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Abstract

This paper looks at a Multi-Period Renewal equipment probgIPR). It is inspired by a spe-
cific real-life situation where a set of hardware items is ¢orbanaged and their replacement
dates determined, given a budget over a time horizon comgrésset of periods. The particular
characteristic of this problem is the possibility of camyiforward any unused budget from one
period to the next, which corresponds to the multi-peridgspect in the model. We begin with
the industrial context and deduce the corresponding krepaadel that is the subject of this pa-
per. Links to certain variants of the knapsack problem ar¢ éamined. We provide a study of
complexity of the problem, for some of its special cases fanits continuous relaxation. In par-
ticular, it is established that its continous relaxatiod arspecial case can be solved in (strongly)
polynomial time, that three other special cases can be datvpseudo-polynomial time, while
the problem itself is strongll P-hard when the number of periods is unbounded. Next, two
heuristics are proposed for solving the MPR problem. Expenital results and comparisons

with the Martello&Toth and Dantzig heuristics, adapted tw problem, are provided.
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1. Introduction

The Knapsack ProblentKP) has a significant place in the study of integer prograngmi
models with binary variables. In the standard knapsacklprolthe quantity};.y piX; is to be
maximized subject to the constraiff.y Wixi < b, wherex; € {0,1}, N = {1,2,...,n}, pi
is thevalue or profit of item i, w; is theweightof item i andb is the knapsackapacity all
assumed to be non-negative. In addition to the standardgmola number of dierent variants
of the problem have been put forward and investigated byarebers over the last decades. This
paper looks at one of these variants that we have calleiiii&-Period Renewal equipment
problem (MPR). It is inspired by a specific real-life situation whexeset of hardware items
is to be managed and their replacement dates determines gibudget over a time horizon
comprising a set of periods. The particular characteristithis variant of the problem is the
possibility of carrying forward any unused budget from omeigd to the next, corresponding
to the multi-periodicity aspect in the statement of the pgob The contribution of this paper
is a new knapsack model originating from a real industriaitegt, together with a complete
theoretical examination of the problem and its relationstteer knapsack problems, and a set of
efficient heuristics for solving it.

The paper is organized as follows. In Section 2 we preserdgheific industrial context that
gave rise to our problem and the corresponding mathematiodkel. Section 3 looks at links
to other knapsack problems. In Section 4 we investigate ¢hepatational complexity of the
MPR problem as well as some of its special cases and its emntfrelaxation. We show in
particular that the MPR problem is strondiyP-hard when the number of periods is unbounded
and weaklyN P-hard for the bounded case. Finally, in Section 5, we propasenew heuristics

for the MPR problem and recall how two other well-known hstics, that is to say the Dantzig
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and Martello&Toth heuristics, are also suitable for sofyiMPR. We provide a comparative

experimental study of all these heuristics.

2. From an industrial problem to a theoretical model

In some countries it is usual for a city, town or municipatitycontract certain public utilities
(water supply, electricity, etc.) out to private companigsually under concessions, leases or
management contracts. Under these arrangements, the pulity delegates the provision of
the service for a time horizokl typically ranging from 15 to 25 years, while the private gnti
remains under a contractual obligation to spend a given atmafumoney 8) on the mainte-
nance and renewal of equipment. The company’s maintenarategy is based on continuous
renewal so as to ensure continuity of service and to avoitllpnas with antiquated plant. For
the application in hand (water supply network), equipméatge lifetimes that range from 50 to
100 years which is largely greater than the considered tiomzdn. This implies that at most
one replacement occurs over time horizdn However, in practice more than one replacement
could happen for one equipment during the time horizon dusnpredictable failures. These
situations are handled by the daily maintenance process tiis paper deals only with the
strategic maintenance process. In line with an internagibtidg policy the company allots an
annual budgeb; to such expenditure, that j§;. bj = B. Given that the entire budget has to
be used up, the company carries any unused budget atj y»ar to the following years. For
each piece of equipment the replacement cost is assumeddanis&ant over the time horizon
M, because in pratice there is no reliable information of theation of these costs over time.
On the other hand, the profit attributable to the replacenienéalculated according to a formula
based on such elements as the probability of failure, theaep lifetime of the equipment,

its importance in the industrial process, etc. Hence, toéitpthange along with time and this
3



change corresponds to a certain deterioration processHiu the related cost, profit and budget
codficients are assumed to be known with certainty, in contrasbtwentional renewal theory
which relies on probability theory, (see for instance Ca).[Erom this point of view the prob-
lem is a simplified deterministic version of conventionatlewal problems. However, there is
one particular property that increases théidilty of problems, that is to say the property of
multi-periodicity. More specifically, any decision madesiome period impacts those made in
subsequent periods.

Before formulating the mathematical model of the MPR probléet us give the notation
used throughout the paper. Ldtbe a set ofh pieces of equipment, anil a horizon ofm

periods.

e X j is the assignment decision variable, that is to ggy= 1 if equipmeni is replaced in

periodj, and O otherwise;

e D is theprofit obtained when replacing equipmerat periodj;

e W; is thereplacement costf equipment (it remains unchanged over periods);

¢ b; gives thebudgetalloted to periodj.

All these data are assumed to be non-negative integers. rOblem can be mathematically



formulated as follows:

maxz Z Pi,jXi,

ieN jeM

Z WiXi1 < by,

ieN

Z WiXi2 < by + by — Z Wi X 1,

ieN ieN

j-1
5>

t=1 ieN

Z Xij <1,

jeM
Xij €1{0,1},

-1
< bj +Zb[ —
t=1

D wix

ieN

YjieM,
YieN,

VieN,je M.

In the above formulation, the tertm — Y.y WiX 1 gives the unused budget at the end of the

first year. This is added to the allotted budget for the seg@ad, and so on. Lds; denote the

cumulative budget from period 1 to perigdthat isB; = th:l br. Since allb; are assumed to be

non-negative, we have the following relatioB; < B, < ---

rewritten as follows:

(P)

maxz Z Pi,j X,

JEM ieN

j
Z ZWiXi,t < B;j,

t=1 ieN

ZXL] <1

jeM
Xij € {0, 1},

< Bm. The problem can then be

1)

YjeM, (2)
Vi eN, 3)
YieN,je M. (4)

Note that wherB; = Bj. for two consecutive periodsandj + 1, it can easily be shown

that only the capacity constraint related to perjod 1 needs to be retained, and for each item
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the choice having the lower profit over these two periods niraply be discarded. Hence, we
assume thaB; < By < ... < B,

From now on, in line with the notation commonly used for kreeggsmodels, we shall use
the termitemfor equipmentyeightinstead of replacement cost, arapacityfor budget. Hence,
item i assigned to periogl reads equipmeritreplaced during periogl In the above model the
sum of the weights of all items chosen from period 1 to pefiosdnnot exceed capacisy; for
all j € M (2). Each item can be assigned to at most one perjd8). The multi-period aspect
lies in the fact that each constraint involves the currenipgeand all preceding ones. The total
profit is to be maximized (1). As far as we know, we were the fosshodel the problem in [3].

In the following we establish and exhibit links with some@tiproblems studied in the literature.

3. Literaturereview and linkswith other knapsack problems

Let us first look at theMulti-Period Knapsack probleniMPK) introduced by Faaland in
1981 [4]. Faaland considers a $¢0f items and a sél of periods. To each periogde M there
corresponds a subshii = {j € 1,...,m} of items that can be assigned to this period. Note that
U’J-“Zl N; = N andNg N N; = 0 for each pair [, K)|j # k of items. For each iteriy aprofit p and a
weight w are given. The cumulative weight of all items chosen froniqzkt to periodj cannot
exceed theapacity B associated with periofl The total profit has to be maximized by selecting
items in their associated periods. The decision variabléisis problem are unbounded: an item
i may be chosen more than once in perjoslich thai € N;. Faaland proposed a polynomial
algorithm to solve exactly the continuous relaxation of MRIKd in so doing to compute an
upper bound of MPK. He also proposetrnch and bouna@lgorithm using this upper bound.

Thebinary ver sion of this problem, in which an item is chosen at most once indgtoaiated



period, is called BMPK. Given the above notation, BMPK carfdrenulated as follows:

max) " > pix (5)

jeM ieN;
i
ZZWiXi <Bj, YjeM, (6)
t=1 ieN
X €{0,1}, VieN. (7

Thus the weight of any chosen item will impact subsequenbgsy given that in each period
the cumulative weight is considered. The overall profit iximzed by choosing items in each
period (5), without violating the cumulative capacity cbamts (6). It now becomes apparent
that BMPK and MPR have some similarities. What iffetient is that items in BMPK can be
only assigned to a single (i.e. its associated) period. Asivedl show, BMPK may be viewed as
special case of MPR (see Section 4.3), in which an item maybsen on at most one occasion.
BMPK is shown to be weaklNP-hard in Section 4.3, and its complexity does not depend on
the number of periods.

The Generalized Assignment Probld@AP) is another problem related to knapsack prob-
lems. GAP is known to be strongMP-hard and has been widely studied, (see for instance
Martello and Toth in 1990 [5], or Nauss in [6] and Oncan in [@i] & survey on resolution meth-
ods and applications). GAP can be formulated as follows. Weaen a seN of nitems and a
horizonM of m periods. For each item a profit p j and aweight w; are given for each period

j- In addition, acapacity g is associated with each perigd The mathematical formulation of



GAP is as follows:

maxz Z Pi,jXi,

JEM ieN
ZWLJ'XL] <¢qj, YjieM,
ieN
Z X, <1, YieN,
jeM

Xij€{0,1}, VieNVjeM.

Note that unlike the MPR problem, in the GAP problem no caganay be carried over to
subsequent periods and weights vary over time. A compawshrthese two knapsack problems
therefore shows that the problem studied in this paper i®bl@m in its own right, although it
contains elements from each of the two above problems,ddkim GAP the fact that profits
vary over items and periods, while the multi-periodicitpest is present in BMPK. Moreover,
as previously discussed, MPR generalizes BMPK.

Finally, another problem related to multi-period knapsatk the Multiple-Choice-Multi-
Period Knapsack probletMCMPK) studied by Lin and Wu in [8]. This problem is similar
to BMPK, except that in MCMPK only one item in each period carchosen. Lin and Wu pro-
posed a heuristic approach for obtaining a strong lower 8paiong with two branch-and-bound
procedures for finding the optimal solution. More recerttig, same authors have proposed a dy-

namic programming approach for MCMPK in [9].

4. Complexity

The formulationP describes the general caseMPR We focus particularly on complexity
aspects related to our problem and discuss in detail itsraamis relaxed version and some of

its special cases with respect to their computational cerityt:
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e (P"): the continuous relaxation &, i.e. % j € [0, 1], foralli e N, j € M;

o (PY:w =w,forallieN;

e (P?): pi; values are all 0 except for one period, foriadl N;

e (P3): pij values araon-increasingluring the time horizon, for alle N.
e (P%: pij values areon-decreasinguring the time horizon, for alle N.

We show thaP" andP* can be solved in (strongly) polynomial time. We also show siodving
P? leads to a solution to the BMPK problem (see Section 3) artcbitith problems can be solved
in pseudo-polynomial time. Finally, we show that the vemsié P> when the number of periods
is bounded and th&* can be solved in pseudo-polynomial time, whit¢, and MPR as well,

are stronglyN P-hard when the number of periods is unbounded.

4.1. The continuous relaxation of MPR problem

Let us begin with the continuous relaxed version of the goband show that it can be
solved in polynomial time. We note first that its continousxation cannot be solved through a
simple application of the Dantzig rule: choosing the iterttmine largest; j/w;) value. On the

other hand, a simple change of variables,y.g.= wix; j, allows us to rewrite it as follows:

(P) maxy” 3" Ry, (®)

JEM ieN !
j
ZZYi,t < By, VjeM, 9)
t=1 ieN
Zyi,j <W, Vi e N, (10)
jeM
yij€[0,w], VieN,jeM. (11)



Now we show thaP'" can be expressed through, what we call, a maximum-profit flodeh by
analogy with the minimum-cost flow model. We start by conding a graph composed of the
following elements: a source nod a destination nodB, a set of item nodes;, i € N, a set

of period nodes;, j € M. Arcs are of several type€, (i) represents the arc from source node
S to item noden;, for all i € N. Its capacity is set tavy; and its profit to 0.Ex(i, j) represents
the arc from item node; to period nodd;, for alli € N andj € M. Its capacity is set tov
and its profit top; j/wi. E3(j) represents the arc from period nagl¢o period nodd;.1, for all

j €{1,...,m-1}. Its capacity is set t@; and its profit to 0. E3(m) represents the arc from
period nodd, to destination nod®. Its capacity is set t8., and its profit to 0.

The objective is to find a flow from the source ndl& the destination node such that the
cumulative profit over all arcs is maximized. To make thingarer, let us examine the following
example.

Example. Consider an instance & with 3 items with respectively weights 1, 1 and 2, and

2 periods with respectively profits taken (3, (4, 3) and (4 2). The mathematical formulation is
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as follows:

max3/11 + 1y12 + 4y21 + 3y22 + 2y31 + 1ya2
Yi1+Y21+Y31 <1,
Y11 +Y21+Y31+Y12+Y22+Y32<3,
Yi1+Yyi2<1,
Y21+ Y22<1,
Ya1+Y32<2,

y1;€1{0,1}, je{l,2}

y2;€1{0,1}, je{l,2}

yg,,- € {O, 2}, ] € {1, 2}

Figure 1 gives the corresponding maximum-profit flow modehgf instance. The notatia) p

is used to indicate an arc with capacityand profitp. For any instance oP" we can build an

Figure 1: Maximum-profit flow model

instance of the maximum profit flow model. The following regthe proof is immediate) holds:
11



Proposition 1. Any optimal solution to Pis an optimal solution to the corresponding maximum

profit flow problem and vice-versa.

Furthermore P may be reduced to a minimum cost flow problem as follows: alslip
the maximum profit is achieved when flow attains its maximume&, (note that we assume
without loss of generality thajcy Wi > Bm). Now let us consider only those ardsjj that
correspond tgy; j variables in the relaxed MPR, and again we denote their fldwegaasy; ;.
We should havg ey X jem Yi,j = Bm for the optimal solution of the maximum profit flow prob-
lem. Hence, we can restrict ourselves to cases whewariables give admissible flow values
for solutions of the maximum profit flow problem such thgty > jem Vij = Bm. Letp’ =

max{pij/Wili € N, j € M}. Then, in the formulation dP" above we have: mag Z myi,j} S

ieN jeM Wi

max{z %yi,j —P'Bn} & max{z %yi,j -p Z Z Yij} & max{z Z(%l - P)Yij}

ieN jeM ieN jeM ieN jeM ieN jeM
=3 min{z Z(p’ - %)yi,,—}. Thus, the same flow solution applicable to the above maxi-
ieN jeM !
mum profit flow problem also solves the minimum cost flow prabléefined with costs set
to p’ — (p;,j/w) for all above arcsi( j) and flow equal tdBy, and vice-versa. As the minimum

cost flow problem can be solved in polynomial time, we coneltitht the continous relaxation

of MPR (.e. P') can be solved in polynomial time.

4.2. Complexity of P

When weights are all the same, the problem can be reduced sp#tial case; = 1, for all
i € N. For this we need to replace & with | B;/w] for all j € M. Let us look now at the special
casew; = 1, for alli € N and show that it can be modeled in the same way as the abovieprob
P", and thus can be solved in polynomial time. Obviously, thiscial case without any variable

change leads t&" and hence can be modeled as a min-cost flow problem. Nexttbgrality
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of B; implies that flow variables take integer values and that treesponding solution d?* is

also an integer solution.

4.3. Complexity of Pand BMPK

Let us first look at BMPK and compare it wit??. Consider an instance & in which for
eachi, p;; are all 0 except for one period. Now consider an optimal smiubf this instance. In
this solution, any itenhassigned to periogfor which p; ; = 0 can be removed from the solution
without decreasing the profit. Note that the obtained st also an optimal solution for the

instance of BMPK, which is obtained in the following way:

e each itemi has the same weight; and each periog has the same capaciB; in both

instances.

¢ inthe BMPK instance, each itenbelongs to selNj such tha is the only period for which

pi.j # 0in P? instance.

Hence, for any optimal solution f&? an optimal solution for the corresponding BMPK problem
can be deduced. Obviously, there is a bijection betweearngss of BMPK and those ¢.

Furthermore, the following proposition is straightfordar

Proposition 2. Any optimal solution for BMPK is also optimal for the correspling problem

P2,
Let us now consider the complexity of BMPK.

Proposition 3. The BMPK problem (and hence thé)Ran be solved in pseudo-polynomial time

O(nBy).
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Proof. This problem can be solved through a dynamic programmingraehslightly adapted
from the classical schema used for the standard knapsablepro

First, let Aj(C) denote the maximum profit that can be obtained when consglenly the
first i items and keeping the total cumulative weight lower thanaquattoC. There is one
restriction in our dynamic programming, namely that thengeare introduced in the order deter-
mined by setN; (1 < j < m): that is to say that items are indexed from Itsuch that ifi € N;
andk € N, with j < | theni < k.
Initially, we setAq(C) = 0 for all C in [0, By
Then, the following recursive formula is applied for angndC e [O, Bj], wherej is the period

in whichi has to be assigned, (i.es N;):
e A(C) = A1(C), forC < wi;
e A(C) = max{Ai_1(C), A—1(C - w) + pi}, forw; < C < Bj;
e A(C) = A(B)), forB; < C < Bn.
The value of optimal solution is then given frofa(By). Hence the computational complexity

is in O(nBy) time. O

4.4. Complexity of P

We consider in this paragraph the special d@evherep; ; decrease throughout time hori-
zon for any itemi, i € N. Note first that the problem is obviously NP-complete as thadard
knapsack problem can be reduced to the case mith 1 of P3. We show thatP?® is weakly
NP-complete when the number of periods is bounded, and styadd&complete when it is

unbounded.
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4.4.1. The case of bounded number of periods

We first consider the case where the number of periods is takiea bounded by a constant

numbem. The following result holds:

Theorem 1. For a number of periods m bounded from above by a positivgénteonstant i)

the P problem may be solved in pseudo-polynomial tinfer®B,,"™).

Proof. Let Aj(Cy,Cs, ..., Cy) denote the maximal profit obtained when only thiest items are
used and the cumulative weight corresponding to pejisdess than or equal tG;. Initially,

we set:

0 C,—e[O,Bj],Vje{l,...,m},
AO(C].» C27"'7Cm) =

—oo oOtherwise

Moreover we assume th#&(Cy,C,,...,Cy) = —oo for any case whe; < 0 for somej €
{1,...,m}.

In the following recursive formula we only consid€; € [0, B, j € {1,...,m} such that
Ci £ C, £ --- £ Cy. We consider capacities in the decreasing order of perid®ifore
examining a new iten, we setA_1(Cy,Cy,...,Cn) = A1(C1,Cl,...,C/ ,.Cy) WhereC} =

min{C;, Cj,1}, for all remaining C1,Cs,...,Cn). Then, the recursive condition on iteins as

follows:

Ai,]_(C]_, C27 DY Cm)
A_1(C1 —wi,Co —Wi,...,Cn— W) + Pi1

Ai(Cl’ Co,.. -,Cm) = max Ai,]_(cl, Co—w,.. .,Cm—VVi) + Pi2

k]

Ai—l(C17 CZ» DRI Cm—l» Cm - WI) + pl,m
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The value of optimal solution is then given frofg(By, By, . . ., Bm). Moreover, sinceB; < By,

for all j andm < nv, we obtain a time complexity d(nnB,,™) time. O

4.4.2. The case of an unbounded number of periods
For the case of an unbounded number of periodse show that the 3-Partition problem can

be reduced to a special caseRSt

The P decision problem.Any solution of P® can be presented as an assignment of iterms to
periods. LetN; = {i|x; = 1} be the subset of items assigned to petiothe capacity constraints
areztj:l Yien, Wi < Bj, forall j € M. Then, an instance can be defined as follows:
Instance. We have a finite set of itemid, 2,. .., n}, positive integerd/, m, and an increasing
sequencds,, By, ..., By For each item, some positive weighty, and a set of positive profits
Pi1, Pi2, - .., Pimare given.

Question.Do mdisjoint subsetdN;, Ny, . .., N, of items exist such that,", Yy, pi > V and

forall je{1,...,m we haveztj:l 2ien, Wit < Bj?

The 3-Partition decision problem3-Partition is known to be a stronglyP-hard problem ([10]).
The decision problem can be defined as follows:

Instance.We have a finite set A {al, a, .. .,agq} of 3q numbers, a positive integer bouid
such that for each; € A, B/4 < & < B/2 andy ™, & = qB.

Question.Can A be partitioned intg disjoint setsAy, As, . . ., Aq such that for any, 1 < t < q,

we havgA| = 3 andy ,cp & = B?
Theorem 2. The P decision problem is NP-complete in the strong sense.

Proof. First, theP® decision problem is clearly ilNP, because a nondeterministic algorithm

needs only to guess the subgetefitems ofN and check in polynomial time that the cumulative
16



ZiGNl VV|

period 1 T' — profit=mB
Z'E Wi
period2 el profit=mB+ (m-1)B
[
B
2‘6 3 Wi
period3 ! # — profit=mB+ (m-1)B+ (m-2)B
2B
peri(.)dmI ! ! ' 'ZIEN—mWI' — profit = BYI=Mi = Bm(m+ 1)/2
Py + B p =Bl l=
(m-1)B

Figure 2: Distribution of items among periods BA corresponding to the 3-Partition instance.

profit for all items in all these subsets is greater than oaétpi.

An instance ofP® can be built from an instance of 3-Partition in polynomiatdi as follows.
Given an arbitrary instance | of 3-Partition, an instari¢g) of P can be defined as follows:
the number of periodsn = q; the number of item® = 3q; w; = &, for all i € N; profit
pit = (M+1-t)a foralli € N andt € M; capacityBj = jB; V = BY", t = Bm(m+ 1)/2. Note
here thatp; ; values are then non-increasing far {1, ..., M} and integers.

Let us first suppose that the answer to yes which means that A can be partitioned irgo
disjoint subset#\;, A, ..., Ag such that for all 1< t < q, |A = 3 and} ;. & = B. Then, for

f(l), letN; = {ija € A}, for allt € M. It can easily be shown that:

1. Forl<j<m Yl Sieww = X/, Yiew & = X, B = jB < Bj. This ensures that the
assignment is valid;
2. The total profitS 2 Yien, Pit = Xy Zien, (M+1-ta =B (m+1-t)=BYX 1 t=

Bm(m+ 1)/2 = V.

This shows that the answer fdl) is alsoyes

Inversely, let us suppose that the answefi(l) is yes meaning that there exists an assignment

17



of items such that the total prof€"; Yicn, Pit > V, whereN; contains the items assigned to
periodt. Given thatztj:l Yien, Wi < Bj = jBforall j € M, it can be shown by recurrence on
the number of period;’;thatzt":l Yien, Pit < BZLl (Mm+1-t) =BXL,,, tforanyje M.
Thus, we have fof = m, 3} Yicn, Pit < B X, t = V. Combining this withy, ™, Yicn, Pix =V,
we obtain),; Yicn, Pir = V. Notice here that this maximum total profit is only reachedewh
Yien, Wi = Bforallt € M. This is obvious since otherwise any capacity non used agésmriod
j but used later will bring less profit and will not allow to réethe valuev. Furthermore, since
B/4 < w < B/2and}\W = Bforallt € M, there can only be three items assigned in
each period. Last, we put inA; all items assigned to peridgthat isN;, and we have a valid
3-Partition. Hence, the answer to | is alges

It can be concluded that ti#&® decision problem i®N P-complete in the strong sense, which

means that the origin&® problem is strongl\N P-hard. This proof is illustrated in Figure 2.

4.5. Complexity of MPR

From above, we can now easily deduce the complexity for toblpm MPR.
Theorem 3. The MPR problem is strongly NP-hard.

Proof. Given that theP® problem, which is a special case of MPR, is strorigR-hard, it follows

that MPR is also strongI{ P-hard. O

We will go further and show that a method that sol8svould solve any instance of MPR.
Hence we need to demonstrate that any instdnaethe MPR problem can be reduced to an
instance of theP® problem. For this we propose a preprocessing procedurerédit palues
and show that any instandeof the MPR problem can be reduced to an instance offthe

problem by applying this preprocessing procedure. Thisgulare, which we shall refer to as
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1, is described in Algorithm 1 and runs @(nm). Its main objective is to convert thg ; values
so that they are non-increasing over the time horizon. Tlaig be achieved as follows, tmi;’j

values representing the profit values in the new instafide

Algorithm 1: Procedure profit transformatign
Data: an instancé
for i e Ndo
pﬂm <~ Pim;
for j<m-1toldo
| B« max(@ij, i )

profit

period

Figure 3: An example of the profit transformation with thegsmeessing procedure

In Figure 3, curvep gives an example of original profit values for one item in amstel .

Curvep’ shows the corresponding profit value®f-increasinyfor this item following the pre-

processing procedure.

Proposition 4. Any optimal solution for instance | is also optimal for inst u(1), and from

any optimal solution for instangg(l) an optimal solution can be constructed for instance I.

Proof. The proof is straightforward. Any feasible solution for tmscel is outperformed by

some other solution obtained by delaying the decision t¢es fgeriod that yields a larger profit.
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Note that the latter solution is also a solution for instam@dé. On the other hand, some optimal
solution for instancg(l) gives rise to an optimal solution for instanicebtained by delaying the

decision for any item to the latest period yielding an ideaitprofit. O

As a consequence, sing@) is also an instance &, any algorithm solving problem® can
be used to solve problem

In particular, when profit valueg, ; arenon-decreasinguring the time horizon for any item
i, the above procedure will result in a systemnefdentical constraints. Hence, all decisions
may be delayed until the last period and this case can beeddoa simple knapsack problem
formulated as follows: maXcn PimX.m subject to} iy WiXim < Bm. Consequently, this case

may be solved in pseudo-polynomial tir®énBy,).

5. Heuristic methods and computational resultsfor MPR

Recall first that any instance of MPR can be simplified to ataimse ofP3. In this section
we present methods specifically designed for solvingRthproblem, bearing in mind that since
this problem is stronglyN P-hard, optimal solutions are unlikely to be found for largstances.
Notice also that this solution strategy was initially inded to be integrated in a simulation
tool, and computationafi&ciency in terms of CPU time was therefore an important resoent.
Typically a CPU time less than 30 seconds for this applicatiere required. In order to evaluate

the dfectiveness of the above heuristics, we tested instancestbfgvactical and theoretical

types.

5.1. Heuiristics

In this section, two well-known heuristics from the litared, namely the Dantzig greedy

heuristic proposed for the knapsack problem and the Ma&8&tth heuristic proposed for GAP,
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adapted by Dao et al. [3] for MPR, are recalled. Next, two newrtstic methods, called

Back&Forth and CombMT&D, are described.

The Dantzig heuristic (DZ).The Dantzig heuristic is a greedy type heuristic proposedhe
unbounded knapsack problem in [11]. The principle was athfuir the MPR problem in [3].
First a list containing all ratio$p; j/w;} for each itemi and periodj sorted in non-increasing
order is created. At each iteration of the algorithm, the fiasio {p;:/w;} which corresponds
to a feasible assignment (according to the previous de@dsignments) of iternin periodt is
chosen. Next, all ratiofp; ;/wi}, for all j € {1,..., m} are removed from the list. The process is

repeated until no more items can be chosen.

The Martellg&Toth heuristic (MT). The Martello&Toth heuristic is also a greedy type heuristic
proposed by Martello and Toth in 1990 for GAP [5]. The prideipias also adapted and pre-
sented in [3]. In this algorithm items are assigned iteedyivAt each iteration we assign as soon
as possible the itelmaximizing the diference{(pi: — pit.1)/W} wheret is the earliest period
in whichi is assignable. Items which are assignable only at the laigichare not considered at
this step of the algorithm. At the end of the algorithm, whetysuch items remain, they are

assigned iteratively in decreasing ordef pfyn/wi}.

Discussion. Clearly there are two aspects of MPR that an approximateisolmethod should
take into account. The first one is related with the rate pradight and the second is concerned
with the variation of profit over time. With respect to aboaed as already confirmed by the
numerical results, the Dantzig heuristic captures very thel benefits coming when prefering
items with high profit-weight ratios, but it fails for scei@s with important changes in profits

over time. For the later ones, Martello and Toth heuristialddoe a better choice but, still
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this heuristic encounter filiculties as it neglects the importance of items with high pre&ight
ratios.

These drawbacks are illustrated in the following exampl# \8i items and 3 periods for
which the optimal total profitis 22B; = 1,B, = 2,B3 = 3,w; = W, = w3 = 1, p;; = 11,
Pr2=10,P13=1,pP21=9,P22=6,P23=1,P31 =8, ps2 = 3, p3s = 3.

As it can be verifiedDZ assigns item 1 to period 1, item 2 to period 2 and item 3 to pedidrhe
obtained total profit is theps1 + p22 + p33 = 20. The drawback dDZ here is to prefer assigning
item 1 first without taking into account that item 2 will bedaty devaluated from period 1 to
period 2. The assignment MT is item 3 to period 1, item 1 to period 2 and item 2 to period 3.
The obtained total profit is thems; + p12 + P23 = 19. The drawback T is to prefer assigning
item 3 on period 1 because of its high devaluation from petitmlperiod 2. The consequence is
to neglect too much high rate profit-weight items.

These drawbacks are our motivation to look for heuristies tike into account both aspects,

as the two ones given below:

The Back-Forth heuristic. This heuristic is inspired by the Dantzig heuristic for MARis
implemented in two steps. The main idea behind this heaiistio assign temporarily theest
items in the first step and to improve the assignments in tbengke In contrast to the Dantzig
heuristic, an item is not assigned to the earliest possifli®@, but it is assigned temporarily to
a later period where the profit is not significantly diminidhén the second step the assignment
is moved forward if capacity constraints allow. During tHgaaithm, Bj gives the remaining
capacity values, with respect to assigned items. Initiﬂy: Bj, forall j € {1,...,m}. For
each unassigned iteiywe denote aspp the earliest possible period to whichan be assigned,
according to the current capacity constraiBl;sj € M, i.e. epp = argmin{wi < B{,Vt €
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{j,....m}lj € M}. Otherwise, ifw; > B/, (i cannot be assigned to any of the periods), set

epp = m+ 1. Heuristic Back&Forth proceeds as follows:

1. LetN be the collection of the unassigned items. Find the itlemargmax{pi epp/Wili €
I\T/\epp < m}. Next, determine the peridd(t, > epp,) in which itemzwill be temporarily
assignedt, corresponds to the largest period where the reduced ppefit{ — p.:,) does
not exceed a certain valupzepy — Pzm), 0 < 4 < 1. Removez from N and update all
concernecB]. Updateepp, for alli € N. Repeat this step until the assignment is no longer
possible;

2. LetNg = N\ N be the collection of items assigned in the first step. Finthite =
argmax{(Piepp — Pi.s)/Wili € No A epp # Si}, whereS; is the current period in which
itemi is assigned. Assign iteirto periodepp and update all concernaa. Updateepnp,

for alli € Np. Repeat this step until no further items can be brought foiwa

The CombM&D heuristic. This heuristic is a combination of the Martello&Toth and Bag
heuristics. It is implemented in two steps. In the first stiéggms are iteratively assigned to
periods untilm — 1, respecting a particular order combining the Dantzig aratt®lo&Toth
heuristics. In the second step, the unassigned items d@gmedsteratively to the last periou
according to the Dantzig heuristic. Each assignment sagitffie capacity constraints. Heuristic

CombMT&D proceeds as follows:

1. LetN be the collection of unassigned items. Find itera argmax{(piepp/Wi)*(Pi.epp —
Piepp+1)/Wili € N A epp < m- 1} and assign itera to periodepp. Remove itenz from
N and update all concerneB!j. Updateepnp, for alli € N. Repeat this step until the
assignment is no longer possible;

2. Consider the se\l of remaining unassigned items. Find item= argmax{(pi.m/Wi)li €
23



N Aepp < m} and assign it to perionh. UpdateB;, etepnp, for alli € N. Repeat this step

until the assignment is no longer possible.

It can be easily deduced that the complexity time of eacherfitlsO(n°m). Moreover, for the
same values af and1 in the numerical results given in the next sectibe.¢x = 3 anda = 0.25),
both heuristics provide an optimal solution for the pregieMample by assigning item 2 to period

1, item 1 to period 2 and item 3 to period 3, leading to a totafipof py1 + p12 + Pz = 22.

5.2. Computational experiments

In order to evaluate thefectiveness of the above heuristics, we tested instanceglopbac-
tical and theoretical types. The mairffédrence between practical and theoretical types is that for
practical instances the profits for an itérmorrespond to a function which attains its maximum
value at a certain periagl and then progressively decreases over the subsequerndfe€Fitere-
fore, in accordance with Proposition 4, iterwill not be assigned before. This reduces the
number of periods to which it is possible to assign iethus making instances easier to solve,
and this is confirmed in Table 1 by the small gap values of tfastical type compared with other
types on instances of identical or similar sizes. Otherwiizetheoretical instances, in order to
test a more general case and evaluate the robustness of @aistib, the maximum profit for
all items is deemed to occur in the first period, and the maimethich profits decrease over
subsequent periods is random. For each type and for eacfnsigg 20 instances are generated.

Four types of instances are tested. Type 1 are practical dr@seach item, the highest
profit is attained at a certain period After periodr;, profits decrease in accordance with certain
rules (see the details below). The preprocessing procasiagplied to transform an instance
of this type to an instance & (profits in non-increasing order from the first period). Times

of tested instances for this type are= [500,100Q 500Q 10000] andm = [15, 20, 25]. Type
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2, type 3 and type 4 are theoretical types. For type 2 and typeo8its p; ; decrease randomly
with a certain distribution for each item For type 4, profitsp; j decrease linearly from the
first period with diferent slopes for each item The size of tested instances for the last three
types aren = [50, 100,500 1000] andm = [10, 30, 50]. In addition, two capacity scenarios are
considered for each type of instance, namsiiyilar capacitiesand dissimilar capacitiegsee
the details below). Notice that in order to stick to the aqgtiion, the practical instances have

different values fomandn.

Instance type 1 (practical). B set to 1000R takes the same value for all types). For each
item i, the weightw; is generated in [IR] based on a uniform distribution. A parameter

is generated in [Im] based on uniform distributionr; represents the period wheirdas the
highest profit. This highest profjf ;, is generated in [IR] based on a uniform distribution. For
each itemi, a variableb is first randomly chosen from among three valg@1, 0.015 0.02}.
Then, profitsp; j are set as follows: for al] € [1,r; — 1], pi;j = 0; Forallj € [rj + 1, m],

Pij = Pij-1— Pir, * (b/2+ b= (j —r;)/10). As we can see from this equation, the decreased
profit between two consecutive periods augments along Wwihricrease of, since the slope
b/2 + b« (j —r;)/10 increases along with the increasejofSurely, p; ; are guaranteed to be
positive in all cases.

With respect to the capacity values, we consider that tiatapacityBy, is around; .y Wi/ 2.
similar capacitiesanddissimilar capacitie$5] are two diferent capacity scenarios that we con-
sidered for all types of instances. Fsimilar capacities the capacityB; and all augmented
capacities B; — Bj_1) for all j € {2,...,m} are generated in [8 Yy Wi/m, 0.6 3y Wi /M
based on uniform distribution. Falissimilar capacitiesBy, is first set to};.y Wi/2 and then

Bj, {j € 1,...,m—- 1} is generated based )., with the following distribution. There is a 2%
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probability thatB; = Bj.1, a 3% probability thaB; € [0.98B;.1, Bj.1), a 15% probability that
B;j € [0.95Bj;1,0.98Bj.1), a 30% probability thaB; € [0.9Bj,1,0.95B.1), a 30% probability
thatB; € [0.85Bj.1, 0.9Bj,1), @ 10% probability thaB; € [0.8B;.1,0.85Bj.1), a 5% probability
thatB; € [0.65B),1, 0.8Bj.1), a 2% probability thaB; € [0.4B},1, 0.65Bj,1), & 2% probability

thatB;j € [0.3Bj,1, 0.4Bj,1), and a 1% probability thaB; € [0.1Bj,1, 0.3Bj,1).

Instance type 2 Valuesw;, p;; are generated in [R] based on a uniform distributiomy and
pi1 are uncorrelated as proposed in [12]). Forjadl {2,..., m}, p;  is generated based qm;_1
with the following distribution. There is a 10% probabilityat pi; = p; j-1, & 15% probability
that p;j € [0.95p; j-1, pij-1), & 25% probability thap; ; € [0.9p; j-1,0.95p; j-1), @ 20% proba-
bility that pi j € [0.8pi j-1,0.9pij-1), & 10% probability thap; ; € [0.7p; j-1, 0.8pi j-1), @ 10%

probability thatp; ; € [0.6p; j-1,0.7p; j-1), and a 10% probability thag; ; € [0.3p; j-1, 0.6p; j-1)-

Instance type 3.Valuesw; are generated in the same way as for type 2, whilfe= w; + R/10
(wi andp; 1 are strongly correlated, see [12]). Valuag for all j € {2,...,m} are generated in

the same way as for type 2.

Instance type 4 Valuesw;, p;1 are generated in [R] based on a uniform distributiomy and
pi.1 are uncorrelated); For each item i, a variablis first randomly chosen from among three
values{1/m, 1/(2m), 1/(3m)}. Then, for the other profits we tak®; = pi1 — pi1(j — 1)b, for all

j €12,..., m} (profit values decrease linearly).

Experimental resultsAll tests were run on a PC with a 2 GHz microprocessor and 2 GB of
Ram. To evaluate the performances of our heuristics, we in@asured the gap with the optimal
solution (or the best integer solution) provided by the MUe. have run the algorithm of CPLEX

11 with a time limit fixed to 600 seconds to obtain optimal $iolus or near optimal solutions
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of the instances. There are 54.3% of instances which areohadsto optimality at the end of
the time limit. However, the results of MIP are generallyyelose to the optimal solutions.
Based on the informations provided by CPLEX, the averagé diap of MIP over all the tested
instances is 0.04%. The results of the heuristics are thaeln@ed by the best integer solution
obtained by the MIP algorithm. While it is obvious that theuks of the heuristics are not really
comparable with these results, note that if we let to CPLEXgaime time which is taken in the
worst case by the heuristics, CPLEX does not provide beattations in most of cases.

The parameterg anda used in our two heuristics have been chosen empirically. 8ve h
setd to 0.25 anda to 3. In Table 1, we provide the average relative distancag"pbetween
the result of each heuristic and the best integer solutiohliéf as well as the average CPU
time ("time”). The gap is computed gshe best integer solution of MIP - the value of the
heuristic)(the best integer solution of MIPThe CPU time in the tables arefinilliseconds The
0.0 values fortime means that the CPU time is less than 0.1 millisecoNtl represents the
Martello&Toth heuristic;DZ represents the Dantzig heuristBF represents the Back&Forth
heuristic andCombrepresents the CombMT&D heuristic.

We tested all methods on 960 instances (240 instances fortgae). Table 1 provides the
gap values and the CPU time for instances of each size andbftgpe as well as the average
values by rows and by column (“AVG”). Table 2 provides for lke&gpe of instance, the percent-
age of instances for which each heuristic obtain the besttseamong all the tested heuristics
(“best”) and the average gap. Notice that for some instamege than one heuristic yields the
best result. During our experiments, we have noticed theaetis no relevant éierence of per-
formance (gap values and CPU times) of the algorithms wipeet to the nature of capacities
(similar and dissimilar) of generated instances. That ig slhresults are merged and shown in

a common table.
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As shown in the tables, the obtained results demonstratefiibetiveness of the proposed
heuristics. Both our heuristics often perform better tHantivo other adapted heuristics. Al-
though our heuristics are comparable with each other inderftthe number of successful in-
stances and the relative distances with best integer snkitif MIP for instances of theoretical
types, Back&Forth is more robust for all tested instancspeeially for instances of the prac-
tical type. Moreover, combining the Back&Forth and CombMI &euristics allows the best
results to be obtained in more than 93% of instances of giraita dissimilar capacities. On
the other hand, the Dantzig heuristic performs quite wellaftarge number of instances while
Martello&Toth encounters somefticulties.

We notice that the CPU times for all heuristics are very &attory for the application in
hand. Even for the BF heuristic, which takes the largest edatjpnal times among them, the
CPU times for the largest instances (10000 items and 25@mrie at most 12 seconds. We
believe that the proposed heuristics achieve a good trédeetween the calculation time and

the performance in terms of quality of the provided solution

6. Conclusion

This paper investigates a new knapsack variant, the Meltiedl Renewal equipment prob-
lem. This problem can be seen as a simplified deterministisime of conventional renewal
problems. Several special cases of this problem are entedesad studied. Analysis of com-
plexity have shown th&lP-hardness in the strong sense of the general case, while gmenal
cases can be handled in pseudo polynomial and polynomial tika a perspective of this work
we propose to investigate a general version of the MPR prokblaere item weights vary over

time.
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Type m Algo n=500 n=1000 n=5000 n=10000 AVG
gap time gap time gap time gap time gap time
1 15 MT 234 11.70 2.47 44.40 2.40 1089.95 2.47 5487.80 2.42 1658.46
DZ 0.19 9.55 0.21 38.30 0.22 953.60 0.17 4748.90 0.20 1437.59
BF 0.09 21.30 0.15 83.70 0.14 2143.10 0.12 9320.35 0.13 2892.11
Comb 0.42 13.40 0.44 51.75 0.41 1290.35 0.33 6471.00 0.40 1956.63
20 MT 3.38 14.70 3.11 51.30 3.04 1123.85 3.25 5719.15 3.20 1727.25
DZ 0.40 9.60 0.39 38.00 0.45 973.85 0.39 4752.40 041 1443.46
BF 0.19 24.40 0.23 94.30 0.24 2328.50 0.22 10534.40 0.22 3245.40
Comb 0.44 | 14.10 0.44 54.60 0.49 1335.80 0.41 6860.45 0.44 2066.24
25 MT 4.52 12.35 4.19 48.45 3.95 1140.65 4.12 6072.40 4.19 1818.46
DZ 0.72 9.65 0.67 38.35 0.71 987.15 0.66 4797.20 0.69 1458.09
BF 0.33 | 26.30 0.37 103.55 0.39 | 2593.00 0.32 12028.30 0.35 | 3687.79
Comb 0.70 | 13.90 0.64 54.55 0.62 1360.85 0.51 7350.30 0.62 2194.90
AVG MT 341 12.92 3.26 48.05 3.13 1118.15 3.28 5759.78 3.27 1734.73
DZ 0.44 9.60 0.42 38.22 0.46 971.53 0.41 4766.17 0.43 1446.38
BF 0.20 24.00 0.25 93.85 0.26 2354.87 0.22 10627.68 0.23 3275.10
Comb 0.52 13.80 0.51 53.63 0.50 1329.00 0.42 6893.92 0.49 | 2072.59
n=50 n=100 n=500 n=1000 AVG
2 10 MT 5.90 0.25 6.11 0.60 6.19 11.70 5.93 43.15 6.03 13.93
DZ 5.07 0.15 4.63 0.60 4.64 9.35 5.11 36.30 4.86 11.60
BF 275 0.30 2.86 0.75 2.62 18.25 2.89 68.85 2.78 22.04
Comb 3.28 0.30 231 0.60 1.97 13.55 1.93 52.00 2.37 16.61
30 MT 9.70 0.45 722 0.95 7.20 12.15 7.19 46.75 7.83 15.08
DZ 5.72 0.10 5.40 0.65 5.86 9.40 5.65 36.90 5.66 11.76
BF 3.63 0.55 2.65 155 2.82 31.05 2.88 112.55 2.99 36.43
Comb 3.85 0.15 2.89 0.55 2.26 12.25 2.19 48.05 2.80 15.25
50 MT 7.96 0.40 7.22 1.00 7.52 11.50 6.95 37.80 741 12.68
DZ 3.23 0.15 477 0.55 5.13 9.05 5.13 34.50 457 11.06
BF 231 1.10 298 215 3.05 35.75 2.82 135.80 2.79 43.70
Comb 2.82 0.30 2.92 0.40 2.50 10.30 2.27 37.60 2.63 12.15
AVG MT 7.85 0.37 6.85 0.85 6.97 11.78 6.69 42.57 7.09 13.89
Dz 4.67 0.13 4.94 0.60 521 9.27 5.30 35.90 5.03 11.48
BF 2.90 0.65 2.83 1.48 2.83 28.35 2.86 105.73 2.85 34.05
Comb 3.32 0.25 271 0.52 2.24 12.03 213 45.88 2.60 14.67
3 10 MT 12.92 0.25 12.30 0.70 13.41 11.45 12.47 42.20 12.78 13.65
Dz 6.49 0.20 5.55 0.40 5.67 9.15 5.85 37.95 5.89 11.93
BF 4.43 0.25 3.30 0.90 3.57 18.45 3.68 78.65 3.75 24.56
Comb 4.41 0.20 3.95 0.65 3.48 14.10 3.40 53.70 3.81 17.16
30 MT 15.90 0.50 16.71 0.90 16.16 11.40 15.77 43.15 16.13 13.99
Dz 5.61 0.05 6.92 0.50 6.41 9.35 6.48 35.70 6.35 11.40
BF 3.82 0.55 4.08 135 3.35 28.80 3.29 113.20 3.64 35.98
Comb 4.86 0.15 3.88 0.50 3.92 11.90 3.86 44.85 4.13 14.35
50 MT 14.22 0.55 1425 1.10 15.99 10.40 16.59 34.90 15.26 11.74
DZ 5.65 0.05 5.70 0.50 511 8.65 5.38 33.45 5.46 10.66
BF 4.23 0.75 4.34 2.15 3.29 33.90 3.16 128.75 3.76 41.39
Comb 3.77 0.10 3.80 0.60 3.47 9.35 3.50 34.90 3.64 11.24
AVG MT 14.35 0.43 14.42 0.90 15.19 11.08 14.94 40.08 1472 1313
Dz 5.92 0.10 6.06 0.47 573 9.05 5.90 35.70 5.90 11.33
BF 4.16 0.52 391 1.47 3.40 27.05 3.38 106.87 3.71 33.98
Comb 4.35 0.15 3.87 0.58 3.63 11.78 3.59 44.48 3.86 14.25
4 10 MT 5.49 1.25 5.67 0.55 5.39 12.45 5.44 47.60 5.50 15.46
DZ 3.33 0.20 3.01 0.55 3.31 9.25 3.18 36.45 3.21 11.61
BF 252 0.25 221 0.75 2.10 19.50 1.93 76.95 2.19 24.36
Comb 2.16 0.15 157 0.55 1.40 14.20 1.32 59.40 1.61 18.58
30 MT 8.39 0.90 9.05 2.60 8.54 1550 8.61 52.50 8.65 17.88
Dz 3.75 0.20 3.93 0.30 4.28 9.60 4.25 37.40 4.05 11.88
BF 229 0.55 2.45 1.65 261 34.70 271 133.50 252 42.60
Comb 2.01 0.40 2.04 0.70 2.00 15.00 1.97 58.40 2.00 18.63
50 MT 9.79 0.25 10.68 095 [ 10.16 17.75 | 10.33 53.05 [ 10.24 18.00
DZ 3.27 0.25 3.46 0.40 411 9.85 3.97 38.20 3.70 12.18
BF 2.03 1.00 2.20 2.75 2.60 47.30 2.46 178.20 2.32 57.31
Comb 2.36 0.20 1.98 0.80 1.99 15.10 1.96 58.90 2.07 18.75
AVG MT 7.89 0.80 8.47 1.37 8.03 15.23 8.13 51.05 8.13 17.11
DZ 3.45 0.22 3.47 0.42 3.90 9.57 3.80 37.35 3.66 11.89
BF 228 0.60 229 172 244 33.83 237 129.55 2.34 41.43
Comb 2.18 0.25 1.86 0.68 1.80 14.77 1.75 58.90 1.90 18.65
Table 1: Gap values and CPU times (ms) for instances of eaetasd of each type
Type MT Dz BF Comb Max(BF. Comb)
best gap best gap best gap best gap best gap
1 1.25 3.27 24.58 0.43 74.58 0.23 10.42 0.49 85.00 0.21
2 4.58 7.09 7.08 5.03 32.92 2.85 61.67 2.60 93.33 2.16
3 1.67 14.72 5.42 5.90 51.25 3.71 46.25 3.86 95.42 3.06
4 1.25 8.13 0.42 3.66 18.33 2.34 80.00 1.90 98.33 1.82
Overall 2.19 8.30 9.38 3.75 44.27 2.29 49.58 221 93.02 1.81

Table 2: The best heuristics and the average gap values
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