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Single-machine scheduling with no idle time and release dates to

minimize a regular criterion

Antoine Jouglet

Abstract We address the one-machine scheduling problem with release dates, in which the machine is

subject to the non-idling constraint, i.e. no intermediate idle time is permitted between the jobs processed

by the machine. The objective is to minimize a regular objective function. We describe a constraint pro-

gramming approach for solving this type of problem exactly. Some necessary and/or sufficient conditions for

obtaining non-idling semi-active, active and optimal schedules are described. We propose some propagation

rules based on these properties. As an application, we apply the proposed method to the total (weighted)

completion time problem, and we provide some experimental results to illustrate its effectiveness.

Keywords: non-idling scheduling, single machine, release dates, regular criteria, constraint programming.

1 Introduction

We consider the situation where a set N = {1, . . . , n} of n jobs is to be processed by a single machine

subject to the non-idling constraint where no intermediate idle time is permitted between the operations

processed by the machine (10). This constraint is of great interest in industrial contexts where it is better

to process jobs later while ensuring a full machine utilization, rather than stopping and restarting the

machine.

Associated with each job i are a release date ri and a processing time pi. All data are non-negative

integers. A job cannot start before its release date, preemption is not allowed, and only one job at a

time can be scheduled on the machine. Let Φ be a regular criterion, i.e. an objective function which is

nondecreasing with respect to all completion times of jobs (1, 13), e.g. the makespan Cmax or the total

completion time
∑

Ci. The problem is to find a feasible schedule minimizing Φ.

In its classical version without the non-idling constraint, the single-machine problem has been in-

tensively investigated. While some problems such as 1|ri|Cmax are polynomially solvable, most of them,

including 1|ri|
∑

(wi)Ti and 1|ri|
∑

(wi)Ci, are known to be NP-hard in the strong sense (22, 25). For

these problems various enumeration methods based on dominance properties and lower bounds have been

described, e.g. (3, 11, 12, 19).

In contrast to the well-known no-wait constraint in shop scheduling, where no idle time is allowed

between the successive operations comprising a particular job, the non-idling machine constraint does not

seem to have been widely studied in the literature. One of the first explorations of the subject was by Wolf

(30) who described the “Reduce-To-The-Opt” algorithm which allows him to solve optimization scheduling

problems in which jobs are allowed to take their starts in given sets of possible starting times. In this

work, the non-idling machine constraint is called “continuous task scheduling”. This algorithm is notably

applied to surgery scheduling problems in which different surgeries in operation rooms have to be scheduled

contiguously such that some sequence-dependent setup costs are minimized. Later, Valente and Alves

(28) developed a branch-and-bound method within the context of the earliness/tardiness single-machine

scheduling problem with no unforced idle time. To our knowledge, the most important work is Chrétienne’s

(10), in which the non-idling machine constraint is introduced. Thus, a machine whose operations must be

processed without any intermediate delay is called a non-idling machine. By extension, a non-idling
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schedule is a schedule for which the non-idling constraint is satisfied on the machine. Chrétienne proposed

the notation NI associated with the machine in the 3-field notation. Thus, a problem belonging to the class

of problems under consideration is denoted as 1, NI |ri|Φ, where Φ is a regular criterion. Chrétienne studied

some aspects of the impact of the non-idling constraint on the complexity of single-machine scheduling

problems. Thus, while it is not always true that the non-idling version of an NP-complete single-machine

problem is also NP-hard, some problems such as 1, NI |ri|
∑

(wi)Ti and 1, NI |ri|
∑

(wi)Ci are NP-hard

in the strong sense. Moreover, Chrétienne looked at some of the issues surrounding non-idling schedules,

including how to find the earliest starting time αNI of such a schedule. He derived a sufficient condition

such that for any instance of a given classical single-machine problem (without the non-idling constraint),

there is an optimal schedule starting at time αNI which is non-idling. A problem with that property is said

to have the ENI (Earliest Non-Idling) property and the non-idling variant of this problem can be solved

using the same algorithm. In particular, this is the case for single machine problems where preemption is

allowed. Thus, 1, NI |ri, pmtn|
∑

Ci can be solved in O(n log n) with the Shortest Remaining Processing

Time Rule (26) (see Section 7), by replacing each release ri by max(ri, αNI). It should nevertheless be noted

that the non-preemptive version of the problem (i.e. , 1, NI |ri|
∑

Ci) does not have the ENI property.

More recently, Carlier et al. (7) studied the non-idle one-machine sequencing problem in which jobs are

subject to release dates and latency durations. This problem, denoted as 1, NI |ri, qi|fmax, is strongly

NP-Hard (10). Carlier et al. (7) described a branch and bound algorithm to solve exactly this problem.

They also propose an adaptation of the Jackson’s algorithm to polynomially solve the preemptive version

1, NI |pmtn, ri, qi|fmax of the problem.

In this article we describe a constraint programming approach for solving the problem under consider-

ation exactly. In Section 2, we describe our constraint-based branch and bound approach. We next show in

Section 3 how the non-idling constraint may be applied. In Section 4 and Section 5, we study respectively

the non-idling semi-active and the non-idling active schedules. Properties of such schedules are given, along

with propagation rules that depend on these properties. Subsequently, in Section 6, we propose sufficient

conditions for eliminating nodes of the search tree which cannot lead to optimal solutions, and in Section 7,

by way of an application, we show how the 1, NI |ri|
∑

(wi)Ci problem may be solved. Experimental results

are then provided in Section 8 to demonstrate the effectiveness of the method.

2 A constraint-based scheduling method

In this section we propose a constraint-based scheduling approach for solving a problem belonging to the

class 1, NI |ri|Φ, where Φ is a regular criterion.

Constraint programming is a programming paradigm aimed at solving combinatorial optimization

problems that can be described by a set of variables, a set of possible values for each variable, and a

set of constraints between the variables. The set of possible values of a variable x is called the variable

domain of x and is denoted as Dom(x). A constraint between variables expresses which combinations of

values are permitted for the variables. The question is whether there exists an assignment of values to

variables such that all constraints are satisfied. The power of the constraint programming method lies

mainly in the fact that constraints can be used in an active process termed “constraint propagation” where

certain deductions are performed, in order to reduce computational effort. Constraint propagation removes

values not belonging to a solution from the domains of variables, deduces new constraints not changing

the solution set, and detects inconsistencies.

The principles of constraint programming have been widely applied in the area of scheduling (2). In a

constraint-based scheduling model, two variables starti and endi representing respectively the starting time

and the completion time are associated with each job i. The constraint starti + pi = endi is maintained.

The minimum and maximum values of the domain of starti are respectively denoted as:

– esti = minv∈Dom(starti) v: the earliest starting time of job i,

– lsti = maxv∈Dom(starti) v: the latest starting time of job i.

Similarly, the minimum and maximum values of the domain of endi are respectively denoted as:

– eeti = minv∈Dom(endi) v = esti + pi: the earliest completion time of job i,

– leti = maxv∈Dom(endi) v = lsti + pi: the latest completion time of job i.

Thus, each job i has to be executed within the time window [esti, leti) whose bounds can be initialized with

esti = ri and leti = maxi∈N ri +
∑

i∈N pi (see Section 4, Corollary 1). Note that the domains of variables

starti and endi will be reduced all along the search using propagation algorithms. Thus, the bounds of

the domains of starti and endi (i.e. esti, lsti, eeti and leti) cannot be expressed with formal equations
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since they are the results of some decisions taken all along the search. We use edge-finding propagation

techniques (2) which are able to adjust the time-windows of jobs according to the disjunctive constraints

between jobs and their possible starting times. Note that when the starting times of jobs have been fixed

we have, for each job i, starti = esti = lsti and endi = eeti = leti = starti + pi.

Two additional variables Start and End represent respectively the start and completion times for the

entire schedule. Start = mini∈N starti and End = maxi∈N endi. The constraint Start+P = End is main-

tained where P =
∑

i∈N pi is the total processing time of the jobs. The notation Est = minv∈Dom(Start) v,

Eet = minv∈Dom(End) v, Lst = maxv∈Dom(Start) v and Let = maxv∈Dom(End) v will be used to denote

respectively the lower bounds and the upper bounds of the domain of these variables.

An additional constrained variable Φ represents the objective function to be optimized. For instance,

the variable Φ =
∑n

i=1 wi · endi is used for the 1, NI |ri|
∑

wiCi problem. Arc-B-Consistency (see for

instance (23)) is used to propagate this constraint, ensuring that when a schedule has been found the value

of Φ is actually equal to the value of the studied criterion of the schedule.

To find an optimal solution we use a branch and bound algorithm solving successive variants of the

decision problem. At each iteration we try to improve the best known solution and to this end we add an

additional constraint stating that Φ is lower than or equal to the best solution minus 1. Each time, the

search resumes at the last-visited node of the previous iteration.

To solve the decision variant of the problem, the same scheme as in (19) is used, and we make use of the

Edge-Finding branching scheme (see for instance Carlier (6)). This involves ordering jobs on the machine

(“edges” in a graph representing the possible orderings of jobs): at each node a set of jobs is selected, and

for each job i belonging to this set, a new branch is created where job i is constrained to be first or last

among the jobs in this set. Consequently, rather than searching for the starting times of jobs, we look

for a sequence of jobs. This is why this scheme is particularly suitable for the non-idling constraint. In

the version of the problem without the non-idling constraint, being given a partial sequence of jobs to

be scheduled at the beginning of the schedule, jobs can be scheduled as soon as possible in the order of

the sequence without changing the value of an optimal schedule which starts with this sequence (see for

instance (1)). Here the starting times of jobs in a partial sequence are not necessarily known, since they

are highly dependent on the next decisions to be taken (which would have led to idle times in the classical

problem). Nevertheless, the domains of the starting times of these jobs will be adjusted according to the

propagation rules described in the following sections. The sequence is built both from the beginning and

F L
NR

PF PL
[estF . . . lstF ] [eetF . . . letF ] [estL . . . lstL] [eetL . . . letL]

Fig. 1 A state during the search.

from the end of the schedule using a depth-first strategy. Throughout the search tree, we dynamically

maintain several sets of jobs that represent the current state of the schedule (see Figure 1):

– F (First) is the sequence of jobs sequenced at the beginning,

– L (Last) is the sequence of jobs sequenced at the end,

– NR (Not Ranked) is the set of as yet unranked jobs which are to be sequenced between F and L,

– PF ⊆ NR (Possible First) is the set of jobs which can be ranked immediately after F ,

– and PL ⊆ NR (Possible Last) is the set of jobs which can be ranked immediately before L.

By extension, we use the notation estF , lstF , eetF and letF to designate respectively the earliest start time,

the latest start time, the earliest end time and the latest end time for sequence F . If F is empty we have

estF = eetF = Est and lstF = letF = Lst, otherwise (if there is at least one job which has been sequenced

at the beginning) we have estF = mini∈F esti = Est, lstF = mini∈F lsti = Lst, eetF = maxi∈F eeti and

letF = maxi∈F leti. Similarly, we use the notation estL, lstL, eetL and letL to designate respectively the

earliest start time, the latest start time, the earliest end time and the latest end time for sequence L. If L is

empty we have estL = eetL = Eet and lstL = letL = Let, otherwise (if there is at least one job which has

been sequenced at the end) we have estL = mini∈L esti, lstL = mini∈L lsti, eetL = maxi∈L eeti = Eet

and letL = maxi∈L leti = Let.
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At each node of the search tree, sets PF and PL are initialized with NR and are filtered using techniques

described in the next sections. Next, a new node is derived from the current node by the following way.

Either a job is selected from PF and ranked immediately after F , or it is selected from PL and ranked

immediately before L. Upon backtracking, this job is removed from PF or PL. Of course, if NR is empty

then a solution has been found and we can iterate to the next decision problem. If NR 6= ∅ while PF or

PL is empty then a backtrack occurs. Note that if a job i is neither in PF nor in PL, it does not mean

that no solution can be obtained from this node. It only means that no solution can be derived from this

node in which i is sequenced just after F or just before L.

Each time a job i ∈ PF is ranked immediately after F then the constraint startj + pj = starti is

added, where j is the last job in sequence F if it is not empty. Moreover, each time a job i ∈ PL is

ranked immediately before L, then the constraint starti + pi = startj is added, where j is the first job in

sequence L if it is not empty. Adding these constraints allows us to adjust the domains of starting times

of ranked jobs according to the domain of starting times for jobs in the same sequence. Thus, relations,

estF +
∑

i∈F = eetF , lstF +
∑

i∈F = letF , estL +
∑

i∈L = eetL, lstL +
∑

i∈L = letL hold. Note that

the set of these constraints and the constraint Start+P = End represent the non idling constraint in our

approach.

We use the term “partial solution” to designate a state of the variables at a node of the search tree,

in which some jobs are already ranked in F or L while some other ones are unranked and belong to NR.

Below we shall use the notation starti(S), esti(S), lsti(S), . . . , Lst(S), Let(S), . . . , F (S), L(S), PF (S),

. . . to represent the state of the variables in a partial solution S. Thus, note that a partial solution S

represents all the solutions which can be obtained with a fixed list F (S) of first tasks and a fixed list L(S)

of last tasks. From now on, only partial solutions as described above will be considered in the

remainder of the paper.

3 Propagating the non-idling constraint

The Start+P = End constraint (see the previous section) is sufficient to assure that once all job starting

times have been fixed, the obtained schedule is non-idling. In this section we describe an algorithm which

propagates the non-idling constraint by adjusting the domain of variables Start and End of a partial

schedule according to the domain of variables associated with job start and completion times.

From (10), given a sequence σ = (σ1, . . . , σn), the earliest non-idling feasible schedule respecting this

sequence of jobs starts at time

αNI(σ) = max



0,max
k∈N

(rσk −
k−1
∑

q=1

pσq )



 .

Moreover, the value αNI = αNI(σr) obtained from the sequence σr in which the jobs are sorted in

nondecreasing order of release dates, is the earliest starting time of a feasible non-idling schedule (10).

Noting that maxk∈N (rσk −
∑k−1

q=1 pσq ) = maxk∈N (rσk −
∑k−1

q=1 pσq +
∑k−1

q=1 pσq +
∑n

q=k pσq − P ) =

maxk∈N (rσk +
∑n

q=k pσq )− P and that a sequence of jobs cannot start before mink∈N rk, we can equiv-

alently express αNI(σ) as follows:

αNI(σ) = max



min
k∈N

rk,max
k∈N

(rσk +
n
∑

q=k

pσq )− P



 . (1)

Symmetrically, this result can be used to compute the latest completion time of a feasible non-idling

schedule where a deadline di is associated with each job i (i.e. each job i has to be terminated before di)

and where the jobs are released at time 0 (i.e. ∀i, ri = 0). Given a sequence σ = (σ1, . . . , σn), the latest

non-idling feasible schedule respecting this sequence of jobs ends at time

ωNI(σ) = min



max
k∈N

dk, min
k∈N

(dσk −
k
∑

q=1

pσq ) + P



 . (2)

Moreover, the value ωNI = ωNI(σ) obtained from the sequence σ in which the jobs are sorted in nonde-

creasing order of deadlines is the latest starting time of a feasible non-idling schedule.

These results can be used in Algorithm 1 to adjust the bounds of the domains of variables Start(S) and

End(S) (i.e. Est(S), Lst(S), Eet(S) and Let(S)) of a given partial solution S (as defined in Section 2).

Equations 1 and 2 are used taking into account the domain of variables starti(S) and endi(S) of each job i
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in the partial solution S. Thus, jobs being sorted in nondecreasing order of earliest start times, the release

date ri of a job i in Equation 1 is replaced by the earliest start time esti(S). It allows to compute an

earliest start time for the partial solution S. Similarly, jobs being sorted in nondecreasing order of latest

end times, the deadline di of a job i in Equation 2 is replaced by the latest end time leti(S). Thus, it

allows to compute a latest end time for the partial solution S. Since the sort of jobs in nondecreasing

Algorithm 1: Propagating the non-idling constraint on Start and End variables

Data: A partial solution S (cf. Figure 1)
σ ← the sequence of jobs sorted in nondecreasing order of esti(S);
t← Est(S);
for i← 1 to n do t← max(t, estσ(i)(S)) + pσ(i);

Eet(S)← max(Eet(S), t) and Est(S)← max(Est(S), t− P );
σ ← the sequence of jobs sorted nondecreasing order of leti(S);
t← Let(S);
for i← n to 1 do t← min(t, letσ(i)(S)) − pσ(i);

Lst(S)← min(Lst(S), t) and Let(S)← min(Let(S), t + P );

order of earliest start times and next in nondecreasing order of latest end times can be done in O(n log n),

Algorithm 1 allows us to adjust in O(n log n) the bounds of domains of variables Start and End.

Unfortunately, since we are using release dates (earliest starting times) and deadlines (latest finishing

times) simultaneously, Algorithm 1 is not able to perform all possible deductions. Take, for example, a

problem with 3 jobs where p1 = 3, est1 = 0, let1 = 15, p2 = 3, est2 = 1, let2 = 15, p3 = 4, est3 = 5,

let3 = 9. Algorithm 1 computes Est = 0 and Let = 15, but we observe that no non-idling feasible schedule

can start before 2. This fact cannot be deduced using Edge-Finding techniques, since est1 = 0 and est2 = 1

are possible starting times in feasible schedules where the non-idling constraint is not imposed.

After experimental results, we have noted that in practice this case is unlikely to be encountered

often. We may use techniques based on the solution of subset-sum problems to refine the adjustments on

Est or Let. In the previous example it was possible to deduce that Est = 2. However, after performing

experimental tests, we have noted that in practice such deductions do not improve the performance of the

search method.

4 Non-idling semi-active schedules

In this section we show that the notion of a semi-active schedule can be applied to non-idling scheduling.

We present a necessary and sufficient condition for a non-idling schedule to be semi-active, which allows us

to show that the set of semi-active schedules is dominant for the regular criteria, i.e. that there exists at

least one optimal schedule which is semi-active (1). We also establish some properties for such schedules.

We then describe an algorithm for propagating the non-idling semi-active constraint.

A semi-active schedule is defined as a schedule in which no job can be scheduled earlier without changing

the sequence of execution of jobs on the machine or violating the constraints (5). Applied to non-idling

problems we obtain the following definition:

Definition 1 A non-idling feasible schedule is said to be semi-active if no job can be scheduled earlier

without either changing the sequence of execution of jobs on the machine or violating a model constraint

(including the non-idling constraint).

However, this property is not the same as in the case of semi-active schedules in the classical problems.

For example, Figure 2 shows two schedules S and S′ for the same sequence of jobs. S is semi-active for the

2 1 3 4

2 1 3 4

r2 r1 r3 = r4

S′

S

Fig. 2 Only S′ is a non-idling semi-active schedule.
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classical problem, while S′ is not. However, S′ is a non-idling semi-active schedule while S is not.

We now give a necessary and sufficient condition for a non-idling schedule to be semi-active relying on

the fact that if no job starts at its release date in a non-idling schedule, the jobs can be scheduled earlier

without changing the sequence of execution of jobs.

Theorem 1 A non-idling schedule S is semi-active if and only if there is at least one job which starts at

its release date, i.e. mini∈N (starti(S)− ri) = 0.

An upper bound of the makespan in a non-idling semi-active schedule is provided in the following

corollary:

Corollary 1 The latest start and completion times for a non-idling semi-active schedule are respectively

maxi∈N ri and maxi∈N ri +
∑

i∈N pi, and these bounds are tight.

Proof If a schedule S starts strictly after maxi∈N ri, then no job can start at its release date and S is

not semi-active. Moreover, any semi-active schedule whose first job has the latest release date starts at

maxi∈N ri. If all other jobs are scheduled as soon as possible after this first job, then whatever the sequence

the obtained schedule is semi-active and ends at maxi∈N ri +
∑

i∈N pi.

It is well known that the subset of semi-active schedules is dominant (i.e. there exists at least one optimal

non-idling schedule which is semi-active) for problems with a regular criterion (1), and the following

proposition can therefore be obviously derived:

Proposition 1 The set of non-idling semi-active schedules is dominant (i.e. there exists at least one

optimal non-idling schedule which is semi-active) for non-idling problems where a regular criterion is to be

minimized.

Consequently, only non-idling semi-active solutions need to be considered, and the following proposition

provides a necessary condition that a partial solution S starting at its current latest starting time Lst(S)

has to fulfill to yield a non-idling semi-active schedule. In this proposition, for each job i the value δi(S) is

a lower bound of the distance between its release date ri and its starting time in a schedule obtained from

S starting at Lst(S).

Proposition 2 Given a partial solution S, let δi(S) be equal to:

– δi(S) = lsti(S)− ri if i ∈ F (S) ∪ L(S), i.e. if i has already been ranked first or last;

– δi(S) = max(letF (S), esti(S))− ri if i ∈ PF (S);

– δi(S) = max(letF (S) +minj∈PF (S)(pj), esti(S))− ri if i ∈ NR(S)\PF (S).

If there exists a non-idling semi-active schedule obtained from S and which starts at Lst(S), then we must

have mini∈N δi(S) = 0.

Proof Consider any schedule S′ obtained from S starting at Lst(S). Then every job i ∈ F (S)∪L(S) starts

exactly at starti(S
′) = lsti(S) in S′. A job i ∈ PF (S) starts not earlier than max(letF (S), esti). In S′,

since a job j ∈ PF (S) is necessarily scheduled before a job i ∈ NR(S)\PF (S), i starts not earlier than

max(letF (S) + minj∈PF (S)pj , esti(S)). Consequently, for each job i the value δi(S) is a lower bound of

the distance between its release date ri and its start time starti(S
′). Thus, if mini∈N δi(S) > 0, then S′ is

not semi-active.

This proposition yields Algorithm 2, which runs in O(n) time since value δi has to be computed for each

job i. It enables us to perform adjustments on a partial solution S. If no job can start at its release date,

then a backtrack occurs, since S cannot lead to a semi-active schedule. If only one job can start at its

release date, then it is obliged to do so (see Theorem 1). Moreover, the upper bounds of the domains of

variables Start and End (i.e. Lst and Let) are adjusted in order to satisfy Proposition 2.

Algorithm 2: Propagating the non-idling semi-active constraint

Data: a partial solution S (cf. Figure 1)
X ← {i/esti(S) = ri};
if X = ∅ then a backtrack is triggered;
if X = {i} then starti(S)← ri;
Lst(S)← Lst(S)−mini∈Nδi(S);
Let(S)← Lst(S) + P ;
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5 Non-idling active schedules

In this section we show that the notion of an active schedule can be applied to non-idling scheduling in the

same way as for semi-active schedules. We establish that the set of non-idling active schedules is dominant

(i.e. there is at least one optimal schedule which is non-idling active) for the regular criterion, and present

a necessary condition for a non-idling schedule to be active. Using this condition we put forward three

propositions for adjusting the variables’ domains of a partial schedule, and then describe an algorithm

based on these propositions for propagating the non-idling active constraint.

Like in the case of semi-active schedules, the notion of non-idling active schedules can be defined as

follows:

Definition 2 A non-idling feasible schedule is said to be active if no job can be completed earlier without

either delaying another job or violating a model constraint (including the non-idling constraint).

Nevertheless, once again this property is not the same as for the active schedules of the classical problem.

2 3 1

2 3 1

2 31

r1 = 0 r2 = 2 r3 = 6

S′′

S′

S

Fig. 3 S is an active schedule, S′′ is a non-idling active schedule.

For example, in the instance of Figure 3 we have r1 = 0, p1 = 4, r2 = 2 p2 = 2, r3 = 6, p3 = 3. Schedule

S is active for the 1|ri|Φ problem while it is not feasible for 1, NI |ri|Φ since it is not idling. Schedule S′,

with the same sequence as S, is non-active for both 1|ri|Φ and 1, NI |ri|Φ since it is possible to schedule

job 1 with start1 = 0 without delaying jobs 2 and 3, as shown in schedule S′′, which, however, is an active

schedule both for 1|ri|Φ and 1, NI |ri|Φ.

It is hard to find a direct relation between sequences yielding active schedules for the classical problem

and those yielding non-idling active schedules. Indeed, as shown in the previous example, a sequence of jobs

yielding an active schedule for the classical problem does not necessarily yield a non-idling active schedule.

Moreover, a sequence of jobs yielding a non-idling active schedule does not necessarily yield an active

schedule for the classical problem. There is, however, an obvious relation between non-idling semi-active

schedules and non-idling active schedules:

Proposition 3 A non-idling active schedule is a non-idling semi-active schedule.

Proof Consider a schedule S which is not semi-active. A job may therefore be scheduled earlier without

changing the sequence of jobs and without violating the non-idling constraint. Consequently, S is not active.

It is well known that the subset of active schedules is dominant (i.e. there is at least one optimal schedule

which is non-idling active) for problems with a regular criterion (1), and the following propositions may

therefore be derived:

Proposition 4 The set of non-idling active schedules is dominant (i.e. there is at least one optimal sched-

ule which is non-idling active) for non-idling problems where a regular criterion has to be minimized.

Proof Consider a non-idling schedule S which minimizes a regular objective function. If S is not active,

then there exists a job i which can be scheduled earlier without violating a model constraint and without

delaying another job. This yields a non-idling schedule S′ with a cost not greater than that of S, and which

is therefore optimal. The process is repeated until no such a job i exists. Thus an optimal non-idling active

schedule has been obtained.

The following theorem provides a necessary condition for a schedule S to be a non-idling active schedule.

It relies on the fact that if the condition is not satisfied for a schedule S, a job i may be inserted earlier

without delaying the other jobs. It covers all insertions of this kind through considering the longest possible

one.
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Theorem 2 If S is a non-idling active schedule then:

∀i ∈ N min
{j,j 6=i/startj (S)<ri+pi

∨startj(S)>starti(S)}

(

startj(S)− rj
)

< pi (3)

Proof Consider a non-idling active schedule S where Condition 3 is not satisfied for a job i. Since the

schedule is active, it is also semi-active, and a job cannot be scheduled earlier simply by scheduling the

entire schedule earlier. Let A = {j/startj(S) > starti(S)} be the set of jobs which are scheduled after i, let

B = {j/startj(S) < ri+ pi} be the set of jobs starting before ri+ pi, and let C = {j/ri+ pi ≤ startj(S) <

starti(S)} be the set of jobs which are scheduled between jobs belonging to B and job i (see Figure 4). If

ri ri + pi starti(S)

B C i A

B i C A

pipi

S′

S

Fig. 4 S is a non-idling active schedule.

Condition 3 is not satisfied, this means that minj∈A (startj(S)− rj) ≥ pi. Thus, job i can be removed from

the schedule and the jobs belonging to A can be scheduled pi units of time earlier since they are scheduled

at least pi units of time from their release dates. The non-idling constraint is thus restored. Jobs belonging

to set B can be also scheduled pi units of time earlier since min{j∈B} (startj(S)− rj) ≥ pi. Job i can

then be inserted just after B without delaying subsequent jobs, giving us a non-idling schedule S′ in which

job i has been scheduled earlier without delaying any other job. This contradicts the fact that S is active.

Note that the starting times of jobs belonging to C do not change during the move of i. Note also that if

C is empty, it means that the whole schedule can be simply brought forward from at least pi units of time

contradicting the fact that S is semi-active and active. Finally, note that this condition covers all possible

insertions of i before a job in C, since C has been chosen to be maximal.

Note that this condition is not sufficient, since a non-idling non-active schedule satisfying Condition 3 may

exist of Theorem 2. For example, in the instance of Figure 5, we have r1 = 1, r2 = 0, r3 = 7, r4 = 4,

1 2 3 4

12 34

r2 = 0 r1 = 1 r4 = 4 r3 = 7

S′

S

Fig. 5 A non-idling non-active schedule S not satisfying Condition 3

p1 = p3 = 3 and p2 = p4 = 2. Schedule S satisfies Condition 3 while it is non-idling non-active since jobs

2 and 4 can be scheduled earlier without delaying another job as shown in schedule S′.

Below we provide some sufficient conditions under which ranking a job in the first or the last position,

or scheduling a job after a certain date according to a partial solution S, cannot yield an active schedule.

These conditions are all based on Condition 3 of Theorem 2. From these conditions we then derive an

algorithm for propagating the non-idling active constraint.

In the following proposition we establish a sufficient condition ensuring that ranking a job i immediately

after F (S) yields a partial solution in which i can be scheduled earlier, regardless of how subsequent jobs

are scheduled. We do this by showing that it leads to a partial solution that fails to satisfy Condition 3 of

Theorem 2.

Proposition 5 Given a partial solution S, let i be a job belonging to NR(S) such that eeti(S) ≥ max
j∈NR(S)

rj

and let δ = esti(S)− eetF (S). If there exists a job x ∈ NR(S)\{i} such that:

rx + px ≤ esti(S) ∧ min
j∈L(S)∪{z∈F (S)/estz(S)+δ<rx+px}

(

estj(S) + δ − rj
)

≥ px

8



then ranking i immediately after F (S) cannot lead to a non-idling active schedule.

Proof Consider such a partial solution S and such jobs i and x. Let S′ be a non-idling schedule obtained

from S by ranking i immediately after F (S) and by completing the schedule with any sequence of jobs

belonging to NR(S)\{i} between i and L(S) (see Figure 6). Let z be the last job in sequence F (S). Since job i

eetF (S) esti(S) estL(S)

F L

F i x L

δ δ

S′

S

Fig. 6 Scheduling i immediately after F (S) cannot lead to a non-idling active schedule.

is scheduled immediately after job z, then endz(S
′) ≥ esti(S), otherwise the non-idling constraint is violated

in S′. This means that all jobs in F (S) and L(S) are scheduled at least δ = esti(S)− eetF (S) units of time

later in S′ than their earliest starting times in S. Consequently, we have ∀j ∈ F (S) ∪ L(S), startj(S
′) ≥

estj(S) + δ. Thus, all jobs belonging to F (S) such that estj(S) + δ < rx + px satisfy startj(S
′) − rj ≥

estj(S)+ δ− rj ≥ px. Job x is scheduled after i in S′ and we have maxj∈NR(S) rj ≤ eeti(S) ≤ endi(S
′) ≤

startx(S
′). Moreover, all jobs j belonging to L(S) are such that startj(S

′) ≥ estj(S) + δ. Consequently,

all jobs j scheduled after x, including jobs in L(S), are such that startj(S
′)− rj ≥ px. Since S′ does not

fulfill Condition 3 of Theorem 2, then S′ is not active.

In the following proposition we establish a sufficient condition ensuring that ranking a job i immediately

before L(S) yields a partial solution in which i can be scheduled earlier, regardless of how subsequent jobs

are scheduled. To do this, once again we show that it leads to a partial solution which does not satisfy

Condition 3 of Theorem 2.

Proposition 6 Given a partial solution S, let i ∈ NR(S) such that min
{j∈NR(S)\{i}}

estj(S) ≥ ri + pi and

let δ = min
j∈NR(S)\{i}

estj(S) − eetF (S). If min
j∈L(S)∪{z∈F (S)/estz(S)+δ<ri+pi}

(estj(S) + δ − rj) ≥ pi then

ranking i immediately before L(S) cannot lead to a non-idling active schedule.

Proof Consider such a partial solution S and such a job i. Let S′ be a schedule obtained from S by ranking

i immediately before L(S) and by completing the schedule with any sequence of jobs of NR(S)\{i} between

F (S) and i (see Figure 7). Note that min{j∈NR(S)\{i}} estj(S) ≥ ri + pi implies that every job belonging

eetF (S)

min{j∈NR(S)/{i}} {estj(S)}

estL(S)

F L

F i L

δ δ

S′

S

Fig. 7 Scheduling i immediately before L(S) cannot lead to a non-idling active schedule.

to NR(S)\{i} start not earlier than ri + pi in S′ and that a job j which can satisfy startj(S
′) < ri + pi is

necessarily sequenced in F (S). Let z be the last job in F (S). Since i is not scheduled immediately after F (S)

and since S′ is a non-idling schedule, then endz(S
′) ≥ min{j∈NR(S)\{i}} estj(S). This means that all jobs

in F (S) and L(S) are scheduled at least δ = min{j∈NR(S)\{i}} estj(S)− eetF (S) units of time later in S′

than their earliest starting times in S. Consequently, we have ∀j ∈ F (S) ∪ L(S), startj(S
′) ≥ estj(S) + δ.

Thus, all jobs belonging to F (S) such that estj(S)+ δ < ri+pi and all jobs scheduled after i, i.e. belonging

to L(S), satisfy startj(S
′)− rj ≥ estj(S)+ δ− rj ≥ pi. Since S′ does not fulfill Condition 3 of Theorem 2,

then S′ is not active.
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In the following proposition we establish a sufficient condition ensuring that scheduling a job i after a certain

date always yields a schedule in which i can be scheduled earlier. To this end we consider a schedule in

which i is scheduled after a certain date and we show that Condition 3 of Theorem 2 is not fulfilled.

Proposition 7 Given a partial solution S, each job i ∈ NR(S) ends strictly before

di(S) = pi +max

{

estL(S)−minj∈L(S)∪{z∈F (S)/estz(S)<ri+pi} (estj(S)− rj)
∑

z∈NR(S) pz +max{j∈NR(S)\{i}/estj (S)−rj<pi} rj

in any non-idling active schedule derived from S.

Proof Consider a partial solution S and a job i ∈ NR(S). Let S′ be a schedule obtained from S by completing

the schedule with any sequence of jobs of NR(S) between F (S) and L(S). Suppose that i ends at time

t ≥ di(S). In S′,sequence L(S) cannot start earlier than t. Consequently, any job j belonging to F (S)∪L(S)

is scheduled in S′ at time startj(S
′) ≥ estj(S) + t − estL(S). Indeed, all jobs in F (S) and L(S) are

scheduled at least t − estL(S) units of time later in S′ than their earliest starting times in S. Therefore,

since t ≥ di(S), for all jobs j belonging to L(S) ∪ {z ∈ F (S)/estz(S) < ri + pi}, we have startj(S
′) ≥

estj(S) + pi + estL(S)− estj(S) + rj − estL(S) = pi + rj and thus startj(S
′)− rj ≥ pi.

In S′, a job j belonging to NR(S)\{i} starts at startj(S
′) ≥ max{estj(S), t−

∑

z∈NR(S) pz} considering

the extreme case where j is scheduled immediately after F (S) and job i is scheduled immediately before

L(S). For all those jobs where estj(S) − rj ≥ pi, we have startj(S
′) − rj ≥ pi. For all the others,

i.e. {j ∈ NR(S)\{i}/estj(S) − rj < pi}, we have t ≥ di(S) ≥ pi + rj +
∑

z∈NR(S) pz implying that

startj(S
′) ≥ pi + rj +

∑

z∈NR(S) pz −
∑

z∈NR(S) pz = pi + rj and startj(S
′)− rj ≥ pi.

Consequently, having t ≥ di(S) implies that for all jobs scheduled before ri + pi or after i in S′, we

have startj(S
′) − rj ≥ pi. Consequently S′ does not fulfill Condition 3 of Theorem 2 and is therefore not

active.

Since the set of non-idling active schedules is dominant, only non-idling active solutions need to be con-

sidered. Throughout the search, sets PF and PL can thus be filtered using Proposition 5 and Proposition 6.

Moreover, Proposition 7 can be used to adjust the latest end times of unranked jobs. All these deductions

can be performed by Algorithm 3, based on these propositions. For each unranked job i, computing di(S)

Algorithm 3: Propagating the non-idling active constraint

Data: A partial solution S (cf. Figure 1)
foreach i ∈ NR(S) do

leti(S)← min(leti(S), di(S)− 1);
if i ∈ PF (S) then

δ ← esti(S)− eetF (S);
if ∃x ∈ NR(S)\{i}/rx + px ≤ esti(S) ∧ min

j∈L(S)∪{z∈F (S)/estz(S)+δ<rx+px}
(estj(S) + δ − rj) ≥ px

then PF (S)← PF (S)\{i};

if i ∈ PL(S) then
δ ← min

j∈NR(S)\{i}
(estj(S)) − eetF (S);

if minj∈L(S)∪{z∈F (S)/estz(S)+δ<ri+pi}
(estj(S) + δ − rj) ≥ pi then PL(S)← PL(S)\{i};

can be done in O(n) time, searching a job x satisfying Proposition 5 can be done in O(n · |NR(S)|) time

and verifying if the condition of Proposition 6 is satisfied can be done in O(n). Therefore, Algorithm 3

runs in O(n · |NR(S)|2) time since there are |NR(S)| unranked jobs to consider.

6 Eliminating non-optimal schedules

In this section, only problems for which Φ is additively separable into nondecreasing functions of individual

end times are considered. It will be remarked that this is the case for most of the regular criteria used in

scheduling (see for example (5)).

Jouglet et al. (19) introduced the notion of “better” sequences for the 1|ri|
∑

(wi)Ti and 1|ri|
∑

(wi)Ci

problems, which enabled them to compare two partial sequences σ and σ′ in the same set of jobs (i.e. ,

σ is a permutation of σ′). Informally speaking, a sequence σ′ is said to be “better” than a sequence σ if

replacing σ by σ′ in any feasible schedule which starts with the sequence σ, we obtain a schedule with
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a lower cost. Following the same idea, in this section we put forward some sufficient conditions whereby

a partial solution will not yield an optimal solution. We then propose techniques for filtering the sets

PF (S) and PL(S) of a partial solution S according to these sufficient conditions. Note that, thanks to the

non-idling constraint, such dominance rule can consider any subsequence of jobs, not necessarily at the

beginning of the whole sequence, unlike that in (19). In particular, such a dominance rule can be applied

to L(S).

From now on αNI(σ) will refer to the earliest starting time of a non-idling schedule following the

sequence σ (see Section 3), and Φσ(t) will denote the cost of the schedule where jobs belonging to sequence

σ are scheduled as early as possible after t in the order of the sequence. Note that only for t ≥ αNI(σ), the

schedule obtained for the jobs in σ is non-idling. Moreover, given two sequences of jobs σ1 and σ2, we use

the notation σ1 ◦ σ2 to represent the sequence resulting from the concatenation of sequences σ1 and σ2.

We rely on the following idea. Consider a non-idling schedule S implementing a sequence which is

separated into three complementary subsequences ρ ◦ σ ◦ τ (see Figure 8). If we can find a permutation

ρ σ τ

ρ σ′ τ

ρ σ′ τ

ρ σ′ τ

S′

S

Fig. 8 If Φρ◦σ′◦τ (αNI (ρ ◦ σ
′ ◦ τ)) < Φρ◦σ◦τ (αNI (ρ ◦ σ ◦ τ)), then S is not optimal.

σ′ of σ such that the sequence ρ ◦ σ′ ◦ τ leads to a non-idling schedule S′ with a lower cost than those

of S, i.e. Φρ◦σ′◦τ (αNI(ρ ◦ σ′ ◦ τ )) < Φρ◦σ◦τ (αNI(ρ ◦ σ ◦ τ )), then S is obviously not optimal. Note that

depending on the jobs which start at their release dates in S, we can have αNI(ρ ◦σ
′ ◦ τ ) = αNI(ρ ◦σ ◦ τ ),

αNI(ρ ◦ σ′ ◦ τ ) > αNI(ρ ◦ σ ◦ τ ) or αNI(ρ ◦ σ′ ◦ τ ) < αNI (ρ ◦ σ ◦ τ ).
Consider any non-idling schedule S and consider a subset X ⊂ N of jobs. Let us assume that we delay

the whole schedule by δ time units, retaining exactly the same sequence of jobs. Note that this schedule is

non-idling. Let us define ∆X(δ) as any nondecreasing upper bound of the difference between the total cost

of jobs belonging to X before and after delaying the schedule by δ time units, for any schedule S. Now,

suppose that the whole schedule may be brought forward from δ time units without violating the non-idling

constraint and retaining exactly the same sequence of jobs. Let us define ∆X(δ) as any nondecreasing lower

bound of the difference between the total cost belonging to X before and after bringing forward these jobs

from δ time units, for any non-idling schedule S.

Given a sequence of jobs σ, we denote as σ̄ the set of jobs not belonging to sequence σ, i.e. σ̄ = {l ∈

N |l /∈ σ}. We can now describe sufficient conditions ensuring that a partial solution S cannot lead to an

optimal solution:

Proposition 8 Suppose that Φ is additively separable into nondecreasing functions of individual end times.

Consider a partial schedule S and three complementary subsequences ρ, σ, τ in F (S) or in L(S), i.e. ρ ◦

σ ◦ τ = F (S) or ρ ◦ σ ◦ τ = L(S). Consider a sequence σ′ such that σ′ is a permutation of σ. If one of the

following two conditions holds:

1. [αNI(σ
′) ≤ estσ(1)(S)] ∧ [∀t/estσ(1)(S) ≤ t ≤ lstσ(1)(S), Φσ′ (t) < Φσ(t)];

2. [αNI(σ
′) > estσ(1)(S)]

∧[Φσ′ (αNI(σ
′)) < Φσ(αNI(σ

′))−∆σ̄(αNI(σ
′)− estσ(1)(S))]

∧[∀t/αNI(σ
′) ≤ t ≤ lstσ(1)(S), Φσ′(t) < Φσ(t)];

then S cannot lead to an optimal solution.

Moreover, if the following condition holds:

3. [δ = min(estσ(1)(S)− αNI(σ
′),mini∈σ̄ (esti(S)− ri)) > 0]

∧[Φσ′ (estσ(1)(S)− δ) < Φσ(estσ(1)(S)) +∆σ̄(δ)];

then S cannot lead to an optimal semi-active solution.

Proof Consider a partial solution S and let S′ be any complete solution derived from solution S. Consider

three complementary subsequences ρ, σ, τ of F (S) or L(s), i.e. ρ ◦ σ ◦ τ = F (S) or ρ ◦ σ ◦ τ = L(S) (see
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F

ρ σ τ L

ρ σ τ L

ρ σ′ τ L condition (1)

ρ σ′ τ L condition (2)

ρ σ′ τ L condition (3)

S′′

S′

S

Fig. 9 S can not lead to an optimal solution.

Figure 9). Given that in S all jobs in σ are already sequenced, we must have αNI(σ) ≤ estσ(1)(S) by defini-

tion. In S′, the first job of the subsequence σ starts at time startσ(1)(S
′) with lstσ(1)(S) ≥ startσ(1)(S

′) ≥
estσ(1)(S) ≥ αNI(σ).

Suppose that there exists a sequence σ′ satisfying condition (1). Since αNI(σ
′) ≤ estσ(1)(S) ≤

startσ(1)(S
′), rescheduling the jobs belonging to σ in the order of σ′ from time startσ(1)(S

′) to ob-

tain schedule S′′ does not delay the other jobs and does not violate the non-idling constraint. More-

over, since ∀t/estσ(1)(S) ≤ t ≤ lstσ(1)(S), Φσ′(t) < Φσ(t) holds, it follows that Φσ′ (startσ(1)(S
′)) <

Φσ(startσ(1)(S
′)). Consequently, we obtain a schedule whose cost is strictly lower than Φ(S′). Thus, S′ is

not optimal.

Suppose that there exists a sequence σ′ satisfying condition (2). Suppose that startσ(1)(S
′) ≥ αNI(σ

′).

Just as we did for the previous condition, we can prove that rescheduling the jobs belonging to σ in the

order of σ′ leads to a non-idling schedule better than S′, which is consequently not optimal. Now, if

startσ(1)(S
′) < αNI(σ

′), then rescheduling the jobs belonging to σ in the order of σ′ leads to a sched-

ule S′′ in which all other jobs belonging to σ̄ also are to be delayed by αNI(σ
′) − startσ(1)(S

′) time

units. Since ∆σ̄ is nondecreasing, the additional cost of delaying these jobs is at most ∆σ̄(αNI(σ
′) −

startσ(1)(S
′)) ≤ ∆σ̄(estαNI(σ′) − estσ(1)(S)). Since it holds that Φσ′(αNI(σ

′)) + ∆σ̄(startσ(1)(S
′) −

αNI(σ
′)) ≤ Φσ′ (αNI(σ

′)) + ∆σ̄(estσ(1)(S) − αNI(σ
′)) < Φσ(αNI(σ

′)), then we obtain a schedule whose

cost is strictly lower than Φ(S′). Thus, S′ is not optimal.

Suppose that there exists a sequence σ′ satisfying condition (3). If S can lead to a semi-active schedule

S′, then it must hold that startσ(1)(S
′) = estσ(1)(S

′) = αNI(σ) because min{i∈σ̄} (esti(S)− ri) > 0, and

at least one job in σ has to start at its release date (see Section 4). If we reschedule the jobs belonging

to σ in the order of σ′, we then obtain a non-idling schedule S′′ which can be brought forward by δ ≤
min(estσ(1)(S)−αNI(σ

′),min{i∈σ̄} (starti(S
′)− ri)) time units. The benefit to be gained by bringing these

jobs forward is therefore at least ∆σ̄(δ). We have startσ(1)(S
′) = estσ(1)(S) − δ. Since Φσ′ (estσ(1)(S) −

δ)−∆σ̄(δ) < Φσ(estσ(1)(S)), we obtain a schedule whose cost is strictly lower than Φ(S′). Thus, S′ is not

optimal.

While under Condition (3) the partial solution cannot lead to an optimal semi-active solution, it can lead

to an optimal solution. Note that for regular criteria such as the total tardiness, an optimal schedule is not

necessarily semi-active. This nuance is not needed for Conditions (1) and (2). These remarks explain why

these cases are handled separately.

The previous proposition can be used to filter the sets PF (S) and PL(S) of a partial solution S. Suppose

that ranking a job i belonging to PF (S) (respectively, to PL(S)) immediately after F (S) (respectively,

immediately before L(S)) leads to a partial solution such that there exists a permutation σ′ of a subsequence

σ in F (S) ◦ (i) (respectively, (i) ◦L(S)) satisfying one of the above conditions, then i can be removed from

PF (S) (respectively, from PL(S)). Of course, enumerating all such possible sequences σ′ is not relevant from

a practical point of view. During the search with our enumerative method, we only consider sequences σ′

recorded from previously encountered solutions. Using suited data structures, relevant recorded sequences

can be found in an effective way. An example on how to consider such sequences is provided in the next

section for the 1|ri|
∑

wiCi problem. Such sequences σ′ could be also searched heuristically for example

with a local search algorithm with a limited time complexity (see for example (18)). Values ∆X(δ) and

∆X(δ) should be established according to the criterion to be minimized.
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7 Minimizing the total (weighted) completion time

In its classical version without the non-idling constraint, the one-machine total (weighted) completion

time problem has been intensively addressed over the last two decades. The problems are denoted as

1|ri|
∑

Ci and 1|ri|
∑

wiCi. In the case of identical release dates, both the unweighted and the weighted

problems can easily be solved polynomially in O(n log n) time by applying the WSPT (Weighted Shortest

Processing Time) priority rule, also known as Smith’s rule (27): this consists of sequencing the jobs in

nondecreasing order of their ratio of processing time to weight. The unweighted problem with release dates

is NP-hard in the strong sense (22). Several authors have proved dominance properties and proposed a

number of algorithms (9, 15, 16). Chu (11) proved several dominance properties and provided a branch-and-

bound algorithm. Chand, Traub and Uzsoy used a decomposition approach to improve branch-and-bound

algorithms (8). In its preemptive version, 1|ri, pmtn|
∑

Ci can be solved polynomially with the Shortest

Remaining Processing Time (SRPT ) rule (26): pieces of jobs are iteratively scheduled by choosing at

each time a job with the shortest remaining processing time among the available and uncompleted jobs;

this job is partially or totally scheduled until the time it is completed or another job becomes available.

The solution of this problem is often used within branch-and-bound methods as a lower bound for the

non-preemptive problem. However, Della Croce and T’Kindt (14) proposed an improved lower bound

relying on the preemptive relaxation. The weighted case with release dates 1|ri|
∑

wiCi is NP-hard in the

strong sense (25), even when preemption is allowed (21). Several dominance rules and branch-and-bound

algorithms have been proposed (3, 4, 17, 24). Finally, Jouglet et al. (19) studied both the weighted and the

unweighted cases (along with the more general problem 1|ri|
∑

(wi)Ti). They generalized and improved

the above dominance rules which were used in a branch-and-bound method and in heuristic algorithms

(20).

In this section we show how to apply the method and the techniques described in the previous sections

to the 1, NI |ri|
∑

wiCi problem. In Section 7.1 we show that all optimal schedules of the problems are

semi-active and active. In Section 7.2, we propose an application of the non-optimality sufficient condition

of Proposition 8 and we describe a “no-good recording” technique for applying it. Some dominance rules

specific to the studied problem are described in Section 7.3. Finally, techniques based on the lower bounds

of the problems are described in Section 7.4.

7.1 Semi-active and active non-idling schedules

We saw in Section 4 and Section 5 that non-idling semi-active and active schedules are dominant for

regular criteria. Note that for 1, NI |ri|
∑

wiCi, any non-idling schedule which is not semi-active or active

allows the possibility of a strict improvement of the value of the objective function. Thus, according to the

following propositions, the properties are much stronger for the 1, NI |ri|
∑

wiCi problem:

Proposition 9 All optimal non-idling schedules of the 1, NI |ri|
∑

wiCi problem are active.

7.2 Non-optimal schedules

In this section we show how to express the non-optimality sufficient condition of Proposition 8 for the

1, NI |ri|
∑

wiCi problem, and we describe a “no-good recording” technique for applying it.

Because of the non-idling constraint (and in contrast to the classical problem), the following lemma

holds and allows us to derive interesting properties for applying the non-optimality sufficient condition:

Lemma 1 For any sequence σ and for any times t and t′ such that min(t, t′) ≥ αNI(σ), we have Φσ(t)−
Φσ(t

′) = (t− t′)
∑

i∈σ wi.

Proof Since min(t, t′) ≥ αNI(σ), the schedules obtained by scheduling jobs in the order of sequence σ,

starting at time t and t′ respectively, are non-idling. Without loss of generality, suppose that t′ < t.

Delaying a job i by t− t′ units of time increases its cost by (t− t′)wi, and bringing forward a job by t− t′

units of time decreases its cost by (t− t′)wi.

The first and most obvious consequence is that ∆X(δ) = ∆X(δ) = δ
∑

i∈X wi are valid and the

tightest evaluations which can be taken according to their definition (see Section 6). Moreover, the following

corollary is established:

Corollary 2 Let σ and σ′ be two sequences of the same set of jobs X. If for a given time such that

t ≥ max(αNI(σ), αNI(σ
′)) we have Φσ(t) < Φσ′ (t), then ∀t′ ≥ t we have Φσ(t

′) ≤ Φσ′(t′).
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Proof We have Φσ(t
′) = Φσ(t) + (t′ − t)

∑

i∈X wi and Φσ′(t′) = Φσ′ (t) + (t′ − t)
∑

i∈X wi. Thus, Φσ(t) <

Φσ′(t) ⇒ Φσ(t
′) < Φσ′ (t′).

It will be noted that the following corollary of Lemma 1 allows us to compute Φσ(t) for all t ≥ αNI(σ),

given Φσ(αNI(σ)) and
∑

i∈σ wi:

Corollary 3 For any t ≥ αNI(σ), we have Φσ(t) = Φσ(αNI(σ)) + (t− αNI(σ))
∑

i∈σ wi.

As in Section 6, given a sequence of jobs σ, we denote as σ̄ the set of jobs not belonging to sequence σ,

i.e. σ̄ = {l ∈ N |l /∈ σ}. Since we know that all optimal schedules are semi-active for Φ =
∑

wiCi (which

is additively separable into nondecreasing functions of individual end times), we see that the following

proposition (which is a simplification of Proposition 8) also holds:

Proposition 10 Consider a partial schedule S and three complementary subsequences ρ, σ, τ of F (S) or

L(s), i.e. ρ ◦ σ ◦ τ = F (S) or ρ ◦ σ ◦ τ = L(S). If there exists a sequence σ′ such that σ′ is a permutation

of σ and such that one of the 3 following conditions holds:

1. [αNI(σ
′) ≤ estσ(1)(S)] ∧ [Φσ′ (estσ(1)(S)) < Φσ(estσ(1)(S))];

2. [αNI(σ
′) > estσ(1)(S)] ∧ [Φσ′ (αNI(σ

′)) + (αNI(σ
′)− estσ(1)(S))

∑

i∈σ̄ wi < Φσ(estσ(1)(S))];

3. [δ = min(estσ(1)(S)− αNI(σ
′),mini∈σ̄ (esti(S)− ri)) > 0]

∧[Φσ′(estσ(1)(S)− δ)− δ
∑

i∈σ̄ wi < Φσ(estσ(1)(S))];

then S cannot yield an optimal solution.

As in (19), a no-good-recording technique (29) can be used, which “records”, information about partial

solutions encountered within the search tree. The characteristics of any partial solution S associated with a

particular node of the search tree are stored in a “no-good” set. For a subsequence σ of F (S) or L(S), only

the following data are saved: the set of jobs belonging to sequence σ, its associated earliest starting time

αNI(σ), the cost Φσ(αNI(σ)) of this sequence when scheduled at αNI(σ), and the total weight
∑

i∈σ wi

of jobs belonging to σ. We store only the subsequences of F (S) that include the last job of F (S) and the

subsequences of L(S) that include the first job of L(S), since the other sequences have already been stored

at a previous node during the construction of S.

We use this information to filter the set of possible first jobs PF (S) and PL(S) of a partial solution

S. For all i ∈ PF (S) and for all sequences σ such that F (S) ◦ (i) = ρ ◦ σ, we seek a permutation σ′ in the

“no-good” set whose state meets the sufficient condition of Proposition 10. If such a state is found then

scheduling a job i immediately after F (S) yields a partial solution which is not optimal, and we can remove

i from set PF (S). Set PL(S) is filtered in the same way.

A hash table combined with height-balanced binary search trees makes for an efficient use of the “no-

good” set. It generally allows us to obtain a pertinent state of the set in O(n log n). A state of the set

consists of a list of jobs sorted in lexicographic order coded in a vector, and a list of couples (Φ,αNI ))

corresponding to the different states of the nodes which have been visited within this set of jobs. Note

that only non-comparable couples according to Proposition 10 can be kept. Suppose that we search a state

with the same set of jobs belonging to sequence σ. Sorting jobs in lexicographic order runs in O(n log n)

time. Computing an index in the hash table of this set of jobs runs in O(n) time. Since jobs are sorted in

lexicographic order, a comparison of two sets of jobs runs in O(n) time. Thus, if there is no collision with

another state at the same index in the hash table, seeking the set of relevant sequences σ′ encountered

from previously encountered solution in the search runs in O(n log n) time. In case of collision with k states

at the same index in the hash table, a height-balanced binary search tree is used with an additional search

running in O(n log k) time. Once a relevant state has been found with the same set of jobs, it remains to

look if a couple (Φ,αNI)) of the state satisfies the sufficient condition of Proposition 10. After experimental

tests, we noted that the amount of such (non-comparable) couples is very low. As shown with experimental

results of Section 8, the search of relevant sequences σ′ in the “no-good” set with such algorithm is very

effective.

7.3 Dominance rules

In this section we describe dominance rules specific to 1, NI |ri|
∑

wiCi. These dominance rules can be

used to adjust time windows of jobs or to filter sets PF and PL. They all rely on the fact that when we

have equal release dates an optimal sequence obeys the WSPT rule (27).

Proposition 11 Given a partial solution S, if there exists a job i such that ∀j ∈ NR\{i}, pi

wi
<

pj

wj
and

esti(S) = minj∈NR(S) estj(S), then in all optimal schedules that can be obtained from S, job i starts

immediately after F (S).
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Proof Let S′ be an optimal schedule derived from S in which a job j 6= i is scheduled just after F (S) in

S′. Let x be the job scheduled just before i in S′ (eventually j). We have esti(S) ≤ estj(S) ≤ startj(S
′) ≤

startx(S
′) < starti(S

′). Thus, jobs i and x can be interchanged without violating the non-idling constraint

and without changing the starting times of all other jobs. Let S′′ be the obtained schedule. We have Φ(S′)−
Φ(S′′) = wx(startx(S

′)+px)+wi(startx(S
′)+px+pi)−wi(startx(S

′)+pi)−wx(startx(S
′)+pi+px) =

wipx−wxpi > 0 since pi/wi < px/wx. Consequently, the interchange leads to a schedule S′′ with a strictly

lower cost than Φ(S′), which contradicts the fact that S′ is optimal.

Proposition 12 Given two jobs i and j such that pi = pj , ri ≤ rj and (wi > wj) ∨ (wi = wj ∧ i < j),

then there exists an optimal schedule in which i is scheduled before j.

Proof Let S be an optimal schedule in which j is scheduled before i. The two jobs can be interchanged without

modifying the starting times of the other jobs since pi = pj and ri ≤ rj . We have wi ≥ wj . Consequently,

the interchange leads to a schedule with a cost at least as good as Φ(S) since wjendj(S) + wiendi(S) ≥
wjendi(S) +wiendj(S).

Proposition 13 For all consecutive jobs i and j in an optimal schedule S, we have pi/wi ≤ pj/wj or

starti(S) < rj.

Proof Consider an optimal schedule S in which there exist two consecutive jobs i and j (i just before j)

such that pi/wi > pj/wj and starti(S) ≥ rj. Jobs i and j can be interchanged without violating the non-

idling constraint and without changing the start times of all other jobs. The difference of cost between S

and the obtained schedule is equal to wi(starti(S) + pi) + wj(starti(S) + pi + pj)− wj(starti(S) + pj) −
wi(starti(S) + pi + pj) = wjpi − wipj > 0 since pi/wi > pj/wj . Consequently, the interchange leads to a

schedule with a strictly lower cost than Φ(S), which contradicts the fact that S is optimal.

Proposition 14 Given a partial solution S, if there exists a job i ∈ NR(S) with δ = esti(S) − eetF (S)

such that:

∃x ∈ F (S)/











(px > pi ∧ wx ≤ wi) ∨ (px ≥ pi ∧ wx < wi)

ri ≤ estx(S) + δ

min{j∈F (S)/estj(S)>estx(S)} (estj(S) + δ − rj) ≥ px − pi

then ranking job i immediately after F (S) cannot lead to an optimal solution.

Proof Suppose that there exists an optimal schedule S′ derived from S in which i is scheduled just after

F (S). Thus, F (S) ends not earlier than esti(S) in S′, hence ∀j ∈ F (S), startj(S
′) ≥ estj(S)+ δ holds and

min{j∈F (S)/estj (S)>estx(S)} (startj(S
′)− rj) ≥ min{j∈F (S)/estj (S)>estx(S)} {estj(S) + δ − rj} ≥ px−pi.

Consequently, jobs x and i can be interchanged without violating the non-idling constraint since all jobs

between x and i can be scheduled px − pi units of time earlier. Note that in the obtained schedule, i

ends at endx(S
′) − px + pi and x ends at endi(S

′). Note that the start times of the other jobs (before x

and after i) do not change. Therefore, the difference between the cost of S′ and the cost of the obtained

schedule is greater than or equal to wxendx(S
′) + wiendi(S

′) − wi(endx(S
′) − px + pi) − wxendi(S

′) =

(endi(S
′)− endx(S

′)) · (wi−wx)+wi(px− pi) > 0 since (px > pi ∧wx ≤ wi)∨ (px ≥ pi ∧wx < wi) holds.

As a result of the interchange the total cost strictly decreases. This contradicts the fact that S′ is optimal.

Proposition 15 Given a partial solution S, let x and i be two jobs in the sequence F (S) such that

(px > pi ∧ wx ≤ wi) ∨ (px ≥ pi ∧ wx < wi) and estx(S) < esti(S) (i.e. x is before i in sequence

F (S)). Let δ be equal to:

δ = max

{

ri − estx(S)

px − pi −min{j∈F (S)/estx(S)<estj(S)<esti(S)} (estj(S)− rj)

then in any optimal schedule S′ which may be derived from S, we have ∀j ∈ F (S), startj(S
′) < estj(S)+δ.

Proof Suppose that there exists an optimal schedule S′ derived from S in which ∃k ∈ F (S) with startk(S
′) ≥

estk(S) + δ. It holds ∀j ∈ F (S), startj(S
′) ≥ estj(S) + δ. Thus, we have ri ≤ estx(S) + δ ≤ startx(S

′).

Moreover, we have min{j∈F (S)/estx(S)<estj(S)<esti(S)} (startj(S
′)− rj) which is greater than or equal

to min{j∈F (S)/estx(S)<estj(S)<esti(S)} (estj(S) + δ − rj) ≥ px − pi. Consequently, jobs x and i can be

interchanged without violating the non-idling constraint since all jobs between x and i can be scheduled

px − pi units of time earlier. Note that the starting times of the other jobs (before x and after i) do not

change. Therefore, the difference between the cost of S′ and the cost of the obtained schedule is greater

than or equal to wxendx(S
′)+wiendi(S

′)−wi(endx(S
′)−px+pi)−wxendi(S

′) = (endi(S
′)− endx(S

′)) ·

(wi − wx) + wi(px − pi) > 0 since (px > pi ∧ wx ≤ wi) ∨ (px ≥ pi ∧ wx < wi) holds. As a result of the

interchange the total cost strictly decreases. This contradicts the fact that S′ is optimal.
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Proposition 16 Given a partial solution S, if there exists a job i ∈ NR(S) with δ = min
j∈NR(S)\{i}

estj(S)−

eetF (S) such that:

∃x ∈ L(S)/











(px < pi ∧ wx ≥ wi) ∨ (px ≤ pi ∧ wx > wi)

rx ≤ estL(S) + δ − pi

min{j∈L(S)/estj(S)<estx(S)} (estj(S) + δ − rj) ≥ pi − px

then ranking job i immediately before L(S) cannot lead to an optimal solution.

Proof Symmetrically analogous to the proof of Proposition 14.

Proposition 17 Given a partial solution S, let i and x be two jobs of sequence L(S) such that (px <

pi ∧ wx ≥ wi) ∨ (px ≤ pi ∧ wx > wi) and esti(S) < estx(S) (i.e. i is before x in sequence L(S)). Let δ be

equal to:

δ = max

{

rx − esti(S)

pi − px −min{j∈L(S)/esti(S)<estj(S)<estx(S)} (estj(S)− rj)

then in any optimal schedule S′ which may be derived from S we have ∀j ∈ L(S), startj(S
′) < estj(S)+ δ.

Proof Symmetrically analogous to the proof of Proposition 15.

7.4 Lower bounds: cuttings and adjustments

In this section we describe the lower bounds which are used in our branch-and-bound algorithm. In Sec-

tion 7.4.1 we show how the WSPT rule can be efficiently used to filter sets PF (S) and PL(S) in O(n)

time if the WSPT order is known. In Section 7.4.2 we recall other lower bounds which are also used in the

branch-and-bound method.

7.4.1 Relaxing the release dates

Given a partial schedule S, the WSPT rule can be easily used to compute a lower bound of the total cost

of S by relaxing the earliest starting times of jobs belonging to NR(S). Let WSPTX(t) be the value of

the cost function obtained by applying the WSPT rule to jobs in set X by relaxing their release dates to

t. Since we have estL(S) = eetF (L) +
∑

i∈NR(S) {pi}, then the value LBWSPT (S) = ΦF (S)(estF (S)) +

WSPTNR(S)(eetF (S)) + ΦL(S)(estL(S)) is a lower bound of the cost of the partial solution S. If this

bound is strictly greater than Φ̄, then the partial solution S cannot lead to a better solution than one

which has already been found. Note that if the WSPT sequence of jobs belonging to NR(S) (taking the

original earliest starting times) leads to a non-idling schedule starting at time eetF (S), then LBWSPT (S)

is an upper bound of the cost of the partial solution S, and jobs belonging to NR(S) can be automatically

scheduled according to the WSPT order. Note also that delaying a complete schedule by one time unit

increases the cost of the objective function of
∑

i∈N wi. A complete schedule derived from S will have a

total cost of at least LBWSPT (S) and cannot end earlier than Eet(S). Therefore, the latest completion

time Let(S) of the partial solution can be adjusted to min(Let(S), Eet(S)+(Φ̄−LBWSPT (S))/
∑

i∈N wi).

From now on, to simplify the presentation, we shall assume that jobs in NR(S) are indexed from 1 to

|NR(S)| according to the WSPT rule. Let ΦWSPT
i (S) = wi(eetF (S) +

∑i
j=1 pj) be the contribution of

job i to the lower bound WSPTNR(S)(eetF (S)).

Suppose now that a job i belonging to NR(S) is scheduled in the first position immediately after F (S).

If esti(S) > eetF (S) then the end time of the last job of sequence F (S) will be adjusted to be greater

than or equal to esti(S) to satisfy the non-idling constraint, right-shifting the whole sequence by at least

δi = eetF (S)− esti(S) > 0 time units. Thus, in the obtained schedule, sequence F (S) will not end before

eetF (S) + δi. A lower bound of the cost of a solution which can be obtained from S if i is scheduled

immediately after F (S) then becomes LBWSPT

i→first(S) = ΦF (S)(estF (S) + δi) + wi(eetF (S) + δi + pi) +

WSPTNR(S)\{i}(eetF (S)+ δi+pi)+ΦL(S)(estL(S)+ δi). Fortunately, this new lower bound can easily be

computed from LBWSPT (S). The following relation holds: LBWSPT

i→first(S) = LBWSPT (S)−ΦWSPT
i (S) +

(eetF (S) + δi + pi)wi + (δi + pi)
∑i−1

j=1 (wj) + δi
∑|NR(S)|

j=i+1 (wj) + δi
∑

j∈F (S)∪L(S) (wj). It corresponds to

the initial bound with corrections according to the insertion of job i before the other jobs (see Lemma 1).

Now, if LBWSPT

i→first(S) is strictly greater than Φ̄, then i cannot be scheduled immediately after F (S), and

it can be removed from PF (S).
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Algorithm 4: Evaluating, filtering and adjusting a partial solution with the WSPT rule.

Data: A partial solution S (cf. Figure 1), jobs being assumed to be sorted in nondecreasing order of the
processing time to weight ratio

LBWSPT (S)← ΦF (S)(estF (S)) + ΦL(S)(estL(S)) ;

t← eetF (S) ;
for i← 1 to n do

if i ∈ NR(S) then
t← t+ pi ;

ΦWSPT
i (S)← t · wi ;

LBWSPT (S)← LBWSPT (S) + ΦWSPT
i (S) ;

if LBWSPT (S) > Φ̄ then a backtrack is triggered;
WN ←

∑
j∈N {wj};

WR ←
∑

j∈F (S)∪L(S)wj ;

WA ← 0;
WB ←

∑
j∈NR(S) wj ;

earliest_job← the job belonging to NR(S) with the smallest earliest start time breaking times by choosing
the job with the smallest index ;
earliest_job′ ← the job belonging to NR(S)\{earliest_job′} with the smallest earliest start time breaking
times by choosing the job with the smallest index ;
for i← 1 to n do

if i ∈ NR(S) then
WB ←WB −wi ;
if i ∈ PF (S) then

δi ← esti(S)− eetF (S) ;

LBWSPT

i→first(S)← LBWSPT (S)−ΦWSPT
i (S)+(eetF (S)+δi+pi)wi+(δi+pi)WA+δi(WB +WR);

if LBWSPT

i→first(S) > Φ̄ then PF (S)← PF (S)\{i};

if i ∈ PL(S) then
if i 6= earliest_job then δi ← estearliest_job(S)− eetF (S) ;
else δi ← estearliest_job′(S) − eetF (S)

LBWSPT

i→last(S)← LBWSPT (S) − ΦWSPT
i (S) + (estL(S) + δi)wi + δi(WR +WA) + (δi − pi)WB;

if LBWSPT

i→first(S) > Φ̄ then PL(S)← PL(S)\{i};

else leti(S)← min(leti(S), estL(S) + δi + (Φ̄− LBWSPT

i→last(S))/
∑

j∈N wj ;

WA ←WA +wi;

Similarly, suppose that a job i belonging to NR(S) is scheduled in the last position immediately

before L(S). Sequence F (S) cannot end earlier than eetF (S) + δi and sequence L(S) cannot start earlier

than estL(S) + δi, in which δi = minj∈NR(S)\{i} estj(S) − eetF (S), otherwise the non-idling constraint

cannot be satisfied. A lower bound LBWSPT

i→last (S) of the cost of a solution which can be obtained from S

if i is scheduled immediately before L(S) can easily be computed from LBWSPT (S), since the following

relation holds: LBWSPT

i→last (S) = LBWSPT (S) − ΦWSPT
i (S) + δi

∑i−1
j=1 (wj) + (δi − pi)

∑|NR(S)|
j=i+1 (wj) +

δi
∑

j∈F (S)∪L(S) (wj)+wi(estL(S)+ δi). Now, if LBWSPT

i→last (S) is strictly greater than Φ̄, then i cannot be

scheduled immediately before L(S), and it can be removed from PL(S).

Where LBWSPT

i→last (S) is not strictly greater than Φ̄, we can nevertheless use this lower bound to adjust

the latest completion time of job i. If i is scheduled immediately before L(S) and completes at time

t ≥ estL(S) + δi, then a lower bound of the solution is LBWSPT

i→last (S) + (t− estL(S)− δi)
∑

j∈N wj , since

it follows that all jobs need to be delayed by t − eetF (S)− δi time units (see Lemma 1). This bound has

to be lower than or equal to Φ̄. Thus, job i cannot end after estL(S) + δi + (Φ̄−LBWSPT

i→last (S))/
∑

j∈N wj .

Considering that the WSPT order of jobs is known (for example, it is computed only once in O(n log n)

at the beginning of the branch and bound algorithm), and in the light of the above remark, Algorithm 4

allows us to compute in O(n) the lower bound LBWSPT (S), along with all lower bounds LBWSPT

i→first(S)

and LBWSPT

i→last (S). These lower bounds are then used to trigger a backtrack or to adjust the time-windows

of jobs.

7.4.2 Preemption and splitting

In addition, we use other lower bounds from the literature according to the criterion we want to minimize,

in order to filter sets PF (S) and PL(S) for jobs which cannot be eliminated by the WSPT rule. For the

1|ri|
∑

wiCi problems, we use the lower bound of Belouadah, Posner and Potts (3), which is based on job

splitting. For the 1|ri|
∑

Ci problem we use the SRPT rule (26).
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8 Experimental results

All the techniques presented in this article have been incorporated into our branch-and-bound method

implemented on top of the Ilog Solver and Ilog Scheduler. All experimental results were computed on

a Dell Latitude D620 PC with a Genuine Intel T2600 2.16GHz CPU, running Windows Vista Professional.

The instances are generated using the same scheme as the test problems of Hariri and Potts (17) and,

Belouadah, Posner and Potts (3) for the classical problems. For each job i, a processing time pi is generated

from the uniform distribution [1, 100] and a weight wi from the uniform distribution [1, 10] for the weighted

case. For a size n = {10, 20, . . . , 100} of problem, an integer release date ri for each job Ji is generated from

the uniform distribution [0, 50.5 · n · R], where R controls the range of the distribution. For each selected

value of n, five problems are generated for each of the R values 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 1.75, 2.0 and

3.0 producing 50 problems for each value of n.

In Table 1, the efficiency of the techniques described in the previous sections is studied on instances

of size n = 50 jobs for the 1, NI |ri|
∑

Ci problem. For this experiment, we used a branching strategy in

which the next job to be scheduled is chosen always from among the jobs in PF : the job in PF which yields

the state with the smallest lower bound is ranked immediately after F . First, the results of the branch and

bound method using all of the described techniques are shown (“all tech.”). Then the different techniques

are removed one by one to test their global contribution to the efficiency of the method. Algorithm 1, for

propagating the non-idling constraint, is shown as “NI”. Algorithm 2 and Algorithm 3, for propagating

the non-idling semi-active and active constraints, are shown as “SAA”. The no-good-recording technique,

described in Section 7.2, is shown as “NGR”. The application of the dominance rules of Section 7.3 are

shown as “DR”. Finally the different lower bounds are shown as WSPT and SRPT. For the different

configurations of the branch and bound method and for each value of parameter R, the average number

of generated nodes (“nodes”) and the average computation time in seconds (“cpu(s)”) over the 5 generated

instances are shown. A time limit of 200 seconds was used. The number of instances over 5 which were

not solved within the time limit is given in brackets. In this case, the time limit and the number of nodes

generated within this time limit are used for the statistics. We can see that any of the techniques improves

the behavior of the branch and bound method. Some techniques, such as SAA or WSPT, improve only the

computation time. They adjust the state of the different variables more efficiently than other techniques

which can perform the same deductions but at a higher computation time cost. Some others improve

the behavior of the branch and bound method, in terms of both search space and computation time.

The propagation of the non-idling constraint and the use of the SRPT lower bound would appear to be

particularly effective. However, using only these two techniques is not really efficient, as shown by the

column “NI + SRPT”, which corresponds to the results obtained by the branch and bound procedure using

only these two techniques.

In Table 2, different branching strategies are studied with instances of size n = 50 jobs for the

1, NI |ri|
∑

Ci problem, using all the described techniques. Column F shows the results obtained by the

method in which the next job to be scheduled is chosen always from among the jobs in PF . Column L

shows the results obtained by the method in which the next job to be scheduled is chosen always from

among the jobs in PL. Column FL shows the results obtained by the method in which the next job to

be scheduled is chosen from among the jobs in both PF and PL. In each configuration, the job which

yields the state with the smallest lower bound is placed in the considered subset of jobs. For the different

configurations of the branch and bound method and for each value of parameter R, the average number

of generated nodes (“nodes”) and the average computation time in seconds (“cpu(s)”) over the 5 generated

instances are given. It can be seen that the method F is significantly better on average than the methods

L and FL. However, for instances with a large R (R ≥ 1.5), we can see that the method L is more efficient.

This can be explained by the fact that the parameter has a lot of influence on the starting time of the whole

schedule. Recall that in an optimal (semi-active) solution, at least one job starts at its release date. For a

given schedule, let µ be the first job starting at its release date in the schedule. It is this job which fixes

the starting time of the entire schedule. With a small value of R, instances with µ located among the first

jobs of the schedule often give the best solutions, because the range of release dates is small. Consequently,

for these instances, it is often better to choose the next job to be scheduled from among those in PF , so

as to make the starting time of the whole schedule the earliest possible. Conversely, when R is higher,

µ is often located at the end of the schedule, and it may be more effective to chose the next job to be

scheduled from among jobs belonging to PL. Note that the method FL does not represent an interesting

compromise. In order to improve the performance of the branch and bound procedure, we compute two

descriptors λ1 and λ2 for each instance. They allow us to decide the branching strategy which has a good

chance of being the most efficient. Computing αNI for a given instance, let χNI be the index of the last

job necessitating a shift to the right of the whole schedule if the jobs are sorted in nondecreasing order
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all tech. all tech. - NI all tech. - SAA all tech. - NGR
R nodes cpu(s) nodes cpu(s) nodes cpu(s) nodes cpu(s)

0.2 23 0.18 23 0.11 23 0.16 27 0.23
0.4 141 0.93 141 0.41 141 0.90 216 1.6
0.6 1163 4.2 1237 2.5 1163 4.3 4097 20
0.8 914 2.8 22910 44(1) 914 2.9 8960 29

1 801 2.1 5423 7.5 801 2.2 9969 32
1.25 3456 6.7 43246 57(1) 3456 7.9 26237 52(1)
1.5 4524 11.7 30539 47(1) 4524 14.5 12794 37

1.75 3162 7.5 3450 5.0 3162 9.5 9320 32
2 1901 5.3 21438 35 1901 6.7 5431 18
3 842 1.9 1155 1.5 842 2.4 2026 6.9

av. 1693 4.3 12956 20(3) 1693 5.1 7908 23(1)

all tech. - DR all tech. - SRPT all tech. - WSPT NI + SRPT
R nodes cpu(s) nodes cpu(s) nodes cpu(s) nodes cpu(s)

0.2 31 0.32 1046 4 23 0.19 250 1.0
0.4 255 1.5 55336 180 141 0.72 14174 57
0.6 1747 7.6 70159 167 1163 3.2 44541 138(3)
0.8 1147 5.2 90462 200(5) 915 2.4 46720 163(3)

1 1108 4.2 96033 200(5) 801 1.7 34684 200(5)
1.25 7317 29 77230 200(5) 3460 7.2 26541 167(4)
1.5 19597 72(1) 89008 200(5) 4526 15.0 38109 200(5)

1.75 9577 26 85747 200(5) 3164 10.2 49293 200(5)
2 14890 42 94137 200(5) 1906 8.0 35494 200(5)
3 32754 60(1) 115155 200(5) 846 2.5 64581 200(5)

av. 8842 25(2) 77431 176(42) 1694 5.1 35439 153(35)

Table 1 Testing the efficiency of the techniques. 1, NI|ri|
∑

Ci, n = 50 jobs

F L FL F or L RTTO
R nodes cpu(s) nodes cpu(s) nodes cpu(s) nodes cpu(s) nbF nbL λ1 λ2 nodes cpu(s)

0.2 23 0.18 49035 571 49 0.33 23 0.18 5 0 0.00 0.00 43 0.24
0.4 141 0.93 9030 69 2788 12 141 0.93 5 0 0.00 0.00 238 1.01
0.6 1163 4.2 25833 187 42126 123 1163 4.2 5 0 0.02 0.02 1820 5.41
0.8 914 2.8 5934 41 7231 23 914 2.8 5 0 0.16 0.03 1830 4.74

1 801 2.1 1862 14 3431 8.7 835 2.5 4 1 0.21 0.05 1358 2.22
1.25 3456 6.7 1266 7.7 13474 34 1198 7.0 1 4 0.75 0.19 5069 7.38
1.5 4524 12 750 5.2 67063 169 750 5.2 0 5 0.92 0.45 5748 10.54

1.75 3162 7.5 316 1.8 39470 129 316 1.8 0 5 0.97 0.76 5399 9.58
2 1901 5.3 466 2.6 1930 6.8 466 2.6 0 5 0.96 0.94 2778 5.18
3 842 1.9 112 0.66 1299 3.5 112 0.66 0 5 0.97 2.0 927 1.46

av. 1693 4.3 9460 90 17886 51 592 2.8 2521 4.78

Table 2 Testing branching strategies

of release dates (see Algorithm 1). The value λ1 = χNI/n is then the ratio between this value and n. A

high value of λ1 means that the starting time of a lot of jobs is delayed because of this job. The value

λ2 = (αNI − mini∈N{ri})/(mini∈N{ri} +
∑

i∈N{pi}) represents the distance between the minimum re-

lease date and the αNI value of the instance normalized by the sum of the processing times added to the

minimum release date. Thus, the higher the values λ1 and λ2, the greater the number of solutions with a

good chance of having µ among the last jobs of the schedule. Columns “F or L” show results obtained by

the method using strategy F if λ1 ≤ .5 or λ2 ≤ 0.1, and strategy L otherwise. For each parameter R we

also give the average values for λ1 and λ2, in order to justify this choice. Columns nbF and nbL show the

number of times strategies F and L respectively were chosen. We can see that the results are significantly

improved. However, note that this way of choosing F or L does not select the best strategy in several cases.

We have also tested the “Reduce-To-The-Opt” algorithm of Wolf (30). This method uses a strategy

similar to the “F ” strategy since it also builds a sequence of jobs by iteratively schedule jobs at the end

of a partial sequence: considering that the start time of the whole sequence is fixed, this method

relies on the fact that only jobs which are available can be scheduled at the end of the partial schedule.

Thus, at each node of the search tree, an unscheduled job among ones with the smallest earliest start time

is scheduled as soon as possible just after the partial sequence. Note that contrary to the method “F ”, the

start time of the job which is scheduled is known at the time it is sequenced. Therefore, the advantage of

this method is that propagation algorithms are more efficient and faster since the start time of scheduled

jobs and the end of the whole schedule are known. The drawback is that the method has to be run on

each possible start time of the sequence to find the optimum. As for our method, the “Reduce-To-The-Opt”

algorithm is not able to solve most of the instances of 50 jobs within the time limit. However, except for the
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20 30 40
nodes cpu(s) nodes cpu(s) nodes cpu(s)

R av. max av. max av. max av. max av. max av. max
0.2 9.4 21 0.03 0.06 11 19 0.04 0.05 31 73 0.19 0.34
0.4 9.2 13 0.03 0.05 38 86 0.12 0.22 185 534 0.58 1.6
0.6 13 18 0.01 0.02 43 85 0.12 0.27 132 327 0.49 1.2
0.8 72 159 0.11 0.20 79 115 0.15 0.23 207 429 0.53 0.97

1 24 39 0.05 0.06 130 300 0.25 0.45 816 1485 3.7 8.1
1.25 17 25 0.03 0.06 48 60 0.15 0.20 933 3872 3.5 14
1.5 24 58 0.04 0.11 41 66 0.12 0.19 222 369 0.98 1.6

1.75 18 41 0.03 0.06 71 163 0.19 0.39 230 447 0.81 1.4
2 22 38 0.04 0.06 41 66 0.13 0.22 170 290 0.72 1.4
3 20 51 0.03 0.08 66 176 0.18 0.47 87 154 0.33 0.53

av. 23 159 0.04 0.20 57 300 0.1 0 301 3872 1.2 14

50 60 70
nodes cpu(s) nodes cpu(s) nodes cpu(s)

R av. max av. max av. max av. max av. max av. max
0.2 23 37 0.18 0.30 60 133 0.6 1.2 67 105 1.0 1.5
0.4 141 318 0.93 1.8 180 377 1.4 2.6 1166 3363 10 25
0.6 1163 2623 4.2 11 855 1448 4.7 7.8 12610 39869 71 228
0.8 914 2976 2.8 9 2712 9868 11 38 5702 22581 28 108

1 835 2045 2.5 4.3 1160 3267 5.1 10 6091 12336 37 67
1.25 1198 2197 7.0 11 1427 3259 12 34 2669 5992 29 60
1.5 750 1883 5.2 15 1560 3398 13 29 8755 32643 108 444

1.75 316 625 1.8 3.5 804 2035 6.7 17 4990 14992 41 125
2 466 889 2.6 5.0 3882 9506 29 77 2204 7093 26 88
3 112 192 0.66 1.3 552 1656 4.2 13 1017 2299 8.7 18

av. 592 2976 2.8 15 1319 9868 8.8 77 4527 39869 36 444

80 90 100
nodes cpu(s) nodes cpu(s) nodes cpu(s)

R av. max av. max av. max av. max av. max av. max
0.2 124 260 2.4 5.2 422 1590 11 40 197 352 5.6 12
0.4 1226 1998 14 23 1868 4988 25 61 4075 10368 62 167
0.6 1505 2736 14 22 7353 22961 68 208 16196 30234 204 421
0.8 5816 20364 34 108 23458 58804 158 326 36664 162080 286 1182

1 9077 28657 60 121 36270 97720 187 509 54253 230132 564 2285
1.25 83776 324210 1274 4852 85712 370661 1171 (1) 93424 167336 1576 3055
1.5 56815 153608 606 1374 62879 158854 1161 2977 74141 213885 1170 2666

1.75 8342 13659 118 199 48634 123891 754 2331 57378 190245 1267 4282
2 6495 12811 105 224 58540 131611 670 1384 16191 48012 312 828
3 9750 36162 87 260 5588 12132 109 228 4926 9920 113 177

av. 18293 324210 231 4852 33072 370661 431 (1) 35744 230132 556 4282

Table 3 1, NI|ri|
∑

Ci: main results

propagation of the non-idling constraint with Algorithm 1 which is useless since the start time of the whole

sequence is known, all other techniques described in the article are also efficient with the “Reduce-To-The-

Opt” method to reduce the search space. The results obtained by using the “Reduce-To-The-Opt” method

and our techniques are reported on column “RTTO”. As for our method, we have used an incremental

search and the job yielding the state with the smallest lower bound is chosen to be scheduled at each

node of the search tree. We can see that the number of nodes generated with the “Reduce-To-The-Opt”

algorithm is higher than if we use our algorithm with the “F ” strategy. However, from a practical point

of view, computational times are not so different, showing that propagation stages run faster when the

start time of the sequence is known. Whereas our algorithm using the “F ” strategy seems to be slightly

better on the average, the “Reduce-To-The-Opt” algorithm is competitive on a non-negligible part of the

instances. Thus, better results could surely be obtained by combining the two algorithms. Note that we

have also tried the “Reduce-To-The-Opt” algorithm by using “L”, “FL” and “F or L” strategies. Similar

observations and conclusions than for our method can be done. As suggested in (30), we have also tried

a dichotomic bounding strategy concerning the value of the objective function. However, the results were

decidedly lower.

In Table 3 and Table 4, general results of the branch and bound method for n = {10, 20, . . . , 100} are

provided for the two studied criteria. The branching strategy “F or L” is used. For each instance size and

for each value of R the average (“av.”) and the maximum (“max”) computation times in seconds (“cpu(s)”)

are shown, along with the average and the maximum number of generated nodes (“nodes”) over the five

generated instances. A time limit of 5000 seconds was used. Some instances are not solved within the

time limit. In this case the number of unsolved instances is shown in brackets instead of the maximum
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10 20 30
nodes cpu(s) nodes cpu(s) nodes cpu(s)

R av. max av. max av. max av. max av. max av. max
0.2 2.0 3.0 0.02 0.02 7.4 13 0.04 0.08 11 22 0.08 0.14
0.4 3.6 6.0 0.02 0.03 18 33 0.05 0.11 33 76 0.16 0.30
0.6 8.8 21 0.02 0.03 28 73 0.07 0.17 91 215 0.37 0.77
0.8 7.4 17 0.01 0.03 42 82 0.09 0.13 179 616 0.54 1.8

1 6.6 12 0.01 0.02 50 97 0.13 0.22 583 1231 1.9 4.2
1.25 5.4 14 0.02 0.06 62 100 0.17 0.27 215 343 1.1 1.9
1.5 4.8 10 0.01 0.03 145 385 0.27 0.67 68 143 0.34 0.77

1.75 7.6 15 0.02 0.05 56 121 0.15 0.31 177 357 0.63 1.2
2 6.4 10 0.02 0.05 53 123 0.12 0.22 335 914 0.90 2.3
3 3.8 7.0 0.02 0.03 32 81 0.08 0.14 41 83 0.16 0.34

av. 5.6 21 0.02 0.06 49 385 0.12 1 173 1231 0.62 4

40 50 60
nodes cpu(s) nodes cpu(s) nodes cpu(s)

R av. max av. max av. max av. max av. max av. max
0.2 37 75 0.33 0.50 104 255 1.2 2.8 358 1320 4.1 13
0.4 93 184 0.71 1.3 915 1369 8.0 13 568 1231 6.6 14
0.6 67 107 0.45 0.77 2222 5421 15 31 8765 24469 60 143
0.8 1675 3947 6.9 16 2026 3571 10 20 9265 28639 58 185

1 1408 3171 9.5 21 3424 7678 24 49 66153 289781 470 1849
1.25 1168 2519 7.5 16 8525 29475 67 239 72993 202095 686 1567
1.5 1510 3235 8.3 17 11107 44137 95 371 43152 83592 666 1763

1.75 832 1609 4.5 7.8 1398 3402 8.8 20 6377 18871 82 267
2 1088 2507 6.2 13 4432 13400 27 91 17778 45829 157 434
3 230 610 1.4 3.8 2952 11967 16 55 3666 10530 29 76

av. 811 3947 4.6 21 3711 44137 27 371 22907 289781 222 1849

70 80 90
nodes cpu(s) nodes cpu(s) nodes cpu(s)

R av. max av. max av. max av. max av. max av. max
0.2 248 601 5.1 12 269 671 7.8 16 2077 5724 57 148
0.4 6809 29234 85 351 2412 5117 45 98 9408 25276 202 511
0.6 9974 20879 93 168 7524 21002 105 306 64034 243740 809 2839
0.8 6847 9374 54 78 98581 406075 875 3274 281407 689011 2271 4958

1 106768 258494 948 2530 271072 525576 2248 (1) 127096 274921 1309 2683
1.25 124119 516662 1416 (1) 186916 474430 2892 (2) 185616 419033 2668 (2)
1.5 103170 349804 1335 3373 111164 230834 1669 3609 193113 433350 2865 (2)

1.75 21584 41391 249 490 153938 321038 1707 3268 257589 470730 3617 (3)
2 12900 40600 163 510 131216 381472 1750 (1) 213096 433644 2524 (1)
3 5338 9800 86 190 18140 30954 332 614 53406 201260 872 3767

av. 39776 516662 443 (1) 98123 525576 1163 (4) 138684 689011 1719 (8)

Table 4 1, NI|ri|
∑

wiCi: main results

computation time. The time limit and the number of generated nodes at this time limit are then used for

the statistics. For 1, NI |ri|
∑

Ci, all instances are solved within the time limit, apart from one instance of

90 jobs. This is one of the cases where the wrong branching strategy was chosen. This instance can in fact

be solved in 1637 seconds and 254477 nodes if the F strategy is chosen instead of strategy L. The instances

of the 1, NI |ri|
∑

wiCi are much harder to solve. Thus, an instance of 70 jobs is not solved within the

time limit. Here, if the strategy L had been chosen instead of F , the instance could have been solved in

405 seconds and 70021 nodes. Note that two instances of 80 jobs are not solved within the time limit for

any strategy.

9 Conclusion

In this article we have studied the minimization of a regular criterion when jobs with release dates are to be

processed by a machine subject to the non-idling constraint. A branch and bound procedure to solve this

problem has been presented. Several properties and techniques have been described for this problem. An

application to 1, NI |ri|
∑

wiCi and 1, NI |ri|
∑

Ci has been proposed, and experimental results have been

provided. To our knowledge, this is the first attempt to solve these problems exactly. Experimental results

show the efficiency of the proposed techniques used with our method as well with the “Reduce-To-The-

Opt” algorithm of Wolf (30). As regards future work, a study of different branching schemes and strategies

might be undertaken. As shown by the experimental results, our method for selecting the best branching

strategy sometimes fails. Using strategies fixing the start time of sequences as the “Reduce-To-The-Opt”
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algorithm seems to be competitive and could be more deeply studied. Moreover, a dynamic programming

approach could also be investigated, since some of the properties of the problem would tend to suggest

this approach.
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