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, is improved and simplified.

. Shear slip at crack surfaces, Poisson"s ratio and other secondary effects are not considered. Validation is undertaken by comparison with experimental results obtained by other researchers. The examples include reinforced and prestressed concrete beams, for normal and high strength concrete. The formulation satisfactorily predicts the ultimate capacity under different load combinations. The whole set of equilibrium, compatibility and constitutive equations are satisfied, the stiffness derivatives are explicitly calculated and the algorithms show good convergence.

Introduction

The design of reinforced concrete members is traditionally based on different models for flexure and shear, even though shear forces interact with bending moments and axial loads. [START_REF] Diaz | Dimensionamento à esforço cortante[END_REF] proposed the concept of "equivalent section" and Diaz and Schulz (1981) developed a solution for reinforced concrete sections of general shape, submitted to axial load, bending moment and shear force. The method does not require the analysis of two close sections and the shear flow is determined by applying the Jouravski formula to the "equivalent section". [START_REF] Bentz | Sectional analysis of reinforced concrete members[END_REF] presented a different numerical method that no longer requires the calculation of two sections, using other simplifying hypotheses.

The discussion here is limited to small displacements. As characteristic of a beam formulation, disturbed states of deformation at load application points and boundaries are not taken into account. The geometrical characteristics are considered constant along the beam and the stirrups lay in planes that are orthogonal to the longitudinal axis. The following hypotheses are introduced at the outset: 1. Eventual cracks are considered uniformly distributed and concrete stresses and strains are stated as continuous and derivable functions; 2. No slip is considered between concrete and reinforcing bars. Increments of steel and concrete strains are assumed to be equal on an average basis; 3. The beam can be analyzed according to a plane stress simplification; 4. The resultant of concrete and steel stresses in the transverse direction is small and, hence, neglected; 5. The principal directions of concrete stresses and strains are considered coincident; 6. Cross-sections remain plane after deformation; 7. In the interest of simplifying the formulation, normal forces are assumed to be constant along the beam and no forces are applied on the boundary of the cross-section.

Reinforced concrete element

Consider a beam with an arbitrary cross-section (Fig. 1). Tensile strains and stresses are positive. Concrete is assumed to be a continuous and uniform medium (hypothesis 1). The concrete strain vector ε at a level z is defined by

  T x z xz     ε
where x  and z  are the normal strains in

x-and z-directions. The shear strain is denoted by xz  .

According to hypothesis 2, the slip between steel bars and concrete is neglected. The stirrups lay in the yz-plane to simplify the formulation. However, the stirrup legs may be inclined to the z -axis at an angle w . The strains sx  and sw  , respectively of the longitudinal and transverse reinforcements, are determined by

0 sx x sx      and 2 cos sw z w   
. The strain 0 sx  represents the residual strain of pre-tensioned or bonded post-tensioned tendons, which is calculated considering the tensioning operations, mobilized loading and prestressing losses. where sx a is the area of the longitudinal reinforcement per unit z -length and sw a is the area of transverse reinforcement per unit x -length, considering the total number of legs. The reinforcement areas can be equal to zero.

The concrete stress vector at a level

z is   T x z xz     σ . It
  T x z xz s s f f f b    f σ a σ (1) 
Although several approaches for modeling the nonlinear behavior of reinforced concrete could be adopted, including path-dependent and irreversible processes, a simple hyperelastic stress-strain relationship is implemented. This procedure is usually considered simple and adequate for the limit analysis of reinforced concrete cross-sections under monotonic loadings. Assuming the coincidence of the principal directions (hypothesis 5), the concrete stress-strain relationship is expressed by 12

()  σ σ ε
where strain and stress vectors 12 ε and 12 σ , in the principal coordinate system, are defined by

  12 1 2 12 T     ε and   12 1 2 12 T     σ
. Since shear stress 12  and strain 12  are null in the principal coordinate system, the constitutive functions are replaced by:

    1 1 1 2 2 2 1 2 , ,           (3)a,b
The angle  is defined as the inclination of the principal compressive direction 2

x with respect to the x -axis The maximum and minimum principal strains, 1  and 2  , as well as the principal direction  , are computed through standard compatibility relations.

Considering the coincidence of the principal directions, concrete strains and stresses are transformed according to the following expressions:

1 2 1 2 T  ε T ε σ T σ (4)a,b
The rotation matrix T is defined by 

                            T (5) 
The solution of nonlinear problems demands linearized incremental equations. An increment of stress 12  σ is related to an increment of strain [START_REF] Santisi D'avila | Design of reinforced concrete structures using the equivalent section method[END_REF] Equations ( 3) to ( 5) define a rotating orthotropic model steered by the principal direction  . Since the constitutive functions (3) are sufficient to relate any state of strain to the corresponding stresses, they must also be sufficient to define the tangent constitutive matrix 12 E , which is not

necessarily symmetric. The elasticity moduli of concrete ij E   , 1, 2, 3 ij 
and the tangent shear modulus 12 G are given by

ij i j E    (8)     12 2 1 2 1 2 ( ) G        (9) 
Derivatives ( 8) are established according to the constitutive equations (3). Expression ( 9) is proved for the general three-dimensional case by Schulz and Santisi d' Avila (2010). The relation between stress and strain increments in the xz coordinate system is expressed by

   σ E ε ( 10 
)
where the tangent constitutive matrix of concrete, E , is . The following equation establishes the relation between the increment of the steel stress vector s  σ and the strain increment  ε :

s s    σ E ε (11) 
The tangent constitutive matrix of reinforcement s E is defined by 

2 00 0 cos 0 0 0 0 sx s sw E Ew            E ( 12 
)
In equations ( 14), (15) and in the following, the prime    and the star    denote, respectively, partial derivatives of a function with respect to x   

x x z z xz xz f c c c f c c c f c c c                                   (16) When 0 z xz ff     , expression (16) reduces to x x f D b    (17) 
where the equivalent uniaxial elasticity modulus D of the reinforced concrete element is 

c c c c c c c c c c c c c c c c c c D b c c c c        (18) 
  dd A A zz xz x x zz f z f z D b z        (20) 
As stated in hypothesis 6, plane sections remain plane after deformation. The longitudinal strain x  is linearly interpolated by

T x x x e k z     pe (21)
where x e is the longitudinal strain at 0 z  and x k is the curvature of the cross-section.

The position vector p and the vector of generalized strains e are defined by   

  0 d B A z T x z V f z     F p (26) 
The derivative of the normal force N is zero, as stated in hypothesis 7. The derivative of the bending moment M is the shear force V . Substituting ( 19) and ( 22) in equation ( 26) yields

  F K e ( 27 
)
The stiffness matrix K of the cross-section is defined by Session XXX: YYY Sz is the first moment, with an opposite sign, of the equivalent area between A z and z . The principal moment of inertia of the "equivalent section" is zz I . The "equivalent section" helps not only to determine but also to understand the shear flow in cross-sections of nonlinear materials. The shear stresses remain constant when the tangent modulus D is equal to zero. The shear flow in the extreme fibers is equal to zero when plastic materials reach their maximum capacity to carry longitudinal stresses.

    xz z zz f z V S z I  (29)   z

Material behaviour

The constitutive model A suggested by Vecchio and Collins (1993) is adopted for implementation.

In model A, the softening effect in tension-compression state is expressed as a function of the ratio 12 , where 1  and 2  are the principal tensile and compressive strains, respectively. The tension-stiffening effect is represented as proposed by [START_REF] Polak | Nonlinear analysis of reinforced concrete shells[END_REF]. Shear slip at crack surfaces, Poisson"s ratio and other secondary effects are not considered. Other details are discussed by Schulz and Santisi d"Avila (2010). The terms ij E , defined in [START_REF] Schulz | Analysis of reinforced concrete shells with transverse shear forces[END_REF], are determined by the following expression: 

12 12 ii ij j j j E                   (30) 

Numerical procedure

The computational solution is implemented by dividing the cross-section, along the height, into a sufficient number of plane elements. The following numerical procedure yields strains and stresses for a given set of internal forces:

1. An iteration is started considering a shear flow xz f along the height and a generalized strain vector e (21). Both of the initial approximations can be equal to zero. 

  

F K e yields the strain increment  e and a new approximation of the generalized strain vector e , restarting the main iterative process. The simultaneous update of the shear flow and generalized strains proves to be numerically efficient, although each estimation assumes that the other parameter is restrained. 

Comparison with test data reported in the literature

The proposed theory is verified through test results of beams with two symmetric point loads reported in the literature. ET1 to ET4 is a group of reinforced concrete beams tested by Leonhardt and Walter (1962), demonstrating that cross-section shape influences the shear capacity. Material and geometrical conditions are the same, but web widths vary. Although other secondary effects are not taken into account, the influence of the web thickness on stirrup stresses is detected and conservatively represented. 

Conclusions

This research presents a procedure for the analysis of reinforced concrete beams considering the simultaneous effect of axial load, bending moment. The shear flow is determined by applying the Jouravski formula to the "equivalent section". The whole set of equilibrium, compatibility and constitutive equations is satisfied, the stiffness derivatives are explicitly calculated and the algorithms show good convergence. The validation of the proposed model is undertaken by comparison with experimental results obtained by other researchers. The examples confirm that the theory is able to accurately model the behaviour or reinforced concrete beams. The "equivalent section" helps not only to determine but also to understand the shear flow in cross-sections of nonlinear materials. The shear stresses remain constant when the tangent modulus D is equal to zero. The shear flow in the extreme fibers is equal to zero when plastic materials reach their maximum capacity to carry longitudinal stresses. The "equivalent section" is a powerful and practical tool for advanced reinforced concrete design.
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Fig. 6 Tab. 1

 61 Fig. 6Ultimate analysisTab. 1 Predicted and observed capacity

  

12