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In this article, the effect of both static and dynamic deforma-

tions of the bearing liner on the dynamic performance charac-

teristics and stability of a water-lubricated, rubber-lined jour-

nal bearing operating under small harmonic vibrations is theo-

retically investigated. To take into account the dynamic defor-

mations of the bearing liner, the first-order perturbation tech-

nique is used to determine the eight dynamic coefficients for a

given excitation frequency value. The static and dynamic de-

formation of the fluid/bearing-liner interface is assumed to be

proportional to the steady-state and dynamic fluid-film pres-

sures. It was found that the dynamic properties and stability of

the compliant finite-length journal bearing are affected by sur-

face coatings from soft materials. It was also shown that when

dynamic deformations are considered in the calculations, the

dynamic coefficients depend on the excitation frequency, espe-

cially for higher values of this parameter. Moreover, the two

cross-damping coefficients differ from each other, while the

classical elastohydrodynamic (EHD) theory predicts them to

be equal, when the dynamic deformations are ignored.
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INTRODUCTION

The compliant plain journal bearings are the machine ele-

ments that consist of two components: a shaft in hard steel and a

bearing with a liner. Technologically speaking, the coated bear-

ings are used in order to reduce the friction coefficient in the

boundary lubrication regime encountered mainly during the start

and stop phases of machines.

Since 1965, steady-state performance characteristics of com-

pliant journal bearings have theoretically and experimentally

been investigated by many researchers (1-16). However, dynamic

properties have mostly been calculated by taking into consider-

ation only static-pressure–induced deformations of the bearing

liner—even for low-elasticity modulus materials such as white

metals and rubber materials. Indeed, the existing literature shows

that studies on dynamic characteristics of compliant journal bear-

ings considering dynamic-pressure–induced deformations of the

bearing liner are scarce.

A good survey on EHD investigations in both static and dy-

namic operating conditions of steadily and dynamically loaded

compliant journal bearings can be found in References (11, 12,

14).

An example of a compliant journal bearing is the water-

lubricated rubber journal bearing that is used in many applica-

tions, including stern tube bearings on ships, submarines, and hy-

draulic pumps.

The rubber journal bearings reduce much noise and vibration

(acoustic emissions) compared with equivalent composite bear-

ings. These bearings are resistant to abrasion caused by the pres-

ence of solid particles in the water. The use of water as a lubri-

cant provides efficient low-friction operation and a stable lubri-

cant film due to the water’s incompressibility.

Figure 1 shows a picture of a typical water-lubricated pro-

peller shaft bearing system. To promote the formation of a hydro-

dynamic film between the propeller shaft and bearing, the lower

loaded half of the bearing is smooth, while the upper one incor-

porates longitudinal grooves for flow of the water lubricant. The

rigid outer shell is made of naval brass or nonmetallic composite,

which acts as the compliant liner rigid backing.

The first designs of these bearings had a plain bore, but this

was modified several times in order to improve the performance

characteristics of the bearing.

There is another generation of marine bearings like straight-

fluted bearings widely used today. The design of this type of bear-

ings consists of a number of rubber staves (load-carrying lands)

bonded onto the outer rigid shell and separated by flutes. These

flutes supply the bearing with water lubricant that enters at one

end of the bearing and leaves at the other one.
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NOMENCLATURE

aεε, aεφ, aφε, aφφ = stiffness coefficients, N/m

Aεε, Aεφ, Aφε, Aφφ = dimensionless stiffness coefficients,

Aij = aij
C3

µωR3L
; (i, j ) = (ε, φ)

bεε, bεφ, bφε, bφφ = damping coefficients, N.s/m

Bεε, Bεφ, Bφε, Bφφ = dimensionless damping coefficients,

Bij = bij
C3

µR3L
; (i, j ) = (ε, φ)

C = bearing radial clearance, m

C̃d = deformation coefficient, C̃d =
µω(R/C)3

E

E = Young’s modulus of the bearing-liner material,

Pa

e = eccentricity, m

e0 = steady-state eccentricity, e=
0 |ObOj 0|, m

Fε0 , Fφ0
= steady-state hydrodynamic force components, N

g = gravitational acceleration, ms−2

h = fluid-film thickness, m

h̃ = dimensionless fluid-film thickness, h̃ = h
C

h0 = static fluid-film thickness, m

h̃0 = dimensionless static fluid-film thickness, h̃=
0

h0
C

h̃0min
= minimum static film thickness

L = length of bearing, m

L0 = scalar compliance operator

L̃0 = dimensionless compliance operator

M = mass of rotor per bearing, kg

M̃ = dimensionless mass, M̃ = MCω2

W0

Mc = critical mass of the rotor-bearing system, kg

M̃c = dimensionless critical mass (stability parameter),

M̃=
c

MC
c ω2

W0

n = rotation velocity of the journal, rpm

p = fluid-film pressure, Pa

p̃ = normalized film pressure, p̃ =
p

µω
0 ( R

C )2

p0 = static pressure, Pa

p̃0 = normalized static pressure, p̃=
0

p0

µω
0

(

R
C

)2

p̃0max = maximum static film pressure

Q̃ = complex amplitude of the dimensionless dynamic

pressure

Q̃ε, Q̃φ = normalized dynamic pressures,
(

Q̃ε, Q̃φ

)

=

(

∂Q̃
∂ε

, 1
ε0

∂Q̃
∂φ

)

R = journal radius, m

S = Sommerfeld number, S =
µωRL(R/C)2

πW0

t = time, s

t̃ = dimensionless time, t̃ = ωt

th = thickness of the bearing liner, m

t̃h = relative thickness of the bearing liner, t̃h = th
/

R

Ũ = complex amplitude of the dimensionless dynamic

deformation

U0 = static deformation of the bearing liner, m

Ũ0 = dimensionless static deformation, Ũ0 =
U0
C

Ũε, Ũφ = normalized dynamic deformations of the bearing liner,
(

Ũε, Ũφ

)

=

(

∂Ũ
∂ε

, 1
ε0

∂Ũ
∂φ

)

W0 = static load applied on the journal bearing, W0 = Mg, N

X, Y = = displacement components of the journal center, m

X̃, Ỹ = dimensionless displacements,
(

X̃, Ỹ
)

=
(X,Y)

C

z = axial coordinate measured from middle section plane of

the bearing, m

z̃ = nondimensional axial coordinate, z̃ = z
L

ε = eccentricity ratio, ε = e
C

ε0 = steady-state eccentricity ratio, ε=
0

e0
C

φ = bearing attitude angle, rad

φ0 = steady-state attitude angle, φ0 = Tan−1
(

−
Fφ0
Fε0

)

γ = excitation frequency ratio, γ = ν
ω

γc = whirl frequency ratio (stability parameter), γ=
c

νc
ω

µ = absolute viscosity of lubricating fluid, Pa.s

G = shear modulus of the bearing-liner material, Pa

σ = Poisson’s ratio of the bearing-liner material

ν = excitation frequency, rad/s

θ = bearing angle with the origin situated at the maximum film

thickness, rad

θc0 = static cavitation angle, rad

ω = angular velocity of the journal, ω = 2πn/60, rad/s
◦

(•) = denotes differentiation with respect to t

(•)′ = denotes differentiation with respect to t̃, (•)′ = 1
ω

(
◦
•)

[•] = square matrix

(•)T = transpose of (•)

∼ = on top of a variable denotes a dimensionless quantity

Frames

(O
,
bX, Y, Z) = stationary rectangular coordinate system with origin at the

bearing geometric center

(x, y, z) = local coordinate system of the journal bearing

(Ob, ε, φ) = rotating rectangular coordinate system with origin at the

bearing geometric center

Abbreviations

EHD = Elasto-Hydro-Dynamic

JFO = Jakobsson Floberg Olsson

Im( ) = Imaginary part of ( )

Real( ) = Real part of ( )

Certain marine bearings are made from molded rubber staves

that, when assembled, form an uninterrupted cylindrical bore

bounded by a hard backing metal. The steady-state performance

characteristics of this type of bearings have been investigated ex-

tensively by several researchers, including Braun and Dougherty

(11, 12). They have found that the liner compliance strongly af-

fects the maximum steady-state pressure and the cavitation zone

location, especially at high values of eccentricity and angular

velocity.

In the present investigation, the governing equations relative

to this situation are established, and a numerical simulation is

performed. We analyzed the effects of both static and dynamic

deformations of the bearing liner on the stiffness and damping

coefficients, critical mass, and whirl frequency of a finite-length

water-lubricated rubber-lined journal bearing operating under

small harmonic vibrations.

The first-order perturbation technique was used to determine

static and complex dynamic pressures developed in the fluid film.
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Fig. 1—View of a typical water-lubricated propeller shaft bearing system.

The eight dynamic coefficients can be obtained by means of nu-

merical integrations for a given excitation frequency value. The

dynamic coefficients were used as input data for studying the lin-

ear stability of the rotor-bearing system.

As a first approximation, the deformations of the thin elas-

tic liner made from either compressible or almost incompressible

materials were assumed to be proportional to the fluid-film pres-

sures. The calculations were generally performed for the follow-

ing cases:

1. rigid bearing liner;

2. only static deformation;

3. both static and dynamic deformations.

THEORETICAL ANALYSIS

Figure 2 schematically shows the aligned compliant plain jour-

nal bearing at its static equilibrium position with an elastically

deformed bearing liner where the undeformed (rigid) configura-

tion is represented by the circle of radius (R + C). The origin of

θ

φ

W

Y

φ

h

ε

X

Fluid-film

C
ε

Oj

x

Rigid journal

ω

zzz
y

R

Ob

0

0

0

0

0

R+C

0U

M

Fig. 2—Geometry of a compliant plain journal bearing.

the stationary X, Y, Z coordinate system is located at the center

of the rigid bearing Ob. The circumferential coordinate θ is mea-

sured from the negative ε axis (line of centers). The journal with

radius R is assumed to be rigid and rotates with a constant angu-

lar velocity ω about the Z axis. The static position of its geomet-

ric center is defined by the steady-state eccentricity e0 = Cε0 and

the steady-state attitude angle φ0. The radial clearance when the

journal and bearing circles are concentric of the rigid bearing is

given by C, and the steady-state film thickness including the static

radial deformation of the bearing liner U0 is measured by h0. The

steady-state film thickness can be found using the cosine rule of

triangle (Ob − Oj 0
− M):

(R + h0)2
= (R + C + U0)2

+ e2
0 + 2 (R + C + U0) e0 cos θ [1]

Expanding this equation, dividing by R2, and neglecting

second-order terms in h0/R, C/R, e0/R , and U0/R yields

h0 = C (1 + ε0 cos θ) + U0, [2]

where

U0 =
(χ − 1)

(χ + 1)

th

G
p0. [3]

In Eq. [3], th is the thickness of the bearing liner, p0 is the steady-

state hydrodynamic pressure,

G =
E

2 (1 + σ)

is the shear modulus known as the Coulomb’s elasticity modulus,

and χ is the elasticity parameter depending on the Poisson’s ratio

σ (χ = 3 − 4σ for the plane strain elasticity problem, and χ = 3−σ
1+σ

for the plane stress problem).

Assuming plane strain (i.e., χ = 3 − 4σ) and compressible ma-

terials case (σ < 1/2), the radial deformation field of a thin elastic

liner fixed on a rigid backing can be calculated with a sufficient

accuracy by

U0 = σ0
th

E
p0, [4a]

where σ0 =
(1+σ)(1−2σ)

1−σ
, and E and σ are the Young’s modulus and

the Poisson’s ratio of the bearing liner, respectively. Eq. [4a] can

be rewritten as

U0 = L0p0, [4b]

where L0 = σ0
th
E

is a scalar compliance operator.
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Fig. 3—Geometry of a rigid plain journal bearing.

Note that Eq. [4a] is obtained from Eq. [3] by replacing the

elasticity parameter χ and the shear modulus G with their ex-

pressions.

For the rigid bearing liner (Fig. 3), Eq. [2] reduces to

h0 = C(1 + ε0 cos θ). [5]

The simplified compressible thin elastic liner model (Eq. [4]) has

been successfully applied by several investigators for EHD anal-

yses of single-layered journal bearings (5, 6). Compared to the

finite element method, the main advantage of this model is its

low cost of space memory and CPU-time consumption as well

as its easy implementation. However, the thin elastic liner model

ceases to be valid when the bearing-liner Poisson’s ratio becomes

greater than 0.4, i.e., for almost incompressible materials, and in

the case of thick liners. (See References (14, 16) for the detailed

demonstrations about the derivation and the validation of thin

elastic liner model.)

For isoviscous and isovolume lubricants such as wa-

ter, the pressure field under isothermal laminar flow condi-

tion in the clearance space of the journal bearing (Fig. 2)

must satisfy the unsteady-state Newtonian Reynolds’ equation

(Eq. [17]):

1

R2

∂

∂θ

(

h3

12

∂p

∂θ

)

+
∂

∂z

(

h3

12

∂p

∂z

)

=
1

2
µω

∂h

∂θ
+ µ

∂h

∂t
[6]

or its dimensionless form

∂

∂θ

(

h̃3

12

∂p̃

∂θ

)

+ (R/L)2 ∂

∂z̃

(

h̃3

12

∂p̃

∂z̃

)

=
1

2

∂h̃

∂θ
+

∂h̃

∂t̃
, [7]

where h̃ = h
C

, p̃ =
p

µω(R/C)2 , z̃ = z
L

, and t̃ = ωt.

The above assumptions used on the lubricating fluid and its

flow in the thin gap between the journal and the bearing are ap-

propriate for low-viscosity lubricants such as water, producing a

small amount of dissipation energy and leading to negligible vari-

ations of the viscosity with respect to pressure and temperature.

Indeed, the thermal and piezoviscous effects are more significant

in the case of very viscous fluids such as oils used in rolling bear-

ings and gears applications that operate at very high pressures.

As we suppose a pinching lubrication process, the hydrody-

namic pressure p̃ (θ, z̃, t̃) must satisfy the following boundary con-

ditions:

(1) on the bearing sides,

p̃(θ, z̃ = −1/2, t̃) = p̃(θ, z̃ = 1/2, t̃) = 0; [8]

(2) the pressure is continuous and periodic in the circumferential

direction, i. e.,

p̃(θ, z̃, t̃) = p̃(θ + 2π, z̃, t̃); [9]

(3) at the leading edge of the cavitation zone θ = θc (z̃), the pres-

sure and its gradients vanish, i.e.,

p̃ =
∂p̃

∂θ
=

∂p̃

∂z̃
= 0. [10]

These conditions, which were suggested in the early 1930s and

known as the Reynolds or Swift-Stieber cavitation conditions (18,

19), can be satisfied in a direct manner if the Christopherson’s al-

gorithm (20) is employed. This algorithm has been successfully

used for very long time (since the 1940s) in the simulation studies

of lubrication problems. However, the use of Christopherson’s

algorithm leads to the determination of an erroneous boundary

of film reformation (trailing edge of the cavitation zone). The

mass flow continuity is not fulfilled. It should be noted that the

Reynolds boundary conditions [10] are very frequently used, giv-

ing results comparable to those obtained experimentally or by us-

ing the conservation algorithms such as the JFO, Elrod-Adams,

and Bayada cavitation models, with the exception of the value of

the rate of flow (21-23).

In References (23), Dowson and Taylor presented an excel-

lent review of cavitation phenomenon in the hydrodynamic jour-

nal bearings, where different cavitation models were largely dis-

cussed.

If the journal is excited into a simple harmonic motion of

small amplitudes within the compliant bearing at frequency ν,

the instantaneous eccentricity ratio and attitude angle may be ex-

pressed respectively as

ε = ε0 + �ε eiγ t̃ and φ = φ0 + �φ eiγ t̃;

|�ε| ≪ ε0 , |�φ| ≪ φ0 and i =
√

−1, [11]

where γ = v/ω is the relative excitation frequency, and �ε and

�φ are complex amplitudes of eccentricity ratio and attitude an-

gle, respectively. The corresponding dynamic increment of di-

mensionless film thickness may be expressed as (24)

h̃ = h̃0 + h̃d + Ũd, [12]

where h̃0 =
h0

C
is the dimensionless steady-state film thick-

ness including the steady-state deformation of the bearing-liner
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Fig. 4—Finite difference grid for the solution of the static and dynamic

Reynolds’ equations.

(Eq. [2]), h̃d = (�ε cos θ + ε0�φ sin θ) eiγ t̃ is the change in fluid-

film thickness due to dynamic movement of the journal, and

Ũd = Ũ eiγ t̃ =
(

�ε Ũε + ε0�φ Ũφ

)

eiγ t̃ is the dynamic deformation

caused by the dynamic increment of film pressure where

Ũε =
∂Ũ

∂ε
, Ũφ =

1

ε0

∂Ũ

∂φ
,

and Ũ is the complex amplitude.

Of course we suppose here that we are in the case of the ap-

plication of the principle of superposition. As we assume that we

are in small harmonic motion amplitudes and for the deforma-

tion in linear situation, we can consider this hypothesis reason-

able if we add the additional terms to h̃0, i.e., h̃d + Ũd is small

compared to h̃0. Of course with the help of nonlinear model-
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Fig. 5—Determination of the optimum value of the over-relaxation factor.

ing, one can more precisely give the significance of small and its

limits.

Consequently, the instantaneous value of dimensionless film

thickness may be expressed as

h̃ = h̃0 + (�ε(cos θ + Ũε) + ε0�φ(sin θ + Ũφ)) eiγ t̃. [13]

The first and second terms on the RHS of Eq. [13] correspond to

the steady-state and dynamic components, respectively.

The instantaneous value of the dimensionless resultant film

pressure is then expressed as

p̃ = p̃0 + Q̃ eiγ t̃, [14]

where p̃0 is the dimensionless steady-state pressure, and Q̃ =

�ε Q̃ε + ε0�φ Q̃φ is the complex dynamic increment of the film

pressure, where Q̃ε =
∂Q̃
∂ε

and Q̃φ = 1
ε0

∂Q̃
∂φ

.

Note that adding the dynamic deformations Ũε and Ũφ in Eq.

[13] gives a more complete expression of the film thickness than

if only static deformation is taken into consideration.

The dynamic deformations are also calculated using the thin

elastic liner model, i.e.,

Ũε = L̃0 Q̃ε and Ũφ = L̃0 Q̃φ, [15]

where

L̃0 = σ0 C̃d t̃h. [16]

In Eq. [16], C̃d =
µω(R/C)3

E
is the dimensionless deformation coef-

ficient varying from 0 to ∞, and t̃h = th/R is the relative thickness

of the bearing liner.

TABLE 1—COMPARISON OF STEADY-STATE AND DYNAMIC PERFOR-

MANCE CHARACTERISTICS FOR A RIGID FINITE-LENGTH PLAIN JOUR-

NAL BEARING ( R
L

= 0, 5)

ε0 0.0962 0.5374 0.8349 Note

S 1.03540 0.1549 0.0345 (1)

1.03610 0.1559 0.0350 (2)

φ0(deg) 84.03 56.07 33.03 (1)

84.07 56.22 33.59 (2)

AXX 1.004 2.154 6.585 (1)

1.100 2.140 6.467 (2)

AXY 10.630 3.181 4.302 (1)

10.613 3.182 4.237 (2)

AYX –10.250 –0.886 0.837 (1)

–10.233 –0.887 0.757 (2)

AYY 2.157 2.002 1.961 (1)

2.144 1.994 1.901 (2)

BXX 21.149 5.867 7.383 (1)

21.133 5.874 7.434 (2)

BYX 2.112 2.093 2.020 (1)

2.147 2.085 2.061 (2)

BYY 20.703 3.110 1.314 (1)

20.694 3.117 1.372 (2)

M̃c 6.416 6.757 Stable position (1)

6.422 6.757 ” (2)

γc 0.501 0.474 Stable position (1)

0.500 0.473 ” (2)

1Published results from Reference (27).
2Present work.
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TABLE 2—GEOMETRIC CHARACTERISTICS AND OPERATING CONDI-

TIONS OF THE COMPLIANT JOURNAL BEARING ( R
L

= 0, 5)

Parameter Symbol Unit Value

Bearing length L m 0.050

Journal radius R m 0.025

Radial clearance C m 50×10−6

Thickness of the bearing liner th m 0.010

Dynamic viscosity of lubricant (water at

20◦C)

µ Pa.s 0.001

Angular velocity of the journal ω rad.s−1 100 × π

Young’s modulus of the bearing liner

(Polyethylene high density at 20◦C

[28])

E Pa 0.9×109

Poisson’s ratio of the bearing liner [28] σ — 0.35

Substituting Eq. [13] and [14] into Eq. [7] and collecting the

zero and the first-order terms for �ε and ε0 �φ, a set of cou-

pled partial differential equations in p̃0, Q̃ε, and Q̃φ can be

obtained:

ℜ(p̃0) =
1

2

∂h̃0

∂θ
, [17]

ℜ(Q̃ε) = −
3

2

(cos θ + Ũε)

h̃0

∂h̃0

∂θ
+

1

2

(

− sin θ +
∂Ũε

∂θ

)

+iγ
(

cos θ+Ũε

)

− 3h̃0

[

(

h̃0

(

− sin θ +
∂Ũε

∂θ

)

−
∂h̃0

∂θ
(cos θ + Ũε)

)

12

∂p̃0

∂θ

+ (R/L)2

(

h̃0
∂Ũε

∂z̃
−

(

cos θ + Ũε

)

∂h̃0

∂z̃

)

12

∂p̃0

∂z̃

]

, [18]

ℜ(Q̃φ) = −
3

2

(sin θ + Ũφ)

h̃0

∂h̃0

∂θ
+

1

2

(

cos θ +
∂Ũφ

∂θ

)

+iγ(sin θ + Ũφ)

− 3h̃0

[

(

h̃0

(

cos θ +
∂Ũφ

∂θ

)

−
∂h̃0

∂θ

(

sin θ + Ũφ

)

)

12

∂p̃0

∂θ

+ (R/L)2

(

h̃0
∂Ũφ

∂z̃
−

(

sin θ + Ũφ

)

∂h̃0

∂z̃

)

12

∂p̃0

∂z̃

]

, [19]

where

ℜ (•) =
∂

∂θ

(

h̃3
0

12

∂ (•)

∂θ

)

+ (R/L)2 ∂

∂z̃

(

h̃3
0

12

∂ (•)

∂z̃

)

.

Fig. 6—Steady-state pressure distributions for rigid and compliant journal bearings, ε0 = 0.9.
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Fig. 7—Steady-state film thickness distributions for rigid and compliant journal bearings, ε0 = 0.9.

Note that the application of the first-order perturbation tech-

nique, which is considered as a superposition method, leads to a

transformation of the transient Reynolds equation (Eq. [7]) into

three partial differential equations. It is also noteworthy that Eq.

[17] is a nonlinear equation because h̃0 depends on p̃0, while com-

plex Eq. [18] and [19] are linear in Q̃ε and Q̃φ.

The perturbation technique also transforms the boundary

conditions of Eq. [8], [9], and [10], i.e.,

p̃0 = 0 at z̃ = ±1/2, [20]

p̃0(θ = 0, z̃) = p̃0(θ = 2π, z̃), [21]

p̃0 =
∂p̃0

∂θ
=

∂p̃0

∂z̃
= 0 at θ = θc0

(z̃), [22]

where θc0
is the stationary cavitation angle measured from the line

of centers.

Q̃ε = Q̃φ = 0 at z̃ = ±1/2, [23]

Q̃ε(θ = 0, z̃) = Q̃φ(θ = 2π, z̃). [24]

Equation [22] expresses the steady-state Reynolds boundary con-

ditions by assuming that the perturbations due to the journal vi-

brations do not affect the active zone extent. The first-order dy-

namic equations are therefore solved in the film domain itera-

tively defined by applying the Christopherson’s method in the

stationary case.

It is interesting to note that Eq. [22] is derived from Eq. [10] by

expanding the normalized pressure p̃ (θ, z̃) in a first-order Taylor

series in the vicinity of (θc0
, z̃0), i.e.,

p̃ (θ, z̃) = p̃ (θc0
+ �θ, z̃0 + �z̃) ≈ p̃ (θc0

, z̃0)

+

(

∂p̃

∂θ

)

0

�θ +

(

∂p̃

∂z̃

)

0

�z̃ = 0. [25]

Equation [14] can be written as

p̃ = p̃0 + p̃1, [26]

where |p̃1| = |Q̃eiγ t̃| << p̃0.
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Fig. 8—3-D representations of real and imaginary parts of complex dynamic pressures calculated for rigid and compliant journal bearings, ε0 = 0.9: (a)

Rigid bearing liner, (b) Static deformation, (c) Static and dynamic deformations (γ = 1).

Substituting Eq. [26] into Eq. [25], we obtain

p̃(θ, z̃) ≈ p̃0 (θc0
, z̃0) + p̃1 (θc0

, z̃0) +

(

∂p̃0

∂θ

)

0

�θ

+

(

∂p̃0

∂z̃

)

0

�z̃ = 0. [27]

This relation shows that the Reynolds boundary conditions read

as

p̃0 =
∂p̃0

∂θ
=

∂p̃0

∂z̃
= 0, [28]

p̃1 = 0, i.e., Q̃ε = Q̃φ = 0. [29]

The complex distributions Q̃ε and Q̃φ are obtained from Eq.

[18] and [19], from which the eight dynamic coefficients in the

8



ε, φ coordinate system can be calculated by integrations:

Aεε + iγBεε = −

∫ 2π

0

∫ 1/2

−1/2

Q̃ε cos θ dz̃dθ; Aεφ + iγBεφ

= −

∫ 2π

0

∫ 1/2

−1/2

Q̃φ cos θ dz̃dθ, [29a]

Aφε + iγBφε = −

∫ 2π

0

∫ 1/2

−1/2

Q̃ε sin θ dz̃dθ; Aφφ + iγBφφ

= −

∫ 2π

0

∫ 1/2

−1/2

Q̃φ sin θ dz̃dθ,

where

Aαβ = aαβ

C3

µωR3L
and Bαβ = bαβ

C3

µR3L
; (α, β) = (ε, φ) .

The first subscript of Aαβ denotes the direction of the hydro-

dynamic force, and the second one denotes the direction of dis-

placement. For Bαβ, the first and second subscripts refer to the

component of the hydrodynamic force and the direction of the

velocity, respectively.

The dimensionless stiffness and damping coefficients in

the X, Y coordinate system can be calculated from the stiff-

ness and damping coefficients in the ε, φ coordinate system

according to
[

AXX AXY

AYX AYY

]

= RT

[

Aεε Aεφ

Aφε Aφφ

]

R, [30a]

[

BXX BXY

BYX BYY

]

= RT

[

Bεε Bεφ

Bφε Bφφ

]

R, [30b]

where the rotation matrix is defined by

R =

[

cos φ0 sin φ0

− sin φ0 cos φ0

]

.

The dimensionless stability parameters (critical mass M̃c

and whirl frequency ratio γc) of the journal-bearing system

can be determined at the threshold of instability by apply-

ing the Lund’s stability criterion (25). The procedure of cal-

culation of the stability parameters is outlined in the next

section.

NUMERICAL ANALYSIS

In the present investigation, the partial differential equa-

tions (Eq. [17], Eq. [18], Eq. [19]) are solved satisfying the

corresponding boundary conditions by finite difference method

with successive over-relaxation scheme. Because of the axial

symmetry of the bearing, only the half bearing is divided into

Nθ × Nz equal rectangular cells with an area equal to �θ × �z̃,

where

�θ =
2π

Nθ

and �z̃ =
0.5

Nz

.

are the mesh sizes in the circumferential and axial directions, re-

spectively (Fig. 4).

Using the accurate central difference approximation for the

pressures’ partial derivatives, Eq. [17], Eq. [18], and Eq. [19] be-

come the following:
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Fig. 9—Variation of Sommerfeld number as a function of steady-state

eccentricity ratio.

1. Static governing equation:

p̃0ij
= a

(0)
ij p̃0i+1,j

+ b
(0)
ij p̃0i−1,j

+ c
(0)
ij p̃0i,j +1

+ d
(0)
ij p̃0i,j −1

− e
(0)
ij , [31]

where

a
(0)
ij =

h3
0ij

(�θ)2 +
3h̃2

0ij

(

∂h̃0
∂θ

)

ij

2�θ

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2

; b
(0)
ij =

h3
0ij

(�θ)2 −
3h̃2

0ij

(

∂h̃0
∂θ

)

ij

2�θ

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2

;

c
(0)
ij =

(R/L)2

(

h3
0ij

(�z̃)2 +
3h̃2

0ij

(

∂h̃0
∂z̃

)

ij

2�z̃

)

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2

;

d
(0)
ij =

(R/L)2

(

h3
0ij

(�z̃)2 −
3h̃2

0ij

(

∂h̃0
∂z̃

)

ij

2�z̃

)

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2

;

e
(0)
ij =

6
(

∂h̃0

∂θ

)

ij

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2

; and

(

∂h̃0

∂θ

)

ij

≈
h̃0i+1,j

− h̃0i−1,j

2�θ
;

(

∂h̃0

∂z̃

)

ij

≈
h̃0i,j +1

− h̃0i,j −1

2�z̃
;

2. Dynamic governing equations:

Q̃εij
= a

(ε)
ij Q̃εi+1,j

+ b
(ε)
ij Q̃εi−1,j

+ c
(ε)
ij Q̃εi,j +1

+ d
(ε)
ij Q̃ε i, j − 1 − e

(ε)
ij , [32]
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Q̃φij
= a

(φ)
ij Q̃φi+1,j

+ b
(φ)
ij Q̃φi−1,j

+ c
(φ)
ij Q̃φi,j +1

+ d
(φ)
ij Q̃φi,j −1

− e
(φ)
ij , [33]

where

a
(ε)
ij =

h3
0ij

(�θ)2 +
3h̃2

0ij

(

∂h̃0
∂θ

)

ij

2�θ
+

L̃0

2�θ

(

3h̃2
0ij

(

∂p̃0

∂θ

)

ij
− 6

)

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2 + L̃0

(

−18

(

∂h̃0
∂θ

)

ij

h̃0ij

+ 12iγ + 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
+ 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij

)

b
(ε)
ij =

h3
0ij

(�θ)2 −
3h̃2

0ij

(

∂h̃0
∂θ

)

ij

2�θ
+

L̃0

2�θ

(

−3h̃2
0ij

(

∂p̃0

∂θ

)

ij
+ 6

)

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2 + L̃0

(

−18

(

∂h̃0
∂θ

)

ij

h̃0ij

+ 12iγ + 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
+ 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij

)

c
(ε)
ij =

(R/L)2

(

h3
0ij

(�z̃)2 +
3h̃2

0ij

(

∂h̃0
∂z̃

)

ij

2�z̃
+

3L̃0h̃2
0ij

(

∂p̃0
∂z̃

)

ij

2�z̃

)

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2 + L̃0

(

−18

(

∂h̃0
∂θ

)

ij

h̃0ij

+ 12iγ + 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
+ 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij

)

d
(ε)
ij =

(R/L)2

(

h3
0ij

(�z̃)2 −
3h̃2

0ij

(

∂h̃0
∂z̃

)

ij

2�z̃
−

3L̃0h̃2
0ij

(

∂p̃0
∂z̃

)

ij

2�z̃

)

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2 + L̃0

(

−18

(

∂h̃0
∂θ

)

ij

h̃0ij

+ 12iγ + 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
+ 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij

)

e
(ε)
ij =

−18 cos θi

(

∂h̃0
∂θ

)

ij

h̃0ij

− 6 sin θi + 12iγ cos θi + 3h̃2
0ij

sin θi

(

∂p̃0

∂θ

)

ij
+ 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
cos θi + 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij
cos θi

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2 + L̃0

(

−18

(

∂h̃0
∂θ

)

ij

h̃0ij

+ 12iγ + 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
+ 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij

)

a
(φ)
ij = a

(ε)
ij ; b

(φ)
ij = b

(ε)
ij ; c

(φ)
ij = c

(ε)
ij ; d

(φ)
ij = d

(ε)
ij ;

e
(φ)
ij =

−18 sin θi

(

∂h̃0
∂θ

)

ij

h̃0ij

+ 6 cos θi + 12iγ sin θi − 3h̃2
0ij

cos θi

(

∂p̃0

∂θ

)

ij
+ 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
sin θi + 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij
sin θi

2h3
0ij

(�θ)2 + 2 (R/L)2 h3
0ij

(�z̃)2 + L̃0

(

−18

(

∂h̃0
∂θ

)

ij

h̃0ij

+ 12iγ + 3h̃0ij

(

∂h̃0

∂θ

)

ij

(

∂p̃0

∂θ

)

ij
+ 3 (R/L)2

h̃0ij

(

∂h̃0

∂z̃

)

ij

(

∂p̃0

∂z̃

)

ij

)

and

(
∂p̃0

∂θ
)ij ≈

p̃0i+1,j
− p̃0i−1,j

2�θ
; (

∂p̃0

∂z̃
)ij ≈

p̃0i,j +1
− p̃0i,j −1

2�z̃
; i =

√

−1.

Applying the successive over-relaxation algorithm, Eq. [31], Eq. [32], and Eq. [33] take the following form:

p̃
(k+1)
0ij

= (1 − �)p̃
(k)
0ij

+ �

(

a
(0)
ij p̃

(k)
0i+1,j

+ b
(0)
ij p̃

(k+1)
0i−1,j

+ c
(0)
ij p̃

(k)
0i,j +1

+ d
(0)
ij p̃

(k+1)
0i,j −1

− e
(0)
ij

)

[34a]

Q̃(k+1)
εij

= (1 − �) Q̃(k)
εij

+ �

(

a
(0)
ij Q̃(k)

εi+1,j
+ b

(0)
ij Q̃(k+1)

εi−1,j
+ c

(0)
ij Q̃(k)

εi,j +1
+ d

(0)
ij Q̃(k+1)

εi,j −1
− e

(ε)
ij

)

[34b]

Q̃
(k+1)
φij

= (1 − �) Q̃
(k)
φij

+ �

(

a
(0)
ij Q̃

(k)
φi+1,j

+ b
(0)
ij Q̃

(k+1)
φi−1,j

+ c
(0)
ij Q̃

(k)
φi,j +1

+ d
(0)
ij Q̃

(k+1)
φi,j −1

− e
(φ)
ij

)

[34c]

where k and� are the number of iterations and the relaxation fac-

tor, respectively.

Different mesh sizes were tried, and a mesh size with 91 × 21

grid was adopted. This size gives more accurate results with a

rapid rate of convergence when the value of � is equal to 1.80.

This optimal value, which is predicted by numerical experimen-

tation, will always lie between 1.0 and 2.0 as shown in Fig. 5.

The solution of elastohydrodynamic problem under static and

dynamic conditions is obtained by an iterative numerical proce-

dure. The following steps are performed:

1. Select the input parameters of the problem

ε0,
R/

L,t̃h ,C̃d ,σ ,Nθ, Nz, γ, relaxation factors, convergence

criteria, and maximum number of iterations.

2. Compute the undeformed film thickness h̃0ij
from Eq. [5].

3. Initialize the iteration number n to 0.

4. Initialize the dimensionless static pressure field p̃
(n)
0ij

= 0 and

the dimensionless static film thickness profile h̃
(n)
ij = h̃0ij

.
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Fig. 10—Fluid-film dimensionless synchronous stiffness coefficients as a function of steady-state eccentricity ratio, γ = 1.

5. Solve the zeroth-order equation (Eq. [17]) for the static pres-

sure field p̃
(n+1)
0ij

using the finite difference method with succes-

sive over-relaxation scheme. The iterative process is repeated

until either the pressure convergence criterion is achieved or

the maximum number of iterations is exceeded.

6. Update the dimensionless film thickness profile according to

h̃
(n+1)
ij = h̃+

0ij
L̃0

(

(1 − α) p̃
(n)
0ij

+ αp̃
(n+1)
0ij

)

,

where α is an under-relaxation factor that ranges from 0 to 1.

7. Check the static film pressure convergence criterion

1
N

∑

i,j

∣

∣

∣

∣

p̃
(n+1)
0ij −p̃

(n)
0ij

p̃
(n+1)
0ij

∣

∣

∣

∣

≤ 10−5, where N is the total number of

nodes for which the pressure is positive. If convergence is not

achieved, then increment the iteration number n by 1 and re-

turn to step 5.

8. Code the nodes for which the static pressure is positive and

calculate the static pressure and film thickness derivatives at

each node. This step is necessary to solve the first-order equa-

tions Eq. [18] and Eq. [19].

12. Calculate the steady-state hydrodynamic force components

and the attitude angle by means of numerical integrations:

{

Fε0

Fφ0

}

= 2

∫ 1/2

0

∫ θc0

0

p̃0

{

cos θ

sin θ

}

dθdz̃, andφ0 = Tan−1
(

−F̃φ0
F̃ε0

)

.

[35]
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Fig. 11—Fluid-film dimensionless synchronous damping coefficients as a function of steady-state eccentricity ratio, γ = 1.

13. Solve the first-order equations Eq. [18] and Eq. [19] by

the finite difference method with successive over-relaxation

scheme to obtain the complex dynamic pressures Q̃εij
and

Q̃φij
. It should be noted that the calculations are performed

for each coded node belonging to the stationary active region

without vanishing the computed negative pressure terms.

The pressure convergence criterion is similar to that used for

the calculation of static pressure.

14. Calculate the eight fluid-film dynamic coefficients (Eq. [29]

and Eq. [30]), from which the equivalent stiffness coefficient

Aeq and whirl frequency ratio γc at stability threshold are ob-

tained:

Aeq =
AXXBYY + AYYBXX − AXYBYX − AYXBXY

BXX + BYY

,

γ2
c =

(AXX − Aeq) (AYY − Aeq) − AXYAYX

BXXBYY − BXYBYX

.

Note that there is dependence between dynamic coeffi-

cients and frequency ratio when the deformations due to

the dynamic pressures at the fluid-film–bearing-liner inter-

face are considered.

15. Test the sign of γ2
c : If γ2

c < 0, then the equilibrium position

is stable (26); otherwise, γ2
c > 0. The dimensionless critical

12



mass is then calculated:

M̃c =
Aeq

γ2
c

.

16. Test the calculated value of γc with γ: If γc does not coincide

with the estimatedγ, then set γ ← γc, and return to step 13

until convergence is reached with a sufficient accuracy, i.e.,

∣

∣

∣

∣

γ − γc

γc

∣

∣

∣

∣

≤ 10−4.

RESULTS AND DISCUSSION

Based on the analysis described in the present article, a com-

puter code was developed to study the effects of both static and

dynamic deformations on the dynamic behavior of a compliant

journal bearing using the linearized theory.

Validation

To validate the static and dynamic results obtained from the

computer program, we compared the Sommerfeld number, atti-

tude angle, stiffness and damping coefficients, and the dimension-

less stability parameters (critical mass and whirl frequency ratio)

for a rigid finite-length journal bearing (R/L = 0.5 andC̃d = 0.)

with those published by Constantinescu, et al. (27). The results

were obtained for three values of static eccentricity ratio (ε=
0

0.0962, 0.5374, and 0.8349). As can be seen in Table 1, the results

are in good agreement even at high values of static eccentricity ra-

tio. Furthermore, all dynamic results presented in (27) for R/L =

0.25 and 1 were recovered.

Effects of Elastic Deformations on the Steady-State and

Dynamic Fluid-Film Pressures

Table 2 shows the details of bearing geometry and operating

conditions of a sample problem investigated in the present study.

The dimensionless parameters calculated from numerical values

given in Table 2 are as follows: C̃d = 0.04, t̃h = 0.40, R/L = 0.5,
C
/

R = 2×10−3, which are the deformation coefficient, the relative

thickness of the bearing liner, and the aspect and clearance ratios

of the journal bearing, respectively.

Figure 6 depicts the steady-state pressure profiles and con-

tours calculated in the half bearing for a highly loaded journal

bearing operating at ε0 = 0.9. It is observed that the effect of the

bearing-liner elasticity leads to a spreading of the pressure distri-

bution in the circumferential direction of the journal bearing and

to an important reduction of the peak pressure inducing a reduc-

tion of the journal-bearing carrying capacity.

Figure 7 shows the fluid film thickness distributions obtained

for rigid and compliant bearings. In the rigid case, the film thick-

ness has a sinusoidal shape whose minimum value occurs at θ =

180 degrees regardless of the cross-section of bearing. The film

thickness profile calculated by taking into account the compliance

of the bearing liner is different from that obtained in the rigid case

and presents maximum and minimum values at the midplane sec-

tion and the free edges of bearing, respectively. The increasing of

the film thickness at the midplane section of the journal bearing

explains the pressure drop.

Figure 8 compares the real and imaginary parts of complex

dynamic pressures Q̃ε and Q̃φ calculated in the half bearing for
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(b) Compliant bearing-liner considering

only the static deformation  
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(c) Compliant bearing-liner considering both

static and dynamic deformations 
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Fig. 12—Stability parameters as functions of steady-state eccentricity

ratio.
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(a) Rigid bearing-liner 
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(b) Compliant bearing-liner (static deformation) 
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(c) Compliant bearing-liner (static and dynamic deformations)
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Fig. 13—Stiffness and damping coefficients as functions of Sommerfeld number, γ = γc.
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Fig. 14—Dimensionless stiffness coefficients as functions of relative excitation frequency, ε0 = 0, 5.

rigid and compliant bearing liners and ε0 = 0.9. As found under

steady-state conditions, the elastic deformations also affect the

maximum value of both dynamic pressures, and this effect is more

pronounced when the dynamic deformations are considered in

addition to the static ones.

Influence of Elastic Deformations on the Sommerfeld

Number

Evolutions of the dimensionless Sommerfeld number S (also

commonly known as the load number) versus the steady-state ec-

centricity ratio for rigid and elastic bearing liners are depicted

in Fig. 9. This number, which represents the inverse of the ap-

plied load (S → 0 asε0 → 1), depends on several design parame-

ters, namely the absolute viscosity of lubricant µ, the geometric

characteristics of the journal bearing (R, L and C) and the oper-

ating conditions ω and W0. It is clearly shown that the elasticity

effect on the Sommerfeld number becomes significant when the

journal bearing operates at eccentricities greater than 0.80, i.e.,

when the journal bearing system is moderately or highly loaded.

Influence of Dynamic Deformations on the Dynamic

Properties

The graphical results were obtained for three cases:

- rigid bearing-liner case (doted lines),

- compliant bearing liner when only static deformation is consid-

ered (dashed lines),
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Fig. 15—Dimensionless damping coefficients as a function of relative excitation frequency, ε0 = 0, 5.

- compliant bearing liner when both static and dynamic deforma-

tions are considered (solid lines).

Figure 10 shows the variations of the four synchronous di-

mensionless fluid-film stiffness coefficients with the steady-state

eccentricity ratio obtained for both rigid and compliant bearing

liners. It is observed that when the dynamic deformation is ig-

nored, the effect of static deformation on stiffness coefficients is

significant for eccentricities greater than 0.7.

Consideration of dynamic distortions changes the evolution

of the direct stiffness coefficients regardless of the running eccen-

tricity.

The stiffening effect shown in that same figure comes, in our

opinion, from the additional pressure (fig. 8) coming from the dy-

namic deformation. The dynamic movement of the shaft creates

additional dynamic pressure leading to an increase of stiffness.

At high eccentricity, this phenomenon is counterbalanced by the

extent of the positive pressure zone, and thus the maximum pres-

sure magnitude decreases, and the pressure appearance is more

flat.

Note that the change of sign from negative to positive for

the cross-coupling stiffness coefficient AYX plays a significant role

in the stability of system. The figure clearly shows that the AYX

change of sign, calculated when both static and dynamic deforma-

tions are considered, occurs at an eccentricity ratio around 0.60.
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Figure 11 shows the four synchronous dimensionless fluid-film

damping coefficients versus the steady-state eccentricity ratio cal-

culated for γ = 1. It can be observed that the four damping coef-

ficients generally decrease with the journal eccentricity, i.e., when

the system is heavily loaded.

Consideration of dynamic distortions changes the evolution

of the cross-coupling damping coefficients whatever the running

eccentricity is.

Especially, the two cross-coupling damping coefficients’ val-

ues BXY and BYX differ from each other significantly when dy-

namic deformation is taken into consideration instead of being

equal as predicted by the classical hydrodynamic lubrication the-

ory (see the detailed demonstration in Appendix A) or by the

EHD approach when the dynamic deformations are neglected. It

should be specified that the dynamic deformation might be one of

the main causes of the significant discrepancy between the values

of the two cross-coupling damping coefficients determined exper-

imentally by other researchers (29).

Influence of Dynamic Deformations on the Stability

Parameters

According to the obtained stiffness and damping coefficients,

the critical mass and the whirl ratio of the rigid rotor-bearing sys-

tem are determined and plotted in Fig. 12. These figures show

variations of the aforementioned parameters against the steady-

state eccentricity ratio. It is observed that significant reduction of

the instability boundary can occur if the effects of both static and

dynamic deformations are considered in the calculations because

of the enhancement of the fluid-film stiffness coefficients. Fig-

ure 13 depicts the variations of fluid-film dynamic coefficients ob-

tained for γ = γc versus Sommerfeld number. Exciting the jour-

nal into a harmonic motion of small amplitude at frequency ν

gives steady state pressure and complex dynamic pressures Qε

and Q. Taking into account the dynamic deformation leads to an

increase of the real part of Qεand Q (see Eq. [18] and Eq. [19])

and the magnitude of the imaginary part. This additional pressure

increases the stiffness coefficients by increasing the attitude angle

for a given eccentricity. For direct stiffness coefficients, no effects

occur until ε0 = 0.6 ≈ 0.7. For crossed coefficients, taking into

account the imaginary part plays an immediate role on attitude

angle.

Influence of Excitation Frequency on the Stiffness and

Dynamic Coefficients

Figures 14 and 15 present respectively dimensionless fluid-film

stiffness and damping coefficients as functions of the relative ex-

citation frequency for ε0 = 0.5. The results show that the dynamic

coefficients calculated for rigid and compliant bearing liners con-

sidering solely static deformations are independent of the exci-

tation frequency. When both static and dynamic deformations

are considered, these coefficients stay mainly constant for low

magnitudes of the frequency excitation. However, we observe a

nonlinear evolution of these coefficients when considering high-

frequency values, which can happen in some machines with gear

elements.

CONCLUSIONS

According to the results obtained, the following conclusions

can be drawn:

1. The elastic deformations affect the maximum value of both

dynamic pressures, and this effect is more pronounced when

the dynamic deformations are considered in addition to the

static ones.

2. Consideration of dynamic distortions changes the evolution of

the direct stiffness coefficients and the cross-coupling damping

coefficients, regardless of the running eccentricity.

3. The effects of dynamic deformations of the bearing liner on

dynamic performance characteristics and stability parameters

are nonnegligible, especially for high values of the operating

eccentricity ratio and/or low-elasticity modulus bearing liners.

4. The cross-coupling damping coefficients differ from each

other significantly when dynamic deformation is included.

5. It is observed that significant reduction of the instability

boundary can occur if the effects of both static and dynamic

deformations are considered.

6. At high values of excitation frequency, the fluid-film dynamic

coefficients become nonlinear as functions of this frequency.
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APPENDIX A SYMMETRY OF THE FLUID-FILM

DAMPING MATRIX

To demonstrate the property of symmetry of the rigid hy-

drodynamic journal bearings damping matrix, it is convenient to

write the Reynolds equation (Eq. [6]) in the form

1

R2

∂

∂θ

(

h3

12µ

∂p

∂θ

)

+
∂

∂z

(

h3

12µ

∂p

∂z

)

=
1

2

[

(ω − 2φ̇)
∂h

∂θ
+ 2ė cos θ

]

, [A1]

where

h = C (1 + ε cos θ) ,
∂h

∂θ
= −Cε sin θ, and (•) =

d ()

dt
,

or in its dimensionless form,

ℜ (p̃) =
1

2

∂h̃

∂θ
+

ε′ cos θ

1 − 2φ′
, [A2]

where

h̃ =
h

C
, p̃ =

p

µω (R/C)2 (1 − 2φ′)
, z̃ =

z

L
, t̃ = ωt,

()′ =
d ()

dt̃
=

1

ω
(•),

and

ℜ (•) =
∂
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12

∂
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(•)

)

+ (R/L)2 ∂
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(
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∂
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(•)

)

.

The radial and tangential fluid film forces are expressed as

{

Fε

Fφ

}

=

∫ L/2

−L/2

∫ θ2

θ1

p

{

cos θ

sin θ

}

Rdθdz

= ηω (1 − 2φ′)

∫ 1/2

−1/2

∫ θ2

θ1

p̃

{

cos θ

sin θ

}

dθdz, [A3]

where η = µRL(R/C)2, and θ1 and θ2 are the film reformation and

film rupture boundaries, respectively. The positive (uncavitated)

pressure region lies between θ1 and θ2. These angular coordinates

depend on the position of the journal center within the bearing.

Thus, the fluid-film reaction forces are general functions of the

journal center displacements and velocities, i.e.,

{

Fε

(

e, φ, ė, φ̇
)

Fφ

(

e, φ, ė, φ̇
)

}

= ηω (1 − 2φ′)

{
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}

, [A4]

where e = Cε, and
{

F̃ε

F̃φ

}

=

∫ 1/2

−1/2

∫ θ2

θ1

p̃

{

cos θ

sin θ

}

dθdz̃.

The assumption of small amplitude motions about an equilib-

rium position allows expressing the bearing reaction forces as a

Taylor series expansion around the static journal position (ε0, φ0),

i.e.,
{
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=

[

(

�ε
∂

∂ε
+ �φ

∂

∂φ
+ ε̇

∂

∂ε̇
+ φ̇

∂

∂φ̇

)

{

Fε

Fφ

}]

(ε=ε0,φ=φ0,ε̇=φ̇=0)

= −

[

aεε aεφ

aφε aφφ

] {

C�ε

Cε0�φ

}

−

[

bεε bεφ

bφε bφφ

] {

Cε̇

Cε0φ̇

}

[A5]

where

aεε = −

(

∂Fε

∂ε

)

0

, bεε = −

(

∂Fε

∂ε̇

)

0

, ...

are the fluid-film bearing stiffness and damping, respectively.

Note that (C�ε, Cε0�φ) are the radial and tangential displace-

ments of journal center in the (ε, φ) coordinate system, and
(

Cε̇, Cε0φ̇
)

are the radial and tangential velocities, respectively.

According to Eq. [A4], we can write

{

f ε

f φ

}

=

{

Fε − Fε0

Fφ − Fφ0

}

= ηω

[

(1 − 2φ′)

(

�ε
∂

∂ε
+ �φ

∂

∂φ

+ ε′ ∂

∂ε′
+ φ′ ∂

∂φ′

){

F̃ε

F̃φ

} ]

(ε=ε0,φ=φ0,ε′=φ′=0)

− 2ηωφ′

{

F̃ε

F̃φ

}

(ε=ε0,φ=φ0,ε′=φ′=0)

[A6]
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It is assumed that the perturbed pressure field due to small ampli-

tude journal motions about the equilibrium position (ε0, φ0) does

not affect θ1 andθ2 delimiting the active film region. So, the nor-

malized Reynolds equation [A2] is quite linear. In this situation,

the hydrodynamic forces do not depend on the angular velocity

φ′, i.e.,
(

∂F̃ε

∂φ′

)

ε′=0

=

(

∂F̃φ

∂φ′

)

ε′=0

= 0,

and Eq. [A6] becomes:
{

f ε

f φ

}

= ηω

[

(

�ε
∂

∂ε
+ �φ

∂

∂φ
+ ε′ ∂

∂ε′

)

{

F̃ε

F̃φ

}]

(ε=ε0,φ=φ0,ε′=φ′=0)

− 2ηωφ′

{

F̃ε

F̃φ

}

(ε=ε0,φ=φ0,ε′=φ′=0)

[A7]

Note that
{

F̃ε

F̃φ

}

(ε=ε0,φ=φ0,ε′=φ′=0)

=

{

F̃ε0

F̃φ0

}

=

{

−W0 cos φ0

W0 sin φ0

}

,

which is the equilibrium equation of the journal, W0 being the

applied static load in the X direction (e.g., the weight of rotor per

bearing).

According to Eq. [A5] and Eq. [A7], the stiffness and dynamic

coefficients can be expressed as

aεε = −
ηω

C

(

∂F̃ε

∂ε

)

0

; aεφ = −
ηω

Cε0

(

∂F̃ε

∂φ

)

0

;

aφε = −
ηω

C

(

∂F̃φ

∂ε

)

0

; aφφ = −
ηω

Cε0

(

∂F̃φ

∂φ

)

0

; [A8]

bεε = −
η

C

(

∂F̃ε

∂ε′

)

0

; bεφ =
2η

Cε0
F̃ε0; bφε = −

η

C

(

∂F̃φ

∂ε′

)

0

;

bφφ =
2η

Cε0
F̃φ0. [A9]

The dimensionless dynamic coefficients can be expressed accord-

ing to the definition

Aij = aij

C

W0
, and Bij = bij

Cω

W0
,

where (i, j ) = (ε, φ),

or

[

Aεε Aεφ

Aφε Aφφ

]

= −πS

⎡

⎢

⎢

⎢

⎣

(

∂F̃ε

∂ε

)

0

(

∂F̃ε

ε0∂φ

)

0
(

∂F̃φ

∂ε

)

0

(

∂F̃φ

ε0∂φ

)

0

⎤

⎥

⎥

⎥

⎦

;

[

Bεε Bεφ

Bφε Bφφ

]

= −

⎡

⎢

⎢

⎢

⎣

πS

(

∂F̃ε

∂ε′

)

0

2 cos φ0

ε0

πS

(

∂F̃φ

∂ε′

)

0

−2 sin φ0

ε0

⎤

⎥

⎥

⎥

⎦

, [A10]

where

S =
µωRL

(

R
/

C

)2

πW0
=

1

πW̃0

is the dimensionless Sommerfeld number.

In the following, we will demonstrate that the cross-damping

coefficients of hydrodynamic journal bearings with rigid-liner are

always identical. According to Eq. [A10], we have
⎧

⎨

⎩

Bφε = −πS
(

∂F̃φ

∂ε′

)

0

Bεφ = −
2 cos φ0

ε0

[A11]

where

F̃φ =

∫ 1/2

−1/2

∫ θ2

θ1

p̃ (θ, z̃, ε, ε′) sin θdθdz̃ [A12]

and

∂F̃φ

∂ε′
=

∫ 1/2

−1/2

∫ θ2

θ1

∂p̃

∂ε′
sin θdθdz̃. [A13]

Taking into account the linearity of the Reynolds equation Eq.

[A2] with respect to ε′, we can write

p̃ = p̃0 + ε′ p̃1,where p̃0 represents the nondimensional

steady-state pressure field, and p̃1 represents the dynamic pres-

sure field added to p̃0 for ε′ = 1. Equation [A13] becomes

∂F̃φ

∂ε′
=

∫ 1/2

−1/2

∫ θ2

θ1

p̃1 sin θdθdz̃ [A14]

Note that p̃1 and p̃0 are the solutions of the following equations:

ℜ (p̃1) = cos θ, [A15]

ℜ (p̃0) =
1

2

∂h̃

∂θ
= −

ε0 sin θ

2
. [A16]

From Eq. [A16], we can obtain

sin θ = −
2

ε0
ℜ (p̃0) . [A17]

Substituting Eq. [A17] into Eq. [A14], we get

∂F̃φ

∂ε′
= −

2

ε0

∫ 1/2

−1/2

∫ θ2

θ1

p̃1ℜ (p̃0) dθdz̃. [A18]

Integrating by parts, we obtain

∂F̃φ

∂ε′
= +

2

ε0

∫ 1/2

−1/2

∫ θ2

θ1

(

h̃3

12

∂p̃0

∂θ

∂p̃1

∂θ
+ (R/L)2 h̃3

12

∂p̃0

∂z̃

∂p̃1

∂z̃

)

dθdz̃.

[A19]

A new integration by parts gives

∂F̃φ

∂ε′
= −

2

ε0

∫ 1/2

−1/2

∫ θ2

θ1

p̃0ℜ (p̃1) dθdz̃. [A20]

According to Eq. [A15], Eq. [A20] takes the following form:

(

∂F̃φ

∂ε′

)

0

= −
2

ε0

∫ 1/2

−1/2

∫ θ2

θ1

p̃0 cos θdθdz̃ = −
2F̃ε0

ε0
.

Consequently,

Bφε = −πS

(

∂F̃φ

∂ε′

)

0

=
2πSF̃ε0

ε0
.

Since

F̃ε0 = −W̃0 cos φ0, andS =
1

πW̃0

.

we get

Bφε = −
2 cos φ0

ε0
.
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Thus, the cross-damping coefficients are quite identical:

(Bφε = Bεφ).

For the plain journal bearings (without axial groove), the

expression and the calculation of dynamic coefficients are sim-

plified because the pressure field does not depend on the atti-

tude angle due to the circumferential symmetry. For this par-

ticular case, and according to the relations stated above, we

have

Aεφ =
sin φ0

ε0
; Aφφ =

cos φ0

ε0
; Bφφ = 2Aεφ; and Bεφ = −2Aφφ.

[A21]

It should be noted that the pressure boundary conditions related

to the environment and to the flow of lubricant in the clearance

space of the journal bearing appreciably modify the values of the

dynamic coefficients; some of them vanish or become negative.
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