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Summary

This research investigates the analysis of reinforced concrete beams subjected to combined
axial load, bending moment and shear force. Cross-sections of general shape are divided,
along the height, into plane elements. The biaxial behavior is represented according to the
smeared rotating crack approach. Using traditionally accepted hypotheses for beams, the
shear flow isdetermined by applying the Jouravski formula to an “equivalent section”,

which takes into account the nonlinear material behavior. The “Equivalent Section
Method”, originally proposed by Diaz (1980) and Diaz and Schulz (1981), is improved and
simplified.

The formulation is implemented applying the bidimensional constitutive model A,
proposed by Vecchio and Collins (1993). The tension-stiffening effect is considered as
adopted by Polak and Vecchio (1993). Shear slip at crack surfaces, Poisson’s ratio and
other secondary effects are not considered. Validation is undertaken by comparison with
experimental results obtained by other researchers. The examples include reinforced and
prestressed concrete beams, for normal and high strength concrete. The formulation
satisfactorily predicts the ultimate capacity under different load combinations. The whole
set of equilibrium, compatibility and constitutive equations are satisfied, the stiffness
derivatives are explicitly calculated and the algorithms show good convergence.
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1 Introduction

The design of reinforced concrete members is traditionally based on diffeoelels for flexure
and shear, even though shear forces interact with bending moments and axial loads.

Diaz (1980) proposedhe concept of “equivalent sectichand Diaz and Schulz (1981)
develomd a solution for reinforced concrete sections of general shape, submitted tooasial |
bending moment and shear force. The method does not require the analysis of évaecliofns
and the shear flow is determined by applying kbravski formula to the “equivalent setfon”.
Bentz (2000) preseadl a different numerical method that no longer requires the calculation of two
sections, using other simplifying hypotheses.

The discussion here is limited to small displacements. As characteristic befara
formulation, disturbed states of deformation at load application points and biesrate not taken
into account. The geometrical characteristics are considered constant along thanbetim
stirrups lay in planes that are orthogonal to the longitudinal axis. The folldwipgtheses are
introduced at the outset: 1. Eventual cracks are considered uniformly distributed areteconc
stresses and strains are stated as continuous and derivable furittidles slip is considered
between concrete and reinforcing bars. Increments of steel and concrete strains are adseimed to
equal on an average basis; 3. The beam can be analyzed according to a plane sifesgismpl
4. The resultant of concrete and steel stresses in the transverse directwall iansl, hence,
neglected; 5. The principal directions of concrete stresses and strains are considergentoi
6. Cross-sections remain plane after deformation; 7. In the interest of simpthgrigrmulation,
normal forces are assumed to be constant along the beam and no forces are applied on the boundary
of the cross-section.

2 Reinforced concrete element

Consider a beam with an arbitrary cross-sectiég. (1). Tensile strains and stresses are positive.
Concrete is assumed to be a continuous and uniform medium (hypothesis 1). The concrete strain

vectore at alevelz is defined bye =[e, «, yxz]T wheree ande, are the normal strains in
x- andz-directions. The shear strain is denotedyby.

According to hypothesis 2, the slip between steel bars and concrete is neglectedrufise stir
lay in the y z-plane to simplify the formulation. However, the stirrup legs may be inctiméioe

z-axis at an anglev . The strainse_, and ¢_,, respectively of the longitudinal and transverse

w !
reinforcements, are determined by =¢,+¢_, ande_, = ¢ ,cos’ w. The straine_, represents

the residual strain of pre-tensioned or bonded post-tensioned tendons, which is echlculat
considering the tensioning operations, mobilized loading and prestressing losses.

The concrete stress vector at a lewelis 6 =[c, o, = ]T. It is assumed that the

z Xz

concrete stress components, t,, and t,, are approximately zero (hypothesis 3). The stress

yz

componentss , o, andt , at a point are independent ¢f, i.e., they do not vary through the

thickness. The reinforcement stress veeigris expressed by =[c,, o O]T , Whereo

SX sSw

and o, are the stresses of the longitudinal and transverse reinforcements. Taref vexdtthe

axial forces f,_ and f, per unit length and shear flo,, in the reinforced concrete element is
equal to

f=[f, f, f,] =bo+a, (1)

z
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Fig.1 Coordinate system Fig. 2 Cross-section

As characteristic of a beam formulation, it is assunfied 0 (hypothesis 4). The web thicknelss
and steel area matrix_ vary according t@-coordinate. The last is defined by

[a,, 0 0]
a_=l0 a_ cosw o 2
0 0 0

where a_, is the area of the longitudinal reinforcement per unilength anda_, is the area of

transverse reinforcement per unit -length, considering the total number of legs. The
reinforcement areas can be equal to zero.

Although several approaches for modeling the nonlinear behavior of reinforced
concrete could be adopted, including path-dependent and irreversible processes, a simple
hyperelastic stress-strain relationship is implemented. This procedure is usually considered
simple and adequate for the limit analysis of reinforced concrete cross-sections under
monotonic loadings. Assuming the coincidence of the principal directions (hypothesis 5
the concrete stress-strain relationship is expressed,bys , (s,,) where strain and stress

T

vectorsg,, ande,,, in the principal coordinate system, are definedhy-[s, ¢, 7v,,]

12
and e, =[o, rlz]T. Since shear stress, and strainy,, are null in the principal
coordinate system, the constitutive functions are replaced by:

G,

6,=0, (81782) 62:02(81’82) (3)a,b

The angle6 is defined as the inclination of the principal compressive directiowith respect to

the x -axis The maximum and minimum principal strairs, and ¢,, as well as the principal

2 )
direction 6 , are computed through standard compatibility relations.

Considering the coincidence of the principal directjoroncrete strains and stresses are
transformed according to the following expressions:

g,=Te 6=T o, (4)a,b

The rotation matrixt is defined by
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T= i cos’ 0 sir’ 0 — si co® I (5)

| 2sin6 cos - 2siM cos cd9 - sfrﬁJ

The solution of nonlinear problems demands linearized incremental equations. Areimicrem
of stressAe,, is related to an increment of straiz,, according to

Ao, =E Az, (6)
|—E11 E., 01
E12 = | E21 Ezz 0 | (7)

L 0 0 G12J

Equations (3) to (5) define a rotating orthotropic model steered by tiepaii directione .
Since the constitutive functions (3) are sufficient to relate any state of stithia torresponding

stresses, they must also be sufficient to define the tangent constitutive Egtr which is not
necessarily symmetric. The elasticity moduli of concrgte (i,j =1,2,3) and the tangent

shear modulusG,, are given by
E, = o, [0s, (8)

G12:[62_61]/[2(82_81)] (9)

Derivatives (8) are established according to the constitutive equations (3).op&3 is proved
for the general three-dimensional case by Schulz and Santisi d'Avila (2010). Tioa teddween
stress and strain increments in the coordinate system is expressed by

Ao =E Ag (10)

where the tangent constitutive matrix of concr&@ejs E=T ' E,, T .
The constitutive equations of the longitudinal and transverse reinforcements are
o,=o0.(e,) ando_, =0 _[(c,.) - The following equation establishes the relation between the

increment of the steel stress vectas . and the strain incremenmie :
Ac_=E As (11)

The tangent constitutive matrix of reinforcementis defined by

e, o 0
E, = | o E,. COS W ol (12)
L 0 0 OJ

E., and E_, are the tangent stiffness of longitudinal and transverse bars. Using (1), (10)
and (11), the incrememntf of total internal forces per unit length in reinforced concrete is

Af =C Az (13)

where the tangent constitutive matrix of the reinforced concrete element e
coordinates is expressed By= bE +a_E _.
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3 Reinforced concrete cross-section

According to hypothesis 7, the applied loads per unit length are assumedeoobd he
differential equilibrium equations of the reinforced concrete element are expressed by

f/l+f =0 (14)

X

fl+f =0 (15)

In equations (14)(15) and in the following, the prime) and the star ) denote, respectively,
partial derivatives of a function with respect to (6/0x) and z (&/6z). Hypothesis 4
(f, = 0)and equation (15) yield /=0, f, =0 and f/ = 0.

Expression (13) can be expanded according to the following expression:

[Af, T Tey ¢, ¢l As, ]
laf I=lc, ¢, c.ll ac | (16)

z 21 22 23 z
LAfXZJ Lcﬂ Cs, cgJ LASXZJ
When Af, = Af =0, expression (16) reduces to
Af =DbAe, 17)
where the equivalent uniaxial elasticity moduldsof the reinforced concrete element is

c,C,C Cc,C,,C c,;C,,C

31 21 32 011C2303'é‘ C12C21C33 C1,C5C

D= 13 “22 Y31 “12 V23 11 722 (18)
b(CZB C32 C22 C33)
Equation (17) definef | as
f/=Dbe/ (19)

According to hypothesis 7, the shear flofy, is zero at the boundary = z, . Integrating
(14) and applying (19) yields

:—j fidz=~- ‘ Db dz (20)

As stated in hypothesis 6, plane sections remain plane after deformation. Theadioabit
straine, is linearly interpolated by

e,=e +k z=p'e (21)
where e _ is the longitudinal strain at=0 and k, is the curvature of the cross-section.
The position vectop and the vector of generalized strainsare defined by =[1 z]'
ande=[e, kx]T . The derivative of1) with respect tox gives

e =pe (22)

where e’ is the vector of the derivatives of the generalized strains, expressed- by, k;]T :
Substituting (22) in (20) yields
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f(z)=S(z)¢€ (23)

whereS( z) is a vector defined by

T z
S(z)=[s(2 (¥ =-[p Db (24)
An equivalent cross-section is constructed by multiplying, at each teviie reinforced concrete
sectionbdz and the equivalent uniaxial modulis (Fig. 3). The parameters, ( z) and S, ( z)

represent the equivalent area of the cross-section, betwyeand z, and the corresponding first
moment with respect to the -axis, both with opposite signs.

Cross- Equivalent
. 8X CSX CSSX . XZ
section section
o o

N AN

Fig. 3 The Equivalent Section

The vectorF of the generalized stresses and its derivative are respectively expressed by
F=[N M] =["pfdz (25)
F'=[0 V]szzsp f/dz (26)

The derivative of the normal forc&l is zero, as stated in hypothesis 7. The derivative of the
bending momenM is the shear force . Substituting 19) and @2) in equation (26) yields

F'—K e (27)
The stiffness matriXX of the cross-section is defined by
K :J'ZBprdez=[:11 :121 (28)
Za z1 2z

where the stiffness parametars, are respectively equal th, = j “mn D bdz. The shear flow

f , and derivatives of the generalized strasare determined using (23) and (27). It is possible
to select a principal coordinate system such that the stiffness matrikecomes diagonal.
Specifying the coordinate axi = z— z, such thatz, = 1,,/1,, is the z-coordinate of the
barycenter, yieldse'=0 and E’zv/lﬁ. Equations (23) and2{) simplify to the Jouravski
formula
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f.(Z)=VsS(2/ L, (29)

S, (z) is the first moment, with an opposite sign, of the equivalent area beftyeand z . The

principal moment of inertia of th&equivalent section” is |, . The“equivalent section” helps not

only to determine but also to understand the shear flow in cross-sections of nomiateeals.
The shear stresses remain constant when the tangent maduasusqual to zero. The shear flow in
the extreme fibers is equal to zero when plastic materials reach their maxepacity to carry
longitudinal stresses.

4  Material behaviour

The constitutive model Auggested by Vecchio and Collins (1993) is adopted for implementation.
In model A, the softening effect in tension-compression state is expressechasanfof the ratio

e,/e,, whereg, and g, are the principal tensile and compressive strains, respectively. The

tension-stiffening effect is represented as proposed by Polak and Vecchio (1998)sliphat
crack surfaces, Poisson’s ratio and other secondary effects are not considered. Other details are

discussed by Schulz and Santisi d‘Avila (2010). The termsE_ , defined in (8), are determined by
the following expression:

ij

dc, Oc, (0B 0g, OP Ot,)
_—+_—

’ 30
T oe, 8BL881881 aazaejJ (30)

where B(e,,¢,) is the tension-softening coefficient. The derivatives 30),(are analytically
presented by Santisi d'Avila (2008).

5 Numerical procedure

The computational solution is implemented by dividing the cross-section, along the height
into a sufficient number of plane elements. The following numerical procedelds \dtrains and
stresses for a given set of internal forces:

1. An iteration is started considering a shear fléy along the height and a generalized strain
vectore (21). Both of the initial approximations can be equal to zero.
2. At each layer, the terms, (z) (21), f,(z)=0 and f_(z) are known. The termd& (z),

e,(z) andy,,(z) are determined using a secondary iterative ggsisased on (16) which final

step yields the equivalent uniaxial modulDbs(18).
3. The process stops when the residaBl between the applied and the resisting internal forces
F (25) is considered relatively small. The stiffness matkix(28) and the derivative of the

generalized straing’ (27) yield a new approximation of the shear flofy, (23). Solving
AF = K Ae yields the strain incremente and a new approximation of the generalized strain

vector e, restarting the main iterative prasThe simultaneous update of the shear flow and
generalized strains proves to be numerically efficient, although each estimationeasthat the
other parameter is restrained.
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6 Comparison with test datareported in theliterature

The proposed theory is verified through test results of beams with two etyimmoint loads
reported in the literature. ET1 to ET4 is a group of reinforced concrete beamashigdteonhardt
and Walter (1962), demonstrating that cross-section shape influences the shear. ddptmigl
and geometrical conditions are the same, but web widths vary. Although other secdfetdsy
are not taken into account, the influence of the web thickness on stirrup stsedstected and
conservatively represented.

ET1 P2 P/2
< A A
é § 030 || (I LI
S “ B4-B7 B14-B17
M O.ZQ(L_ 0.50 0.50 _(LQQO
ET2 1105 1.05
: jg 3.00m
=RE= S
ey 2 350
s 0.15 E | L
= 300 A y /= /
ET3 = /7
o o < /! /
glo| 5 jo. £ 250 // |
& < = / !
“ls D %// ! /
s 0.10 ] / h
IS a—" Z 200 i iaw
o ayan
ET4 %] /] ] /
. jﬁ £ 150 7+ 7
g < 005 g 100 / // /
L : Vi
Upper bars: ¢ 8§ mm 50 Y74 Fara ///
Lower bars: ¢ 20 mm ) J
Stirrups: ¢ 6 each 0.11 m  ( e === L=
f.=26.2 MPa i N e
. -50
—— Predicted results 0 60 120 180 240 300
-——- Experimental results Load P[kN]

Fig.4 Beams ET1to ET4

The second group of specimens is selected from prestressed beams tested by ElizoragndNi
Slate (1985). The I-beams (CW) and T-beams (CI) present concrete strengths beryieen 40
to 80 MPa Fig. 5). The beams are divided into two groups: beams with stirrups and beams without

stirrups. Two types of reinforcement are used: deformed (bﬁa}rs 434 M Pa) and smooth wires

of 6.4mm diamete( f,, ~380M Pa) . Each beam contains four 7-wire low relaxation strands, of

0.5 or 0.6 inch nominal diameter. The corresponding stress at 1% strain is apprgxir@ace!
MPa. The residual strains,, of the strands are evaluated based on the effective prestress force

F, applied in each beam, as given by Elzanaty et al. (1985) by taking into aattdosses that
take place from the prestressing operation to tesdingand V, indicate the ultimate bending
moment and shear force. The shear reinforcement paramgteris defined by
x=0.9d f, ASW/Vu . The predicted ultimate loads are compared to the experimentalTadita (
1) and demonstrate good correlation.
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CW
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Fig.5 Geometry of Cl and CW prestressed beams
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Fig. 6  Ultimate analysis

Tab. 1 Predicted and observed capacity

Beams without stirrups

Sp. ; v y v, PRE‘./D](TED Sp. f( v v, PR.‘E;ICTED
[MPa]] [kN] | [%] [%] [MPa]] [kN] [%]

CIno | 73.1 | 141 49 91-95 CI2 765 116 74-79
CIl1 5581 127 | 54 98-102 Cl4 78.6 1 109 82-86
CI12 | 400 ) 122 ]| 57 98-102 CI5 7791 120 66-73
Cli3 | 724 ) 155 ] 45 89-92 Cl6 7791 89 74-88
Cli4 | 738 ) 165 ] 42 100-102 CI7 7761 8l 76-94
CIl5 | 703 | 121 58 94-100 CI8 41401 85 76-81
CIl6 | 73.1 | 163 | 46 107-110 CI9 61.0 | 87 74-86
CIl7 | 69.6 | 129 | 21 78-87 Cw2 | 765 | 125 79-80
CWIO J 73.1 | 173 ] 45 86-92 CwW4 | 78.6 ) 127 80-81
CWII | 558 | 157 | 50 92-97 CW5 | 7791 124 76-78
CWI2 | 400 | 141 55 98-103 Cwe | 779 | 112 75-77
CWI3 | 724 | 182 ] 43 92-97 CW7 | 77.6 ] 106 78-80
CWIi4 | 73.8 | 188 | 41 102-106 CWS8 | 4141 90 81-83
CWI5 ] 703 ] 150 | 52 97-101 CW9 [ 61.0 | 101 78-80
CWI6 | 73.1 | 187 | 44 99-104

CWI17 | 69.6 | 142 1 21 73-84
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7 Conclusions

This research presenasprocedure for the analysis of reinforced concrete beams considering the
simultaneous effect of axial load, bending moment. The shear flow is deteroyiragaplying the
Jouravsk formula to the “equivalent section”. The whole set of equilibrium, compatibility and
constitutive equationsgs satisfied, the stiffness derivatives are explicitly calculated and the
algorithms show good convergence. The validation of the proposed model is undertaken by
comparison with experimental results obtained by other researchers. The examfiesthat the

theory is able to accurately model the behaviour or reinforced concrete beanieqdikelent
section” helps not only to determine but also to understand the shear flow in cross-sections of
nonlinear materials. The shear stresses remain constant when the tangent modsilaqual to

zero. The shear flow in the extreme fibers is equal to zero when plastic matesieths their
maximum capacity to carry longitudinal stresses. Téguivalent section” is a powerful and
practical tool for advanced reinforced concrete design.
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