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Abstract

This research investigates the simultaneous efieéch-plane and transverse loads in
reinforced concrete shells. The infinitesimal skeddiment is divided into layers with triaxial
behavior that are analyzed according to the smeaatating crack approach. The transverse
shear strength of shell elements is associated tee@uivalent” surface, which takes into
account the nonlinear material behavior, usingiticathlly accepted hypotheses for shells.
The set of internal forces includes the derivatioethe in-plane components. Although some
simplifications are necessary to establish a prakfirst-order approximation, higher-order
solutions could be developed. The whole set of lggm, compatibility and constitutive
equations are satisfied, the stiffness derivatees explicitly calculated and the algorithms
show good convergence. The formulation yields thhethe-thickness distributions of
stresses and strains and the spatial orientationh@fconcrete struts. The formulation
satisfactorily predicts the ultimate capacity undéferent load combinations, agreeing with
experimental data obtained by other researcherthoddh comparative analysis with
additional experimental data is still necessarg fnoposed theory provides a promising
solution for the design of reinforced concrete kshel

Key-words
Shell structures; Reinforced concrete; Triaxiats$t Shear strength; Structural design.

1 Introduction

Reinforced concrete shell structures are widely leygal because they provide both
outstanding performance and architectural beauty design of reinforced concrete shells
involves the determination of reinforcement thatas necessarily arranged in the direction of
the principal internal forces. The mechanical madekt consider the entire set of in-plane
and out-of-plane forces, bending and twisting maiesis well as the spatial distribution of
stresses and strains.

After early investigations regarding the analydiseinforced concrete plates and shells,
Falconer (1956) establishes the equilibrium equatiof a plane stress element, considering
the axial forces of the reinforcement, placed io thfferent orientations, and a compression
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field of concrete stresses, the direction of whigmains statically indeterminate.

Using the plasticity approach, Nielsen (1964) d=firdesign equations for membrane
elements. Wood (1968) and Armer (1968) organizendas procedure for the flexural design
of reinforced concrete slabs. Baumann (1972a; bsiders membrane and flexural forces
simultaneously, by distributing the internal fordestween two plate elements at the upper
and lower faces of the shell. Each plate is andlyzeparately, using the compatibility
approach. Baumann evaluates the direction of thessof each membrane element by the
principle of minimum work, arriving at a linear-stec approximation of the general equation
later proposed by Mitchell and Collins (1974). Tio¢al reinforcement is minimized taken
into account the requirement of minimum secondainforcement. The shell design
procedure recommended by CEB and FIP (1982) appliestwo-plate approximation
together with the plasticity approach, to arriveaimple design method that is equivalent to
the compatibility formulation, where the contritari of the secondary reinforcement is
neglected.

The shell formulations discussed above are extelysiapplied, but they do have the
following limitations: the thickness and the levam of the upper and lower membrane
elements are not explicitly calculated, the maleréae not represented by nonlinear stress-
strain relationships and the beneficial effect$hef compression reinforcement are not taken
into account. Schnobrich (1977) reports early ajapilbns of multi-layered models in finite
element analysis of reinforced concrete structuvidti-layered models are used by Schulz
(1984) and Kirschner and Collins (1986) to verifyetpunctual response of reinforced
concrete shells to in-plane forces, and twisting #exural moments. The assumption that
plane sections remain plane in any direction yidlus biaxial strains of each layer. The
corresponding stresses are obtained by applyintin@an constitutive models.

The design of shells for transverse shear forcesves additional considerations. Schulz
(1988) and Marti (1990) assume that shear stressesdistributed according to the
corresponding principal direction, since no shearcd is acting perpendicularly. The
principal shear force, which is determined by thease root of the sum of the squares of the
components in any system of coordinates, is usea asference for simplified design
formulas.

Analytical models which consider flexural and she#ffiects simultaneously are also
investigated in the literature. Kirschner and Q@alli(1986) include out-of-plane shear by
dividing the reinforced concrete shell into thraeensional elements. Three-dimensional
constitutive relationships are applied assumingedeptly uniform stress distribution of
transverse shear stresses in the core of the gkabar (1989) and Adebar and Collins
(1994) analyze the punctual response of a sheathaié as subjected to in-plane loads only.
The simplified model is corrected by complemeniarplane forces, which are evaluated by
assuming a shear stress value at the midpointeositell and applying three-dimensional
constitutive relationships at this point. Polak afetchio (1993) investigate transverse shear
in reinforced concrete shells using a finite elet@ased on Reissner-Mindlin plate theory.
By assuming that plane sections remain plane buh@cessarily normal to the mid-surface,
transverse shear strains are considered constarg tile thickness of the shell.
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The last models represent a significant advanceh®ievaluation of transverse shear
stresses and strains can be improved. The pressedrch investigates a mechanical model
for reinforced concrete shells considering simutars in-plane and transverse shear forces.
The infinitesimal shell element is divided alonge tthickness into infinitesimal three-
dimensional elements, which respect three-dimeasiaronstitutive relationships. The
implementation is based on the smeared rotatingk@pproach and the shear stiffness terms
are deduced accordingly. The theory applies tolshtie equivalent section method for
beams, proposed by Diaz (1980) and Diaz and Scfi®81). Through-the-thickness
distributions of stresses and strains are estaalislonsidering equilibrium and compatibility
conditions. The formulation yields the spatial otaion of the concrete struts and the
transverse shear stresses are not necessarilyearianocording to the principal shear force.
Some simplifications are necessary to establishirst-drder approximation, which is
recommended for design applications. However, ishewn how to develop higher-order
solutions for a theoretically precise response.

2 Simplifying hypotheses

The discussion here is limited to small displacetsieDisturbed states of deformation at
boundaries and load application points are notriak® account. The following hypotheses
are introduced at the outset:

1. Eventual cracks are considered uniformly distridwiad concrete stresses and strains are
stated as continuous and derivable functions. phaé&a orientation of the smeared struts
varies along the element thickness.

2. No slip is considered between concrete and reimfgrbars. Increments of steel and
concrete strains are assumed to be equal on aagaveasis.

3. The principal directions of concrete stresses &raihs are considered coincident.

4. Boundary and volume forces are not taken into agicwuthe interest of simplifying the

formulation.

5. The resultant of concrete and steel stresses inztu#rection is small and, hence,
neglected.

6. In-plane strains are linearly distributed along théckness (generalized Bernoulli's
hypothesis).

3 Reinforced concrete three-dimensional element

A shell element is presented in Figure 1. Thaxis is normal to the mid-plane of the
shell and two-way reinforcement layers are placaaling tox - and y -axes. Although this
steel distribution is frequent and simplifies tbenfiulation, it is possible to consider skew and
multidirectional reinforcement through additionalocdinate transformations. The transverse
shear reinforcement is considered whenever pre3éwt.shell element, with infinitesimal
dimensionsdx dy and finite thicknesg, is divided into three-dimensional elements which
have infinitesimal dimensiondx dy dz (Figure 2). Tensile strains and stresses are deresi
positive.
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Flgure 1 — Coordinate system and Figure 2 — Reinforced concrete shell
shell internal forces. modeled by 3D elents.

Concrete is assumed to be a continuous and unifoedium (hypothesis 1). The
concrete strain vectar is defined by

e=[e, & Vy Ve Ve & (1)

The normal strains irx-, y- and z-directions areg,, €, andg,. The shear strains are
denoted byy, , y,, andy,, . Concrete strains can also be represented inrtémso by

Xy ay Eyz (2)

(3
I
m m ™

where y; =2¢,. According to hypothesis 2, the slip between stemls and concrete is

neglected. The reinforcement strain varies accgrtbnthe average strain of the surrounding
concrete. The steel strairg,, €, and €., respectively inx-, y- and z-directions, are

determined by
€, =&, tE, €y =€, TE€y, €, =&, +E, (3)a-c

The termse,, €., and €, represent residual strains of pre-tensioned odédrpost-

tensioned tendons, which are calculated consideengjoning operations, mobilized loading
and prestressing losses.

x0? sz0

The concrete stress vector, in tkyg coordinate system, is defined by

GZ[OX Oy Ty Te Iy OZ]T (4)

Concrete stresses can be represented in tensobform
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The steel stress vectet, is expressed by

o, 0 0 0 o] ()

6,=[0, o

where o, and o, are stresses of the longitudinal reinforcement and represents the
transverse reinforcement stress.

The analogous stress vect®y which combines the contributions of both concratel
reinforcement, is defined by

s=[s. 5, 8, s 5. 8] =o+p.o, g

where matrixp, of the steel ratios is

P
Py 0 0
ps = 0 (8)
0 0

The non-dimensional termp,, p, and p, represent the ratios of steel area,

respectively inx-, y- and z-directions, over the corresponding concrete adyatz, dzdx
and dxdy .

Although several approaches for modeling the nealirbehavior of reinforced concrete
could be adopted, a simple hyperelastic stressistetationship is considered adequate for
the analysis of reinforced concrete elements undenotonic loadings. According to
hypothesis 3, shear stresses and strains are &qmeto in the principal coordinate system.
The concrete stress-strain relationship in thecgrad coordinates is expressed by

0,=0,(€,,€,,€,) 0,=0,(€,€ € ) 0,=0 {€,€ ,€ ) (9)a-c
The definition of the constitutive law in the pripal coordinate system reduces the
number of variables and simplifies the constitutieemulation, but demands coordinate

transformations. The transformation rule of secorttér tensors yields

E=® E® (10)

P
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where L, ,, is the strain tensor in the principal coordin@tstsm(&xzxg). The corresponding
rotation matrix® is expressed by

(plx ; (p2x ; (p3x
o=@ e |®]7e, 0 0 (11)
(plz ; (p22 ; (p32

The termsq, , @, and @, are the direction cosines of te-coordinate axis with respect

to x-, y-and z-directions (Figure 3). The same transformation lbarexpressed in vector
form by

£,,=T¢ (12)

where g,,, is the principal strain vector. According to Codkalkus and Plesha (1989), the
transformation matrixT is defined by

@, @, 0Py 0,0, 0,0, @,
@, 0, OO OO 0,0, @,
12| 200 20,0, 00400, 0,100, P00 P 200, 13)

20,05 20,05, 0,05+ 030, 0,000, QOO0 20,04
2(p2x(p3x 2([')Zy(ps‘y (p2><(p3y + (p3x(p2y (pZZ(p3( + (p&(pl (p 3/(p 2 + (p &cp 2 2(p 2(p 3
O P05, NN Py Py @

Figure 3 — Rotation of the coordinate system.

Equation (10) defines a spectral decomposition. grirecipal strain tensof, ,,, expressed by

e 0 O
£,=10 €, O (14)
0 0 g

is a spectral matrix having as diagonal elemergseigenvalues off . The columns of the
modal matrixd@ are the eigenvectors & . The solution of the eigenproblem (10) yields the
principal strainse,, €, and &, and the rotation matri®. The principal stresses,, o, and
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o, are determined by the constitutive relationshi®s The principal stress tensd,,
corresponds to

\m

oo 0 O
5123 =10 o, O (15)
0 0 o

According to hypothesis 3, the concrete stress oompts in xyz coordinates are
determined by either of the following transformaso

S=®S,. 0’ =T 6, (16)a,b

The procedure defined by the spectral decompos{ii®h the constitutive equations (9)
and the coordinate transformation (16) is valid éoacked and uncracked concrete. The

solution of nonlinear problems demands incremeadalations. The incrememtS,,, of the
stress tensor is expressed by

Ao, At, At
AS,,=|At, Ao, AT, (17)
At, At,, Ao,

Matrix AS,,, is not necessarily diagonal. Considering thatdtestitutive functions (9)

are sufficient to relate any state of strain to teeresponding stresses, they must also be
sufficient to define the tangent constitutive matifhe incremental equation is expressed in

the principal coordinate systefwx,x,) by

5123 + A‘9123 = (I + Aq)) (S 123+ A5_122 (I + Aq)) T = ( 8)
_ 1
=5123+A(I)Sl23| ! + ASlZé ! H SlZZA(I)T

where S,,,+AS,,, are updated total stresse$;,,+AS,,, are updated principal stresses and
| + A® defines the coordinate transformation from them#r to the updated principal
directions. Matrix| +A® is a rotation matrix for an infinitesimal increnmieMatricesAS, ,,
and A® are defined by

Ao, 0 O 0 -bAp, Ag,
AS,,=| 0 Ao, O AD=| Ap, O -Ag (19)%,b
0 0 Ag, -Ap, AQ 0

Using (18) and (19), the stress tensor incremeuoibtained by



Ao,
123 (0 -0 2) A(pB
(03 01) A(pZ

Applying the same procedure, the strain tensoement is expressed by

AL, =| (e

Aal
17 ¢ Z)A(p3

(83 - 81) A(pz

For arbitrary infinitesimal rotationAg,, A@, and Ag,, equations (20) and (21) yield

—oj)/(ei -¢))

with i,]=1,2,2 The relationship between increments of concrétesses and strains,
respectively denoted bio,,, andAe, ., is defined by

Using (9) and (22), the tangent constitutive makix, is expressed by

E123 =

where

Expression (25), based on the coaxiality of princgieesses and strains, is adopted by
Willam, Pramono and Sture (1987), Stevens, Uzuaredi Collins (1987), Schulz (1988) and
intensively discussed by Zhu, Hsu and Lee (2001).

Expressions (12), (16) and (23) yield

E,
E21

0
0

Es
Es

At =Ag; (oi

Ao,

(02—03)A(p1

(,-€,)00, (e,—€)Ao,
€,"¢€ QA(pl
Ae

Ae,

(82—83)A(p1

Aoy, = Ejy0E

0O O
0 O
G, O
0 Gy
0O O
0O O
0, -0
2(e;-¢)

Ao =EAe

— V CONGRESSO BRASILEIRO
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(0,-0,)Ap, (0,-0)AQ,
(0 .~ 0 QA(pl
Ao,

0 E,
0 E,
0 0
0 0

G, O
0 E

REALIZAGCAO:

ABECE

(20)

(21)

(22)

(23)

(24)

(25)

(26)



I\ CONGRESSO BRASILEIRO o
DE PONTES E ~ , ﬁ\ A
@ 5 ABECE Brazillan Group
1T ESTRUTURAS =

The tangent constitutive matri, in the xyz coordinate system, is given by

E=T'E_.T (27)

The constitutive equations of the steel reinforcetmae expressed by =0 (g, ),
o, =0y (g,) and o, =0 (e,). The relationship between steel stress and strairements,

respectivelyAe, andAe, is defined by

Ao, =E Ae (28)
The constitutive matriXe, is
ES(
E, 0
E, = %0 (29)
0 0
E,

Using (7), (26) and (28), the increment of thesstreectorAs is expressed by

As= CAe (30)
where the constitutive matri€ of the reinforced concrete elemends=E +p_E..

4 Reinforced concrete shell element

The in-plane internal forcedl,, N, N, M,, M, andM,  (Figure 1) are defined by

NX:.[ZZBsAdz Ny:J':Bsydz NXY:J'ZBSWdz
’ ’ (31)a-f
MX:J.:Bskzdz My:LZBsyzdz Mxy:J.:ngzdz

where z, and z, correspond to the upper and lower bounds of tledl slement (Figure 2).
The transverse shear forcésandV, are expressed by

V, :j:sxzdz v, :j s,, & (32)a.b

The following differential equilibrium equation, thi respect toz-axis, is established
assuming that no forces are applied on the elethgpbthesis 4) and, (10 (hypothesis 5):

. *8,=0 (33)
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The prime, the point and the star respectively teepartial derivatives of a function with
respect tox, y and z ([ ] =0| ]/ax,[']:a[ ]/oy and[ | =9] ]/azj. Integrating (33)

yields

V,+V, =0 (34)

The differential equilibrium equations of the reirnfed concrete element with respect to
X- and y-axes are expressed by

=578, $,=78,§ (35Rb
Equations (35) and the boundary conditions
Se(22) =8, (2.) =52 (2) =5, (%) =0 (36)
are defined considering hypothesis 4. Integrat8¥) yields the shear stresses, as follows:
sxz(z):—.[;(s;+sxy)dz syz(z):—.[;(s;(y+sy)dz (37)a,b
Integrating (35) and itself multiplied by, and substituting (31), (32) and (36) yield

N, +N,, =0 M} +M,, =V,
: . (38)-d
N;, +N, =0 My, +M, =V,

According to (37), the derivatives, §,, s, and §, are necessary to evaluate the shear
stresses. Equation (30) is expanded according to

é_?l’_‘l_ _ Cnn g CI"It Asn 39
e a >
where
_ T _ T
As, —[AsX As, ASW}T As —[Aga As,, ASZ}T (40p-d
Ne, =[De, Ae, Dy, ] De =[ Dy, By, Ag,]

In (39) and (40),As, and Ag, are increments of in-plane stresses and straiastoys As,
and Ag, correspond to transverse normal and shear vasiafilee derivatives ofs, are
neglected according to hypothesis(§Z DO). A first-order approximation is defined by
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neglecting the first derivatives of shear stresgeands,,, which results in
s, = De;, $, = Dg, (41)p,b

The (3% 3)-constitutive matrixD is determined byp =C_, -C,, C.'C, . The terms of matrix
D are forces per unit area. Matrix is partitioned according to

D' =[D] | D} |D!] (42)
The following equations are deduced from (41) a):(
s.=D,&,  §,=D,&  §=D&  §, =D,é (43)-d
Equations (37) and (43) yield
s,(2) = —j;(Dxa'n +D,¢)dz  s,(2)= —LZA(DXY e, +D,¢,)dz (44)b

According to the generalized Bernoulli's hypothefiigypothesis 6), the longitudinal
strainsg, , €, andy,, are linearly interpolated according to

e, =6tk z e, =g +k, z Yy =6y tK,Z (45)a-c

where g,, g, and g, are strains az=0 and k,, k, and k, are generalized curvatures.
Equations (45) are expressed in matrix form by

o=[en 5 Vo] =pe o)

In (46), the position matrip and the generalized strain vectoare defined by

1 z 0 00O
p=/0 012z 0 0 (47)
0 0 0 0 12
i
=le. k & k e, k] (48)

The derivatives of the longitudinal straieg, €, andy, with respect tox andy are
determined by

g =p € ¢ =p'e (49)8,b
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where the derivatives andé of the generalized strain vector are expressed by

=[e k € k €& k]  e=[e k ¢ k & k,| (50@b
Substituting (49) in (44) yields
s.(2)=S(2) e+ §(2) e sl2) = §(2) & H2) (1.
whereS (z), S,(z) andS,(z) are vectors defined by
Si(2)=-[[D,p'dz  §(2)=-[ D  §(2)=-] D, P (52ac
The vectorF of generalized stresses per unit length is exptebg
F=[N, M, N, M, N, M ] :j:psndz (53)

The derivativess’ and F, with respect tax and y, are determined by

F=[N, M, N, M, N, M,] =["ps,dz

y y Xy
(54),b
E=[N, M, N, M, N, M =["ps, dz
Substituting (41) and (49) in (54) yields
F'=Ke' F=Ke (55),b
where the stiffness matriK is defined by
K :fp Dp " dz (56)

Equations (51) and (55) vyield the shear stresgeands,. These simple final equations

are conceptually identical to the equivalent sectioethod for beams, proposed by Diaz
(1980) and Diaz and Schulz (1981). Equations (58)nd two systems of six generalized

stresses by six generalized strains. The derivativggeneralized stresses in (54), which can
be directly evaluated from analytical solutions dimite element analyses, must satisfy the
differential equilibrium equations (38).

5 Material behavior

The proposed mechanical model can be implementedrding to different constitutive
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formulations. The present analysis is based on hbidémensional constitutive model A
proposed by Vecchio and Collins (1993). It usesuhiaxial stress-strain curve proposed by
Popovics (1973), modified for high strength coneréty Thorenfeldt, Tomaszewicz and
Jensen (1987) and calibrated by Collins and Pdd£89). In model A, the softening effect in
tension-compression state is expressed as a fanatithe ratiog, /¢, , whereg, ande, are

respectively the principal tensile and compressivains. In the present paper, this estimate is
lower bounded by the softening coefficient formeplpposed by the same authors (1986),
which is a function of, . The tension-stiffening effect is as represente@dlak and Vecchio

(1993), where concrete average tensile stressesnhitted across the cracks, are limited by
the reserve capacity of the reinforcement. Tensidfening effect is assumed to be limited to

a volume of concrete within 7.5 bar diameters frtme reinforcement center, and the

maximum shear stress at a crack is verified asmewnded by Vecchio and Collins (1986).

The shear slip at crack surfaces, Poisson’s ratid ather secondary effects are not
considered.

The tridimensional constitutive model uses the samiaxial curves, but the principal
strainse, and €, are replaced, in the same softening functionsthbystrain parameters

and €, . Kirschner and Collins (1986) defirgg as the square root of the sum of the squares of
all positive principal strains. The stra&) is assumed as the minimum principal strain. The
termsE; in (24) are determined by

‘- 90, , 0o ( B 2, op ae;j 57)

dg; 0P| 0g de; 0€, Ok,

where [3(8'1,8'2) is the tension-softening coefficient. The parttdrivatives in (57) are
analytically presented by Santisi d'Avila (2008)ncg E; # E; under tension-compression
states, matricek , C, D andK are not necessarily symmetric.

6 Implempentation procedures

The following procedure yields strains and stre$ésea given set of internal forces:
1. An iteration is started considering a generalizedirs vectore (48) and distributions of
shear stresseg, ands,, along the thickness. The first approximations leauizero.

2. At each layer, the vectors of in-plane strai)s (46) and transverse stressgsare

known. Vectorss, and ¢, are determined using a secondary iterative prosased on

(39), the final step of which yields the reducedstdutive matrixD (42).

3. The vector of generalized stresses(53) is integrated. The procedure stops when the
residual AF , between applied and resisting internal forées is considered relatively
small.

4. The stiffness matrixKk (56) and the derivatives of generalized straghsand & (50),
evaluated by equations (55), yield a new approdonadf the shear stresssg and s,
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(51). SolvingAF =K 2e vyields the strain incremete and a new approximation of the
generalized strain vecta, restarting the main iterative process.

The simultaneous update of generalized strains simehr stresses proves to be
numerically efficient, although each update assuthes the other parameter is restrained.
The numerical efficiency is not affected by solvingn-symmetric systems with low order
matrices. The secondary iterative process, bas€d)nis a Newton-Raphson procedure that

solves
C,.Ci'||Ls,
C—l AN (58)
tt

~A_59 _ C..—Cy Ct_tl Cy
B _Ct_tl Ci

The ultimate load capacity is evaluated by anotheremental procedure based on the
arc-length method. The shear stresses are detetmagiag the stiffness matriKk of the
previous incremental step. Additional details axespnted by Santisi d'Avila (2008).

7 Comparison with test data reported in the literaure

The proposed theory and the material model usedreniéed with experimental data
obtained from the literature. Vecchio and Collidi9&2) analyze the response of membrane
elements submitted to combined in-plane shear anthal stresses. Specimens PV, with 890
x 890 x 70 mm, are typically reinforced with twyéas of welded wire mesh, which are heat-
treated to exhibit a long yielding plateau. Theestbn presented in Table 1 excludes panels
with concrete voids, panels which fail prematurkgcause of pull-out of shear connecting
keys, and panels that require additional infornraba steel response to be properly analyzed
under strain-hardening. Table 1 presents the matemal and geometrical information,
including the steel yielding stresse§;( f,) and reinforcement ratiop(, p,), which are

defined, respectively, in each orthogonal directibhe cracking tensile strength of concrete
is estimated b>0.33\/f_c( MPa). Most specimens are subjected to increasing fwarsand

1, designates the ultimate shear stress. Panels X225 and PV28 combine shear stresses,
denoted byt, with biaxial normal stresses, which are respetyiequal to—0.391, —0.69t

and +0.32t. The biaxial compressive stresses of specimen RvR@xpressed in modulus by
1-3.80 MPg, when 1>3.80 MPa. The ultimate loads predicted by Vecchio and @slli
(1982), Bentz, Vecchio and Collins (2006) and th®ppsed procedure show good
correlation. The contribution of tension-stiffeniisganalyzed by excluding and including this

effect. The predicted results are denoted respagtivy PT (pure tension) and TS (tension
stiffening), and ultimate loads are not signifidgmlifferent.

Polak and Vecchio (1993) investigate the behavighell elements subjected to biaxial
bending and in-plane forces, using a shell elertester that is capable of applying uniform
load conditions. Specimen SM4 is of special intebegause it presents symmetrical top and
bottom reinforcement in two orthogonal directionsientated at45° with respect to the
applied loadsM and P (Figure 4). The reinforcement ratios are 1.32¢2@ spaced at
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0.076m) and 0.44%10 spaced at 0.076m), per layer, in each direclitve. corresponding
stress-strain curves present definite plateauatafhd 430 MPa, strain hardening after 12
and 20 mm/m and ultimate strength of 611 and 48@ Mme effective test dimensions are
1524 x 1524 x 316 mm, the concrete compression gieaks is 64 MPa at 2.6 mm/m, and the
split cylinder tensile test vyields 2.76 MPa. Thenafi load level is reported as
M, =205 kNny m and P, =820 kN/ m. The elementx-axis is defined in the direction of the

stronger reinforcement. The experimental surfacenste, and reinforcement strairgg, and

g, are compared to the theoretical results (FigureThg predicted strains, excluding the

concrete tensile strength (NT - no tension) antuaing the tension stiffening (TS), describe
tension effects at intermediate load levels and afestnate good correlation. The predicted
and observed ultimate moment$, are discussed in Table 2 according to three comdit

excluding the concrete tensile strength (NT), tgkimto account the concrete tensile strength
but excluding the tension-stiffening effect (PT)ancluding both concrete tensile strength
and tension-stiffening effect (TS). All assumptigredict conservative results in agreement
with the observed data. In this analysis, ultimMlaégls are not influenced by tensile effects.

s £t -t P —p |7, Tu.PREDICTED/Tu
Ve [BVC] o [ 1
wpa) wvpa) | @) | (upd) 1982] 2006
PVa | 26.6] 242-24p 1.06-1.46 249 0ps_1J12_({89_4.89
PV6 | 29.8| 266-26p 1.79-1.49 445 1pa oJo5s_1foa 1.05
pvio| 145 276-27p 1.79-1.40_3.97 op3 1Jo6_¢93_§.94
Pvii| 15.6] 235-23p 1.79-1.41 346 1p1 ofos ior {.02
Pvi2| 16.0] 469-26p 1.79-045 343 0p5 109 _(80_¢.93
pvis| 18.2] 248-0f 1.79-0.40 241 of2 o[ro_d74
Pvi6| 217 255-25p 0.74-0.44 214 ops_1|i2_d88_{.88
pvig| 105 431-41p 1.79-042 344 1ps 1jos_ o1 1.03
pvio| 10.0] 458-29p 1.79-041 345 1ps ofos (92 {.01
Pv20| 10.6] 460-29] 1.79-049 446 1p5 ofo3 (94 1.02
Pv21| 10.5 458-30p 1.79-1.40 543 1p7 ofor (98 1.04
Pv22| 10.6] 458-42p 1.79-142 647 1p2 ofos_99_1.03
Pv23| 20.5| 518-51p 1.79-1.19 8.87 09 ofso_d84 Model M, preorcren / M osserven
Pv2s| 19.2 466-46p 1.79-1.49 942 0p7 ofs2_g87
Pv26| 21.3] 456-46 1.79-1.41 541 opo ofgs_103 1.09 Polak&Vecchio
Pv27| 20.5] 442-44p 179-149 685 1p1 _o0fo6 99 1.03 (1993) 0.83
Pv2g| 19.0] 483-48 1.79-1.19 580 0p6 ofoa_dos
pv2o| 21.7] 441-32f 1.79-049 537 1p2 1Jor_109 NT 0.91
Mean 0.97] o] 0.94 o.9f PT 091

Standard deviation 0.12] 0.08] 0.04 0.1 TS 0.91

Table 1 — Ultimate loads (PV Series) Table 2 — Ultimate loads (SM4)

The predicted stresses and strains, neglectingetntensile strength, are presented at a
load level near to failure (Figure 5). The stressle weaker reinforcement increases because
of strain hardening, but it is still inferior todhultimate strength. Concrete reaches its reduced
compressive strengtto(=— f. ).

Adebar (1989) and Adebar and Collins (1994), ushg same element tester, analyze
1524 x 1524 mm shell elements subjected to in-plané transverse shear loads. The
specimens selected for this verification have vemyall amounts of shear reinforcement
(0.08% reinforcement ratio). Some other specimeisch present larger amounts of shear
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reinforcement, are discarded because they do ilatuiang the test. The specimens denoted
by SP3, SP4, SP7, SP8 and SP9 are 310 mm thickeadlarge amounts of symmetrical in-
plane reinforcement, equally arranged in orthoggnidls oriented at5° with respect to their
sides. The stress-strain curves show definite @lsteand the strain hardening response is
described by Adebar (1989). The yield and ultimgitesses of the shear reinforcement are
respectively 460 MPa and 570 MPa and other dedegipresented in Table 3.

180 — ——
—_ _//‘_,_-——” T
g e -~
E //’ /-
Z L7 /
= / 7
= a - 7 u
01/ Concrete|(z = i 1/2) / Concrete (z 3 +1/2) /
0 2 0 ) (I) 20 mm Ex Gy G.sy
Strain &, [mm/m] Strain &, [mm/m] each 0.076m | &\3
460
—7 T
180 — I ——=7180 —— § TR ]
— —— ——— S Wil
£ e /// = g X
B Vabi 7 2| ¢ 10{mm. [ 430
£ J/ T A .
= ! . . 0{y/ @10 mm (positive z-side) S —
01/ ®©10 mm (negative z-side) 0 Strai [mm/m] 1 0076 L
rain g, [mm/m . -0. 2.
Strain g, [mm/m] 0 * " 03 524
P M/P=025m Vxy Ty o2 02x
180 e M, =186 kNm/m g4 3.6 -89 264°
=l y 4 [ Lo
] 24 Strains in mm/m
Z Stresses in MPa
e~ bl
vd
= %4 ®20 mm (negative zTSide)
Strai /ml 2 —— Experimental results
train & [mm/m] — — Predicted results (TS)
———— Predicted results (NT) 2j ﬂ m M
Figure 4 — Strain analysis (SM4). Figure 5 — Ultimate analysis (SM4).

In the present numerical analyses, the crackiremgth of concrete is estimated based on
the results of the split test. The specimens dbgested to different load combinations, which
are proportionally increased during the testingcpdure. The in-plane and transverse forces
are constant along the specimen, but bending manvany linearly (Figure 6).

.

Figure 6 — Loading scheme (SP3, SP4, SP7, SP8 &RD).

The xy coordinate system is associated with the in-plagie@forcement. Generic
transverse shear forces, =2 kN/m and V, =0 kN/m, applied in thexy' coordinate
system, correspond td, =V, =1 kN/m. The derivativesM, M, M}, , M,, M, and M,
are equal tol/2 kN/m. The load capacity is verified at =+0.75m, transforming the
corresponding bending momekt, to xy coordinates.

P
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Ps =Py f,— 1, f. €, fe Ratio
(%) MPa) | (MPa)| (%) | (vpa)] Ni:Vy:Ve
SP4 3.58 480-660| 524 2.3 4.4 -ad2:1:1
SP3 3.58 480-660| 49.8 2.2 47 0:1:1
SP7 3.75 536-637| 54.1 2.0 41 a4/2:11
SP9 3.75 536-637| 49.6| 2.6 41 8/2:11

SP8 3.75 536-637 52.9 21 420 1:0:0

Sp.

Note: p  and py are the reinforcement ratios per layer in eacéation, 1‘y and fu are the yield and ultimate
stresses of in-plane reinforcemerfg, is the concrete compression strengipjs the concrete strain at the peak

compressive stress anfgp is the split cylinder tensile strength

Table 3 — Specimen data (SP3, SP4, SP7, SP8 and)SP9

Theoretical and observed stirrup strains are coetpar Figure 7. The reference shear
stressV/t is defined byV/t=V,/t=V, /t, wheret is the thickness of the shell. The

experimental transverse strains cannot be exaeflyesented by the proposed formulation,
since they are measured with strain gauges on uaeaustirrups. According to hypothesis 2,
no slip is considered between concrete and reimigrbars. In spite of this limitation,
predicted average stirrup strains are compareanagnitude, excluding and including the
tension stiffening effect. The theoretical straiofs specimen SP4, including the tension
stiffening effect, show low levels of stress. Theme results are predicted by Adebar and
Collins (1994). The necessary stirrup contributiothe equilibrium, between cracks, justifies
the large experimental strains of the unbounderugps.

V/t [MPa] V/t [MPa]
2 25
15— 5[4
e P
! e ]
05 f——r T E 14 ——==1=T]
[ 5p3 x[=0525m 1 =
0 1 2 3 4 osker=]
[mm/m] o SP4 x'=0.525 m|
0 1 2 3
———————— Experimental results [mm/m]

Predicted results (TS)
———— Predicted results (PT)

Figure 7 — Stirrup strains (SP3 and SP4).

Although the properties of specimens SP3, SP4, SP8,and SP9 are not exactly the
same, it is possible to establish a relationshipvéen transverse shear capacity and
membrane shear forces (Figure 8). The ultimatesigaddicted by the proposed theory are
compared to other formulations (Polak and Vecct883l Adebar and Collins 1994), and
give a better approximation. Results excluding imstiffening effects are significantly
lower. The reduction of longitudinal strains ingea the shear capacity considerably.
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REALIZAGCAO:

Experimental

~Adebar & Collins
/ ,Polak & Vecchio
/ Present study (TS)
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. SP8

-20 -10

Membrane shear stress Ny, /t

10
[MPa]

Figure 8 — Experimental and theoretical results (B3, SP4, SP7, SP8 and SP9).

The response of specimen SP7 is evaluated cldsdure, including the concrete tensile
strength and the tension-stiffening effect (Fig@je Minute negative shear stressgs are

detected in the tensile cover region. They areaa®a with the negative derivatives of the

stress-strain diagram for concrete under tenston,descending branch of which represents
declining tension stiffening as cracking progres3dé® stirrups reach yield stress through an

extensive area of the thickness. The principal cesgve stresses, and o, are compared
with the concrete capacity in Figure 10, where thduced concrete strength due to

compression softening is defined By, .

€y Oy /Ogx g Gy/Cgy
-84 -19.9
[ [
~
_E a2
———
‘—’410 426!
ﬁ -15.5 ﬁ -133

V, /t =1.36 MPa 173/

RISt

Figure 9 — Ultimate analysis (SP7).

Strains in mm/m
Stresses in MPa

The spatial orientation of the principal compreasstresses close to failure, as predicted

-48.9 MPa
[

-10.1 MPa

Figure 10 — Compressive stresses at
ultimate state (SP7).

by the proposed theory, is presented in Figure The. orientation of the struts is more

detailed for specimen SP7 (Figure 11b). The dioactif the shear struts, in the central core of

the shell, follows the direction of the principedrisverse shear force.
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a) b)
Figure 11 — Spatial orientation of the struts: aSP7; b)SP3, SP4, SP7 and SP9

8 Conclusions

The proposed mechanical model yields through-tiadtiess distributions of stresses and
strains in reinforced concrete shells, consideting simultaneous effect of in-plane and
transverse loads. The comparison with test datartegh in the literature confirms that the
formulation is able to accurately model in-planeditions, flexural behavior and transverse
shear effects. The constitutive model adopted ptedesults which are in agreement with the
observed data. The proposed theory provides a phnognsolution for the design of reinforced
concrete shells. A practical design method can éeeldped by applying optimization
technigues to balance the internal forces with aimmim amount of total reinforcement.
Strain limitations can be considered as complemgntgptimization conditions. The
bipartition method, starting from the minimum andximum code requirements, is a simple
approach that is sufficient for fixed reinforcemeatios. However, the influence of tension
effects demands additional investigation. Conctetgsion effects are often neglected in
reinforced concrete design, because they are yst@fisidered to have little to no influence
on the ultimate load capacity. This hypothesis amficmed in PV and SM specimens
(membrane and shell elements subjected to in-ptamalitions). The fact that the load
capacity of SP specimens is significantly affectsd tension stiffening shows that this
approach may be too conservative for shells wehdverse shear forces, particularly when
dealing with large amounts of flexural reinforcemesmall amounts of shear reinforcement
and monotonic loadings. The verification of tensigffiects, with additional experimental
data, and the implementation of finite element falations, based on the proposed
mechanical model, call for further research.
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