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Abstract 

This research investigates the simultaneous effect of in-plane and transverse loads in 
reinforced concrete shells. The infinitesimal shell element is divided into layers with triaxial 
behavior that are analyzed according to the smeared rotating crack approach. The transverse 
shear strength of shell elements is associated to an “equivalent” surface, which takes into 
account the nonlinear material behavior, using traditionally accepted hypotheses for shells. 
The set of internal forces includes the derivatives of the in-plane components. Although some 
simplifications are necessary to establish a practical first-order approximation, higher-order 
solutions could be developed. The whole set of equilibrium, compatibility and constitutive 
equations are satisfied, the stiffness derivatives are explicitly calculated and the algorithms 
show good convergence. The formulation yields through-the-thickness distributions of 
stresses and strains and the spatial orientation of the concrete struts. The formulation 
satisfactorily predicts the ultimate capacity under different load combinations, agreeing with 
experimental data obtained by other researchers. Although comparative analysis with 
additional experimental data is still necessary, the proposed theory provides a promising 
solution for the design of reinforced concrete shells. 
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1 Introduction 

Reinforced concrete shell structures are widely employed because they provide both 
outstanding performance and architectural beauty. The design of reinforced concrete shells 
involves the determination of reinforcement that is not necessarily arranged in the direction of 
the principal internal forces. The mechanical model must consider the entire set of in-plane 
and out-of-plane forces, bending and twisting moments, as well as the spatial distribution of 
stresses and strains. 

After early investigations regarding the analysis of reinforced concrete plates and shells, 
Falconer (1956) establishes the equilibrium equations of a plane stress element, considering 
the axial forces of the reinforcement, placed in two different orientations, and a compression 



 

 

field of concrete stresses, the direction of which remains statically indeterminate.  

Using the plasticity approach, Nielsen (1964) defines design equations for membrane 
elements. Wood (1968) and Armer (1968) organize a similar procedure for the flexural design 
of reinforced concrete slabs. Baumann (1972a; b) considers membrane and flexural forces 
simultaneously, by distributing the internal forces between two plate elements at the upper 
and lower faces of the shell. Each plate is analyzed separately, using the compatibility 
approach. Baumann evaluates the direction of the struts of each membrane element by the 
principle of minimum work, arriving at a linear-elastic approximation of the general equation 
later proposed by Mitchell and Collins (1974). The total reinforcement is minimized taken 
into account the requirement of minimum secondary reinforcement. The shell design 
procedure recommended by CEB and FIP (1982) applies the two-plate approximation 
together with the plasticity approach, to arrive at a simple design method that is equivalent to 
the compatibility formulation, where the contribution of the secondary reinforcement is 
neglected. 

The shell formulations discussed above are extensively applied, but they do have the 
following limitations: the thickness and the lever arm of the upper and lower membrane 
elements are not explicitly calculated, the materials are not represented by nonlinear stress-
strain relationships and the beneficial effects of the compression reinforcement are not taken 
into account. Schnobrich (1977) reports early applications of multi-layered models in finite 
element analysis of reinforced concrete structures. Multi-layered models are used by Schulz 
(1984) and Kirschner and Collins (1986) to verify the punctual response of reinforced 
concrete shells to in-plane forces, and twisting and flexural moments. The assumption that 
plane sections remain plane in any direction yields the biaxial strains of each layer. The 
corresponding stresses are obtained by applying nonlinear constitutive models.  

The design of shells for transverse shear forces involves additional considerations. Schulz 
(1988) and Marti (1990) assume that shear stresses are distributed according to the 
corresponding principal direction, since no shear force is acting perpendicularly. The 
principal shear force, which is determined by the square root of the sum of the squares of the 
components in any system of coordinates, is used as a reference for simplified design 
formulas.  

Analytical models which consider flexural and shear effects simultaneously are also 
investigated in the literature. Kirschner and Collins (1986) include out-of-plane shear by 
dividing the reinforced concrete shell into three-dimensional elements. Three-dimensional 
constitutive relationships are applied assuming a perfectly uniform stress distribution of 
transverse shear stresses in the core of the shell. Adebar (1989) and Adebar and Collins 
(1994) analyze the punctual response of a shell element as subjected to in-plane loads only. 
The simplified model is corrected by complementary in-plane forces, which are evaluated by 
assuming a shear stress value at the midpoint of the shell and applying three-dimensional 
constitutive relationships at this point. Polak and Vecchio (1993) investigate transverse shear 
in reinforced concrete shells using a finite element based on Reissner-Mindlin plate theory. 
By assuming that plane sections remain plane but not necessarily normal to the mid-surface, 
transverse shear strains are considered constant along the thickness of the shell.  



 

 

The last models represent a significant advance, but the evaluation of transverse shear 
stresses and strains can be improved. The present research investigates a mechanical model 
for reinforced concrete shells considering simultaneous in-plane and transverse shear forces. 
The infinitesimal shell element is divided along the thickness into infinitesimal three-
dimensional elements, which respect three-dimensional constitutive relationships. The 
implementation is based on the smeared rotating crack approach and the shear stiffness terms 
are deduced accordingly. The theory applies to shells, the equivalent section method for 
beams, proposed by Diaz (1980) and Diaz and Schulz (1981). Through-the-thickness 
distributions of stresses and strains are established considering equilibrium and compatibility 
conditions. The formulation yields the spatial orientation of the concrete struts and the 
transverse shear stresses are not necessarily oriented according to the principal shear force. 
Some simplifications are necessary to establish a first-order approximation, which is 
recommended for design applications. However, it is shown how to develop higher-order 
solutions for a theoretically precise response.  

2 Simplifying hypotheses 

The discussion here is limited to small displacements. Disturbed states of deformation at 
boundaries and load application points are not taken into account. The following hypotheses 
are introduced at the outset: 
1. Eventual cracks are considered uniformly distributed and concrete stresses and strains are 

stated as continuous and derivable functions. The spatial orientation of the smeared struts 
varies along the element thickness.  

2. No slip is considered between concrete and reinforcing bars. Increments of steel and 
concrete strains are assumed to be equal on an average basis. 

3. The principal directions of concrete stresses and strains are considered coincident. 
4. Boundary and volume forces are not taken into account in the interest of simplifying the 

formulation. 
5. The resultant of concrete and steel stresses in the z -direction is small and, hence, 

neglected. 
6. In-plane strains are linearly distributed along the thickness (generalized Bernoulli’s 

hypothesis). 

3 Reinforced concrete three-dimensional element 

A shell element is presented in Figure 1. The z -axis is normal to the mid-plane of the 
shell and two-way reinforcement layers are placed according to x - and y -axes. Although this 
steel distribution is frequent and simplifies the formulation, it is possible to consider skew and 
multidirectional reinforcement through additional coordinate transformations. The transverse 
shear reinforcement is considered whenever present. The shell element, with infinitesimal 
dimensions dx dy  and finite thickness t , is divided into three-dimensional elements which 
have infinitesimal dimensions dx dy dz  (Figure 2). Tensile strains and stresses are considered 
positive.  



 

 

             
Figure 1 –  Coordinate system and                   Figure 2 –  Reinforced concrete shell  
                   shell internal forces.                                           modeled by 3D elements. 

 

Concrete is assumed to be a continuous and uniform medium (hypothesis 1). The 
concrete strain vector ε  is defined by 

 
T

x y xy xz yz z = ε ε γ γ γ ε ε  (1) 

The normal strains in x -, y - and z -directions are xε , yε  and zε . The shear strains are 

denoted by xyγ , xzγ  and yzγ . Concrete strains can also be represented in tensor form by 

 
x xy xz

xy y yz

xz yz z

 ε ε ε
 = ε ε ε 
 ε ε ε 

E  (2) 

where 2ij ijγ = ε . According to hypothesis 2, the slip between steel bars and concrete is 

neglected. The reinforcement strain varies according to the average strain of the surrounding 
concrete. The steel strains sxε , syε and szε , respectively in x -, y - and z -directions, are 

determined by 
 0 0 0sx x sx sy y sy sz z szε = ε + ε ε = ε + ε ε = ε + ε  (3)a-c 

The terms 0sxε , 0syε  and 0szε  represent residual strains of pre-tensioned or bonded post-

tensioned tendons, which are calculated considering tensioning operations, mobilized loading 
and prestressing losses. 

 The concrete stress vector, in the xyz  coordinate system, is defined by 

 
T

x y xy xz yz z = σ σ τ τ τ σ σ  (4) 

Concrete stresses can be represented in tensor form by  



 

 

 
x xy xz

xy y yz

xz yz z

 σ τ τ
 = τ σ τ 
 τ τ σ 

S  (5) 

The steel stress vector sσ  is expressed by  

 0 0 0
T

s sx sy sz = σ σ σ σ  (6) 

where sxσ  and syσ  are stresses of the longitudinal reinforcement and szσ  represents the 

transverse reinforcement stress. 

The analogous stress vector s, which combines the contributions of both concrete and 
reinforcement, is defined by 

 
T

x y xy xz yz z s ss s s s s s = = + s σ ρ σ  (7) 

where matrix sρ  of the steel ratios is  

 0
0

0

sx
sy

s

sz

ρ 
ρ 

=  
 
 ρ 

0
ρ

0
 (8) 

The non-dimensional terms sxρ , syρ  and szρ  represent the ratios of steel area, 

respectively in x -, y - and z -directions, over the corresponding concrete areas dy dz , dz dx  
and dx dy . 

Although several approaches for modeling the nonlinear behavior of reinforced concrete 
could be adopted, a simple hyperelastic stress-strain relationship is considered adequate for 
the analysis of reinforced concrete elements under monotonic loadings. According to 
hypothesis 3, shear stresses and strains are equal to zero in the principal coordinate system. 
The concrete stress-strain relationship in the principal coordinates is expressed by 

 ( ) ( ) ( )1 1 1 2 3 2 2 1 2 3 3 3 1 2 3, , , , , ,σ = σ ε ε ε σ = σ ε ε ε σ = σ ε ε ε  (9)a-c 

The definition of the constitutive law in the principal coordinate system reduces the 
number of variables and simplifies the constitutive formulation, but demands coordinate 
transformations. The transformation rule of second order tensors yields  

 123
T=Φ ΦE E  (10) 



 

 

where 123E  is the strain tensor in the principal coordinate system ( )1 2 3x x x . The corresponding 

rotation matrix Φ  is expressed by 

 
1 2 3

1 2 3 1 2 3

1 2 3

x x x

y y y

z z z

φ φ φ 
  = = φ φ φ   
 φ φ φ 

Φ φ φ φφ φ φφ φ φφ φ φ  (11) 

The terms ixφ , iyφ  and izφ  are the direction cosines of the ix -coordinate axis with respect 

to x -, y -and z -directions (Figure 3). The same transformation can be expressed in vector 
form by  

 123 =ε T ε  (12) 

where 123ε  is the principal strain vector. According to Cook, Malkus and Plesha (1989), the 

transformation matrix T  is defined by 

 

2 2 2
1 1 1 1 1 1 1 1 1
2 2 2
2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2

1 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1 1 3

2 3 2 3 2

2 2 2

2 2 2

2 2

x y x y x z y z z

x y x y x z y z z

x x y y x y y x x z x z y z y z z z

x x y y x y x y z x z x y z y z z z

x x y y x

φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ + φ φ φ φ + φ φ φ φ + φ φ φ φ
=

φ φ φ φ φ φ + φ φ φ φ + φ φ φ φ + φ φ φ φ
φ φ φ φ φ φ

T

3 3 2 2 3 3 2 2 3 3 2 2 3
2 2 2
3 3 3 3 3 3 3 3 3

2y x y z x z x y z y z z z

x y x y x z y z z

 
 
 
 
 
 
 + φ φ φ φ + φ φ φ φ + φ φ φ φ
 

φ φ φ φ φ φ φ φ φ  

 (13) 

 
Figure 3 –  Rotation of the coordinate system. 

Equation (10) defines a spectral decomposition. The principal strain tensor 123E , expressed by 

 
1

123 2

3

0 0

0 0

0 0

ε 
 = ε 
 ε 

E  (14) 

is a spectral matrix having as diagonal elements the eigenvalues of E . The columns of the 
modal matrix Φ  are the eigenvectors of E . The solution of the eigenproblem (10) yields the 
principal strains 1ε , 2ε  and 3ε  and the rotation matrix Φ . The principal stresses 1σ , 2σ  and 



 

 

3σ  are determined by the constitutive relationships (9). The principal stress tensor 123S  

corresponds to 

 
1

123 2

3

0 0

0 0

0 0

σ 
 = σ 
 σ 

S  (15) 

According to hypothesis 3, the concrete stress components in xyz  coordinates are 
determined by either of the following transformations: 

 123 123
T T= =Φ Φ σ T σS S  (16)a,b 

The procedure defined by the spectral decomposition (10), the constitutive equations (9) 
and the coordinate transformation (16) is valid for cracked and uncracked concrete. The 
solution of nonlinear problems demands incremental equations. The increment 123∆S  of the 

stress tensor is expressed by 

 
1 12 13

123 12 2 23

13 23 3

∆σ ∆τ ∆τ 
 ∆ = ∆τ ∆σ ∆τ 
 ∆τ ∆τ ∆σ 

S  (17) 

Matrix 123∆S  is not necessarily diagonal. Considering that the constitutive functions (9) 

are sufficient to relate any state of strain to the corresponding stresses, they must also be 
sufficient to define the tangent constitutive matrix. The incremental equation is expressed in 
the principal coordinate system ( )1 2 3x x x  by 

 
123 123 123 123

123 123 123 123

( ) ( ) ( ) T

T T T

+ ∆ = + ∆ + ∆ + ∆ =

= + ∆ + ∆ + ∆

I Φ I Φ

Φ I I I I Φ

S S S S

S S S S

 (18) 

where 123 123+ ∆S S  are updated total stresses, 123 123+ ∆S S  are updated principal stresses and 

+ ∆I Φ  defines the coordinate transformation from the former to the updated principal 

directions. Matrix + ∆I Φ  is a rotation matrix for an infinitesimal increment. Matrices 123∆S  

and ∆Φ  are defined by 

 
1 3 2

123 2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

∆σ −∆φ ∆φ   
   ∆ = ∆σ ∆ = ∆φ −∆φ   
   ∆σ −∆φ ∆φ   

ΦS  (19)a,b 

Using (18) and (19), the stress tensor increment is obtained by 



 

 

 
1 1 2 3 3 1 2

123 1 2 3 2 2 3 1

3 1 2 2 3 1 3

( ) ( )

( ) ( )

( ) ( )

∆σ σ − σ ∆φ σ − σ ∆φ 
 ∆ = σ − σ ∆φ ∆σ σ − σ ∆φ 
 σ − σ ∆φ σ − σ ∆φ ∆σ 

S  (20) 

Applying the same procedure, the strain tensor increment is expressed by 

 
1 1 2 3 3 1 2

123 1 2 3 2 2 3 1

3 1 2 2 3 1 3

( ) ( )

( ) ( )

( ) ( )

∆ε ε − ε ∆φ ε − ε ∆φ 
 ∆ = ε − ε ∆φ ∆ε ε − ε ∆φ 
 ε − ε ∆φ ε − ε ∆φ ∆ε 

E  (21) 

For arbitrary infinitesimal rotations 1∆φ , 2∆φ  and 3∆φ , equations (20) and (21) yield  

 ( ) ( )ij ij i j i j∆τ = ∆ε σ − σ ε − ε  (22) 

with , 1,2,3i j = . The relationship between increments of concrete stresses and strains, 

respectively denoted by 123∆σ  and 123∆ε , is defined by  

 123 123 123∆ = ∆σ E ε  (23) 

Using (9) and (22), the tangent constitutive matrix 123E  is expressed by 

 

11 12 13

21 22 23

12
123

31

31 23

32 33

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

E E E

E E E

G

G

E G

E E

 
 
 
 

=  
 
 
 
  

E  (24) 

where 

 
2( )

j i
ij

j i

G
σ − σ

=
ε − ε

 (25) 

Expression (25), based on the coaxiality of principal stresses and strains, is adopted by 
Willam, Pramono and Sture (1987), Stevens, Uzumeri and Collins (1987), Schulz (1988) and 
intensively discussed by Zhu, Hsu and Lee (2001). 

Expressions (12), (16) and (23) yield 

 ∆ = ∆σ E ε  (26) 



 

 

The tangent constitutive matrix E , in the xyz  coordinate system, is given by 

 123
T=E T E T  (27) 

The constitutive equations of the steel reinforcement are expressed by ( )sx sx sxσ = σ ε , 

( )sy sy syσ = σ ε  and ( )sz sz szσ = σ ε . The relationship between steel stress and strain increments, 

respectively s∆σ  and ∆ε , is defined by 

 s s∆ = ∆σ E ε  (28) 

The constitutive matrix sE  is  

 0
0

0

sx
sy

s

sz

E
E

E

 
 

=  
 
  

0
E

0
 (29) 

Using (7), (26) and (28), the increment of the stress vector ∆s is expressed by 

 ∆ = ∆s C ε  (30) 

where the constitutive matrix C  of the reinforced concrete element is s s= +C E ρ E . 

4 Reinforced concrete shell element 

The in-plane internal forces xN , yN , xyN , xM , yM  and xyM  (Figure 1) are defined by  

 

d d d

d d d

B B B

A A A

B B B

A A A

z z z

x x y y xy xyz z z

z z z

x x y y xy xyz z z

N s z N s z N s z

M s z z M s z z M s z z

= = =

= = =

∫ ∫ ∫

∫ ∫ ∫
 (31)a-f 

where Az  and Bz  correspond to the upper and lower bounds of the shell element (Figure 2). 

The transverse shear forces xV  and yV  are expressed by 

 d d
B B

A A

z z

x xz y yzz z
V s z V s z= =∫ ∫  (32)a,b 

The following differential equilibrium equation, with respect to z -axis, is established 
assuming that no forces are applied on the element (hypothesis 4) and 0zs ≅  (hypothesis 5): 

 0xz yzs s′ + =ɺ  (33) 



 

 

The prime, the point and the star respectively denote partial derivatives of a function with 

respect to x , y  and z  [ ] [ ] [ ] [ ] [ ] [ ]*
, andx y z

 ′ = ∂ ∂ = ∂ ∂ = ∂ ∂ 
 

i

. Integrating (33) 

yields 

 0x yV V′ + =ɺ  (34) 

The differential equilibrium equations of the reinforced concrete element with respect to 
x - and y -axes are expressed by 

 * *
xz x xy yz xy ys s s s s s′ ′= − − = − −ɺ ɺ  (35)a,b 

Equations (35) and the boundary conditions 

 ( ) ( ) ( ) ( ) 0xz A yz A xz B yz Bs z s z s z s z= = = =  (36) 

are defined considering hypothesis 4. Integrating (35) yields the shear stresses, as follows: 

 ( ) ( ) ( ) ( )d d
A A

z z

xz xx xy yz xy yz z
s z s s z s z s s z′ ′= − + = − +∫ ∫ɺ ɺ  (37)a,b 

Integrating (35) and itself multiplied by z , and substituting (31), (32) and (36) yield 

 
0

0

x xy x xy x

xy y xy y y

N N M M V

N N M M V

′ ′+ = + =

′ ′+ = + =

ɺ ɺ

ɺ ɺ
 (38)a-d 

According to (37), the derivatives xs′ , xysɺ , xys′  and ysɺ  are necessary to evaluate the shear 

stresses. Equation (30) is expanded according to 

 
n nn nt n

t tn tt t

∆ ∆     
=     ∆ ∆     

s C C ε

s C C ε
 (39) 

where 

 

T T

n x y xy t xz yz z

T T

n x y xy t xz yz z

s s s s s s   ∆ = ∆ ∆ ∆ ∆ = ∆ ∆ ∆   

   ∆ = ∆ε ∆ε ∆γ ∆ = ∆γ ∆γ ∆ε   

s s

ε ε

 (40)a-d 

In (39) and (40), n∆s  and n∆ε  are increments of in-plane stresses and strains. Vectors t∆s  

and t∆ε  correspond to transverse normal and shear variables. The derivatives of zs  are 

neglected according to hypothesis 5 ( )0zs ≅ . A first-order approximation is defined by 



 

 

neglecting the first derivatives of shear stresses xzs  and yzs , which results in 

 n n n n
′ ′= =s Dε s Dεɺ ɺ  (41)a,b 

The (3 3)× -constitutive matrix D  is determined by 1
nn nt tt tn

−= −D C C C C . The terms of matrix 

D  are forces per unit area. Matrix D  is partitioned according to 

 
TT T T T

x y z =  D D D D  (42) 

The following equations are deduced from (41) and (42): 

 xx x n xy xy n y y n xy xy ns s s s′ ′ ′ ′= = = =D ε D ε D ε D εɺ ɺ ɺ ɺ  (43)a-d 

Equations (37) and (43) yield 

 ( ) ( )( ) d ( ) d
A A

z z

xz x n xy n xz xy nn y nz z
s z z s z z′ ′= − ε + ε = − ε + ε∫ ∫D D D Dɺ ɺ  (44)a,b 

According to the generalized Bernoulli’s hypothesis (hypothesis 6), the longitudinal 
strains xε , yε  and xyγ  are linearly interpolated according to 

 x x x y y y xy xy xye k z e k z e k zε = + ε = + γ = +  (45) a-c 

where xe , ye  and xye  are strains at 0z =  and xk , yk  and xyk  are generalized curvatures. 

Equations (45) are expressed in matrix form by 

 
T T

n x y xy = ε ε γ = ε p e  (46) 

In (46), the position matrix p  and the generalized strain vector e are defined by 

 

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

T
z

z

z

 
 =  
  

p  (47) 

 
T

x x y y xy xye k e k e k =  e  (48) 

The derivatives of the longitudinal strains xε , yε  and xyγ  with respect to x  and y  are 

determined by 

 T T
n n
′ ′= =ε p e ε p eɺɺ  (49)a,b 



 

 

where the derivatives ′e  and eɺ  of the generalized strain vector are expressed by  

 
TT

x x y y xy xy x x y y xy xye k e k e k e k e k e k ′ ′ ′ ′ ′ ′ ′ = =   e e ɺ ɺ ɺɺ ɺ ɺ ɺ  (50)a,b 

Substituting (49) in (44) yields 

 ( ) ( ) ( ) ( ) ( ) ( )T T T T
xz x xy yz xy ys z z z s z z z′ ′= + = +S e S e S e S eɺ ɺ  (51)a,b 

where ( )x zS , ( )y zS  and ( )xy zS  are vectors defined by 

 ( ) ( ) ( )d d d
A A A

z z zT T T T T T
x x y y xy xyz z z

z z z z z z= − = − = −∫ ∫ ∫S D p S D p S D p  (52)a-c 

The vector F  of generalized stresses per unit length is expressed by 

 d
B

A

zT

x x y y xy xy nz
N M N M N M z = =  ∫F ps  (53) 

The derivatives ′F  and Fɺ , with respect to x  and y , are determined by 

 

d

d

B

A

B

A

zT

x x y y xy xy nz

zT

x x y y xy xy nz

N M N M N M z

N M N M N M z

′ ′ ′ ′ ′ ′ ′ ′ = = 

 = = 

∫

∫

F ps
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 (54)a,b 

Substituting (41) and (49) in (54) yields 

 ′ ′= =F K e F K eɺ ɺ  (55)a,b 

where the stiffness matrix K  is defined by 

 d
B

A

z T

z
z= ∫K p Dp  (56) 

Equations (51) and (55)  yield the shear stresses xzs  and yzs . These simple final equations 

are conceptually identical to the equivalent section method for beams, proposed by Diaz 
(1980) and Diaz and Schulz (1981). Equations (55) define two systems of six generalized 
stresses by six generalized strains. The derivatives of generalized stresses in (54), which can 
be directly evaluated from analytical solutions and finite element analyses, must satisfy the 
differential equilibrium equations (38). 

5 Material behavior 

The proposed mechanical model can be implemented according to different constitutive 



 

 

formulations. The present analysis is based on the bidimensional constitutive model A 
proposed by Vecchio and Collins (1993). It uses the uniaxial stress-strain curve proposed by 
Popovics (1973), modified for high strength concrete by Thorenfeldt, Tomaszewicz and 
Jensen (1987) and calibrated by Collins and Porasz (1989). In model A, the softening effect in 
tension-compression state is expressed as a function of the ratio 1 2ε ε , where 1ε  and 2ε  are 

respectively the principal tensile and compressive strains. In the present paper, this estimate is 
lower bounded by the softening coefficient formerly proposed by the same authors (1986), 
which is a function of 1ε . The tension-stiffening effect is as represented by Polak and Vecchio 

(1993), where concrete average tensile stresses, transmitted across the cracks, are limited by 
the reserve capacity of the reinforcement. Tension stiffening effect is assumed to be limited to 
a volume of concrete within 7.5 bar diameters from the reinforcement center, and the 
maximum shear stress at a crack is verified as recommended by Vecchio and Collins (1986). 
The shear slip at crack surfaces, Poisson’s ratio and other secondary effects are not 
considered. 

The tridimensional constitutive model uses the same uniaxial curves, but the principal 
strains 1ε  and 2ε  are replaced, in the same softening functions, by the strain parameters 1′ε  

and 2′ε . Kirschner and Collins (1986) define 1′ε  as the square root of the sum of the squares of 

all positive principal strains. The strain 2′ε  is assumed as the minimum principal strain. The 

terms ijE  in (24) are determined by 

 1 2

1 2

i i
ij

j j j

E
′ ′∂σ ∂σ ∂ε ∂ε∂β ∂β = + + ′ ′∂ε ∂β ∂ε ∂ε ∂ε ∂ε 

 (57) 

where ( )1 2,′ ′β ε ε  is the tension-softening coefficient. The partial derivatives in (57) are 

analytically presented by Santisi d'Avila (2008). Since ij jiE E≠  under tension-compression 

states, matrices E , C , D  and K  are not necessarily symmetric. 

6 Implempentation procedures 

The following procedure yields strains and stresses for a given set of internal forces: 
1. An iteration is started considering a generalized strain vector e (48) and distributions of 

shear stresses xzs  and yzs  along the thickness. The first approximations can be zero. 

2. At each layer, the vectors of in-plane strains nε  (46) and transverse stresses ts  are 

known. Vectors ns  and tε  are determined using a secondary iterative process based on 

(39), the final step of which yields the reduced constitutive matrix D  (42).  
3. The vector of generalized stresses F  (53) is integrated. The procedure stops when the 

residual ∆F , between applied and resisting internal forces F ,  is considered relatively 
small. 

4. The stiffness matrix K  (56) and the derivatives of generalized strains ′e  and eɺ  (50), 
evaluated by equations (55), yield a new approximation of the shear stresses xzs  and yzs  



 

 

(51). Solving ∆ = ∆F K e  yields the strain increment ∆e and a new approximation of the 
generalized strain vector e, restarting the main iterative process.  

The simultaneous update of generalized strains and shear stresses proves to be 
numerically efficient, although each update assumes that the other parameter is restrained. 
The numerical efficiency is not affected by solving non-symmetric systems with low order 
matrices. The secondary iterative process, based on (39), is a Newton-Raphson procedure that 
solves  
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 (58) 

The ultimate load capacity is evaluated by another incremental procedure based on the 
arc-length method. The shear stresses are determined using the stiffness matrix K  of the 
previous incremental step. Additional details are presented by Santisi d'Avila (2008).  

 7 Comparison with test data reported in the literature 

The proposed theory and the material model used are verified with experimental data 
obtained from the literature. Vecchio and Collins (1982) analyze the response of membrane 
elements submitted to combined in-plane shear and normal stresses. Specimens PV, with 890 
x 890 x 70 mm, are typically reinforced with two layers of welded wire mesh, which are heat-
treated to exhibit a long yielding plateau. The selection presented in Table 1 excludes panels 
with concrete voids, panels which fail prematurely because of pull-out of shear connecting 
keys, and panels that require additional information on steel response to be properly analyzed 
under strain-hardening. Table 1 presents the main material and geometrical information, 
including the steel yielding stresses (ylf , ytf ) and reinforcement ratios (lρ , tρ ), which are 

defined, respectively, in each orthogonal direction. The cracking tensile strength of concrete 

is estimated by ( )0.33 MPacf . Most specimens are subjected to increasing pure shear, and 

uτ  designates the ultimate shear stress. Panels PV23, PV25 and PV28 combine shear stresses, 

denoted by τ , with biaxial normal stresses, which are respectively equal to 0.39− τ , 0.69− τ  
and 0.32+ τ . The biaxial compressive stresses of specimen PV29 are expressed in modulus by 

3.80 MPaτ − , when 3.80 MPaτ > . The ultimate loads predicted by Vecchio and Collins 
(1982), Bentz, Vecchio and Collins (2006) and the proposed procedure show good 
correlation. The contribution of tension-stiffening is analyzed by excluding and including this 
effect. The predicted results are denoted respectively by PT (pure tension) and TS (tension 
stiffening), and ultimate loads are not significantly different. 

Polak and Vecchio (1993) investigate the behavior of shell elements subjected to biaxial 
bending and in-plane forces, using a shell element tester that is capable of applying uniform 
load conditions. Specimen SM4 is of special interest because it presents symmetrical top and 
bottom reinforcement in two orthogonal directions, orientated at 45°  with respect to the 
applied loads M  and  P  (Figure 4). The reinforcement ratios are 1.32% (φ 20 spaced at 



 

 

0.076m) and 0.44% (φ 10 spaced at 0.076m), per layer, in each direction. The corresponding 
stress-strain curves present definite plateaus at 425 and 430 MPa, strain hardening after 12 
and 20 mm/m and ultimate strength of 611 and 480 MPa. The effective test dimensions are 
1524 x 1524 x 316 mm, the concrete compression peak stress is 64 MPa at 2.6 mm/m, and the 
split cylinder tensile test yields 2.76 MPa. The final load level is reported as 

205 kNm muM =  and 820 kN muP = . The element x -axis is defined in the direction of the 

stronger reinforcement. The experimental surface strains yε  and reinforcement strains sxε  and 

syε  are compared to the theoretical results (Figure 4). The predicted strains, excluding the 

concrete tensile strength (NT - no tension) and including the tension stiffening (TS), describe 
tension effects at intermediate load levels and demonstrate good correlation. The predicted 
and observed ultimate moments uM  are discussed in Table 2 according to three conditions: 

excluding the concrete tensile strength (NT), taking into account the concrete tensile strength 
but excluding the tension-stiffening effect (PT) and including both concrete tensile strength 
and tension-stiffening effect (TS). All assumptions predict conservative results in agreement 
with the observed data. In this analysis, ultimate loads are not influenced by tensile effects. 

  

(MPa) (MPa) (%) (MPa)

PV4 26.6 242-242 1.06-1.06 2.89 0.88 1.12 0.89 0.89
PV6 29.8 266-266 1.79-1.79 4.55 1.04 0.95 1.04 1.05
PV10 14.5 276-276 1.79-1.00 3.97 0.93 1.06 0.93 0.94
PV11 15.6 235-235 1.79-1.31 3.56 1.01 0.98 1.01 1.02
PV12 16.0 469-269 1.79-0.45 3.13 0.95 1.09 0.80 0.93
PV13 18.2 248 - 0 1.79-0.00 2.01 0.72 - 0.70 0.74
PV16 21.7 255-255 0.74-0.74 2.14 0.88 1.12 0.88 0.88
PV18 19.5 431-412 1.79-0.32 3.04 1.08 1.08 0.91 1.03
PV19 19.0 458-299 1.79-0.71 3.95 1.03 0.95 0.92 1.01
PV20 19.6 460-297 1.79-0.89 4.26 1.05 0.93 0.94 1.02
PV21 19.5 458-302 1.79-1.30 5.03 1.07 0.91 0.98 1.04
PV22 19.6 458-420 1.79-1.52 6.07 1.02 0.98 0.99 1.03
PV23 20.5 518-518 1.79-1.79 8.87 0.79 - 0.80 0.84
PV25 19.2 466-466 1.79-1.79 9.12 0.87 - 0.82 0.87
PV26 21.3 456-463 1.79-1.01 5.41 0.99 0.88 1.03 1.09
PV27 20.5 442-442 1.79-1.79 6.35 1.01 0.96 0.99 1.03
PV28 19.0 483-483 1.79-1.79 5.80 0.96 - 0.94 0.98
PV29 21.7 441-324 1.79-0.89 5.87 1.22 - 1.01 1.09

0.97 1.00 0.92 0.97
0.12 0.08 0.09 0.10

Mean
Standard deviation

Sp. BVC 
2006

VC 
1982

PT TS

cf l tρ − ρ ,u PREDICTED uτ τ
uτyl ytf f−

            

Model

Polak&Vecchio 
(1993)

0.83

NT 0.91
PT 0.91
TS 0.91

, ,u PREDICTED u OBSERVEDM M

 

  Table 1 – Ultimate loads (PV Series)                           Table 2 – Ultimate loads (SM4) 

The predicted stresses and strains, neglecting concrete tensile strength, are presented at a 
load level near to failure (Figure 5). The stress on the weaker reinforcement increases because 
of strain hardening, but it is still inferior to the ultimate strength. Concrete reaches its reduced 
compressive strength ( cfσ = −β  ).  

Adebar (1989) and Adebar and Collins (1994), using the same element tester, analyze 
1524 x 1524 mm shell elements subjected to in-plane and transverse shear loads. The 
specimens selected for this verification have very small amounts of shear reinforcement 
(0.08% reinforcement ratio). Some other specimens, which present larger amounts of shear 



 

 

reinforcement, are discarded because they do not fail during the test. The specimens denoted 
by SP3, SP4, SP7, SP8 and SP9 are 310 mm thick and have large amounts of symmetrical in-
plane reinforcement, equally arranged in orthogonal grids oriented at 45°  with respect to their 
sides. The stress-strain curves show definite plateaus and the strain hardening response is 
described by Adebar (1989). The yield and ultimate stresses of the shear reinforcement are 
respectively 460 MPa and 570 MPa and other details are presented in Table 3. 

            
Figure 4 –  Strain analysis (SM4).                     Figure 5 –  Ultimate analysis (SM4). 

In the present numerical analyses, the cracking strength of concrete is estimated based on 
the results of the split test. The specimens are subjected to different load combinations, which 
are proportionally increased during the testing procedure. The in-plane and transverse forces 
are constant along the specimen, but bending moments vary linearly (Figure 6).  

 
Figure 6 –  Loading scheme (SP3, SP4, SP7, SP8 and SP9). 

The xy  coordinate system is associated with the in-plane reinforcement. Generic 

transverse shear forces 2xV ′ =  kN/m and 0yV ′ =  kN/m, applied in the x y′ ′  coordinate 

system, correspond to 1x yV V= =  kN/m. The derivatives xM ′ , yM ′ , xyM ′  , xMɺ , yMɺ  and xyMɺ  

are equal to 1 2 kN/m. The load capacity is verified at 0.75 mx′ = ± , transforming the 

corresponding bending moment xM ′  to xy  coordinates. 



 

 

Ratio

(%) (MPa) (MPa) (‰) (MPa)

SP4 3.58 480-660 52.4 2.3 4.4

SP3 3.58 480-660 49.8 2.2 4.7

SP7 3.75 536-637 54.1 2.0 4.1

SP9 3.75 536-637 49.6 2.6 4.1

SP8 3.75 536-637 52.9 2.1 4.2

Sp. sx syρ = ρ y uf f− cf pε
spf

: :xy y zN V V

0 :1:1

4 2 :1:1−

4 2 :1:1

8 2 :1:1

1: 0 : 0

0 :1:1

 

Note: sxρ and syρ  are the reinforcement ratios per layer in each direction, yf  and uf  are the yield and ultimate 

stresses of in-plane reinforcement, cf  is the concrete compression strength, pε is the concrete strain at the peak 

compressive stress and spf  is the split cylinder tensile strength. 

Table 3 – Specimen data (SP3, SP4, SP7, SP8 and SP9) 

Theoretical and observed stirrup strains are compared in Figure 7. The reference shear 
stress V t  is defined by x yV t V t V t= = , where t  is the thickness of the shell. The 

experimental transverse strains cannot be exactly represented by the proposed formulation, 
since they are measured with strain gauges on unbounded stirrups. According to hypothesis 2, 
no slip is considered between concrete and reinforcing bars. In spite of this limitation, 
predicted average stirrup strains are compared, in magnitude, excluding and including the 
tension stiffening effect. The theoretical strains of specimen SP4, including the tension 
stiffening effect, show low levels of stress. The same results are predicted by Adebar and 
Collins (1994). The necessary stirrup contribution to the equilibrium, between cracks, justifies 
the large experimental strains of the unbounded stirrups. 

 
Figure 7 –  Stirrup strains (SP3 and SP4). 

Although the properties of specimens SP3, SP4, SP7, SP8 and SP9 are not exactly the 
same, it is possible to establish a relationship between transverse shear capacity and 
membrane shear forces (Figure 8). The ultimate loads predicted by the proposed theory are 
compared to other formulations (Polak and Vecchio 1993; Adebar and Collins 1994), and 
give a better approximation. Results excluding tension-stiffening effects are significantly 
lower. The reduction of longitudinal strains increases the shear capacity considerably. 



 

 

 
Figure 8 –  Experimental and theoretical results (SP3, SP4, SP7, SP8 and SP9). 

The response of specimen SP7 is evaluated close to failure, including the concrete tensile 
strength and the tension-stiffening effect (Figure 9). Minute negative shear stresses yzτ  are 

detected in the tensile cover region. They are associated with the negative derivatives of the 
stress-strain diagram for concrete under tension, the descending branch of which represents 
declining tension stiffening as cracking progresses. The stirrups reach yield stress through an 
extensive area of the thickness. The principal compressive stresses 2σ  and 3σ  are compared 

with the concrete capacity in Figure 10, where the reduced concrete strength due to 
compression softening is defined by cfβ .  

             
Figure 9 –  Ultimate analysis (SP7).                             Figure 10 –  Compressive stresses at        
                                                                                                               ultimate state (SP7). 

The spatial orientation of the principal compressive stresses close to failure, as predicted 
by the proposed theory, is presented in Figure 11a. The orientation of the struts is more 
detailed for specimen SP7 (Figure 11b). The direction of the shear struts, in the central core of 
the shell, follows the direction of the principal transverse shear force. 



 

 

                                        
a)                                                                           b) 
Figure 11 –  Spatial orientation of the struts: a) SP7; b) SP3, SP4, SP7 and SP9. 

8 Conclusions 

The proposed mechanical model yields through-the-thickness distributions of stresses and 
strains in reinforced concrete shells, considering the simultaneous effect of in-plane and 
transverse loads. The comparison with test data reported in the literature confirms that the 
formulation is able to accurately model in-plane conditions, flexural behavior and transverse 
shear effects. The constitutive model adopted predicts results which are in agreement with the 
observed data. The proposed theory provides a promising solution for the design of reinforced 
concrete shells. A practical design method can be developed by applying optimization 
techniques to balance the internal forces with a minimum amount of total reinforcement. 
Strain limitations can be considered as complementary optimization conditions. The 
bipartition method, starting from the minimum and maximum code requirements, is a simple 
approach that is sufficient for fixed reinforcement ratios. However, the influence of tension 
effects demands additional investigation. Concrete tension effects are often neglected in 
reinforced concrete design, because they are usually considered to have little to no influence 
on the ultimate load capacity. This hypothesis is confirmed in PV and SM specimens 
(membrane and shell elements subjected to in-plane conditions). The fact that the load 
capacity of SP specimens is significantly affected by tension stiffening shows that this 
approach may be too conservative for shells with transverse shear forces, particularly when 
dealing with large amounts of flexural reinforcement, small amounts of shear reinforcement 
and monotonic loadings. The verification of tension effects, with additional experimental 
data, and the implementation of finite element formulations, based on the proposed 
mechanical model, call for further research. 
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