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BY THE EQUIVALENT SECTION METHOD 

  

   

Mauro Schulz Maria Paola 
Santisi d’Avila  

   

Summary 

This research investigates the analysis of reinforced concrete beams subjected to combined 
axial load, bending moment and shear force. Cross-sections of general shape are divided, 
along the height, into plane elements. The biaxial behavior is represented according to the 
smeared rotating crack approach. Using traditionally accepted hypotheses for beams, the 
shear flow is determined by applying the Jouravski formula to an “equivalent section”, 
which takes into account the nonlinear material behavior. The “Equivalent Section 
Method”, originally proposed by Diaz (1980) and Diaz and Schulz (1981), is improved and 
simplified.  

The formulation is implemented applying the bidimensional constitutive model A, 
proposed by Vecchio and Collins (1993). The tension-stiffening effect is considered as 
adopted by Polak and Vecchio (1993). Shear slip at crack surfaces, Poisson‟s ratio and 
other secondary effects are not considered. Validation is undertaken by comparison with 
experimental results obtained by other researchers. The examples include reinforced and 
prestressed concrete beams, for normal and high strength concrete. The formulation 
satisfactorily predicts the ultimate capacity under different load combinations. The whole 
set of equilibrium, compatibility and constitutive equations are satisfied, the stiffness 
derivatives are explicitly calculated and the algorithms show good convergence. 

Keywords: Beams, reinforced concrete,  shear strength, structural design 
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1 Introduction 

The design of reinforced concrete members is traditionally based on different models for flexure 
and shear, even though shear forces interact with bending moments and axial loads. 

Diaz (1980) proposed the concept of “equivalent section” and Diaz and Schulz (1981) 
developed a solution for reinforced concrete sections of general shape, submitted to axial load, 
bending moment and shear force. The method does not require the analysis of two close sections 
and the shear flow is determined by applying the Jouravski formula to the “equivalent section”. 
Bentz (2000) presented a different numerical method that no longer requires the calculation of two 
sections, using other simplifying hypotheses. 

The discussion here is limited to small displacements. As characteristic of a beam 
formulation, disturbed states of deformation at load application points and boundaries are not taken 
into account. The geometrical characteristics are considered constant along the beam and the 
stirrups lay in planes that are orthogonal to the longitudinal axis. The following hypotheses are 
introduced at the outset: 1. Eventual cracks are considered uniformly distributed and concrete 
stresses and strains are stated as continuous and derivable functions; 2. No slip is considered 
between concrete and reinforcing bars. Increments of steel and concrete strains are assumed to be 
equal on an average basis; 3. The beam can be analyzed according to a plane stress simplification; 
4. The resultant of concrete and steel stresses in the transverse direction is small and, hence, 
neglected;  5. The principal directions of concrete stresses and strains are considered coincident;   
6. Cross-sections remain plane after deformation; 7. In the interest of simplifying the formulation, 
normal forces are assumed to be constant along the beam and no forces are applied on the boundary 
of the cross-section.  

2 Reinforced concrete element 

Consider a beam with an arbitrary cross-section (Fig. 1). Tensile strains and stresses are positive. 
Concrete is assumed to be a continuous and uniform medium (hypothesis 1). The concrete strain 

vector ε  at a level z  is defined by   T

x z xz   ε  where 
x  and 

z  are the normal strains in 

x- and z-directions. The shear strain is denoted by 
xz . 

According to hypothesis 2, the slip between steel bars and concrete is neglected. The stirrups 
lay in the y z -plane to simplify the formulation. However, the stirrup legs may be inclined to the 

z -axis at an angle w . The strains 
sx  and 

sw , respectively of the longitudinal and transverse 

reinforcements, are determined by 0sx x sx      and 2cossw z w   . The strain 0sx  represents 

the residual strain of pre-tensioned or bonded post-tensioned tendons, which is calculated 
considering the tensioning operations, mobilized loading and prestressing losses.  

The concrete stress vector at a level z  is   T

x z xz   σ . It is assumed that the 

concrete stress components y , yz  and xy  are approximately zero (hypothesis 3). The stress 

components x , z  and 
xz  at a point are independent of y , i.e., they do not vary through the 

thickness. The reinforcement stress vector 
sσ  is expressed by  0

T

s sx sw  σ , where 
sx  

and sw  are the stresses of the longitudinal and transverse reinforcements. The vector f  of the 

axial forces xf  and zf  per unit length and shear flow xzf  in the reinforced concrete element is 

equal to 

  T

x z xz s sf f f b  f σ a σ  (1) 
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Fig. 1 Coordinate system Fig. 2 Cross-section 

As characteristic of a beam formulation, it is assumed 0zf   (hypothesis 4). The web thickness b  

and steel area matrix 
sa vary according to z-coordinate. The last is defined by 

0 0

0 cos 0

0 0 0

sx

s sw

a

a w

     
a  (2) 

where 
sxa  is the area of the longitudinal reinforcement per unit z -length and 

swa  is the area of 

transverse reinforcement per unit x -length, considering the total number of legs. The 
reinforcement areas can be equal to zero. 

Although several approaches for modeling the nonlinear behavior of reinforced 
concrete could be adopted, including path-dependent and irreversible processes, a simple 
hyperelastic stress-strain relationship is implemented. This procedure is usually considered 
simple and adequate for the limit analysis of reinforced concrete cross-sections under 
monotonic loadings. Assuming the coincidence of the principal directions (hypothesis 5), 
the concrete stress-strain relationship is expressed by 12 12 12( )σ σ ε  where strain and stress 

vectors 12ε  and 12σ , in the principal coordinate system, are defined by  12 1 2 12

T   ε  

and  12 1 2 12

T   σ . Since shear stress 12  and strain 12  are null in the principal 

coordinate system, the constitutive functions are replaced by: 

   1 1 1 2 2 2 1 2, ,           (3)a,b 

The angle   is defined as the inclination of the principal compressive direction 2x  with respect to 

the x -axis The maximum and minimum principal strains, 1  and 2 , as well as the principal 

direction  , are computed through standard compatibility relations.  
Considering the coincidence of the principal directions, concrete strains and stresses are 

transformed according to the following expressions: 

12 12

T ε T ε σ T σ  (4)a,b 

The rotation matrix T  is defined by 
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2 2

2 2

2 2

sin cos sin cos

cos sin sin cos

2 sin cos 2 sin cos cos sin

                    
T  (5) 

The solution of nonlinear problems demands linearized incremental equations. An increment 
of stress 

12σ  is related to an increment of strain 
12ε  according to 

12 12 12  σ E ε  (6) 

11 12

12 21 22

12

0

0

0 0

E E

E E

G

     
E  (7) 

Equations (3) to (5) define a rotating orthotropic model steered by the principal direction  . 
Since the constitutive functions (3) are sufficient to relate any state of strain to the corresponding 
stresses, they must also be sufficient to define the tangent constitutive matrix 12E , which is not 

necessarily symmetric. The  elasticity moduli of concrete i jE   , 1, 2, 3i j   and the tangent 

shear modulus  12G  are given by 

ij i jE                              (8) 

   12 2 1 2 12 ( )G         (9) 

Derivatives (8) are established according to the constitutive equations (3). Expression (9) is proved 
for the general three-dimensional case by Schulz and Santisi d'Avila (2010). The relation between 
stress and strain increments in the xz  coordinate system is expressed by 

  σ E ε  (10) 

where the tangent constitutive matrix of concrete, E , is 
12

TE T E T . 

The constitutive equations of the longitudinal and transverse reinforcements are 
( )sx sx sx     and ( )sw sw sw    . The following equation establishes the relation between the 

increment of the steel stress vector sσ  and the strain increment ε : 

s s  σ E ε  (11) 

The tangent constitutive matrix of reinforcement sE  is defined by 

2

0 0

0 cos 0

0 0 0

sx

s sw

E

E w

      
E  (12) 

sxE  and swE  are the tangent stiffness of longitudinal and transverse bars. Using (1), (10) 

and (11), the increment  f  of total internal forces per unit length in reinforced concrete is 

  f C ε  (13) 

where the tangent constitutive matrix C  of the reinforced concrete element in xz  
coordinates is expressed by s sb C E a E . 
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3 Reinforced concrete cross-section 

According to hypothesis 7, the applied loads per unit length are assumed to be zero. The 
differential equilibrium equations of the reinforced concrete element are expressed by 

* 0x xzf f    (14) 

* 0xz zf f    (15) 

In equations (14), (15) and in the following, the prime    and the star    denote, respectively, 

partial derivatives of a function with respect to x   x   and z   z  . Hypothesis 4 

 0zf  and equation (15) yield 0zf   , * 0zf   and 0xzf   .  

Expression (13) can be expanded according to the following expression: 

11 12 13

21 22 23

31 32 33

x x

z z

xz xz

f c c c

f c c c

f c c c

                        
 (16) 

When 0z xzf f    , expression (16) reduces to 

x xf D b    (17) 

where the equivalent uniaxial elasticity modulus D  of the reinforced concrete element is  

 13 22 31 12 23 31 13 21 32 11 23 32 12 21 33 11 22 33

23 32 22 33

c c c c c c c c c c c c c c c c c c
D

b c c c c

       (18) 

Equation (17) define xf   as 

x xf D b    (19) 

According to hypothesis 7, the shear flow 
xzf  is zero at the boundary 

Az z . Integrating 

(14) and applying (19) yields 

  d d
A A

z z

xz x x
z z

f z f z D b z        (20) 

As stated in hypothesis 6, plane sections remain plane after deformation. The longitudinal 
strain x  is linearly interpolated by 

T

x x xe k z    p e  (21) 

where 
xe  is the longitudinal strain at 0z   and 

xk  is the curvature of the cross-section. 

The position vector p  and the vector of generalized strains e  are defined by  1
T

zp  

and   T

x xe ke . The derivative of (21) with respect to x  gives 

T

x
   p e  (22) 

where e  is the vector of the derivatives of the generalized strains, expressed by   T

x xe k  e . 

Substituting (22) in (20) yields 
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   T

xzf z z  S e  (23) 

where  zS  is a vector defined by 

     1 d
A

zT

z
z

z S z S z D b z     S p  (24) 

An equivalent cross-section is constructed by multiplying, at each level z , the reinforced concrete 

section db z  and the equivalent uniaxial modulus D  (Fig. 3). The parameters  1S z  and  zS z  

represent the equivalent area of the cross-section, between 
Az  and z , and the corresponding first 

moment with respect to the y -axis, both with opposite signs.  
 

 
Fig. 3 The Equivalent Section 

The vector F  of the generalized stresses and its derivative are respectively expressed by 

  d
B

A

zT

x
z

N M f z  F p  (25) 

 0 d
B

A

zT

x
z

V f z   F p  (26) 

The derivative of the normal force N  is zero, as stated in hypothesis 7. The derivative of the 
bending moment M  is the shear force V . Substituting (19) and (22) in equation (26) yields 

 F K e  (27) 

The stiffness matrix K  of the cross-section is defined by 

11 1

1

d
B

A

z
T z

z
z zz

I I
D b z

I I
     K p p  (28) 

where the stiffness parameters mnI  are respectively equal to d
B

A

z

mn
z

I m n D b z  . The shear flow 

xzf  and derivatives of the generalized strains e  are determined using (23) and (27). It is possible 

to select a principal coordinate system such that the stiffness matrix K  becomes diagonal. 
Specifying the coordinate axis Gz z z  , such that 1 11G zz I I  is the z -coordinate of the 

barycenter, yields 0e   and z zk V I  . Equations (23) and (27) simplify to the Jouravski 

formula 



Proceedings                                                                                                         fib Symposium PRAGUE 2011 
ISBN 978-80-87158-29-6                                                                                                     Session XXX: YYY 

 

 7 

   xz z zzf z V S z I  (29) 

 zS z  is the first moment, with an opposite sign, of the equivalent area between 
Az  and z . The 

principal moment of inertia of the “equivalent section” is 
zzI . The “equivalent section” helps not 

only to determine but also to understand the shear flow in cross-sections of nonlinear materials. 
The shear stresses remain constant when the tangent modulus D  is equal to zero. The shear flow in 
the extreme fibers is equal to zero when plastic materials reach their maximum capacity to carry 
longitudinal stresses. 

4 Material behaviour 

The constitutive model A suggested by Vecchio and Collins (1993) is adopted for implementation. 
In model A, the softening effect in tension-compression state is expressed as a function of the ratio 

1 2  , where 
1  and 

2  are the principal tensile and compressive strains, respectively. The 

tension-stiffening effect is represented as proposed by Polak and Vecchio (1993). Shear slip at 
crack surfaces, Poisson‟s ratio and other secondary effects are not considered. Other details are 
discussed by Schulz and Santisi d„Avila (2010). The terms i jE , defined in (8), are determined by 

the following expression: 

1 2

1 2

i i
ij

j j j

E
              

 (30) 

where  1 2,    is the tension-softening coefficient. The derivatives in (30), are analytically 

presented by Santisi d'Avila (2008).  

5 Numerical procedure 

The computational solution is implemented by dividing the cross-section, along the height, 
into a sufficient number of plane elements. The following numerical procedure yields strains and 
stresses for a given set of internal forces: 
1. An iteration is started considering a shear flow 

xzf  along the height and a generalized strain 

vector e  (21). Both of the initial approximations can be equal to zero. 

2. At each layer, the terms  x z  (21),   0zf z   and  xzf z  are known. The terms  xf z , 

 z z  and  xz z  are determined using a secondary iterative process based on (16) which final 

step yields the equivalent uniaxial modulus D  (18). 
3. The process stops when the residual F  between the applied and the resisting internal forces 
F (25) is considered relatively small. The stiffness matrix K (28) and the derivative of the 
generalized strains e (27) yield a new approximation of the shear flow xzf  (23). Solving 

  F K e  yields the strain increment e  and a new approximation of the generalized strain 
vector e , restarting the main iterative process. The simultaneous update of the shear flow and 
generalized strains proves to be numerically efficient, although each estimation assumes that the 
other parameter is restrained.  
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6 Comparison with test data reported in the literature 

The proposed theory is verified through test results of beams with two symmetric point loads 
reported in the literature. ET1 to ET4 is a group of reinforced concrete beams tested by Leonhardt 
and Walter (1962), demonstrating that cross-section shape influences the shear capacity. Material 
and geometrical conditions are the same, but web widths vary. Although other secondary effects 
are not taken into account, the influence of the web thickness on stirrup stresses is detected and 
conservatively represented. 

 
Fig. 4 Beams ET1 to ET4 

The second group of specimens is selected from prestressed beams tested by Elzanaty, Nilson and 
Slate (1985). The I-beams (CW) and T-beams (CI) present concrete strengths varying between 40 
to 80 MPa (Fig. 5). The beams are divided into two groups: beams with stirrups and beams without 

stirrups. Two types of reinforcement are used: deformed bars  434 M Payf   and smooth wires 

of 6.4mm diameter  2 ‰ 380 M Paf  . Each beam contains four 7-wire low relaxation strands, of 

0.5 or 0.6 inch nominal diameter. The corresponding stress at 1% strain is approximately 1800 
MPa. The residual strains 0sx  of the strands are evaluated based on the effective prestress force 

pF  applied in each beam, as given by Elzanaty et al. (1985) by taking into account all losses that 

take place from the prestressing operation to testing.uM  and 
uV  indicate the ultimate bending 

moment and shear force. The shear reinforcement parameter   is defined by 

0.9 yw sw ud f A V  . The predicted ultimate loads are compared to the experimental data (Tab. 

1) and demonstrate good correlation. 



Proceedings                                                                                                         fib Symposium PRAGUE 2011 
ISBN 978-80-87158-29-6                                                                                                     Session XXX: YYY 

 

 9 

 
Fig. 5 Geometry of CI and CW prestressed beams 

 
Fig. 6 Ultimate analysis 

Tab. 1 Predicted and observed capacity 
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7 Conclusions 

This research presents a procedure for the analysis of reinforced concrete beams considering the 
simultaneous effect of axial load, bending moment. The shear flow is determined by applying the 
Jouravski formula to the “equivalent section”. The whole set of equilibrium, compatibility and 
constitutive equations is satisfied, the stiffness derivatives are explicitly calculated and the 
algorithms show good convergence. The validation of the proposed model is undertaken by 
comparison with experimental results obtained by other researchers. The examples confirm that the 
theory is able to accurately model the behaviour or reinforced concrete beams. The “equivalent 
section” helps not only to determine but also to understand the shear flow in cross-sections of 
nonlinear materials. The shear stresses remain constant when the tangent modulus D  is equal to 
zero. The shear flow in the extreme fibers is equal to zero when plastic materials reach their 
maximum capacity to carry longitudinal stresses. The “equivalent section” is a powerful and 
practical tool for advanced reinforced concrete design. 
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