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Waves in bubbly liquids with phase change
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Abstract

In a previous paper (C. Boutin, J.-L. Auriault, Acoustics of a bubbly fluid at large bubble concentration,
Eur. J. Mech. B/Fluids, 12(3) (1993) 367-399), the homogenization technique was used to investigate how
acoustic waves propagate in a bubbly fluid at finite concentration. Three different equivalent macroscopic
behaviours were shown to exist, for “large”-, “medium”- and “small”-size bubble systems, respectively. In
the present paper, we extend the analysis by taking into consideration possible phase change effects. We
show that phase change effects are negligible in the case of large-size bubbles, whereas they strongly modify
the medium-size bubble system behaviour. For small-size bubbles capillarity dominates the pro-
cess.

1. Introduction

This paper deals with the mathematical modelling of wave propagation in bubbly fluids in
presence of possible phase change. Interest in such investigations is accounted for by the fact that
wave propagation characteristics drastically change when bubbles are generated in a liquid, be-
cause of the large change in compressibility. Appearance of bubbles can be caused by the wave
perturbation itself when the liquid state stays in the vicinity of the bubble point. Obtaining
mathematical modellings are of prime interest in many industries where two-phase systems are
used, as well as in seismic detection of gas or oil reservoirs.

Wave propagation in bubbly fluids has been investigated for a long time. Steady or shock waves
have been experimented in [3-8]. Phenomenological modellings can be found in [3] or in [9], where
the relative displacement between the two phases is considered, and in [10-12] where thermal
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Nomenclature

lvisc ltherm
)

L
LQD
J‘/visc J‘/therm

wave celerity

dimensionless number

heat capacity

diffusivity

deformation tensor

temperature fields in the liquid and the vapour, respectively
mass flux of vaporization—condensation
Jacob number

thermal conductivity

rigidity

capillary membrane rigidity

bulk rigidity

characteristic length of the period
viscous and thermal layer thickness, respectively
macroscopic characteristic length
vaporization enthalpy

dimensionless numbers for viscous and thermal effects, respectively
unit normal to the bubble surface
pressure

capillary pressure

characteristic pressure

Prandtl number

bubble radius perturbation

bubble radius

temperature

characteristic temperature

displacement

macroscopic displacement

characteristic displacement

Weber number

dimensionless macroscopic space variable
physical space variable

dimensionless microscopic space variable

bubble concentration

Laplacian operator

small scale separation parameter
specific heat ratio

bubble surface

wavelength

dynamic viscosity




v kinematic viscosity

) frequency

Q period

Q, Q, domains of the period occupied by the liquid, the vapour, respectively
Iy density

p° characteristic density

D bulk density

G surface tension

c stress

effects are introduced. Many investigations are conducted by extrapolating the behaviour of a
single bubble. A good review of such approaches can be found in [13]. Modellings of wave
propagation were also investigated by scale change methods. Perfect fluid with finite or small gas
concentration is studied in [14]. Non-linear behaviours including asymmetric bubble deformations
were proposed in [15] and completed in [16] by adding viscous effects in a mixture at small
concentration. Mixtures of two liquids were addressed in [17] and in [18] where capillarity is taken
into consideration. Finally in [2], bubbly liquids at large concentration are considered in the
presence of possible thermal exchanges.

The present paper is an extension of [2]; the phenomenon of phase change, which is of great
importance in liquids near the bubble point is added. For this purpose we develop the analysis
that is schematically introduced in [19]. The macroscopic equivalent models are determined by
using the multiple scale expansion method [20]. In this method, we start from the bubble scale
description. The method is based on the existence of two well-separated characteristic lengths, /
and L, the ratio of which serves as a small parameter for the expansions. Macroscopic models are
deduced from the local description, only, without any prerequisite concerning the macroscopic
description. The volume averaging process is not arbitrarily introduced in the process; it is a
consequence of the scale separation. Another advantage of the method is that it demonstrates,
from a given local description, the existence or the non-existence of a macroscopic equivalent
description. It also gives the domain of validity of the macroscopic description.

The bubbly liquid and the multiple scale expansion method are briefly presented in Section 2.
After giving the physics at the bubble scale in Section 3, estimations of the different dimensionless
numbers entering the local description are made in Section 4. That yields three characteristic
different cases of interest corresponding to “‘small”, “medium” and “large” bubble size, respec-
tively, as in [2]. The corresponding dimensionless descriptions at the bubble scale are presented in
Section 5. The macroscopic equivalent modellings are then investigated in Section 6 in the three
cases.

2. Medium description and multiple scale homogenization process

We consider a liquid containing vapour bubbles at finite concentration. In order to make the
homogenization method for periodic structures consistent with the investigation of the bubbly
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Fig. 1. (a) Bubbly fluid at finite concentration and (b) period Q.

liquid, we assume the medium to be periodic. This assumption is actually not a restriction. At the
bubble scale, consider the medium to be Q-periodic and its characteristic length to be /. The liquid
and the vapour occupy the domains €, and Q,, respectively, and their common boundary is I’
(Fig. 1). We investigate how waves propagate when viscous, thermal, capillary and phase change
effects are considered. The wave propagation introduces a second characteristic length L related to
the wave celerity ¢, the frequency w and the wavelength /4 by, e.g.,

L=c/w=1/2n.

We are looking for a macroscopic model that describes the wave propagation when L > [, i.e.
when the two phase medium can be seen as a continuous medium. The scale separation L > [ is a
necessary condition for an equivalent macroscopic description to be valid.

The existence of two well-separated characteristic lengths makes any one quantity depend a
priori on two dimensionless space variables x and y

X X /
X=_, y=7, x=g, L—8<<1, (1)
where X is the physical space variable. The macroscopic description is obtained from the bubble
scale description by using the method of multiple scale expansions. It consists (see [21]) firstly in
rendering the local description dimensionless by using / as a characteristic length and evaluating
the dimensionless numbers with respect to the powers of ¢. Then any quantity @ is looked for in
the heuristic form

& =d(y,x) = Zs”@”, n integer, X = gy. (2)

Finally, by equating like power terms in equations, successive boundary value problems are
obtained, that yield the macroscopic description (homogenizable situation). A dimensionless
quantity @* will be said to be of the order of & if we have

S < | <

The small parameter ¢ is not intrinsic to the particular investigated bubbly fluid, since from (1) it
depends on the wavelength. It is clear that changing the wavelength changes ¢, which then could



modify the value of the dimensionless numbers in function of the powers of ¢, and therefore could
result in a different macroscopic model. The liquid is assumed to be water and the gas in the
bubbles is water vapour. The bubbly fluid is initially at rest at atmospheric pressure and the
temperature is 7 = 370 K. We investigate a low frequency acoustic perturbation of this initial
state.

3. Physics at the bubble scale
An acoustic perturbation of small amplitude and constant frequency is superimposed onto the
initial equilibrium. The small parameter of the perturbation is assumed small enough to not in-
terfere with the homogenization process. Any quantity ¢ in the medium can be put in the form
P = @ + ¢, expint), |P,] < [P,
where the superscripts t and e stand for ““total” and “equilibrium”, respectively. « =1 is for the

liquid and « = v is for the vapour. Since the amplitude of the perturbation is small, the equations
for the wave propagation are linearized.

3.1. Momentum balance

The two fluids are assumed viscous Newtonian. The momentum balance at constant frequency
(linearized Navier—Stokes equation) is written as

—gradp, + iop,(graddivu, + Au,) = —pSo’u,, (3)
where p is the pressure perturbation, u the viscosity, u the displacement and p is the density.

3.2. Heat balance

In the vapour and in the liquid the energy balances at constant frequency w are respectively in
the form

div(kygrad 7)) = io(p;Cp Ty — py), (4)

div (k; grad 7}) = iwp; Cyi Ti. (5)

where k is the thermal conductivity, 7" the temperature perturbation and C,,« =1,v, is the
specific heat at constant pressure.

3.3. Mass balance

The mass balance of the fluids is in the form
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div <pa 6t> e a=1v.

For the perturbation, the mass balance at constant frequency is linearized in the form

p,+pSdive, =0, o=1Lv. (6)

3.4. Equation of state of the vapour
The vapour is assumed as a perfect gas
PVt = nRT

that yields for the perturbation
Pv TV
v — ¥ . 7
p m<m+p> (7)

3.5. Conditions on the bubble surface I’

Because of capillarity, the stress perturbation ¢ is discontinuous on I"

207

@w—m%nzpm,zkzig- (8)

Vector n is a unit normal to I', p. the capillary pressure perturbation, ¢ the surface tension, R the
bubble radius at rest and r is the perturbation of the bubble curvature.
As in [2], the surface I' is assumed to be at thermodynamic equilibrium

T,=T =Ty (9)

However, due to phase change the temperature 7} is now given by the Clausius—Clapeyron re-
lation

drt T
dpt  Lept’

For the perturbation, we get

TE
Ir =p,—, 10
r=p Lope (10)
where L? is the enthalpy of vaporization.
The heat flux perturbation is discontinuous on I" because of the phase change



kigradT,-n = k,grad T, -n— L?j - n. (11)

where j is the mass flux of vaporization—condensation at the vapour-liquid boundary I.

The last condition on I' concerns displacements u which is also discontinuous because of the
phase change
o

. . i-n . i
lour -n =100 -0 ——— = 10U, - N ——.
pl pv

(12)

4. Estimations

With a view to make dimensionless the bubble scale description, we investigate the orders of
magnitude of the different terms in Egs. (3)—(12). To illustrate the analysis, we consider a par-
ticular bubbly fluid composed of water and water vapour bubbles. Changing the liquid—gas
mixture or changing the equilibrium state before perturbation could change the orders of mag-
nitude of the different terms in Egs. (3)-(12). However, the macroscopic behaviours that are
described in the following would be preserved for corresponding appropriate bubble sizes and
frequencies. The concentration f§ of the bubble is finite, § = O(1). The medium is initially at rest,
and the liquid is at the temperature 7°¢ ~ 370 K, and at atmospheric pressure, P¢ ~ 10° Pa. The
characteristic length / is considered as of the same order of magnitude as the bubble diameter,
[ = O(2R). We investigate an acoustic perturbation characterized by a small scale separation
parameter ¢ < 1 and we consider low acoustical frequencies, 1 s7! < w < 500 s~

4.1. Material constants
We use the typical values shown in Table 1 for the liquid and the vapour. The enthalpy of

vaporization is L? = 2.5 x 10° J/kg. The surface tension is ¢ = 0.075 N/m. Notice that the Jacob
number ¢ and the vapour Prandtl number Zr, are of order 1

C,T¢ 1, Coy
F =0, 2= o),
k7% ) v kv

Table 1

Medium characteristic constants
Medium Liquid Vapour
Density p¢ (Kg/m?) 10° 1.2
Rigidity K (Pa) 2% 10° 1.4 x 10°
Dynamic viscosity u (Pa s) 1073 20 x 107°
Kinematic viscosity v (m?/s) 10-¢ 15 x 107¢
Conductivity & (W/K m) 0.6 0.026
Heat capacity C, (J/K kg) 4.18 x 10 10°

Diffusivity d (m?/s) 1.4 x 1077 2.1%10°°




4.2. The three characteristic bubble sizes

Viscous and thermal effects are characterized by the viscous and thermal layer thickness [V
and /™™ in the liquid and in the vapour, respectively

V d.
w w

These thicknesses are to be compared to the bubble radius R. It is easy to check that they are all of
similar order of magnitude relatively to ¢ < 1

% =0(ly™) a=1,v.
On the other hand, capillary effects are characterized by the capillary membrane rigidity K,

% 20
3R

to be compared to the rigidity P¢/f of the vapour-liquid mixture in absence of thermal and

capillary effects. Therefore, by following [2], three cases of interest are pointed out:

e Large-size bubbles. The layer thickness is much smaller than the bubble radius. Outside the
boundary layer, the heat transfer is negligible and the process is adiabatic. The rigidity that
is due to capillarity is very small

. PC
[V — Q(1hem) & R, Ta:O< Pa ) K. < —. 13
O 75Con p 1)

As the pressure perturbations are of the same order in the liquid and the vapour, when using
the heat capacity values shown in Table 1, it is found that

T, =0(z'T).

o Medium-size bubbles. The layer thickness is of the order of magnitude as the bubble radius.
Heat transfer occurs in the entire bubble volume. The heat transfer is transient. However,
the above temperature estimation remains valid, T, = O(¢~'T;). Capillarity still remains small

4 pe
[ =0(1;*™) = O(R), K< 7 (14)
o Small-size bubbles. The layer thickness is much larger than the bubble radius. The process is
isothermal, T, = O(T;). Capillarity becomes important

. PC
[ = O™ > R, K= O(F)' (15)



4.3. Phase change effects, thermal flux condition on I'

Let us investigate the heat flux condition (11) on I'. An estimate of the heat flux ratio is in the
form

|k, grad Tj| _0 ky[therm O
|k, gradT,| / , kylthem ST, )7
where 0T = |T, — Tr| stands for the temperature increment in the boundary layers. For large

bubbles the process in the vapour is adiabatic. We get from (10) and (13) and from the adopted
characteristic values that

Ty T°Cy

Fv_ Lo :jV:O(l)

This estimation remains valid for medium- and small-size bubbles. As shown in Section 4.2, we
have for large- and medium-size bubbles

Ti = O(eTy) = O(eTy),
and for small-size bubbles

Whatever the bubble size is, we get from the above estimations that

oT Jey [therm kipCpi 1
o1, ~ O e = \lpc = O¢ )
That yields

<7"ﬂgr“”‘) — 0.
r

|ky grad T, |

Therefore the mass flux j-n is mainly generated by the heat flux in the liquid. This result is in
agreement with the estimation in [13]

L?j-n = O(—kgrad, T -n). (16)

4.4. Temperature fields in the fluid

Let us investigate the temperature field in the liquid, when /!*™ = O(R). The boundary value
problem for 7j is in the form



div(kgrad 7)) = iwpiCp T} in €, (17)

TC
T1=Tr=l7qu,—pe on I, (18)

where 7, is Q-periodic. It will be seen that p, does not depend on the local variable in the period, at
the first order of approximation. Therefore, from relation (18) 7 is also a constant on the period.
After introducing the new unknown w

W:TI_TI"7
we get

div(kgradw) = iwp{Cy(w+ Tr) in Q,

w=0 onlI.

This is a problem already solved in [22]. The temperature is in the form

1
_ €
w= h(y) TpV L(pp\e/7

(1= h(y)), (19)

where A(y) is a complex function of the dimensionless frequency /™™, with o'™ = dj/R*. As
shown in [22],

limA(y) =0, lim A(y) =1.

w—0 —00

For small-size bubbles, % is small. For medium-size bubbles, # = O(1). For large-size bubbles,
1 — & < 1 and the temperature perturbation in the liquid is obtained as 7; = 0. In this later case, a
boundary layer is to be introduced to match this temperature field in the liquid to the boundary
condition (18).

4.5. Temperature field in the vapour
Let us first consider the boundary value problem for 7, in the case of medium-size bubbles

div(k,grad 7)) = iw(p;Cpy Ty, — py) in Q, (20)

Te
TV:Tr:pVLTpe on I (21)



We proceed as for the liquid temperature by introducing the new unknown w
w = Tv — TF.

We obtain

div(k,gradw) = io(p;Cpy(w + Tr) — pv) 1n £y,

w=0 onlI.

This problem resembles the problem for the liquid temperature. It is already solved in [22]. With
the notations in [2], the temperature is in the form

Dy . 1) 1 1 }
W= — Ty — - Tp|[1-=)—— ,
g(y)< ' Piva> s0)Tp K V) P5 LepS

1> 1 pT°

v ) prev(l—g()’))- (22)

I, = g(Y)TePV<1 -

When L? — oo, we recover the temperature field in the absence of phase change. g(y) is a complex
function of the dimensionless frequency w/w™™, with @™ = 4, /R*. As shown in [22],

limg(y) =0, lim g(y)=1.

w—0 W—00
For small-size bubbles, the boundary value problem becomes

div(k,grad7,) =0 in Q,, (23)

Te
TV:TF:pVLCP—pe on I (24)

v

That yields

v T¢
T, =0 (25)
LepS
Finally, for large-size bubbles, T, verifies
piCoTy —py =0 in Q,, (26)
Te
I,=Tr=p,—— onl. (27)

Leps

v



Relation (22) becomes

Dy 1\ 1
T, = :Tepv<1——>—. 28
P53 Cpv V) P (28)

To match (28) with (27), a boundary layer should be introduced. Egs. (25) and (28) are obtained
from (22) by letting g(y) ~ 0 and g(y) ~ 1, respectively. Phase change has no effect for large
bubbles.

4.6. Bulk rigidity of the bubbly fluid

First, let us evaluate the vaporization—condensation flux. Denoting by n; the outward normal to
Q, we obtain from (16)

L«J/j m dl’ = —/lq grad 7, -m dI" = —/ div(kgrad, 7i) dQ = —ia)prpl/ T, dQ
r r Q Q

) 5 eC . T¢
= 1le p—pl pl
L(ppe

v

(1-H), (29)

1
H=— [ hdQ,

where we used the divergence theorem and (19). For small-size bubbles we have H < 1. For
medium-size bubbles, the thermal layer thickness is /{™™ = O(R) and therefore 1 — H = O(1).
For large-size bubbles, we obtain /"™ < R and therefore 1 — H < 1. The vaporization-con-
densation flux j - n becomes much smaller as bubble radius increases. From the above estimation
we get

W QupeCoyT¢ 0
jndl =0 M(l—f[) — 0ol #u®: pS(1—H) ), (30)
r L(p ps Pe A
where
eC TCPe
g =Pt 620> 1.

(psLe)?

The corresponding amplitude 0, of the relative vapour volume produced by vaporization—con-
densation is in the form

0,=—jn —

41R? _of - &
Py

Dv
¢“— (1 —-H)|.
o Ea-m)



The total relative vapour volume change 0, is the sum of the relative volume change 0,7 in the
absence of phase change plus the relative volume change 0, due to phase change. 0,1 can be
estimated from (7)

. pv Tv o pv TF
=0 L) =o(-H+r)

Then we get

B B p (P P 1-p
ev_O(epTJre(p)_o<—ﬁ<p—$—gq,p$+T(g(1—H)>>. (31)

Now, the stress discontinuity (8) on I' yields

20r

pl:pv—i_ﬁv (32)

where p, is related to 6, by Eq. (31) and r is given by

RO,
=5

r (33)

When eliminating p? and r between 31, 32 and 33 and denoting by 0 = B0,, the bulk deformation
of the period, we obtain

pn=—K0
with the bulk rigidity defined by

- P¢ 20
KZO(/%( E P +%%(1—H))_3ﬂR>‘ (34)

P+26/R ~ L7p8

Depending on the values of H and K. = 2¢/3R, three behaviours are again distinguished:
o Large-size bubbles. K. and the phase change contribution are negligible

K= O<%) = O(P°).

We recover the order of magnitude of the rigidity yP° of an adiabatic mixture.
o Medium-size bubbles. Phase change effects are dominant

. pe
K:O<<1 “Re—H)

) < P°.



o Small-size bubbles. Capillary effects become preponderant.

o35

The bulk rigidity is negative. The perturbation does not propagate.

The real and imaginary parts K; and K; of the rigidity K are shown in Figs. 2 and 3, respectively,
for o =100 Hz and p = 0.2. Note that the large-size bubble behaviour is not realistic in the
present investigated case. Realistic large-size behaviours are obtained for higher frequencies. The
thermal memory function H was approximated in the following form [1]:

io*

H = —>
iw* + /F? +io*

where o* = w/w, is a dimensionless frequency, where the characteristic frequency w* is given by

K;
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Fig. 2. Real part K, (Pa) of the bulk rigidity versus the bubble radius R (m), w = 100 Hz: (a) small-size bubble and (b)
medium-size and large-size bubble.
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Fig. 3. Imaginary part K; (Pa) of the bulk rigidity as a function of R (m), @ = 100 Hz.

G o 1=,

a)t:A_t27 I—v 3ﬁ

where A, is a geometric characteristic length. F; is a shape factor. F; = 2 for cylindrical pores and
F, = 5/3 for spherical pores. We used the value F{ = 2 to calculate.

4.7. Scale separation

The characteristic size of the period is related to the bubble radius by

4\ '3
[=R| —
<3ﬁ> ’

whereas the macroscopic characteristic length is given by

where c¢ is the wave celerity, that is of pure imaginary value in case of small-size bubbles, and
p = (1 — p)py is the bulk density of the mixture. Considering a bubble concentration f ~ 0.1 and
w ~ 50 s7! yields for medium-size bubbles

/

=—~10"%
)

This value of the small scale separation parameter is preserved for large-size bubbles on the
condition that, according to Eq. (13), we have R = O(¢7'/?\/v/w), ® =~ 500 and for small-size
bubbles on the condition that, according to Eq. (15), we have R = O(¢!/?\/v/w), w ~ 5. For
simplicity, we adopt these values in the following.



4.8. Displacement and radius perturbation

The perturbation is assumed to be small. Therefore the bulk volume perturbation 0 itself is
small. We consider

0=0(7)=0@.

where u is for the displacement. Therefore, since » = O(R0/3), we get

r = O(eu) = O(’R) = O(&’L).

5. Dimensionless bubble-scale description
We use / as the characteristic length to make dimensionless the equations
X =ly.

With the above estimations, we introduce the following characteristic values for the displacement,
density, pressure and temperature, respectively

=R, p=p P=0(KL), =P =O(T,
eR, p°=p, ) Tope r)-

With the help of Table 1 and the above characteristic values we define dimensionless quantities
shown by a star

C €% C &%

u = Utui,u, = Uy, pf = p°p)",  py = ep°pl,

p=FPp, p=Pp,, T=TT".
To avoid cumbersome notation we shall drop the stars that show dimensionless quantities.

5.1. Momentum balance

Viscous effects introduce the following dimensionless number

lvisc 2
J‘/visc =0 (( ) ) ,
R

where 1} and /¥ are the viscous layer thickness in the liquid and the vapour, respectively. They
are of the same order of magnitude




J‘/'I/isc _ O( J‘/'zisc) _ J‘/visc.
where ./ is the inverse of the acoustic Reynolds number. We obtain ./ = O(¢), O(1) and
O(e™!) for large, medium and small-size bubbles, respectively. The dimensionless momentum

balances are in the form

¢ 'gradp — oAV (grad divu + Au) = pfo’u;, (35)

¢ 'gradp, — iccou, AV (grad divu, + Au,) = epSw’u,. (36)
Corresponding to Egs. (35) and (36), the stress perturbations take the forms

o1 = —pJ + 2eiw A/ "V E(u)),
o= —pl+ 282ia),/1/Vis°E(uv),

where E is the linear strain
1/ 0u; Ou;
Ei‘ - = ! / .

5.2. Heat balance

The energy balances introduce the dimensionless numbers .4e™

rm 2
e (Y
popg{sz wR? R

From the values in Table 1 we have
J‘/;herm — O(&/‘/Lherm). (37)

Therefore the temperature field is quasi-static in the liquid. However, for larger generality we
consider a transient regime in the liquid and we use equal estimation of the 4"™s

(/‘/'Eherm — O(t/‘/':/herm) — O(JVViSC). (38)

Then we obtain .4#"™™ = O(g), O(1) and O(¢!) for large-, medium- and small-size bubbles,
respectively. In the vapour the corresponding dimensionless energy balance takes the form

J‘/E’hermdiV (kv grad Tv) = ia)(picpv I, — pv) (39)



and in the liquid we get

Ahemdiy (f grad T;) = iwplCpy 7. (40)

5.3. Stress discontinuity on I’

Capillarity is measured by the Weber number %~

_ pe  20r L K. 3rL 20
il = 2 g =
P R? KU° K RU®’ 3R

K. is for the capillary membrane rigidity. K./K is a rigidity dimensionless number. 3rL/RU¢ is a
dimensionless number related to the bubble deformation. From the above estimations it is O(1).
Therefore the dimensionless capillary condition on I' is in the form

(6, —61) -n=%""pen, (41)
where # ' = O(¢?), O(e) and O(1) for large-, medium- and small-size bubbles, respectively.
5.4. Displacement condition on T’

We now investigate the boundary condition (12). From (30) we obtain

1- R » v
i-n :O<(gP_Z_P_(1_H>) —o(s' 21— m)). (42)
prou prow Pe pe

In all cases p, = O(p) = O(K0) = O(¢’K). Therefore we obtain p,/P* = O(¢?) for large and small-
size bubbles, whereas for medium-size bubbles we have p,/P* = O(¢?). From this result we deduce
that »/R = O(&?) for very large, large or medium bubbles and /R = O(¢) for small bubbles. The
above estimations yield approximately similar dimensionless forms of the boundary condition
(12) for large- or medium- or small-size bubbles

. . i-m . j-n
iour-n=iou -n—&—=1iwu, - N — ¢ .
pe v pe
i v

(43)

5.5. Equation of state of the vapour

Consider now the vapour state equation (7). The analysis in [2] remains valid; the relative
changes of pressure, temperature and density are in all cases of the same order of magnitude. The
formal scaled state equation is then

e pV TV
pv:p\,<E+F>. (44)



5.6. Mass balances
Here also the evaluations in [2] are valid:

epy + pydivu, =0, (45)

& p; + pidivu = 0. (46)

6. Macroscopic description and wave propagation

Most of the homogenization process is similar to the one conducted in [2], where phase change
is neglected. To avoid repetition, only the modifications introduced by the presence of phase
change are addressed here. The reader is referred to [2] to complete the analysis. The phase change
effects concern the boundary conditions on I', only; the temperature of the bubble surface is now
given by the Clausius—Clapeyron relation (10) and the thermal flux and the displacement are no
longer continuous, Egs. (11) and (12), respectively. The macroscopic momentum balances are left
unchanged. In particular we note that the first-order terms in the expansions of the pressures are
y-independent

p=nX), p=pKx).
In the cases of medium, large or very large-size bubbles we have
p == P(x).

Each physical quantity is sought as an expansion in the form (2). The different stages of the
process of homogenization are as in [2]. We first address the case of medium bubbles.

6.1. Medium-size bubbles: macroscopic description

Phase change affects the vapour temperature field only. The vapour density becomes, after
recalling that p° = p) = P(x)

pn_P T
pe P T’
Ppt 1 P
0 __ v _ - T _
=T e(1-2)| - S el

The macroscopic mass balance is obtained from the local mass balances in the vapour and the
liquid (Egs. (4A-1) and (9A-1) in [2]) and (43) at the second-order of approximation, that are
respectively,



div,(u!) + div, (") =0 in @, (47)

P + pS[div,(u!) + div,(u®)] =0 in Q,, (48)

.O'Il

ion -n=iou! -n - o on T, (49)
where j” - n is given by (16)
L?§ -n=—k grad, 7 - n. (50)

Integrating (47) and (48) on Q, and €2,, respectively, applying the divergence theorem and using
(49) yields the macroscopic mass balance

(1 - B)div, (U) + Bdiv. (U,) = fo [— 1+ G<1 —%)} bl =Gl = (1= P

peCuTe

X 2
pe2L?

(1 -H), (51)

where

1 1 1
U =— u’ dQ, UV:—/uOdQ, G:—/ dQ.
e /91 1 Q Jo, " /o, ®

The last two terms in Eq. (51) are related to the presence of phase change. The macroscopic
description is completed by the macroscopic momentum balances of the liquid and the vapour

(see [2])

(1-p) U = g grad P, (52)
I

pU, = i I+M dpP 53

v plea)z ( ) : gra ) ( )

where M is a real symmetric and w-dependent tensor that describes the inertial coupling between
liquid and bubbles. Its properties are studied in [2]. Eliminating U; and U, between 51, 52 and 53
yields, in the case of an isotropic medium for which M = M1



p

148 anar = o | <1 6(1-2 )+l g
v 54
+(1—p) ‘22‘2‘5 (1— H))P. o

As L? — oo, i.e. when neglecting phase change, we recover the result in [2].
6.2. Large-size bubbles: macroscopic description
The equations to be investigated for large bubbles are similar to Egs. (47)—(50) that where

obtained for medium-size bubbles. However, we have now 1 — H <« 1 and G ~ 1. Therefore the
mass balance (51) simplifies to

. . P
(1 — p)div, (Uy) + pdiv, (Uy) = _ﬁﬁ' (55)
Hence, we recover the macroscopic description in [2], which is defined by (55) and
1
(1P = s gradP, (56)
pU, = b (I+M) - gradP (57)
pro? ’

where M’ is a complex symmetric and w-dependent tensor that describes both inertial and viscous
coupling between liquid and bubbles (see [2]). In the case of an isotropic medium, we obtain the
following macroscopic behaviour

1+ A1+ MIAP = ~prier

(58)

6.3. Small-size bubbles: macroscopic description

We start from similar mass balances and boundary condition as for medium-size bubbles, Egs.
(47)—(49):

div, (u]) + div, (u)) =0 in Q, (59)
p° + p°[div, (u!) +div, (u®)] =0 in Q,, (60)
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onI. (61)



From [2] we have now

A=px), pl=pKx), p—p =px),

1 1
U =— uOdQ:UV:—/uOdQ:U.
1 QI/QII QV Qy ¥

Using (44), (27) and (41) yields

Y S NS . S
p¢ P+ (20/R) T¢ P+ (26/R) T°

and the vaporization—condensation flux is given by
L“’/jo m dlN = —iwQ pf Cy Tr.
r

Notice that

R2
ulp-nv=r°:—p3%,
1 | P 20
— dr=—f g =22
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Integrating (59) on Q,, using the divergence theorem and the first equality in (61) yields

div, U =

0_ .0
AR )

Integrating (60) on Q,, using the above relations for the density and the vaporization—conden-
sation flux through I" gives the macroscopic mass balance for the bubbles

div,U = — .
s P+ (26/R) K.  Leps P pele

0 0 _ .0 0 1 — eC TO
Py PP Py B prCuly (63)

with
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Once again, as L? — oo, i.e. when neglecting phase change, we recover the result in [2]. The
macroscopic description is completed by the bulk momentum balance, [2]

grad, p + % grad, p} = pjo’U. (64)
After eliminating p‘v’ and U between 62, 63 and 64, we get
B ) 0 > B 0
A+—— |Ap’ = pjo’ ——— (4 — 1)p 65
( 1 _ ﬁ 1 | (1 _ ﬁ)Kc( ) 1 ( )

with

A:1+KC(1—/3)< V

In the above relation, the vaporization—condensation is large. 4 can be approximated by

1-f%

A= —Kc(l —ﬁ)TF>> 1.

By neglecting small terms, the wave equation (65) becomes

1 — ﬂ Kc e
7( B ) Aplo = plwzp?'

That gives the following macroscopic behaviour

(1 _ﬁﬂ)KCAP — pwaP’ (66)

where P stands for the first order approximation p{ of the fluid pressure perturbation.

Note that Eq. (66) was obtained from underestimated vaporization—condensation flux. Note
also that the perturbation in Eq. (66) is not propagative, which is coherent with the negative
rigidity obtained above. This is also in agreement with the results in [2,18].

7. Conclusion

We have used the method of double scale asymptotic expansions to derive the macroscopic
modelling of acoustic waves in bubbly fluids in presence of capillarity and phase change. The
macroscopic modelling strongly depends on the bubble size compared to the viscous and thermal
layer thickness. In case of isotropic behaviour, acoustics in large-size bubbly fluids is described by
the following wave equation:



1+ B(14+M)AP = —ﬂpi’aﬂ%. (67)

Phase change and thermal effects are negligible. M’ is a real and frequency dependent parameter
which contains inertial and capillary effects.

For medium-size bubbles, phase change as well as thermal effects are present and the isotropic
wave equation takes the form:

[1+ B(1 + M)JAP = pfor,

B 1 p piCoT*
<Pe I1+G(1 » +L‘/’p$, [1-G]—-(1-p) L7 (1-H) |P. (68)
Finally for small-size bubbles, we obtained:
1 — pK.
%AP = pfw’P. (69)

As it can be seen, there is no wave propagation. We can say that the apparent rigidity of the
bubbly fluid becomes negative. As the bubble radius R decreases, K. increases. However, the
validity of Laplace relation becomes questionable as R < 100 A (see [23]). Note that the effect of
the curvature on the surface tension ¢ is negligibly small when R > 100 A.
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