
HAL Id: hal-00943850
https://hal.science/hal-00943850

Submitted on 14 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Period Renewal equipment problem
Xiaokang Cao, Antoine Jouglet, Dritan Nace

To cite this version:
Xiaokang Cao, Antoine Jouglet, Dritan Nace. A Multi-Period Renewal equipment problem. Euro-
pean Journal of Operational Research, 2012, 218 (3), pp.838-846. �10.1016/j.ejor.2011.12.011�. �hal-
00943850�

https://hal.science/hal-00943850
https://hal.archives-ouvertes.fr

A multi-period renewal equipment problem

Xiaokang Cao, Antoine Jouglet and Dritan Nace

UMR CNRS 6599 Heudiasyc, Université de Technologie de Compiègne
Centre de Recherches de Royallieu, 60200 Compiègne, France

xiaokang.cao@hds.utc.fr, antoine.jouglet@hds.utc.fr,dritan.nace@hds.utc.fr

Abstract

This paper looks at a Multi-Period Renewal equipment problem (MPR). It is inspired by a spe-

cific real-life situation where a set of hardware items is to be managed and their replacement

dates determined, given a budget over a time horizon comprising a set of periods. The particular

characteristic of this problem is the possibility of carrying forward any unused budget from one

period to the next, which corresponds to the multi-periodicity aspect in the model. We begin with

the industrial context and deduce the corresponding knapsack model that is the subject of this pa-

per. Links to certain variants of the knapsack problem are next examined. We provide a study of

complexity of the problem, for some of its special cases, andfor its continuous relaxation. In par-

ticular, it is established that its continous relaxation and a special case can be solved in (strongly)

polynomial time, that three other special cases can be solved in pseudo-polynomial time, while

the problem itself is stronglyNP-hard when the number of periods is unbounded. Next, two

heuristics are proposed for solving the MPR problem. Experimental results and comparisons

with the Martello&Toth and Dantzig heuristics, adapted to our problem, are provided.

Keywords: scheduling, knapsack, multi-period, complexity, heuristic methods

Preprint submitted to European Journal of Operational Research December 6, 2011

1. Introduction

The Knapsack Problem(KP) has a significant place in the study of integer programming

models with binary variables. In the standard knapsack problem the quantity
∑

i∈N pi xi is to be

maximized subject to the constraint
∑

i∈N wi xi ≤ b, wherexi ∈ {0, 1}, N = {1, 2, . . . , n}, pi

is thevalueor profit of item i, wi is theweight of item i andb is the knapsackcapacity, all

assumed to be non-negative. In addition to the standard problem, a number of different variants

of the problem have been put forward and investigated by researchers over the last decades. This

paper looks at one of these variants that we have called theMulti-Period Renewal equipment

problem (MPR). It is inspired by a specific real-life situation wherea set of hardware items

is to be managed and their replacement dates determined, given a budget over a time horizon

comprising a set of periods. The particular characteristicof this variant of the problem is the

possibility of carrying forward any unused budget from one period to the next, corresponding

to the multi-periodicity aspect in the statement of the problem. The contribution of this paper

is a new knapsack model originating from a real industrial context, together with a complete

theoretical examination of the problem and its relations toother knapsack problems, and a set of

efficient heuristics for solving it.

The paper is organized as follows. In Section 2 we present thespecific industrial context that

gave rise to our problem and the corresponding mathematicalmodel. Section 3 looks at links

to other knapsack problems. In Section 4 we investigate the computational complexity of the

MPR problem as well as some of its special cases and its continuous relaxation. We show in

particular that the MPR problem is stronglyNP-hard when the number of periods is unbounded

and weaklyNP-hard for the bounded case. Finally, in Section 5, we proposetwo new heuristics

for the MPR problem and recall how two other well-known heuristics, that is to say the Dantzig

2

and Martello&Toth heuristics, are also suitable for solving MPR. We provide a comparative

experimental study of all these heuristics.

2. From an industrial problem to a theoretical model

In some countries it is usual for a city, town or municipalityto contract certain public utilities

(water supply, electricity, etc.) out to private companies, usually under concessions, leases or

management contracts. Under these arrangements, the public entity delegates the provision of

the service for a time horizonM typically ranging from 15 to 25 years, while the private entity

remains under a contractual obligation to spend a given amount of money (B) on the mainte-

nance and renewal of equipment. The company’s maintenance strategy is based on continuous

renewal so as to ensure continuity of service and to avoid problems with antiquated plant. For

the application in hand (water supply network), equipmentshave lifetimes that range from 50 to

100 years which is largely greater than the considered time horizon. This implies that at most

one replacement occurs over time horizonM. However, in practice more than one replacement

could happen for one equipment during the time horizon due tounpredictable failures. These

situations are handled by the daily maintenance process, while this paper deals only with the

strategic maintenance process. In line with an internal budgeting policy the company allots an

annual budgetb j to such expenditure, that is
∑

j∈M b j = B. Given that the entire budget has to

be used up, the company carries any unused budget at yearj over to the following years. For

each piece of equipment the replacement cost is assumed to beconstant over the time horizon

M, because in pratice there is no reliable information of the variation of these costs over time.

On the other hand, the profit attributable to the replacement, is calculated according to a formula

based on such elements as the probability of failure, the expected lifetime of the equipment,

its importance in the industrial process, etc. Hence, the profit change along with time and this
3

change corresponds to a certain deterioration process [1].Thus the related cost, profit and budget

coefficients are assumed to be known with certainty, in contrast toconventional renewal theory

which relies on probability theory, (see for instance Cox [2]). From this point of view the prob-

lem is a simplified deterministic version of conventional renewal problems. However, there is

one particular property that increases the difficulty of problems, that is to say the property of

multi-periodicity. More specifically, any decision made insome periodj impacts those made in

subsequent periods.

Before formulating the mathematical model of the MPR problem, let us give the notation

used throughout the paper. LetN be a set ofn pieces of equipment, andM a horizon ofm

periods.

• xi, j is the assignment decision variable, that is to sayxi, j = 1 if equipmenti is replaced in

period j, and 0 otherwise;

• pi, j is theprofit obtained when replacing equipmenti at periodj;

• wi is thereplacement costof equipmenti (it remains unchanged over periods);

• b j gives thebudgetalloted to periodj.

All these data are assumed to be non-negative integers. Our problem can be mathematically

4

formulated as follows:

max
∑

i∈N

∑

j∈M

pi, j xi, j

∑

i∈N

wi xi,1 ≤ b1,

∑

i∈N

wi xi,2 ≤ b2 + b1 −
∑

i∈N

wi xi,1,

...

∑

i∈N

wi xi, j ≤ b j +

j−1
∑

t=1

bt −

j−1
∑

t=1

∑

i∈N

wi xi,t, ∀ j ∈ M,

∑

j∈M

xi, j ≤ 1, ∀i ∈ N,

xi, j ∈ {0, 1}, ∀i ∈ N, j ∈ M.

In the above formulation, the termb1 −
∑

i∈N wi xi,1 gives the unused budget at the end of the

first year. This is added to the allotted budget for the secondyear, and so on. LetB j denote the

cumulative budget from period 1 to periodj, that isB j =
∑ j

t=1 bt. Since allb j are assumed to be

non-negative, we have the following relation:B1 ≤ B2 ≤ · · · ≤ Bm. The problem can then be

rewritten as follows:

(P) max
∑

j∈M

∑

i∈N

pi, j xi, j (1)

j
∑

t=1

∑

i∈N

wi xi,t ≤ B j, ∀ j ∈ M, (2)

∑

j∈M

xi, j ≤ 1, ∀i ∈ N, (3)

xi, j ∈ {0, 1}, ∀i ∈ N, j ∈ M. (4)

Note that whenB j = B j+1 for two consecutive periodsj and j + 1, it can easily be shown

that only the capacity constraint related to periodj + 1 needs to be retained, and for each item

5

the choice having the lower profit over these two periods may simply be discarded. Hence, we

assume thatB1 < B2 < ... < Bm.

From now on, in line with the notation commonly used for knapsack models, we shall use

the termitemfor equipment,weightinstead of replacement cost, andcapacityfor budget. Hence,

item i assigned to periodj reads equipmenti replaced during periodj. In the above model the

sum of the weights of all items chosen from period 1 to periodj cannot exceed capacityB j for

all j ∈ M (2). Each itemi can be assigned to at most one periodj (3). The multi-period aspect

lies in the fact that each constraint involves the current period and all preceding ones. The total

profit is to be maximized (1). As far as we know, we were the firstto model the problem in [3].

In the following we establish and exhibit links with some other problems studied in the literature.

3. Literature review and links with other knapsack problems

Let us first look at theMulti-Period Knapsack problem(MPK) introduced by Faaland in

1981 [4]. Faaland considers a setN of items and a setM of periods. To each periodj ∈ M there

corresponds a subsetN j = { j ∈ 1, ...,m} of items that can be assigned to this period. Note that

⋃m
j=1 N j = N andNk ∩N j = ∅ for each pair (j, k)| j , k of items. For each itemi, aprofit pi and a

weight wi are given. The cumulative weight of all items chosen from period 1 to periodj cannot

exceed thecapacity Bj associated with periodj. The total profit has to be maximized by selecting

items in their associated periods. The decision variables in this problem are unbounded: an item

i may be chosen more than once in periodj such thati ∈ N j . Faaland proposed a polynomial

algorithm to solve exactly the continuous relaxation of MPK, and in so doing to compute an

upper bound of MPK. He also proposed abranch and boundalgorithm using this upper bound.

Thebinary version of this problem, in which an item is chosen at most once in its associated

6

period, is called BMPK. Given the above notation, BMPK can beformulated as follows:

max
∑

j∈M

∑

i∈N j

pi xi (5)

j
∑

t=1

∑

i∈Nt

wi xi ≤ B j, ∀ j ∈ M, (6)

xi ∈ {0, 1}, ∀i ∈ N. (7)

Thus the weight of any chosen item will impact subsequent periods, given that in each period

the cumulative weight is considered. The overall profit is maximized by choosing items in each

period (5), without violating the cumulative capacity constraints (6). It now becomes apparent

that BMPK and MPR have some similarities. What is different is that items in BMPK can be

only assigned to a single (i.e. its associated) period. As weshall show, BMPK may be viewed as

special case of MPR (see Section 4.3), in which an item may be chosen on at most one occasion.

BMPK is shown to be weaklyNP-hard in Section 4.3, and its complexity does not depend on

the number of periods.

TheGeneralized Assignment Problem(GAP) is another problem related to knapsack prob-

lems. GAP is known to be stronglyNP-hard and has been widely studied, (see for instance

Martello and Toth in 1990 [5], or Nauss in [6] and Oncan in [7] for a survey on resolution meth-

ods and applications). GAP can be formulated as follows. We are given a setN of n items and a

horizonM of m periods. For each itemi, aprofit pi, j and aweight wi, j are given for each period

j. In addition, acapacity cj is associated with each periodj. The mathematical formulation of

7

GAP is as follows:

max
∑

j∈M

∑

i∈N

pi, j xi, j

∑

i∈N

wi, j xi, j ≤ c j, ∀ j ∈ M,

∑

j∈M

xi, j ≤ 1, ∀i ∈ N,

xi, j ∈ {0, 1}, ∀i ∈ N,∀ j ∈ M.

Note that unlike the MPR problem, in the GAP problem no capacity may be carried over to

subsequent periods and weights vary over time. A comparisonwith these two knapsack problems

therefore shows that the problem studied in this paper is a problem in its own right, although it

contains elements from each of the two above problems, taking from GAP the fact that profits

vary over items and periods, while the multi-periodicity aspect is present in BMPK. Moreover,

as previously discussed, MPR generalizes BMPK.

Finally, another problem related to multi-period knapsacks is theMultiple-Choice-Multi-

Period Knapsack problem(MCMPK) studied by Lin and Wu in [8]. This problem is similar

to BMPK, except that in MCMPK only one item in each period can be chosen. Lin and Wu pro-

posed a heuristic approach for obtaining a strong lower bound, along with two branch-and-bound

procedures for finding the optimal solution. More recently,the same authors have proposed a dy-

namic programming approach for MCMPK in [9].

4. Complexity

The formulationP describes the general case ofMPR. We focus particularly on complexity

aspects related to our problem and discuss in detail its continuous relaxed version and some of

its special cases with respect to their computational complexity:
8

• (Pr): the continuous relaxation ofP, i.e. xi, j ∈ [0, 1], for all i ∈ N, j ∈ M;

• (P1): wi = w, for all i ∈ N;

• (P2): pi, j values are all 0 except for one period, for alli ∈ N;

• (P3): pi, j values arenon-increasingduring the time horizon, for alli ∈ N.

• (P4): pi, j values arenon-decreasingduring the time horizon, for alli ∈ N.

We show thatPr andP1 can be solved in (strongly) polynomial time. We also show that solving

P2 leads to a solution to the BMPK problem (see Section 3) and that both problems can be solved

in pseudo-polynomial time. Finally, we show that the version of P3 when the number of periods

is bounded and thatP4 can be solved in pseudo-polynomial time, whileP3, and MPR as well,

are stronglyNP-hard when the number of periods is unbounded.

4.1. The continuous relaxation of MPR problem

Let us begin with the continuous relaxed version of the problem and show that it can be

solved in polynomial time. We note first that its continous relaxation cannot be solved through a

simple application of the Dantzig rule: choosing the item with the largest (pi, j/wi) value. On the

other hand, a simple change of variables, i.e.yi, j = wi xi, j, allows us to rewrite it as follows:

(Pr) max
∑

j∈M

∑

i∈N

pi, j

wi
yi, j (8)

j
∑

t=1

∑

i∈N

yi,t ≤ B j, ∀ j ∈ M, (9)

∑

j∈M

yi, j ≤ wi , ∀i ∈ N, (10)

yi, j ∈ [0,wi], ∀i ∈ N, j ∈ M. (11)

9

Now we show thatPr can be expressed through, what we call, a maximum-profit flow model, by

analogy with the minimum-cost flow model. We start by constructing a graph composed of the

following elements: a source nodeS, a destination nodeD, a set of item nodesni, i ∈ N, a set

of period nodest j , j ∈ M. Arcs are of several types:E1(i) represents the arc from source node

S to item nodeni , for all i ∈ N. Its capacity is set towi and its profit to 0.E2(i, j) represents

the arc from item nodeni to period nodet j , for all i ∈ N and j ∈ M. Its capacity is set towi

and its profit topi, j/wi . E3(j) represents the arc from period nodet j to period nodet j+1, for all

j ∈ {1, . . . ,m− 1}. Its capacity is set toB j and its profit to 0.E3(m) represents the arc from

period nodetm to destination nodeD. Its capacity is set toBm and its profit to 0.

The objective is to find a flow from the source nodeS to the destination nodeD such that the

cumulative profit over all arcs is maximized. To make things clearer, let us examine the following

example.

Example. Consider an instance ofPr with 3 items with respectively weights 1, 1 and 2, and

2 periods with respectively profits taken (3, 1), (4, 3) and (4, 2). The mathematical formulation is

10

as follows:

max 3y1,1 + 1y1,2 + 4y2,1 + 3y2,2 + 2y3,1 + 1y3,2

y1,1 + y2,1 + y3,1 ≤ 1,

y1,1 + y2,1 + y3,1 + y1,2 + y2,2 + y3,2 ≤ 3,

y1,1 + y1,2 ≤ 1,

y2,1 + y2,2 ≤ 1,

y3,1 + y3,2 ≤ 2,

y1, j ∈ {0, 1}, j ∈ {1, 2}

y2, j ∈ {0, 1}, j ∈ {1, 2}

y3, j ∈ {0, 2}, j ∈ {1, 2}

Figure 1 gives the corresponding maximum-profit flow model ofthis instance. The notationc, p

is used to indicate an arc with capacityc and profitp. For any instance ofPr we can build an

i2S

i1

i3

t1

t2 D

1,0

1,0

2,0

1,3

1,1

1,4
1,3

2,2
2,1

1,0

3,0

Figure 1: Maximum-profit flow model

instance of the maximum profit flow model. The following result (the proof is immediate) holds:
11

Proposition 1. Any optimal solution to Pr is an optimal solution to the corresponding maximum

profit flow problem and vice-versa.

Furthermore,Pr may be reduced to a minimum cost flow problem as follows: obviously

the maximum profit is achieved when flow attains its maximum value Bm (note that we assume

without loss of generality that
∑

j∈M wi ≥ Bm). Now let us consider only those arcs (i, j) that

correspond toyi, j variables in the relaxed MPR, and again we denote their flow values asyi, j .

We should have
∑

i∈N
∑

j∈M yi, j = Bm for the optimal solution of the maximum profit flow prob-

lem. Hence, we can restrict ourselves to cases whenyi, j variables give admissible flow values

for solutions of the maximum profit flow problem such that
∑

i∈N
∑

j∈M yi, j = Bm. Let p′ =

max{pi, j/wi |i ∈ N, j ∈ M}. Then, in the formulation ofPr above we have: max{
∑

i∈N

∑

j∈M

pi, j

wi
yi, j} ⇔

max{
∑

i∈N

∑

j∈M

pi, j

wi
yi, j − p′Bm} ⇔ max{

∑

i∈N

∑

j∈M

pi, j

wi
yi, j − p′

∑

i∈N

∑

j∈M

yi, j} ⇔ max{
∑

i∈N

∑

j∈M

(
pi, j

wi
− p′)yi, j}

⇔ min{
∑

i∈N

∑

j∈M

(p′ −
pi, j

wi
)yi, j}. Thus, the same flow solution applicable to the above maxi-

mum profit flow problem also solves the minimum cost flow problem defined with costs set

to p′ − (pi, j/wi) for all above arcs (i, j) and flow equal toBm and vice-versa. As the minimum

cost flow problem can be solved in polynomial time, we conclude that the continous relaxation

of MPR (i.e. Pr) can be solved in polynomial time.

4.2. Complexity of P1

When weights are all the same, the problem can be reduced to the special casewi = 1, for all

i ∈ N. For this we need to replace allB j with bB j/wc for all j ∈ M. Let us look now at the special

casewi = 1, for all i ∈ N and show that it can be modeled in the same way as the above problem

Pr , and thus can be solved in polynomial time. Obviously, this special case without any variable

change leads toPr and hence can be modeled as a min-cost flow problem. Next, the integrality

12

of B j implies that flow variables take integer values and that the corresponding solution ofP1 is

also an integer solution.

4.3. Complexity of P2 and BMPK

Let us first look at BMPK and compare it withP2. Consider an instance ofP2 in which for

eachi, pi, j are all 0 except for one period. Now consider an optimal solution of this instance. In

this solution, any itemi assigned to periodj for which pi, j = 0 can be removed from the solution

without decreasing the profit. Note that the obtained solution is also an optimal solution for the

instance of BMPK, which is obtained in the following way:

• each itemi has the same weightwi and each periodj has the same capacityB j in both

instances.

• in the BMPK instance, each itemi belongs to setN j such thatj is the only period for which

pi, j , 0 in P2 instance.

Hence, for any optimal solution forP2 an optimal solution for the corresponding BMPK problem

can be deduced. Obviously, there is a bijection between instances of BMPK and those ofP2.

Furthermore, the following proposition is straightforward.

Proposition 2. Any optimal solution for BMPK is also optimal for the corresponding problem

P2.

Let us now consider the complexity of BMPK.

Proposition 3. The BMPK problem (and hence the P2) can be solved in pseudo-polynomial time

O(nBm).

13

Proof. This problem can be solved through a dynamic programming schema slightly adapted

from the classical schema used for the standard knapsack problem.

First, let Ai(C) denote the maximum profit that can be obtained when considering only the

first i items and keeping the total cumulative weight lower than or equal toC. There is one

restriction in our dynamic programming, namely that the items are introduced in the order deter-

mined by setsN j (1 ≤ j ≤ m): that is to say that items are indexed from 1 ton such that ifi ∈ N j

andk ∈ Nl with j < l theni < k.

Initially, we setA0(C) = 0 for all C in [0, Bm].

Then, the following recursive formula is applied for anyi andC ∈
[

0, B j

]

, where j is the period

in which i has to be assigned, (i.e.,i ∈ N j):

• Ai(C) = Ai−1(C), for C < wi ;

• Ai(C) = max{Ai−1(C),Ai−1(C − wi) + pi}, for wi ≤ C ≤ B j;

• Ai(C) = Ai(B j), for B j < C ≤ Bm.

The value of optimal solution is then given fromAn(Bm). Hence the computational complexity

is in O(nBm) time.

4.4. Complexity of P3

We consider in this paragraph the special caseP3, wherepi, j decrease throughout time hori-

zon for any itemi, i ∈ N. Note first that the problem is obviously NP-complete as the standard

knapsack problem can be reduced to the case withm = 1 of P3. We show thatP3 is weakly

NP-complete when the number of periods is bounded, and strongly NP-complete when it is

unbounded.

14

4.4.1. The case of bounded number of periods

We first consider the case where the number of periods is takento be bounded by a constant

numberm′. The following result holds:

Theorem 1. For a number of periods m bounded from above by a positive integer constant m′,

the P3 problem may be solved in pseudo-polynomial time O(nm′Bm
m′).

Proof. Let Ai(C1,C2, . . . ,Cm) denote the maximal profit obtained when only thei first items are

used and the cumulative weight corresponding to periodj is less than or equal toC j . Initially,

we set:

A0(C1,C2, . . . ,Cm) =































0 C j ∈ [0, B j],∀ j ∈ {1, . . . ,m},

−∞ otherwise.

Moreover we assume thatAi(C1,C2, . . . ,Cm) = −∞ for any case whenC j < 0 for some j ∈

{1, . . . ,m}.

In the following recursive formula we only considerC j ∈ [0, B j], j ∈ {1, . . . ,m} such that

C1 ≤ C2 ≤ · · · ≤ Cm. We consider capacities in the decreasing order of periods.Before

examining a new itemi, we setAi−1(C1,C2, . . . ,Cm) = Ai−1(C′1,C
′
2, . . . ,C

′
m−1,Cm) whereC′j =

min{C j ,C j+1}, for all remaining (C1,C2, . . . ,Cm). Then, the recursive condition on itemi is as

follows:

Ai(C1,C2, . . . ,Cm) = max



























































































Ai−1(C1,C2, . . . ,Cm)

Ai−1(C1 − wi ,C2 − wi , . . . ,Cm − wi) + pi,1

Ai−1(C1,C2 − wi , . . . ,Cm− wi) + pi,2

· · · ,

Ai−1(C1,C2, . . . ,Cm−1,Cm − wi) + pi,m

15

The value of optimal solution is then given fromAn(B1, B2, . . . , Bm). Moreover, sinceB j ≤ Bm

for all j andm≤ m′, we obtain a time complexity ofO(nm′Bm
m′) time.

4.4.2. The case of an unbounded number of periods

For the case of an unbounded number of periodsm, we show that the 3-Partition problem can

be reduced to a special case ofP3.

The P3 decision problem.Any solution ofP3 can be presented as an assignment of items tom

periods. LetNt = {i|xi,t = 1} be the subset of items assigned to periodt. The capacity constraints

are
∑ j

t=1

∑

i∈Nt
wi ≤ B j, for all j ∈ M. Then, an instance can be defined as follows:

Instance.We have a finite set of items{1, 2, . . . , n}, positive integersV, m, and an increasing

sequenceB1, B2, . . . , Bm. For each itemi, some positive weightwi and a set of positive profits

pi,1, pi,2, . . . , pi,m are given.

Question.Do m disjoint subsetsN1,N2, . . . ,Nm of items exist such that
∑m

t=1
∑

i∈Nt
pi,t ≥ V and

for all j ∈ {1, . . . ,m} we have
∑ j

t=1

∑

i∈Nt
wi,t ≤ B j?

The 3-Partition decision problem.3-Partition is known to be a stronglyNP-hard problem ([10]).

The decision problem can be defined as follows:

Instance.We have a finite set A=
{

a1, a2, . . . , a3q

}

of 3q numbers, a positive integer boundB

such that for eachai ∈ A, B/4 < ai < B/2 and
∑3q

i=1 ai = qB.

Question.Can A be partitioned intoq disjoint setsA1,A2, . . . ,Aq such that for anyt, 1 ≤ t ≤ q,

we have|At| = 3 and
∑

ai∈At
ai = B?

Theorem 2. The P3 decision problem is NP-complete in the strong sense.

Proof. First, theP3 decision problem is clearly inNP, because a nondeterministic algorithm

needs only to guess the subsetsNt of items ofN and check in polynomial time that the cumulative
16

period1

∑

i∈N1
wi

B
pro f it = mB

period2

∑

i∈N2
wi

B
B

pro f it = mB+ (m− 1)B

period3

∑

i∈N3
wi

2B
B

pro f it = mB+ (m− 1)B+ (m− 2)B

period m

∑

i∈Nm
wi

(m− 1)B
B

pro f it = B
∑i=m

i=1 i = Bm(m+ 1)/2

Figure 2: Distribution of items among periods onP3 corresponding to the 3-Partition instance.

profit for all items in all these subsets is greater than or equal toV.

An instance ofP3 can be built from an instance of 3-Partition in polynomial time as follows.

Given an arbitrary instance I of 3-Partition, an instancef (I) of P3 can be defined as follows:

the number of periodsm = q; the number of itemsn = 3q; wi = ai , for all i ∈ N; profit

pi,t = (m+ 1− t)ai for all i ∈ N andt ∈ M; capacityB j = jB; V = B
∑m

t=1 t = Bm(m+ 1)/2. Note

here thatpi,t values are then non-increasing fort ∈ {1, ...,M} and integers.

Let us first suppose that the answer to I isyes, which means that A can be partitioned intoq

disjoint subsetsA1,A2, . . . ,Aq such that for all 1≤ t ≤ q, |At | = 3 and
∑

ai∈At
ai = B. Then, for

f (I), let Nt = {i|ai ∈ At}, for all t ∈ M. It can easily be shown that:

1. For 1≤ j ≤ m,
∑ j

t=1

∑

i∈Nt
wi =

∑ j
t=1

∑

i∈Nt
ai =

∑ j
t=1 B = jB ≤ B j. This ensures that the

assignment is valid;

2. The total profit
∑m

t=1
∑

i∈Nt
pi,t =

∑m
t=1
∑

i∈Nt
(m+ 1− t)ai = B

∑m
t=1 (m+ 1− t) = B

∑m
t=1 t =

Bm(m+ 1)/2 = V.

This shows that the answer tof (I) is alsoyes.

Inversely, let us suppose that the answer tof (I) isyes, meaning that there exists an assignment

17

of items such that the total profit
∑m

t=1
∑

i∈Nt
pi,t ≥ V, whereNt contains the items assigned to

periodt. Given that
∑ j

t=1

∑

i∈Nt
wi ≤ B j = jB for all j ∈ M, it can be shown by recurrence on

the number of periodsj that
∑ j

t=1

∑

i∈Nt
pi,t ≤ B

∑ j
t=1 (m+ 1− t) = B

∑m
t=m+1− j t for any j ∈ M.

Thus, we have forj = m,
∑m

t=1
∑

i∈Nt
pi,t ≤ B

∑m
t=1 t = V. Combining this with

∑m
t=1
∑

i∈Nt
pi,t ≥ V,

we obtain
∑m

t=1
∑

i∈Nt
pi,t = V. Notice here that this maximum total profit is only reached when

∑

i∈Nt
wi = B for all t ∈ M. This is obvious since otherwise any capacity non used at some period

j but used later will bring less profit and will not allow to reach the valueV. Furthermore, since

B/4 < wi < B/2 and
∑

i∈Nt
wi = B for all t ∈ M, there can only be three items assigned in

each periodt. Last, we put inAt all items assigned to periodt, that isNt, and we have a valid

3-Partition. Hence, the answer to I is alsoyes.

It can be concluded that theP3 decision problem isNP-complete in the strong sense, which

means that the originalP3 problem is stronglyNP-hard. This proof is illustrated in Figure 2.

4.5. Complexity of MPR

From above, we can now easily deduce the complexity for the problem MPR.

Theorem 3. The MPR problem is strongly NP-hard.

Proof. Given that theP3 problem, which is a special case of MPR, is stronglyNP-hard, it follows

that MPR is also stronglyNP-hard.

We will go further and show that a method that solvesP3 would solve any instance of MPR.

Hence we need to demonstrate that any instanceI of the MPR problem can be reduced to an

instance of theP3 problem. For this we propose a preprocessing procedure for profit values

and show that any instanceI of the MPR problem can be reduced to an instance of theP3

problem by applying this preprocessing procedure. This procedure, which we shall refer to as

18

µ, is described in Algorithm 1 and runs inO(nm). Its main objective is to convert thepi, j values

so that they are non-increasing over the time horizon. This may be achieved as follows, thep′i, j

values representing the profit values in the new instanceµ(I):

Algorithm 1: Procedure profit transformationµ
Data: an instanceI
for i ∈ N do

p′i,m← pi,m;
for j ← m− 1 to 1 do

p′i, j ← max(pi, j, p′i, j+1)

Figure 3: An example of the profit transformation with the preprocessing procedure

In Figure 3, curvep gives an example of original profit values for one item in instanceI .

Curvep′ shows the corresponding profit values (non-increasing) for this item following the pre-

processing procedure.

Proposition 4. Any optimal solution for instance I is also optimal for instanceµ(I), and from

any optimal solution for instanceµ(I) an optimal solution can be constructed for instance I.

Proof. The proof is straightforward. Any feasible solution for instanceI is outperformed by

some other solution obtained by delaying the decision to a later period that yields a larger profit.

19

Note that the latter solution is also a solution for instanceµ(I). On the other hand, some optimal

solution for instanceµ(I) gives rise to an optimal solution for instanceI obtained by delaying the

decision for any item to the latest period yielding an identical profit.

As a consequence, sinceµ(I) is also an instance ofP3, any algorithm solving problemP3 can

be used to solve problemP.

In particular, when profit valuespi, j arenon-decreasingduring the time horizon for any item

i, the above procedure will result in a system ofm identical constraints. Hence, all decisions

may be delayed until the last period and this case can be reduced to a simple knapsack problem

formulated as follows: max
∑

i∈N pi,mxi,m subject to
∑

i∈N wi xi,m ≤ Bm. Consequently, this case

may be solved in pseudo-polynomial timeO(nBm).

5. Heuristic methods and computational results for MPR

Recall first that any instance of MPR can be simplified to an instance ofP3. In this section

we present methods specifically designed for solving theP3 problem, bearing in mind that since

this problem is stronglyNP-hard, optimal solutions are unlikely to be found for large instances.

Notice also that this solution strategy was initially intended to be integrated in a simulation

tool, and computational efficiency in terms of CPU time was therefore an important requirement.

Typically a CPU time less than 30 seconds for this application were required. In order to evaluate

the effectiveness of the above heuristics, we tested instances of both practical and theoretical

types.

5.1. Heuristics

In this section, two well-known heuristics from the literature, namely the Dantzig greedy

heuristic proposed for the knapsack problem and the Martello&Toth heuristic proposed for GAP,
20

adapted by Dao et al. [3] for MPR, are recalled. Next, two new heuristic methods, called

Back&Forth and CombMT&D, are described.

The Dantzig heuristic (DZ).The Dantzig heuristic is a greedy type heuristic proposed for the

unbounded knapsack problem in [11]. The principle was adapted for the MPR problem in [3].

First a list containing all ratios{pi, j/wi} for each itemi and periodj sorted in non-increasing

order is created. At each iteration of the algorithm, the first ratio {pi,t/wi} which corresponds

to a feasible assignment (according to the previous decidedassignments) of itemi in periodt is

chosen. Next, all ratios{pi, j/wi}, for all j ∈ {1, . . . ,m} are removed from the list. The process is

repeated until no more items can be chosen.

The Martello&Toth heuristic (MT).The Martello&Toth heuristic is also a greedy type heuristic

proposed by Martello and Toth in 1990 for GAP [5]. The principle was also adapted and pre-

sented in [3]. In this algorithm items are assigned iteratively. At each iteration we assign as soon

as possible the itemi maximizing the difference{(pi,t − pi,t+1)/wi} wheret is the earliest period

in which i is assignable. Items which are assignable only at the last period are not considered at

this step of the algorithm. At the end of the algorithm, when only such items remain, they are

assigned iteratively in decreasing order of{pi,m/wi}.

Discussion.Clearly there are two aspects of MPR that an approximate solution method should

take into account. The first one is related with the rate profit-weight and the second is concerned

with the variation of profit over time. With respect to above,and as already confirmed by the

numerical results, the Dantzig heuristic captures very well the benefits coming when prefering

items with high profit-weight ratios, but it fails for scenarios with important changes in profits

over time. For the later ones, Martello and Toth heuristic could be a better choice but, still

21

this heuristic encounter difficulties as it neglects the importance of items with high profit-weight

ratios.

These drawbacks are illustrated in the following example with 3 items and 3 periods for

which the optimal total profit is 22:B1 = 1, B2 = 2, B3 = 3, w1 = w2 = w3 = 1, p11 = 11,

p12 = 10, p13 = 1, p21 = 9, p22 = 6, p23 = 1, p31 = 8, p32 = 3, p33 = 3.

As it can be verified,DZ assigns item 1 to period 1, item 2 to period 2 and item 3 to period 3. The

obtained total profit is thenp11+ p22+ p33 = 20. The drawback ofDZ here is to prefer assigning

item 1 first without taking into account that item 2 will be largely devaluated from period 1 to

period 2. The assignment ofMT is item 3 to period 1, item 1 to period 2 and item 2 to period 3.

The obtained total profit is thenp31+ p12+ p23 = 19. The drawback ofMT is to prefer assigning

item 3 on period 1 because of its high devaluation from period1 to period 2. The consequence is

to neglect too much high rate profit-weight items.

These drawbacks are our motivation to look for heuristics that take into account both aspects,

as the two ones given below:

The Back&Forth heuristic. This heuristic is inspired by the Dantzig heuristic for MPR.It is

implemented in two steps. The main idea behind this heuristic is to assign temporarily thebest

items in the first step and to improve the assignments in the second. In contrast to the Dantzig

heuristic, an item is not assigned to the earliest possible period, but it is assigned temporarily to

a later period where the profit is not significantly diminished. In the second step the assignment

is moved forward if capacity constraints allow. During the algorithm, B′j gives the remaining

capacity values, with respect to assigned items. Initially, B′j = B j, for all j ∈ {1, . . . ,m}. For

each unassigned itemi, we denote aseppi the earliest possible period to whichi can be assigned,

according to the current capacity constraintsB′j, j ∈ M, i.e. eppi = argminj{wi ≤ B′t ,∀t ∈

22

{ j, . . . ,m}| j ∈ M}. Otherwise, ifwi > B′m (i cannot be assigned to any of the periods), set

eppi = m+ 1. Heuristic Back&Forth proceeds as follows:

1. Let N̄ be the collection of the unassigned items. Find the itemz = argmaxi{pi,eppi/wi |i ∈

N̄∧eppi ≤ m}. Next, determine the periodtz (tz ≥ eppz) in which itemzwill be temporarily

assigned.tz corresponds to the largest period where the reduced profit (pz,eppz − pz,tz) does

not exceed a certain valueλ(pz,eppz − pz,m), 0 ≤ λ ≤ 1. Removez from N̄ and update all

concernedB′j. Updateeppi , for all i ∈ N̄. Repeat this step until the assignment is no longer

possible;

2. Let N0 = N \ N̄ be the collection of items assigned in the first step. Find item x =

argmaxi{(pi,eppi − pi,Si)/wi |i ∈ N0 ∧ eppi , Si}, whereSi is the current period in which

item i is assigned. Assign itemi to periodeppi and update all concernedB′j. Updateeppi ,

for all i ∈ N0. Repeat this step until no further items can be brought forward.

The CombMT&D heuristic. This heuristic is a combination of the Martello&Toth and Dantzig

heuristics. It is implemented in two steps. In the first step,items are iteratively assigned to

periods untilm − 1, respecting a particular order combining the Dantzig and Martello&Toth

heuristics. In the second step, the unassigned items are assigned iteratively to the last periodm

according to the Dantzig heuristic. Each assignment satisfies the capacity constraints. Heuristic

CombMT&D proceeds as follows:

1. Let N̄ be the collection of unassigned items. Find itemz = argmaxi{(pi,eppi/wi)α(pi,eppi −

pi,eppi+1)/wi |i ∈ N̄ ∧ eppi ≤ m− 1} and assign itemz to periodeppz. Remove itemz from

N̄ and update all concernedB′j. Updateeppi , for all i ∈ N̄. Repeat this step until the

assignment is no longer possible;

2. Consider the set̄N of remaining unassigned items. Find itemx = argmaxi{(pi,m/wi)|i ∈
23

N̄∧ eppi ≤ m} and assign it to periodm. UpdateB′m eteppi, for all i ∈ N̄. Repeat this step

until the assignment is no longer possible.

It can be easily deduced that the complexity time of each of them isO(n2m). Moreover, for the

same values ofα andλ in the numerical results given in the next section (i.e.α = 3 andλ = 0.25),

both heuristics provide an optimal solution for the previous example by assigning item 2 to period

1, item 1 to period 2 and item 3 to period 3, leading to a total profit of p21+ p12+ p33 = 22.

5.2. Computational experiments

In order to evaluate the effectiveness of the above heuristics, we tested instances of both prac-

tical and theoretical types. The main difference between practical and theoretical types is that for

practical instances the profits for an itemi correspond to a function which attains its maximum

value at a certain periodr i and then progressively decreases over the subsequent periods. There-

fore, in accordance with Proposition 4, itemi will not be assigned beforer i . This reduces the

number of periods to which it is possible to assign itemi, thus making instances easier to solve,

and this is confirmed in Table 1 by the small gap values of this practical type compared with other

types on instances of identical or similar sizes. Otherwise, for theoretical instances, in order to

test a more general case and evaluate the robustness of each heuristic, the maximum profit for

all items is deemed to occur in the first period, and the mannerin which profits decrease over

subsequent periods is random. For each type and for each size(n,m), 20 instances are generated.

Four types of instances are tested. Type 1 are practical ones. For each itemi, the highest

profit is attained at a certain periodr i . After periodr i , profits decrease in accordance with certain

rules (see the details below). The preprocessing procedureis applied to transform an instance

of this type to an instance ofP3(profits in non-increasing order from the first period). The size

of tested instances for this type aren = [500, 1000, 5000,10000] andm = [15, 20, 25]. Type

24

2, type 3 and type 4 are theoretical types. For type 2 and type 3, profits pi, j decrease randomly

with a certain distribution for each itemi. For type 4, profitspi, j decrease linearly from the

first period with different slopes for each itemi. The size of tested instances for the last three

types aren = [50, 100, 500, 1000] andm = [10, 30, 50]. In addition, two capacity scenarios are

considered for each type of instance, namelysimilar capacitiesanddissimilar capacities(see

the details below). Notice that in order to stick to the application, the practical instances have

different values formandn.

Instance type 1 (practical). Ris set to 1000 (R takes the same value for all types). For each

item i, the weightwi is generated in [1,R] based on a uniform distribution. A parameterr i

is generated in [1,m] based on uniform distribution.r i represents the period wherei has the

highest profit. This highest profitpi,r i is generated in [1,R] based on a uniform distribution. For

each itemi, a variableb is first randomly chosen from among three values{0.01, 0.015, 0.02}.

Then, profitspi, j are set as follows: for allj ∈ [1, r i − 1], pi, j = 0; For all j ∈ [r i + 1,m],

pi, j = pi, j−1 − pi,r i ∗ (b/2 + b ∗ (j − r i)/10). As we can see from this equation, the decreased

profit between two consecutive periods augments along with the increase ofj, since the slope

b/2 + b ∗ (j − r i)/10 increases along with the increase ofj. Surely, pi, j are guaranteed to be

positive in all cases.

With respect to the capacity values, we consider that the total capacityBm is around
∑

i∈N wi/2.

similar capacitiesanddissimilar capacities[5] are two different capacity scenarios that we con-

sidered for all types of instances. Forsimilar capacities, the capacityB1 and all augmented

capacities (B j − B j−1) for all j ∈ {2, . . . ,m} are generated in [0.4
∑

i∈N wi/m, 0.6
∑

i∈N wi/m]

based on uniform distribution. Fordissimilar capacities, Bm is first set to
∑

i∈N wi/2 and then

B j, { j ∈ 1, . . . ,m− 1} is generated based onB j+1 with the following distribution. There is a 2%

25

probability thatB j = B j+1, a 3% probability thatB j ∈ [0.98B j+1, B j+1), a 15% probability that

B j ∈ [0.95B j+1, 0.98B j+1), a 30% probability thatB j ∈ [0.9B j+1, 0.95B j+1), a 30% probability

thatB j ∈ [0.85B j+1, 0.9B j+1), a 10% probability thatB j ∈ [0.8B j+1, 0.85B j+1), a 5% probability

that B j ∈ [0.65B j+1, 0.8B j+1), a 2% probability thatB j ∈ [0.4B j+1, 0.65B j+1), a 2% probability

thatB j ∈ [0.3B j+1, 0.4B j+1), and a 1% probability thatB j ∈ [0.1B j+1, 0.3B j+1).

Instance type 2.Valueswi , pi,1 are generated in [1,R] based on a uniform distribution (wi and

pi,1 are uncorrelated as proposed in [12]). For allj ∈ {2, . . . ,m}, pi, j is generated based onpi, j−1

with the following distribution. There is a 10% probabilitythat pi, j = pi, j−1, a 15% probability

that pi, j ∈ [0.95pi, j−1, pi, j−1), a 25% probability thatpi, j ∈ [0.9pi, j−1, 0.95pi, j−1), a 20% proba-

bility that pi, j ∈ [0.8pi, j−1, 0.9pi, j−1), a 10% probability thatpi, j ∈ [0.7pi, j−1, 0.8pi, j−1), a 10%

probability thatpi, j ∈ [0.6pi, j−1, 0.7pi, j−1), and a 10% probability thatpi, j ∈ [0.3pi, j−1, 0.6pi, j−1).

Instance type 3.Valueswi are generated in the same way as for type 2, whilepi,1 = wi + R/10

(wi andpi,1 are strongly correlated, see [12]). Valuespi, j for all j ∈ {2, . . . ,m} are generated in

the same way as for type 2.

Instance type 4.Valueswi , pi,1 are generated in [1,R] based on a uniform distribution (wi and

pi,1 are uncorrelated); For each item i, a variableb is first randomly chosen from among three

values{1/m, 1/(2m), 1/(3m)}. Then, for the other profits we takepi, j = pi,1 − pi,1(j − 1)b, for all

j ∈ {2, . . . ,m} (profit values decrease linearly).

Experimental results.All tests were run on a PC with a 2 GHz microprocessor and 2 GB of

Ram. To evaluate the performances of our heuristics, we havemeasured the gap with the optimal

solution (or the best integer solution) provided by the MIP.We have run the algorithm of CPLEX

11 with a time limit fixed to 600 seconds to obtain optimal solutions or near optimal solutions

26

of the instances. There are 54.3% of instances which are not solved to optimality at the end of

the time limit. However, the results of MIP are generally very close to the optimal solutions.

Based on the informations provided by CPLEX, the average final gap of MIP over all the tested

instances is 0.04%. The results of the heuristics are then evaluated by the best integer solution

obtained by the MIP algorithm. While it is obvious that the results of the heuristics are not really

comparable with these results, note that if we let to CPLEX the same time which is taken in the

worst case by the heuristics, CPLEX does not provide better solutions in most of cases.

The parametersλ andα used in our two heuristics have been chosen empirically. We have

setλ to 0.25 andα to 3. In Table 1, we provide the average relative distance (”gap”) between

the result of each heuristic and the best integer solution ofMIP as well as the average CPU

time (”time”). The gap is computed as(the best integer solution of MIP - the value of the

heuristic)/(the best integer solution of MIP). The CPU time in the tables are inmilliseconds. The

0.0 values fortime means that the CPU time is less than 0.1 millisecond.MT represents the

Martello&Toth heuristic;DZ represents the Dantzig heuristic;BF represents the Back&Forth

heuristic andCombrepresents the CombMT&D heuristic.

We tested all methods on 960 instances (240 instances for each type). Table 1 provides the

gap values and the CPU time for instances of each size and of each type as well as the average

values by rows and by column (“AVG”). Table 2 provides for each type of instance, the percent-

age of instances for which each heuristic obtain the best results among all the tested heuristics

(“best”) and the average gap. Notice that for some instances, more than one heuristic yields the

best result. During our experiments, we have noticed that there is no relevant difference of per-

formance (gap values and CPU times) of the algorithms with respect to the nature of capacities

(similar and dissimilar) of generated instances. That is why all results are merged and shown in

a common table.
27

As shown in the tables, the obtained results demonstrate theeffectiveness of the proposed

heuristics. Both our heuristics often perform better than the two other adapted heuristics. Al-

though our heuristics are comparable with each other in terms of the number of successful in-

stances and the relative distances with best integer solutions of MIP for instances of theoretical

types, Back&Forth is more robust for all tested instances, especially for instances of the prac-

tical type. Moreover, combining the Back&Forth and CombMT&D heuristics allows the best

results to be obtained in more than 93% of instances of similar and dissimilar capacities. On

the other hand, the Dantzig heuristic performs quite well for a large number of instances while

Martello&Toth encounters some difficulties.

We notice that the CPU times for all heuristics are very satisfactory for the application in

hand. Even for the BF heuristic, which takes the largest computational times among them, the

CPU times for the largest instances (10000 items and 25 periods) is at most 12 seconds. We

believe that the proposed heuristics achieve a good trade-off between the calculation time and

the performance in terms of quality of the provided solutions.

6. Conclusion

This paper investigates a new knapsack variant, the Multi-Period Renewal equipment prob-

lem. This problem can be seen as a simplified deterministic version of conventional renewal

problems. Several special cases of this problem are enumerated and studied. Analysis of com-

plexity have shown theNP-hardness in the strong sense of the general case, while somespecial

cases can be handled in pseudo polynomial and polynomial time. As a perspective of this work

we propose to investigate a general version of the MPR problem where item weights vary over

time.

28

References

[1] R. Fenner, Approaches to sewer maintenance: a review, Urban Water 2(4) (2000) 343–356.

[2] D. Cox, Renewal theory, Wiley London, New York, 1962.

[3] T.-T. Dao, A. Nace, D. Nace, X. Cao, The multi-period renewal equipment problem, in: Proceedings of the Inter-

national Conference on Metaheuristics and Nature InspiredComputing, 2008.

[4] B. Faaland, The multiperiod knapsack problem, Operations Research 29 (3) (1981) 612–616.

[5] S. Martello, P. Toth, Knapsack problems: algorithms andcomputer implementations, John Wiley & Sons, Inc.,

New York, NY, USA, 1990.

[6] R. Nauss, The generalized assignment problem, integer programming: theory and practice, Taylor and Francis

group, 2006.

[7] T. Oncan, A survey of the generalized assignment problemand its applications, INFOR: Information Systems and

Operational Research 45(3) (2007) 123–141.

[8] E. Lin, C. Wu, The multiple-choice multi-period knapsack problem, Journal of the Operational Research Society

55 (2004) 187–197(11).

[9] E. Lin, C. Wu, A dynamic programming approach to the multiple-choice multi-period knapsack problem and the

recursive apl2 code, International Journal of Operations and Quantitative Management.

[10] M. R. Garey, D. S. Johnson, Computers and Intractability : A Guide to the Theory ofNP-Completeness (Series of

Books in the Mathematical Sciences), W. H. Freeman, 1979.

[11] G. Dantzig, Discrete-variable extremum problems, Operations Research 5 (1957) 266–277.

[12] D. Pisinger, Where are the hard knapsack problems?, Computers & Operations Research 32 (9) (2005) 2271–2284.

29

Type m Algo n=500 n=1000 n=5000 n=10000 AVG
gap time gap time gap time gap time gap time

1 15 MT 2.34 11.70 2.47 44.40 2.40 1089.95 2.47 5487.80 2.42 1658.46
DZ 0.19 9.55 0.21 38.30 0.22 953.60 0.17 4748.90 0.20 1437.59
BF 0.09 21.30 0.15 83.70 0.14 2143.10 0.12 9320.35 0.13 2892.11

Comb 0.42 13.40 0.44 51.75 0.41 1290.35 0.33 6471.00 0.40 1956.63
20 MT 3.38 14.70 3.11 51.30 3.04 1123.85 3.25 5719.15 3.20 1727.25

DZ 0.40 9.60 0.39 38.00 0.45 973.85 0.39 4752.40 0.41 1443.46
BF 0.19 24.40 0.23 94.30 0.24 2328.50 0.22 10534.40 0.22 3245.40

Comb 0.44 14.10 0.44 54.60 0.49 1335.80 0.41 6860.45 0.44 2066.24
25 MT 4.52 12.35 4.19 48.45 3.95 1140.65 4.12 6072.40 4.19 1818.46

DZ 0.72 9.65 0.67 38.35 0.71 987.15 0.66 4797.20 0.69 1458.09
BF 0.33 26.30 0.37 103.55 0.39 2593.00 0.32 12028.30 0.35 3687.79

Comb 0.70 13.90 0.64 54.55 0.62 1360.85 0.51 7350.30 0.62 2194.90
AVG MT 3.41 12.92 3.26 48.05 3.13 1118.15 3.28 5759.78 3.27 1734.73

DZ 0.44 9.60 0.42 38.22 0.46 971.53 0.41 4766.17 0.43 1446.38
BF 0.20 24.00 0.25 93.85 0.26 2354.87 0.22 10627.68 0.23 3275.10

Comb 0.52 13.80 0.51 53.63 0.50 1329.00 0.42 6893.92 0.49 2072.59

n=50 n=100 n=500 n=1000 AVG
2 10 MT 5.90 0.25 6.11 0.60 6.19 11.70 5.93 43.15 6.03 13.93

DZ 5.07 0.15 4.63 0.60 4.64 9.35 5.11 36.30 4.86 11.60
BF 2.75 0.30 2.86 0.75 2.62 18.25 2.89 68.85 2.78 22.04

Comb 3.28 0.30 2.31 0.60 1.97 13.55 1.93 52.00 2.37 16.61
30 MT 9.70 0.45 7.22 0.95 7.20 12.15 7.19 46.75 7.83 15.08

DZ 5.72 0.10 5.40 0.65 5.86 9.40 5.65 36.90 5.66 11.76
BF 3.63 0.55 2.65 1.55 2.82 31.05 2.88 112.55 2.99 36.43

Comb 3.85 0.15 2.89 0.55 2.26 12.25 2.19 48.05 2.80 15.25
50 MT 7.96 0.40 7.22 1.00 7.52 11.50 6.95 37.80 7.41 12.68

DZ 3.23 0.15 4.77 0.55 5.13 9.05 5.13 34.50 4.57 11.06
BF 2.31 1.10 2.98 2.15 3.05 35.75 2.82 135.80 2.79 43.70

Comb 2.82 0.30 2.92 0.40 2.50 10.30 2.27 37.60 2.63 12.15
AVG MT 7.85 0.37 6.85 0.85 6.97 11.78 6.69 42.57 7.09 13.89

DZ 4.67 0.13 4.94 0.60 5.21 9.27 5.30 35.90 5.03 11.48
BF 2.90 0.65 2.83 1.48 2.83 28.35 2.86 105.73 2.85 34.05

Comb 3.32 0.25 2.71 0.52 2.24 12.03 2.13 45.88 2.60 14.67
3 10 MT 12.92 0.25 12.30 0.70 13.41 11.45 12.47 42.20 12.78 13.65

DZ 6.49 0.20 5.55 0.40 5.67 9.15 5.85 37.95 5.89 11.93
BF 4.43 0.25 3.30 0.90 3.57 18.45 3.68 78.65 3.75 24.56

Comb 4.41 0.20 3.95 0.65 3.48 14.10 3.40 53.70 3.81 17.16
30 MT 15.90 0.50 16.71 0.90 16.16 11.40 15.77 43.15 16.13 13.99

DZ 5.61 0.05 6.92 0.50 6.41 9.35 6.48 35.70 6.35 11.40
BF 3.82 0.55 4.08 1.35 3.35 28.80 3.29 113.20 3.64 35.98

Comb 4.86 0.15 3.88 0.50 3.92 11.90 3.86 44.85 4.13 14.35
50 MT 14.22 0.55 14.25 1.10 15.99 10.40 16.59 34.90 15.26 11.74

DZ 5.65 0.05 5.70 0.50 5.11 8.65 5.38 33.45 5.46 10.66
BF 4.23 0.75 4.34 2.15 3.29 33.90 3.16 128.75 3.76 41.39

Comb 3.77 0.10 3.80 0.60 3.47 9.35 3.50 34.90 3.64 11.24
AVG MT 14.35 0.43 14.42 0.90 15.19 11.08 14.94 40.08 14.72 13.13

DZ 5.92 0.10 6.06 0.47 5.73 9.05 5.90 35.70 5.90 11.33
BF 4.16 0.52 3.91 1.47 3.40 27.05 3.38 106.87 3.71 33.98

Comb 4.35 0.15 3.87 0.58 3.63 11.78 3.59 44.48 3.86 14.25
4 10 MT 5.49 1.25 5.67 0.55 5.39 12.45 5.44 47.60 5.50 15.46

DZ 3.33 0.20 3.01 0.55 3.31 9.25 3.18 36.45 3.21 11.61
BF 2.52 0.25 2.21 0.75 2.10 19.50 1.93 76.95 2.19 24.36

Comb 2.16 0.15 1.57 0.55 1.40 14.20 1.32 59.40 1.61 18.58
30 MT 8.39 0.90 9.05 2.60 8.54 15.50 8.61 52.50 8.65 17.88

DZ 3.75 0.20 3.93 0.30 4.28 9.60 4.25 37.40 4.05 11.88
BF 2.29 0.55 2.45 1.65 2.61 34.70 2.71 133.50 2.52 42.60

Comb 2.01 0.40 2.04 0.70 2.00 15.00 1.97 58.40 2.00 18.63
50 MT 9.79 0.25 10.68 0.95 10.16 17.75 10.33 53.05 10.24 18.00

DZ 3.27 0.25 3.46 0.40 4.11 9.85 3.97 38.20 3.70 12.18
BF 2.03 1.00 2.20 2.75 2.60 47.30 2.46 178.20 2.32 57.31

Comb 2.36 0.20 1.98 0.80 1.99 15.10 1.96 58.90 2.07 18.75
AVG MT 7.89 0.80 8.47 1.37 8.03 15.23 8.13 51.05 8.13 17.11

DZ 3.45 0.22 3.47 0.42 3.90 9.57 3.80 37.35 3.66 11.89
BF 2.28 0.60 2.29 1.72 2.44 33.83 2.37 129.55 2.34 41.43

Comb 2.18 0.25 1.86 0.68 1.80 14.77 1.75 58.90 1.90 18.65

Table 1: Gap values and CPU times (ms) for instances of each size and of each type

Type MT DZ BF Comb Max(BF. Comb)
best gap best gap best gap best gap best gap

1 1.25 3.27 24.58 0.43 74.58 0.23 10.42 0.49 85.00 0.21
2 4.58 7.09 7.08 5.03 32.92 2.85 61.67 2.60 93.33 2.16
3 1.67 14.72 5.42 5.90 51.25 3.71 46.25 3.86 95.42 3.06
4 1.25 8.13 0.42 3.66 18.33 2.34 80.00 1.90 98.33 1.82

Overall 2.19 8.30 9.38 3.75 44.27 2.29 49.58 2.21 93.02 1.81

Table 2: The best heuristics and the average gap values

30

