motion. Mazzucco et al. �15� illustrated the im-
portance of the steady shear viscosity and linear viscoelastic prop-
erties in fluid film lubrication of a joint replacement prosthesis.
Bou-Saïd and Kane �16� studied non-Newtonian lubrication ap-
proaches to knee joint lubrication.

Additional knowledge on SF rheology in hip implants may be
useful for the development of prosthesis materials and designs and
for a better understanding of the tribological characteristics of
replacement bearings for the human body. If we accept the
premise of the viscoelastic nature of synovial fluid, there is cer-
tainly no consensus as to which model to use. This paper is not the
proper forum for a thorough discussion of the pros and cons of the
numerous models extant. However, the PTT model �17� is often
considered for polymer solutions. Some advantages are that the
model describes the major features of non-Newtonian flow in both
shear and extension �effective viscosity variation, normal stress,
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time dependence, and overshoot�, the time scales involved can be
superimposed, and the model can be derived from the molecular
scale network theory. There are several existing studies of the PTT
model applied to lubrication �see Bou-Saïd and Ehret �18�, and
Akyildiz and Bellot �19��.

2 Analysis

The notation of Bird et al. �20� is used throughout this paper.
The PTT model can be expressed as

� = �
i

�i, Zi = 1 − ��i tr �i/�i or Zi = exp�− ��i tr �i/�i�

�1�

Zi�i + �i�i�1� +
�

2
�i��̇ · �i + �i · �̇� = − �i�̇

Extra stress � is described as a superposition of partial stresses.

The rate of strain is denoted as �̇, and the subscript on the extra
stress �1� indicates the upper convected �contravariant� first de-

rivative. Relaxation time �, viscosity �, and the function Z are
described by a spectrum,

� = �1,�2, . . . , � = �1,�2, . . . , Z = Z1,Z2, . . .

The symbols � and � denote flow parameters, which are generally
curve fit to experimental data, where tr denotes the trace. The

parameter � does not play a significant role in shear-dominated

flow �for simple shear, tr �i=0�. Likewise, � is not influential in
elongational flow. An advantage of the PTT model is that by in-
dependent curve-fit adjustment of the two parameters, the model
can accurately portray both shear and elongational flow �a com-
mon drawback of other differential models�. The empirical stress

function Z allows the model to accurately portray Trouton elon-

gational viscosity data. The Maxwell fluid is obtained if �=�=0.
We use the standard definition of spherical coordinates given by

Bird et al. The acetabular cup center is considered to be the sta-

tionary origin �see Fig. 1�. The outer radius rPo
=Ro is measured

from the origin to the point in question on the cup surface. The

inner radius rPi
�� ,���Ri is measured from the origin to the point

along the outer radius where it intersects the femur �inner� head.

The location of the head is specified by its eccentricity e and the

pair of angles denoting the direction of the line of centers ��c ,�c�.
The direction z is normal to the ground, and the direction of walk-

ing is y �not shown�, into the plane of the paper. The head and cup

are hemispheres, and the normal location is �n ,�n.
We now apply the thin film approximation in which the differ-

ence between the inner and outer undeformed radii is c=Ro−Ri,

c�Ro�R. The eccentricity ratio is given by �=e /R. For these
conditions, the film thickness is given by

h��,�,t� = c�1 − ��t��cos � cos �c + sin � sin �c cos � cos �c

+ sin � sin �c sin � sin �c�� �2�

where t is time. For a thin film of fluid confined between two
nearly spherical surfaces �possibly nonconcentric�, we have the
following orders of magnitude:

�

�r
�

1

c
�

1

r

�

��
,

1

r

�

��
, r � R, vr � v�,v� �3�

In the analysis below, we assume that we are working with one
of the spectral equations of Eq. �1� or, equivalently, a one time
scale �sometimes called the one mode version of the PTT equa-
tion�. For notational simplicity, the numerical subscripts are omit-
ted. Applying the orders of magnitude of Eq. �3� to the PTT model
�Eq. �1��, we obtain the following equations for the unsteady
stresses:

�
�	r�

�t
+ Z	r� = −

�v�

�r
�� + �	− 	rr +

�

2
�	rr + 	���
�

�
�	r�

�t
+ Z	r� = −

�v�

�r
�� + �	− 	rr +

�

2
�	rr + 	���
�

�
�	rr

�t
+ Z	rr = −

�v�

�r
���	r�� −

�v�

�r
���	r�� �4�

�
�	��

�t
+ Z	�� = −

�v�

�r
���� − 2�	r��

�
�	��

�t
+ Z	�� = −

�v�

�r
���� − 2�	r��

The initial and boundary conditions are indicated below. For the
time being, we assume that the initial condition is at rest. In prin-
ciple, any sort of motion can be described, but to eliminate undue
complexity, we restrict ourselves to combinations of pure squeez-

ing in the direction normal to the ground �̇z and pure rotation in
the direction parallel to the ground and normal to the direction of

walking 
x. At the femur head �inner moving sphere� and at the
acetabular cup �outer fixed sphere�, we have, respectively,

t = 0: v� = v� = vr = 0

r = R − h��,�,t�:v� = − 
xR sin �, v� = − 
xR cos � cos �

�5�

vr = −
�h

�t
= − �̇z�t�c cos �

r = R:v� = v� = vr = 0

The �r ,� ,�
 equations of motion are given by

0 =
��rr

�r

0 =
�	r�

�r
+

1

R
	 ��rr

��
+

�

��
�	�� − 	rr� + cot ��	�� − 	���
 �6�

0 =
�	r�

�r
+

1

R sin �
	 ��rr

��
+

�

��
�	�� − 	rr�


We have used the thin film assumption �Eq. �3��, neglecting
body forces and fluid inertia, as normally done. A time depen-
dence also arises through the radial velocity boundary condition

vr=−�h /�t. The continuity equation for spherical thin films can be
expressed as

0 =
�vr

�r
+

1

R sin �

�

��
�v� sin �� +

1

R sin �

�v�

��
�7�

Fig. 1 Schematic of eccentric sphere geometry
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In viscoelastic flows, “pressure” has no direct physical mean-

ing. For incompressible flow, the total stress � exerts the physical

force, the extra stress � is the portion of the total stress that can be
determined by the flow kinematics and the rheological model, and

the pressure p is simply the difference between the two. In this
case, the stress component that carries the load is the total stress

�rr,

Fz =�
S

�z · �n · ��dS =�
S

�cos ��rr − sin �	r��dS

��
S

cos ��rrdS

�8�
�rr��,�,t� = p�r,�,�,t� + 	rr�r,�,�,t�

The normal vector to the bearing surface n is the spherical coor-

dinate unit vector in the radial direction �r. From the thin film

scaling �Eq. �3�� and Eq. �6�, we can see that the normal stress �rr

is much greater than the shear stress, �rr��R /c�	r�, just as pres-

sure is much greater than shear stress in Newtonian lubrication.

3 Goal of the Paper and the Complexity of Finding

Solutions

Even in the case of rigid surfaces, the difficulties in obtaining
numerical solutions to the equations are enormous. Equations �6�
and �7� must be solved simultaneously with Eq. �4�. Consider a
simple physical motion impact normal to the ground after jump-
ing. Because the prosthesis is not aligned with the ground, the film

thickness is a function of two spatial coordinates, � and �, as well

as time. Variation with radial position r across the film is required
in the constitutive equations �Eq. �4��; thus, a very simple human
movement requires a full three-dimensional unsteady solution of

nine coupled equations to find �rr�r ,� ,� , t� and thus determine

the load.
Below, we make several simplifying assumptions in the govern-

ing equations and attempt to reduce the complexity by attacking
highly idealized geometrical configurations. We only have chosen
highly idealized model problems that reduce to ordinary differen-
tial equations. The results illustrate some basic characteristics of
the behavior. In that spirit, we use the assumption of rigid sur-
faces, which may be applicable in some circumstances to metal-
on-metal implants. Our goal is to examine the general suitability
of the PTT model in joint lubrication, rather than to model a
particular prosthesis. Thus, one can better assess the feasibility of
more costly and realistic numerical studies.

Recall that the Reynolds equation �modified or otherwise� is

quasisteady. The cross-film coordinate, in this case r, is elimi-
nated. Time dependence is introduced through the squeeze film
term, but stress or pressure variation is exactly in phase with

surface velocity �h /�t. In deriving a modified Reynolds equation,
we must assume that the fluid mechanics are quasisteady; i.e., the
time derivatives of Eq. �4� can be neglected. If so, the stresses of
Eq. �4� can be solved algebraically and substituted in the equa-
tions of motion �Eq. �6��. Similarly, the time dependent terms of
the Navier–Stokes equations are neglected in the development of
the classical Newtonian Reynolds equation.

It is known that for the PTT model, one can set Z=1 �or �=0�
without greatly affecting the shear flow behavior. If � /�t� �̇z, then

quasisteady conditions exist if ��̇z�1. The product ��̇z is a sort of
Deborah number De. The quasisteady assumption to develop a
modified Reynolds equation is restrictive in the sense that certain
viscoelastic time-dependent phenomena cannot be described, such
as overshoot and relaxation.

In illustrative examples below, for simplicity, we will consider a
form of pure squeezing. We assume that the hemispherical cup is

oriented parallel to the ground ��n=�n=0� and thus the film thick-

ness �Eq. �2�� becomes h=c�1−�z cos ��, with �h /�t=c�̇z. We set

the walking rotation 
x=0. Of course, such an orientation of the
acetabular cup does not occur in practice. The load-carrying nor-

mal stress becomes simply �rr=�rr���, and only an ordinary dif-

ferential equation need be solved. The time dependence becomes

parametric, directly proportional to �̇z. In a very qualitative way,
this problem simulates the impact after jumping.

There is no correspondingly simple way to simulate walking
�sliding of the surfaces as opposed to squeezing�. In Eq. �5�, if we

set �̇z=0 but 
x�0 �walking, no jumping�, a � dependence is

introduced in the surface velocities. Thus, �rr=�rr�� ,��, and a

partial differential equation must be solved.

4 Approximations for a Modified PTT Reynolds Equa-

tion

Setting relaxation time �=0 and the PTT stress factor Z=1, the
Newtonian velocity field can be found by straightforward but
complicated manipulations,

v�
N =

R − r

h
�
xR sin �� + ��R − r�2 − �R − r�h�

1

2R�

�pN

��

�9�

v�
N =

R − r

h
�− 
xR cos � cos ��

+ ��R − r�2 − �R − r�h�
1

2R� sin �

�pN

��

Also, by the standard development, the Newtonian Reynolds
equation is

1

sin �

�

��
	sin �

h3

12R2�

�pN

��

 +

�

��
	csc2 �

h3

12R2�

�pN

��



= − �̇zc cos � +
1

2

x	sin �

�h

��
+ cos � cot �

�h

��

 �10�

Let us now consider quasisteady conditions, dropping the time
derivative term of the constitutive equations �Eq. �5��, as dis-
cussed above. We now seek an approximate solution based on the
Newtonian velocity field,

	r�
N = − �

�v�
N

�r
, 	r�

N = − �
�v�

N

�r
�11�

For Z=1, the approximate normal stresses can be found algebra-
ically and then averaged across the film to obtain

	�� � − ��� − 2�
�v�

N

�r
	r�

N � ���� − 2��rv�
2

	�� � − ��� − 2�
�v�

N

�r
	r�

N � ���� − 2��rv�
2 �12�

	rr � − ��
�v�

N

�r
	r�

N − ��
�v�

N

�r
	r�

N � ����rv�
2 + ����rv�

2

Substituting Eq. �12� into Eq. �5�, let us rewrite cross-film aver-

aged versions of the � and � equations of motion �Eq. �6�� as

0 =
1

R

��rr

��
+

1

R
a���,�� − b���,��

�
2
v�

�r2

�13�

0 =
1

R sin �

��rr

��
+

1

R sin �
a���,�� − b���,��

�
2
v�

�r2

where, after considerable manipulation,

a� = − �� cot ��2 − ����rv�
2 − �rv�

2 � − ���4�rv��r�v� + 2��rv��r�v��

a� = − ���4�rv��r�v� + 2��rv��r�v��
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b� = ��1 − �2��2 − ����rv�
2 +

1

2
�rv�

2 �� �14�

b� = ��1 − �2��2 − ����rv�
2 +

1

2
�rv�

2��
with

�rv�
2 =

1

h
�

R−h

R 	 �v�
N

�r

2

dr, �rv�
2 =

1

h
�

R−h

R 	 �v�
N

�r

2

dr

�rv��r�v� =
1

h
�

R−h

R
�v�

N

�r

�
2
v�

N

�r��
dr, �rv��r�v� =

1

h
�

R−h

R
�v�

N

�r

�
2
v�

N

�r��
dr

�15�

�rv��r�v� =
1

h
�

R−h

R
�v�

N

�r

�
2
v�

N

�r��
dr, �rv��r�v� =

1

h
�

R−h

R
�v�

N

�r

�
2
v�

N

�r��
dr

Following an identical procedure to the classical derivation of
Reynolds equation, a PTT modified Reynolds equation is thus
obtained,

1

sin �

�

��
	sin �

h3

12R2b�

��rr

��

 +

�

��
	csc2 �

h3

12R2b�

��rr

��



= − �̇zc cos � +
1

2

x	sin �

�h

��
+ cos � cot �

�h

��



+
h3

12R2b�b�

	a�b� cot � + b� csc2 �
�a�

��
− a�b�

1

b�

csc2 �
�b�

��

+ 3a�b� csc2 �
1

h

�h

��
+ b�

�a�

��
− a�b�

1

b�

�b�

��
+ 3a�b�

1

h

�h

��



�16�

The specification of proper edge boundary conditions is a contro-
versial topic. This issue in lubrication flows was originally noted
by Tanner �21� and discussed in more detail by Sawyer and Tichy
�22�. In the case of an open-ended contact, none of the boundary
condition alternatives is entirely satisfactory. There are several
such choices. The following is the easiest to apply:

� = �n:�rr = patm �17�

However, there is no obvious physical argument in its favor. Like-
wise, there is no particular logic in setting the pressure at the film
edge equal to ambient pressure. Another alternative would be to

balance the normal stress in the flow direction ��� against the
ambient pressure imposed about the periphery of the the head-cup
interface,

� = �n:��� = �rr + �	�� − 	rr� = patm �18�

5 One-Dimensional Contact: Pure Squeezing Flow

Formulation

Let us consider the case of a one-dimensional contact defined
by


x = �c = �c =
�

��
= v� = 0, h = c�1 − � cos �� �19�

All of the stresses and the velocities v� and v� are thus functions

of �at most� r and �, as well as, perhaps, of time t.
We now solve the governing equations �Eqs. �5�–�8�� for one-

dimensional steady squeezing. At the instant considered, the

sphere is assumed to be centered, �=0, and the location in ques-

tion is the film edge where �=� /2. As previously discussed,

“steady” implies that the � /�t terms of Eq. �5� are small. This is
probably the simplest possible set of conditions that allows for
non-uniformity, i.e., variation of velocity and stress over the film
surface.

Measurements of the linear viscoelastic properties of synovial
fluid are reported in the literature as mentioned above �the elastic

storage modulus G� and viscous loss modulus G� as functions of

frequency 
�. However, measurements of viscosity and relaxation
time as functions of shear rate are far less common. Noting that

for the Maxwell model �= �G�
2+G�

2� / �G�
�x /H� and �

=G� / �G�
�, where �x /H represents a ratio of oscillation ampli-

tude to film thickness, we can make some crude estimates of
viscosity and relaxation time at the kinematic conditions.

At high shear rates, large non-Newtonian normal stresses are
predicted. To illustrate, consider Eqs. �4� in steady conditions with

Z=1 and v�=0, i.e., one-dimensional bearing conditions. By al-

gebraic manipulation for small �, we find 	r�=−�
̇�1−2��2
̇2�.

Thus, we define a PTT parameter �*=���
̇0�2, which approxi-

mately represents the strength of a correction to a purely viscous
behavior.

We use the following parameter values: viscosity �=1 Pa s,

relaxation time �=0.1 s, PPT parameters �*=0.0 and 0.1, �=0.0,

and shear rate 
̇0= �̇R /c=1000.
The approximation of Eq. �15� is given by

�rv�
2 = 3

R2

c2

�̇z
2 sin2 �

�1 − � cos ��4
�20�

We now solve the modified PTT Reynolds equation for the one-
dimensional spherical bearing case in squeezing flow. Reynolds
equation simplifies to

1

sin �

�

��
	sin �

h3

12R2b�

��rr

��



= �̇zc cos � +
h3

12R2b�

	a� cot � +
�a�

��
− a�

1

b�

�b�

��
+ 3a�

1

h

�h

��



�21�

and we use the boundary conditions

� = 0:
��rr

��
= 0

�22�
� = �/2:�rr = patm or ��� = �rr − 2���rv�

2 = patm

6 One-Dimensional Contact: Pure Squeezing Flow Re-

sults

First, we illustrate the effect of the edge boundary conditions in

Fig. 2. We show the load-carrying �radial� total normal stress �rr

0 20 40 60 80

azimuthal coordinate Θ �deg�

2

4

6

8

10

n
o
rm

al
st

re
ss
Π

rr
,
Π
Θ
Θ
�M

P
a
�

Fig. 2 Effect of edge boundary condition—profile of radial and
azimuthal normal stress. Azimuthal normal stress equals ambi-
ent pressure at film edge. Simple steady squeezing flow �

=0.0. Relaxation time �=1 s; PTT parameter �*=0.0 „Maxwell
fluid…. Dashed line: normal stress in flow direction ���. Solid
line: load carrying normal stress �

rr
.
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and the normal stress in the flow direction ���. The PTT and

kinematic parameter values follow: viscosity �=1 Pa s, relaxation

time �=1.0 s, PPT parameters �*=0.0 and �=0.0, and shear rate


̇0= �̇R /c=1000 s−1. The normal stress in the flow direction is

balanced against the ambient pressure at the end of the film, �
=� /2. Note that the load-carrying normal stress is much greater
and is effectively prestressed at the edge.

The effect of relaxation time is shown in Fig. 3. The load-

carrying normal stress �rr is shown, and it is set to ambient at the
edge of the film. As above, the sphere is assumed to be centered,

with viscosity �=1 Pa s and shear rate 
̇0= �̇R /c=1000 s−1. For
this boundary condition, the effect of increasing relaxation time is
to decrease total normal stress and load-carrying capacity. The
short-dashed curve is Newtonian. The normal stress is also much
more uniform across the bearing surface in the viscoelastic case.
Clearly, the effect of viscoelasticity in this case is to decrease load
relative to the equivalent Newtonian fluid.

The same set of conditions as in the previous figure is shown in
Fig. 4 �except as noted�, but now the normal stress in the flow

direction ��� is set to zero at the edge of the film. Note the

stressed state of �rr at the edge �=� /2 and that the viscoelasticity
now apparently increases load capacity. This ambiguous outcome
is still the current state of affairs and awaits experimental reso-
lution.

The effect of the PTT shear parameter �* is shown in Fig. 5.
The various parameter values are the same as for the previous

figures, except relaxation time �=1 s. The effect of the PTT shear
parameter is to significantly reduce the load, largely through a
shear thinning decrease in effective viscosity.

Finally, we show the effect of instantaneous eccentricity ratio.
As the femoral head approaches the cup surface, total normal
stress rises dramatically �see Fig. 6�. The conditions are the same
as for the previous figures and as noted in the caption. For the
quasisteady conditions of a modified Reynolds equation, transition
from the lower �solid� curve to the upper �long dash� curve illus-
trates time dependence as the head approaches the cup.

7 Conclusions

We have attempted to examine the suitability of the PTT vis-
coelastic fluid model to describe the behavior of synovial fluid in
joint replacement prostheses. The properties of synovial fluid have
been measured elsewhere and found to be viscoelastic, thus the
need to determine an appropriate model. Both the PTT model and
the geometry and kinematics of the hip joint are extremely
complex—even in the case of rigid surfaces. Thus, we have ex-
amined the behavior of the PTT fluid in a number of simplified
idealized problems to judge its overall effectiveness as a candidate
for a more complete numerical approach. These model problems
all reduce to ordinary differential equations, while the real-world
problems are unsteady and three dimensional. We make no claim
that we are presently offering a complete model of the lubrication
total hip replacement prosthesis.

The PTT model in thin film spherical coordinates portrays shear
thinning of the effective viscosity, time-dependent behavior such
as relaxation and overshoot, and normal stress behavior. Both re-
laxation and the PTT shear parameter tend to decrease load in
steady conditions, consistent with other viscoelastic lubrication
studies. However, there is uncertainty as to the proper edge
boundary conditions, and a different condition may cause quite
different results.
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Fig. 3 Effect of relaxation time—profile of radial „load carry-
ing… normal stress. Simple squeezing flow �=0.0. PTT param-

eter �*=0.1. Solid line: �=1 s; long dashed line: �=0.5 s; short
dashed line: Newtonian, �=0.0 s.
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edge. Simple squeezing flow �=0.0. PTT parameter �*=0.1.
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At present, there is a very cloudy picture as to the status of
viscoelasticity in prosthesis lubrication. However, it is certainly
possible that synovial fluid in an artificial joint may exhibit sig-
nificant non-Newtonian effects. Only experimental studies can re-
solve many of the existing uncertainties. However, the PTT model
is flexible and robust and must be considered a leading contender
as a model for synovial fluid in these applications once better data
are obtained as to the real behavior of these complex and vitally
important devices.

Figure 3 shows that for certain conditions viscoelasticity sig-
nificantly reduces the load-carrying normal stress relative to a
Newtonian fluid of equivalent viscosity. Thus, the Newtonian
model may overpredict the forces developed to separate the bear-
ing surfaces. Therefore, in the design sense, the Newtonian vis-
cous fluid is not a conservative choice for fluid model.
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