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ABSTRACT 

In semi-arid areas, high climatic variability induce a major risk on food security. Therefore 

an operational forecasting system for the grain yields is required and could help decision-

makers to make early decisions and plan annual imports. It can be challenging to monitor the 

crop canopy and production capacity of plants, especially cereals. In this context, the aim of 

the present study is to analyze the characteristics of two types of irrigated and non-irrigated 

cereals: barley and wheat. Through the use of a rich database, acquired over a period of two 

years for more than 30 test fields, and from 20 optical satellite SPOT/HRV images, two 

research approaches are considered. Firstly, statistical analysis is used to characterize the 

vegetation's dynamics and grain yield, based on remotely sensed (satellite) Normalized 

Difference Vegetation Index (NDVI) measurements. A relationship is established between the 

NDVI and LAI (leaf area index). Different robust relationships (exponential or linear) are 

established between the satellite NDVI index acquired from SPOT/HRV images, just before 

the time of maximum growth (April), and grain and straw, for barley and wheat vegetation 

covers. Following validation of the proposed empirical approaches, yield maps are produced 
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for the studied site. The second approach is based on the application of a SAFY "Simple 

Algorithm For Yield estimation" growth model, developed to simulate the dynamics of the 

LAI and the grain yield. An inter-comparison between ground yield measurements and SAFY 

model simulations reveals that the yields are under-estimated by this model. Finally, the 

combination of multi-temporal satellite measurements with the SAFY model estimations is 

also proposed for the purposes of yield mapping. The SAFY results are found to be 

reasonably correlated with those determined by satellite measurements (NDVI). Nevertheless, 

it should be noted that the SAFY model still underestimates the yields. 

1. INTRODUCTION 

The world's population has been constantly increasing over the last half century. This growth 

has been accompanied by an increase in the consumption of agricultural products, especially 

cereals, such that it is becoming increasingly important for scientists and decision-makers to 

be able to estimate grain yields at regional and national levels. An operational grain-yield 

forecasting system is thus required, and could help decision-makers to make timely decisions 

and plan annual imports (Justice and Becker-Reshef, 2007). Many models, based on the use of 

remote sensing or agro-meteorological models, have been developed to estimate the biomass 

and grain yield of cereals (Barnett and Thompson 1982, Moriondo et al. 2007, Balaghi et al. 

2008, Laurila et al. 2010, Benedetti and Rossinni 1993, Becker-Reshef et al. 2010). 

Remote sensing has demonstrated its strong potential for the monitoring of the soil and 

vegetation's dynamics and temporal variations, mainly because it provides wide spatial 

coverage and has consistent internal datasets (Zribi et al., 2008, Amri et al., 2011). Optical 

remote sensing has demonstrated its strong potential for the monitoring of the vegetation's 

dynamics and temporal variations, mainly because it provides wide spatial coverage and has 

consistent internal datasets. In particular, the Normalized Difference Vegetation Index 

(NDVI) expresses the contrast in reflectance between the red and near-infrared regions of a 
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surface spectrum (Rouse et al. 1974). The NDVI is easy to calculate, which can be related to 

the green vegetation cover or vegetation abundance, and is expressed by: NDVI = (NIR − 

RED)/(NIR + RED), where NIR is the near-infrared reflectance and RED is the red 

reflectance. The NDVI is sensitive to the presence of green vegetation (Sellers et al. 1985) 

and has been used for several regional and global applications, in studies concerning the 

distribution and potential photosynthetic activity of vegetation (Deblonde et al. 1993, 

Propastin et al. 2009). Efforts have been made to develop various models and approaches for 

the purposes of forecasting the yields of different crops, in different regions throughout the 

globe. Most studies related to the estimation of cereal yields make use of low resolution 

sensors (Balaghi et al. 2008, Kogan et al. 2013, Bastiaanssen and Ali 2003). Balaghi et al. 

(2008) propose the use of empirical ordinary least squares regression models to forecast yields 

at provincial and national levels. Their predictions are based on decadal NDVI/AVHRR data, 

decadal accumulated rainfall, and average monthly air temperatures. Becker-Becker-Reshef et 

al. (2010) combine a new BRDF-corrected daily surface reflectance dataset, developed from 

NASA's Moderate resolution Imaging Spectro-radiometer (MODIS), with detailed official 

crop statistics. They use this combined data to develop an empirical, generalized approach to 

the forecasting of wheat yields. This is based on a single, generalized model, which has been 

applied at the level of the state of Kansas (USA) and has been shown to be directly applicable 

to the Ukraine. Yield estimations are also relevant to other types of vegetation, including rice 

(Wang et al. 2010, Wei-guo et al. 2011), soybean and soya (Prasad et al. 2006), olives 

(Maselli et al. 2012), citrus fruit (Ye et al. 2006), maize and sunflower crops (Claverie et al. 

2012). 

In recent decades, there has also been a growing interest in approaches based on agro-

ecological process models combined with remote sensing. Vegetation models based on 

climatic and agronomic data have demonstrated a good degree of correlation between the 
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estimated and measured variables, at the local level (Duchemain et al. 2008, Bastiaanssen and 

Ali 2003). These models simulate key variables, including the LAI (Leaf Area Index). The 

model proposed by Bastiaanssen and Ali (2003) combines the photosynthetically active 

radiation (PAR) model of Monteith (1972) with the light-use efficiency model of Field et al. 

(1995) and the surface energy balance model of Bastiaanssen et al. (1998), to estimate the 

growth of irrigated crops. To forecast crop yields, these authors use NOAA’s AVHRR 

instrument (Advanced Very High Resolution Radiometer) during periods of crop irrigation. 

Most of these studies have been carried out in Europe or North America, where generally high 

levels of cereal production are encountered. 

Lobell et al. (2003) estimated crop yields using AVHRR imagery over northwest Mexico. 

Remotely-sensed estimations of the fraction of absorbed photosynthetically active radiation 

(fAPAR) were incorporated into a simple model based on crop light-use efficiency 

estimations derived from Monteith (1972, 1977), to predict wheat yields and optimal planting 

dates. 

The aim of the present study is to evaluate the feasibility of three approaches: high resolution 

remote sensing imagery, the agro-meteorological SAFY model, and combined use of the 

SAFY model with remotely sensed data, to estimate the dynamics and yields of cereals in the 

context of semi-arid, low productivity regions in North Africa. 

Section 2 describes the studied site and the experimental satellite and ground measurement 

database. Section 3 is dedicated to the statistical analysis of this data, used to estimate the 

dynamics and yields of cereals, derived from the remotely sensed NDVI. In section 4, the use 

of the SAFY model, for the estimation of vegetation cycle dynamics and yields, is described. 

Then, the combined use of the SAFY model and remotely sensed data is presented. Our 

conclusions are given in section 5. 
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2. Experimental database 

2.1 Study area 

The Kairouan plain (Zribi et al. 2011) is situated in central Tunisia (9°30’ E, 10°15’E, 35°N, 

35°45’ N) (Fig. 1). The climate in this region is semi-arid, with an average annual rainfall of 

approximately 300 mm per year, characterized by a rainy season lasting from October to May, 

with the two rainiest months being October and March. As is generally the case in semi-arid 

areas, the rainfall patterns in this area are highly variable in time and space. The mean 

temperature in Kairouan City is 19.2 °C (minimum of 10.7 °C in January and maximum of 

28.6 °C in August) and the mean annual potential evapotranspiration (Penman) is close to 

1600 mm. The landscape is mainly flat and the vegetation in this area is dominated by 

agriculture (cereals, olive trees, and market gardens). There are various types of crop, and 

their rotation is typical of semi-arid regions. The aquifer of the Kairouan plain represents the 

largest basin in central Tunisia. It is fed by the infiltration of surface waters during floods in 

the natural regime, or at the time of dam releases since the construction of the Sidi Saad and 

El Haouareb dams. Surface and groundwater streams drain into the Sebkha Kelbia, a large salt 

lake. 

2.2 Satellite Data  

For the purposes of monitoring surface parameters and gaining an understanding of the 

vegetation dynamics on the Kairouan plain, 15 images acquired by the SPOT 5 satellite were 

analyzed (Table1). These images were acquired with a repeat time of approximately 21 days 

and a high spatial resolution, equal to 10 meters. All of the acquired images were 

orthorectified using the Ground Control Point technique. The resulting mismatch between 

these images and the reference image was less than ± 0.5 pixel. In a second step, the 

orthorectified images were calibrated to derive the TOA (Top of Atmosphere) reflectances, 
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and then atmospherically corrected to obtain the TOC (Top of Canopy) reflectances. The raw 

digital values were initially converted into TOA reflectances using the same absolute 

calibration techniques as those which are operationally applied to SPOT image data (Meygret 

2005). The atmospheric correction needed to determine the TOC reflectances relies on 

inversion of the 6S radiative transfer model (Berthelot and Dedieu 1997, Rahman and Dedieu 

1994), based on the use of look-up tables. This model requires input parameters such as the 

aerosol optical thickness (AOT) at 550 nm, size distribution and refractive index of the 

aerosols, water vapor content, ozone content, and atmospheric pressure. The water vapor 

content was determined from measurements recorded at the studied site, the ozone content 

was obtained from the Ozone Monitoring Instrument (OMI) data which is available at 

http://toms/gsfc.nasa.gov, and the surface atmospheric pressure was retrieved from 

http://www.tutiempo.net.  

2.3 Ground Measurements 

Simultaneously to the satellite data acquisitions, ground campaigns were carried out 

approximately once every two weeks on a large number of test plots, during two agricultural 

seasons (2010-2011 and 2011-2012). During the first year a total of 27 test fields, including 

18 irrigated and 9 non-irrigated cereal fields, were used for the ground truth measurements 

(Fig. 1), whereas during the second season, 55 test fields, including 36 irrigated and 19 non-

irrigated cereal fields, were analyzed. Two types of cereal were considered: wheat and barley 

in the case of the selected test fields. Table 2 provides a detailed breakdown of the 

characteristics of these fields. 

The in situ measurements involved mainly: water content, height, LAI (Leaf Area Index) of 

the vegetation, and cereal yields.  

a) Leaf Area Index 

http://toms/gsfc.nasa.gov
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 The LAI is defined as the total one-sided area of leaf tissue per unit of ground surface 

area. According to this definition, the LAI is a dimensionless quantity characterizing the 

canopy of an ecosystem. Two different approaches can be used to estimate the LAI: directly, 

through destructive sampling, or indirectly, by applying methods based on ground-level gap 

fraction measurements. In the present study, an indirect method is used, in which the LAI is 

derived from hemispherical digital photography. A binary classification of green elements and 

soil is proposed, in order to compute the gap fraction at a 57.5° zenith angle, from which an 

estimation of the LAI is then derived (Kirk et al. 2009, Baret et al. 2010, Sandman et al. 

2013). 

These measurements were applied to each cereal field, on different days during the 

vegetation season. Thirty LAI estimations were made for each field, inside two 20 x 20 m2 

square areas. The LAI measurements were made during the same week as that during which 

the SPOT 5 satellite images were recorded, in order to limit  any discrepancies between 

ground and satellite measurements. 

Fig. 2-a plots the variations in these measured quantities for three test fields, two of which 

were irrigated. The third field was rainfed during the second season. Firstly, a LAI maximum, 

which occurred after a period of accelerated growth, can be observed during the first two 

weeks of April. Secondly, a clear difference can be seen between the irrigated and rainfed 

vegetation cycles, with a greater increase in the LAI parameter at the beginning of the 

vegetation cycle in the case of the irrigated fields. 

b) Cereal yield 

For each test field, ten sample measurements were taken along the two field diagonals, 

using a 75 x 75 cm2 frame. The cereal yields were then measured: the number of stalks, the 

weight of the grain, and the weight of the straw were recorded. The yields and quantities of 
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grain lost during harvesting were studied simultaneously. As a result of the use of data taken 

from both rainfed and irrigated fields, the estimated yields have a large dynamic range, 

between 1300 kg/ha and 10300 kg/ha, with a mean value of 4300 kg/ha for wheat, and 

between 1500 kg/ha and 5500 kg/ha, with a mean value of 3400 kg/ha, for barley. Figure 2-b 

shows the error bars corresponding to the measured grain yield and the NDVI extracted from 

satellite images at the beginning of April, for the 82 test fields. The mean standard deviation 

of the NDVI is 0.067, with an average value for all the test fields equal to 0.58. For the 

measured grain yields, the average value for all of the fields is equal to 3400 kg/ha, and the 

mean standard deviation for all of the test fields is equal to 970 kg/ha. 

2.4 Land use mapping 

Land use identification (Fig. 3) is an essential step in the mapping of yields over all cereal 

fields. For this, land use mapping was implemented, based on a decision tree and using two 

types of satellite data: four SPOT images acquired at four different times of the year were 

used to identify different vegetation cycles, and SRTM data was used for relief identification. 

A decision tree classification approach was used, from which eleven classes of land use were 

identified: pluvial olive trees, irrigated olive trees, irrigated winter vegetables, irrigated 

summer vegetables, bare soils, cereals, urban areas, mountainous areas, water cover (wadi 

beds and dams), and coastal salt flats (“sebkhas”). For all of these classes, thresholds were 

considered for one or two images. Test fields were used for the learning phase to identify 

empirical thresholds of NDVI in order to separate the different classes. For example, for 

summer vegetables, an empirical NDVI threshold was applied to the image acquired in July 

(NDVI>0.3). In the case of winter vegetables, the image acquired at the end of autumn or the 

beginning of summer was used. During these periods of the year, vegetables have the highest 

NDVI index. For the cereal classes (irrigated or non-irrigated, wheat or barley), the satellite 

data acquired in March or April, corresponding to the cereals’ maximum growth, was used. 
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The DTM provided by the Shuttle Radar Topography Mission (SRTM, http://srtm.usgs.gov/) 

allowed high relief areas to be eliminated from the land use analysis. In order to validate these 

remotely sensed classifications, a confusion matrix was produced by comparing the 

classification results using more than 100 test fields, characterized by different types of land 

use. This analysis has revealed an overall accuracy of approximately 80%, and accuracy 

greater than 90% in the case of cereals. The non-irrigated olive tree class covers 43% of the 

studied site, whereas the wheat class corresponds to 12% of the surface area of the studied 

site.   

Once established, the land use map can be used to extract a cereal mask for the two 

agricultural seasons under study. 

3. Statistical analysis of the relationship between cereal yields and satellite 

observations 

The aim of this section is to evaluate the potential of remote sensing, combined with statistical 

analysis, for the estimation of barley and wheat yields. 

3.1  Relationship between SPOT-NDVI and cereal yields 

Fig. 4 illustrates the relationship between the NDVI, acquired on 17/03/2011 and 31/03/2012, 

and the grain and straw yield measurements (Ygrain and Ystraw) obtained at the end of the cereal 

season.  For the first dataset, including 44 fields and covering a large range of sowing dates, 

as well as irrigation and fertilization schedules, two exponential relationships were 

determined empirically: 

  NDVIY

NDVIY

straws

grain




88.3exp85.2

38.3exp34.4
     (1) 

The NDVI is well correlated with the average weight of the harvested grain (R2=0.66), and 

with the average weight of the straw (R2 = 0.74). In the case of the data acquired before and 
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after that corresponding to Fig. 4, the correlation between the satellite index and the measured 

yields is weaker. In practice, the end of March corresponds to a maximum in the vegetation 

dynamics. Before this date, NDVI variations between fields are not affected by irrigation or 

rainfall events occurring in March, which are essential to grain development. In mid-April, 

the vegetation LAI starts to decrease, leading to a reduced capacity to distinguish between 

high and low grain yields. 

Fig. 5 plots the NDVI-estimated grain and straw yields as a function of the ground truth 

measurements, thus validating the proposed empirical algorithms for the second set of test 

fields: the resulting RMSE is equal to 850 kg/ha for the grain yields and 1160 kg/ha for the 

straw yields. This outcome demonstrates the robustness of the proposed empirical approach, 

despite its simplicity. 

The same yield estimation algorithm was applied separately for the wheat and barley crops, 

independently of the various agricultural practices (sowing date, type of seeder, irrigation 

date, quantity of fertilizer, …). The results are described below. 

a) Wheat yields 

Fig. 6 shows a plot of the exponential relationship between the measured yields (grain and 

straw) and the NDVI, for the first set of tested wheat fields. The measured yield and the 

NDVI can be seen to be well correlated, with correlation coefficients R² equal to 0.67 and 

0.66, for grain and straw respectively. 

The empirical relationships were validated with a second set of test fields. The measured and 

estimated yields can be seen to be in good agreement, with an RMS error equal to 900 kg/ha 

and 1100 kg/ha, for grain and straw respectively (Fig. 7).  

b) Barley yields 
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Twenty-two barley fields were observed during the two agricultural years. The database was 

divided into two sets: the first was used to estimate the yield on the basis of the NDVI 

measurements, and the second set was used for model validation. Fig. 8 provides a plot of the 

linear relationship established between measured and NDVI-derived grain and straw yields, 

for the first set of test fields. The correlation coefficients R² are equal to 0.62 and 0.70, for 

grain and straw respectively.  

The proposed relationship was validated by comparing yield measurements and estimations 

with the second set of fields. The results are found to be in good agreement, with an RMS 

error equal to 650 kg/ha and 1470 kg/ha, for the grain and straw estimations respectively 

(Fig. 9). In the case of barley, only a linear relationship was considered, since the number of 

test fields was too small for a more complex (e.g. exponential) relationship to be determined. 

3.2 Yield mapping 

Following the above-described validation, Eq. 1 was used to invert the NDVI and generate 

yield maps, for all classes of cereal. The wheat and barley classes could not be treated 

separately, because they were not differentiated by the land use identification process. 

In order to eliminate the influence of local terrain heterogeneities (due to local variations in 

vegetation cover and soil surface, etc.) on the processed optical signal, the yield was estimated 

over cells corresponding to 10 x 10 pixels (approximately 100 m2), rather than at the scale of 

single pixels. For each resulting cell, the yield estimation was applied only if more than 25% 

of the cell’s pixels belonged to cereal fields. The value of the computed yield could then be 

considered as representative of the entire cell. In Fig. 10 the yield maps are shown for the 

2011-2012 agricultural season.  

 
4. Estimation of the dynamics and yields of cereals using the SAFY growth model 

4.1 SAFY Model description 
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One of the aims of the present study was to evaluate the potential use of times series of a 

variable biophysical parameter (the LAI) for the monitoring of phytomass production and the 

grain yields of cereal crops. This evaluation was based on the use of the ‘‘Simple Algorithm 

For Yield estimation’’ (SAFY) model (Duchemin et al. 2008). The main idea was to use the 

model to represent well-known processes involved in crop development and growth, with the 

requirement that these processes be simulated using standard data, i.e. climatic data and 

optical imagery (which provides LAI estimations). Climatic data were generated by a weather 

station located in our study area (lat: 35.56°, long: 9.94°), which provides air temperature (Ta) 

and incoming global radiation (Rg) measurements. This data is recorded once every 30 

minutes. 

The model simulates the increase in dry above-ground phytomass, based on the light-use 

efficiency theory of Monteith (1977), and also takes the dynamics of green leaves and the 

influence of temperature into account (Duchemin et al, 2008). The dynamics of the green LAI 

are simulated by estimating the extent of leaf coverage during growth (ΔLAI+) and the 

decrease in LAI during senescence due to the wilting and falling of leaves (ΔLAI-). These two 

phenological phases are identified through the use of a degree-day approach based on the 

accumulated air temperature (ΣTa). Leaf senescence starts when ΣTa has attained a given 

threshold STT (sum of temperature for senescence). 

   sTTa

aL

RSTLAILAI

SLATPDAMLAI

/


       (2) 

Where DAM is the dry, above-ground mass, PL is the partition-to-leaf function, which can be 

expressed as an empirical function of the air temperature, SLA is the specific leaf area, and Rs 

is the rate of senescence. 



 

13 

 

SAFY has a low level of complexity, in order to simplify the optimization of unknown 

parameters when a small number of observations is available. The parameters are limited in 

number (14), and are used to determine a priori values based on data provided by various 

prior experimental studies (Claverie et al. 2012, Meinke et al. 1998, Porter and Gawith 1999, 

Sinclair and Amir 1992, Varlet-Grancher et al. 1982). However, three of these parameters (the 

day of plant emergence D0, the effective light-use efficiency ELUE and the "sum of 

temperature for senescence" STT) are strongly dependent on the ambient agro-environmental 

conditions.  

4.2  Application of the SAFY model to cereal cycle retrieval 

The first step involves calibrating the three parameters (D0, ELUE, STT). This procedure 

corresponds to the identification of an optimum parameter set from which, for each field, the 

SAFY simulation leads to the best reproduction of several observed variables. These 

parameters were calibrated using an optimization algorithm based on the observed ground 

truth LAI values collected in the fields. For each test plot, three optimized parameters were 

determined. These provided the “best combination”, defined as that having the lowest Root 

Mean Square Error (RMSE) between the LAI measured in the field and that estimated by the 

SAFY model. Table 4 indicates the range over which each of these parameters was 

considered. 

The values of these three parameters are thus determined, for each test plot, on the basis of 

LAI measurements. The cereal dynamics are derived, for each field, from the estimated LAI. 

In Fig. 11, the LAI determined with the model is compared with that measured on the ground, 

for four different fields planted with irrigated and rainfed cereals. It can be seen that in all 

four cases, the model accurately retrieves the dynamic range of the LAI. Maximum growth 

occurs at the end of March. 
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4.3  Application of the SAFY model to yield estimations 

The grain-filling phase ranges from the day when foliage production ends, to the day when 

total senescence occurs. During this period, the daily increase in grain yield (ΔGY) is 

proportional to the total above-ground phytomass (DAM), with a constant fraction Py 

partitioned to grains. This leads to: 

DAMPGY y      (3) 

Since the characteristic parameters of the wheat and barley fields are quite different, the 

SAFY model was validated independently for each type of cereal. Field measurements were 

thus used to calibrate the fraction Py, for each type of cereal, by minimizing the RMSE 

between the grain yields measured in all of the fields, and the wheat and barley grain yields 

simulated by the SAFY model (Py wheat = 0.0108 and Py barley = 0.0057). 

Fig. 12-a compares the SAFY model yield estimations with ground measurements, for the 

case of the barley fields. Although the ground measurements and model estimations are only 

moderately correlated (R2
barley=0.35), the SAFY model can be seen to produce results which 

are coherent with the ground measurements in terms of yield dynamics. The limitations of the 

SAFY model can be explained by various influences (fertilization, irrigation…), which it does 

not take into account. In Fig. 12-b, the SAFY model wheat yield estimations are compared 

with the ground measurements. As in the case of the barely fields, only a moderate degree of 

correlation is found (R2
wheat=0.33) between the two types of data. 

4.4 Application combining the SAFY model with remotely sensed data 

In this section, multi-temporal satellite LAI measurements are used to calibrate the SAFY 

model. Before implementing this calibration, a relationship is established between the satellite 

NDVI and the LAI.  
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a) NDVI-LAI relationship for cereals 

The LAI variable can be determined from the NDVI. Several types of relationship can be 

found in the literature, comparing these two key parameters. According to Wardley and 

Curran (1984), the NDVI-LAI relationship can be assumed to be linear, although when the 

LAI lies in the interval between 2 and 6 this relationship is no longer valid. Asrar et al. (1984) 

and Richardson et al. (1992) derived logarithmic relationships to express the NDVI as a 

function of the LAI. 

In the present study, for each pixel a NDVI profile was generated from the satellite data. A 

relationship was then established between the NDVI and LAI of the studied test fields, during 

the growing seasons of 2008-2009 and 2010-2011. As proposed by Duchemin et al. (2006), 

an exponential relationship of the following type was then determined: 

  LAIk
soil

NDVIeNDVINDVINDVINDVI                 (4) 

- where NDVI is the asymptotic value of the NDVI, derived from the measurements, In the 

case of the present study, NDVI  was taken to be 0.75 (see Fig. 13-a), and 

- soilNDVI is the value of the NDVI for bare soil (value determined in the present study: 

0.15), 

- kNDVI  is the extinction coefficient. 

Fig. 13-a plots the experimental LAI – NDVI data points, corresponding to the 2009-2010 and 

2011-2012 seasons, together with a least-squares fit to the above empirical relationship, which 

has a correlation coefficient equal to 0.78. It should be noted that when the LAI exceeds 2, the 

NDVI saturates (at approximately 0.75), leading to NDVI errors at high LAI values. 

The proposed algorithm was validated by comparing ground-truth measurements with 

estimations derived from SPOT NDVI data for the test fields.  
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The resulting RMSE is equal to 0.73, as shown in Fig. 13-b. In accordance with the NDVI 

saturation effect noted above, the proposed empirical algorithm is found to become inaccurate 

for high LAI values. 

b) Application of the SAFY model using satellite LAI estimations 

In this section, the grain yield is estimated using the SAFY model combined with remotely 

sensed, multi-temporal SPOT acquisitions. This process involves initial calibration of the 

SAFY model, achieved by minimizing the RMSE between the SPOT5- time series LAI, and 

the SAFY model LAI. Maps of the three parameters: ELUE, D0 and STT , optimized for the 

SAFY model, are thus generated. In order to eliminate the effects of local heterogeneities (due 

to irregularities occuring during the sowing and growth stages, vegetation dispersion 

heterogeneities, etc.), these 3 parameters are estimated over cells corresponding to 10 x 10 

pixels (approximately 100 m2). When more than 25% of each of cell belongs to the relevant 

class of cereals, the estimated values of the 3 corresponding parameters are applied. 

After having generating the (D0, ELUE, STT) parameter maps, an empirical relationship  

bDAMPGY y   was used to generate (wheat and barley) cereal yield maps. The 

SAFY model thus estimates the grain yields over a 10 x 10 pixel window. The yield map 

corresponding to the 2011/2012 agricultural year is shown in Fig. 14. 

Fig. 15-a compares, for all pixels, the yield estimations computed using statistical remote 

sensing analysis (section 3) with those determined by combining the SAFY model with 

remotely sensed measurements and in fig. 15-b we illustrate the difference, for each pixel, 

between the two maps of yields. The two estimations can be seen to be reasonably correlated, 

with R2 equal to 0.45. Nevertheless, it should be noted that the SAFY model grain yields are 

underestimated. This could be explained by the fact that wheat and barley were not analyzed 

separately in this study. Also, the underestimation of LAI, due to the saturation effect of 
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NDVI (at approximately 0.75), could be one of reasons of the underestimation of the grain 

yield modeled by SAFY. In addition, the semi-empirical SAFY model has 14 input 

parameters, of which Do, ELUE and STT were calibrated in the present study. However, there 

are three crop-specific parameters (Pla, Plb, Rs), the values of which depend on the type of 

cereal (wheat or barley). Another limitation of the SAFY model is that it assumes ELUE to 

remain constant over each cereal’s phenological cycle, whereas other studies show that ELUE 

decreases during the maturity phase (Lecoeur et al. 2011, Claverie 2012). 

5. CONCLUSION 

The aim of this study was to characterize the dynamics and yields of various cereals in the 

semi-arid Merguellil catchment, using high-resolution optical data and a simple agro model.  

In a first step, a statistical comparison between SPOT optical measurements and ground truth 

yields is proposed. The yield analysis for grain and straw as a function of NDVI reveals a 

strong correlation between these two variables, from mid-March to mid-April. An exponential 

relationship is retrieved between the yields and the remotely sensed NDVI index, with a 

correlation coefficient greater than 0.6. Validation of the remotely sensed estimations through 

the use of ground measurements shows that this approach is robust, with an rms error equal to 

8.5 and 1160 kg/ha, for grain and straw yields, respectively. Exponential and linear 

relationships are determined for wheat and barley yields, based on the NDVI index. 

Validation of the proposed expressions leads to reasonable results, with an rms error lower 

than 900 kg/ha for both types of cereal. On the basis of the aforementioned analysis and the 

validation process, yield maps are proposed for all classes of cereal on the studied site.  

In order to characterize the cereal cycle, a SAFY growth model is also used. This model 

provides excellent simulations of variations in the leaf area index, for irrigated and rainfed 

cereal fields. In the case of the yield estimations, despite the limited accuracy (low correlation 
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coefficient) of the model, coherent trends in the yield dynamics are retrieved for the studied 

test fields. The tested model has the advantage of being relatively simple, without requiring 

the input of data related to agricultural practices (sowing, irrigation and fertilization), and is 

thus very useful for operational applications on a regional scale.  

Finally, the SAFY model is used in combination with remotely sensed LAI measurements. In 

an initial step, an exponential relationship is established between the NDVI and the LAI, both 

of which are derived from optical satellite data. An rms error equal to 0.78 is found when 

these remotely sensed parameters are validated through the use of ground measurements. This 

relationship allows the LAI to be mapped on cereal fields. Following calibration of the SAFY 

model through the use of multi-temporal LAI satellite maps, yield estimations are proposed 

for the entire studied site. The maps produced from satellite measurements are found to be 

reasonably correlated with those determined by combining satellite measurements and SAFY 

model data (R2=0.45). The cereal yields predicted by the SAFY model are found to 

underestimate the real values measured on the ground. 
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FIGURE AND TABLE CAPTIONS  

Figure 1. Illustration of the studied site. 

Figure 2-a. Illustration of the evolution of LAI measurements for three test fields: irrigated 
(P14 and P9) and rainfed (P17) fields, during the 2011/2012 agricultural season. 

Figure 2-b. Comparisons between the error bars of measured grain yield and the NDVI 
extracted from satellite images for barley (a) and wheat (b).  

Figure 3. Land use map for the 2011-2012 agricultural season. 

Figure 4. Relationship between mesured cereal yields (grain and straw) and the SPOT-NDVI 
index, on 17/03/2011 and 31/03/ 2012: (a) grain yields, (b) straw yields. 

Figure 5: Comparison between measured and estimated cereal yields: (a) grain yields, b) 
straw yields. 

Figure 6. Relationship between mesured wheat yields (grain (a) and straw (b)) and the SPOT-
NDVI index, on 17/03/2011 and 31/03/ 2012. 

Figure 7. Comparison between measured and estimated wheat yields: a) grain  yields, b) straw 
yields. 

Figure 8. Relationship between measured barley yields (grain (a) and straw (b)) and the 
SPOT-NDVI index, on 17/03/2011 and 31/03/ 2012. 

Figure 9: Comparison between measured and estimated barley yields: a) grain yields, b) straw 
yields. 

Figure 10. Cereal yield map for the 2011-2012 agricultural season.  

Figure 11. Green LAI dynamics on three different fields, estimated using the SAFY model, 
and ground measurements during the 2011/2012 agricultural season.  

Figure 12. Comparisons between measured and estimated (SAFY model) grain yields, for 
barley (a) and wheat (b). 

Figure 13-a. Relationship between NDVI and leaf area index (LAI) measured in the test 

fields. 

Figure 13-b. Comparison between measured and estimated LAI using equation (1), for the 

2011-2012 agricultural season. 
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Figure 14. Cereal yield map produced by combining SPOT/HRV multi-temporal acquisitions 

and SAFY model data 

Figure 15-a. Comparison between yield estimations computed using statistical remote sensing 

analysis, and yields determined by combining remotely sensed data with the SAFY model. 

Figure 15-b. The difference map between the yields estimated by NDVI and by the SAFY 

model. 

 

 

 

Table1. Satellite acquisition dates. 

Table 2. Number and type of test fields for the two agricultural seasons. 

Table 3. Satellite imagery used to produce the land use map. 

Table 4. Ranges over which the three optimized SAFY parameters are considered. 
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Figure 1. Illustration of the studied site. 
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Figure 2-a. Illustration of the evolution of LAI measurements for three test fields: irrigated 
(P14 and P9) and rainfed (P17) fields, during the 2011/2012 agricultural season. 
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(a) 

 

Figure 2-b. Comparisons between the error bars of measured grain yield and the NDVI 
extracted from satellite images for barley (a) and wheat (b).  
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Figure 3. Land use map for the 2011-2012 agricultural season. 
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 (a) 

                                                                                  
(b) 

Figure 4. Relationship between mesured cereal yields (grain and straw) and the SPOT-NDVI 

index, on 17/03/2011 and 31/03/ 2012: (a) grain yields, (b) straw yields. 
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(a) 

 

(b) 

Figure 5. Comparison between measured and estimated cereal yields: (a) grain yields, b) 
straw yields. 
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 (a) 

 

(b)  

 

Figure 6. Relationship between mesured wheat yields (grain (a) and straw (b)) and the 
SPOT-NDVI index, on 17/03/2011 and 31/03/ 2012. 
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(a) 

 

 (b)  

Figure 7. Comparison between measured and estimated wheat yields: (a) grain  yields, (b) 

straw yields. 
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(a) 

  

(b) 

Figure 8. Relationship between measured barley yields (grain (a) and straw (b)) and the 
SPOT-NDVI index, on 17/03/2011 and 31/03/ 2012. 
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