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Nomenclature
c wave celerity
C dimensionless number
Cp heat capacity
d di�usivity
E deformation tensor
g�y�; h�y� temperature ®elds in the liquid and the vapour, respectively
j mass ¯ux of vaporization±condensation
J Jacob number
k thermal conductivity
K rigidity
Kc capillary membrane rigidity
~K bulk rigidity
l characteristic length of the period
lvisc; ltherm viscous and thermal layer thickness, respectively
L macroscopic characteristic length
Lu vaporization enthalpy
Nvisc; Ntherm dimensionless numbers for viscous and thermal e�ects, respectively
n unit normal to the bubble surface
p; P pressure
pc capillary pressure
P c characteristic pressure
Pr Prandtl number
r bubble radius perturbation
R bubble radius
T temperature
T c characteristic temperature
u displacement
U macroscopic displacement
Uc characteristic displacement
W Weber number
x dimensionless macroscopic space variable
X physical space variable
y dimensionless microscopic space variable

Greeks
b bubble concentration
D Laplacian operator
e small scale separation parameter
c speci®c heat ratio
C bubble surface
k wavelength
l dynamic viscosity
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e�ects are introduced. Many investigations are conducted by extrapolating the behaviour of a
single bubble. A good review of such approaches can be found in [13]. Modellings of wave
propagation were also investigated by scale change methods. Perfect ¯uid with ®nite or small gas
concentration is studied in [14]. Non-linear behaviours including asymmetric bubble deformations
were proposed in [15] and completed in [16] by adding viscous e�ects in a mixture at small
concentration. Mixtures of two liquids were addressed in [17] and in [18] where capillarity is taken
into consideration. Finally in [2], bubbly liquids at large concentration are considered in the
presence of possible thermal exchanges.

The present paper is an extension of [2]; the phenomenon of phase change, which is of great
importance in liquids near the bubble point is added. For this purpose we develop the analysis
that is schematically introduced in [19]. The macroscopic equivalent models are determined by
using the multiple scale expansion method [20]. In this method, we start from the bubble scale
description. The method is based on the existence of two well-separated characteristic lengths, l
and L, the ratio of which serves as a small parameter for the expansions. Macroscopic models are
deduced from the local description, only, without any prerequisite concerning the macroscopic
description. The volume averaging process is not arbitrarily introduced in the process; it is a
consequence of the scale separation. Another advantage of the method is that it demonstrates,
from a given local description, the existence or the non-existence of a macroscopic equivalent
description. It also gives the domain of validity of the macroscopic description.

The bubbly liquid and the multiple scale expansion method are brie¯y presented in Section 2.
After giving the physics at the bubble scale in Section 3, estimations of the di�erent dimensionless
numbers entering the local description are made in Section 4. That yields three characteristic
di�erent cases of interest corresponding to ``small'', ``medium'' and ``large'' bubble size, respec-
tively, as in [2]. The corresponding dimensionless descriptions at the bubble scale are presented in
Section 5. The macroscopic equivalent modellings are then investigated in Section 6 in the three
cases.

2. Medium description and multiple scale homogenization process

We consider a liquid containing vapour bubbles at ®nite concentration. In order to make the
homogenization method for periodic structures consistent with the investigation of the bubbly

m kinematic viscosity
x frequency
X period
Xl; Xv domains of the period occupied by the liquid, the vapour, respectively
q density
qc characteristic density
~q bulk density
r surface tension
r stress
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liquid, we assume the medium to be periodic. This assumption is actually not a restriction. At the
bubble scale, consider the medium to be X-periodic and its characteristic length to be l. The liquid
and the vapour occupy the domains Xl and Xv, respectively, and their common boundary is C
(Fig. 1). We investigate how waves propagate when viscous, thermal, capillary and phase change
e�ects are considered. The wave propagation introduces a second characteristic length L related to
the wave celerity c, the frequency x and the wavelength k by, e.g.,

L � c=x � k=2p:

We are looking for a macroscopic model that describes the wave propagation when L� l, i.e.
when the two phase medium can be seen as a continuous medium. The scale separation L� l is a
necessary condition for an equivalent macroscopic description to be valid.

The existence of two well-separated characteristic lengths makes any one quantity depend a
priori on two dimensionless space variables x and y

x � X

L
; y � X

l
; x � ey;

l
L
� e� 1; �1�

where X is the physical space variable. The macroscopic description is obtained from the bubble
scale description by using the method of multiple scale expansions. It consists (see [21]) ®rstly in
rendering the local description dimensionless by using l as a characteristic length and evaluating
the dimensionless numbers with respect to the powers of e. Then any quantity U is looked for in
the heuristic form

U � U�y;x� �
X

n

enUn; n integer; x � ey: �2�

Finally, by equating like power terms in equations, successive boundary value problems are
obtained, that yield the macroscopic description (homogenizable situation). A dimensionless
quantity U� will be said to be of the order of ep if we have

ep�1 � jU�j � epÿ1:

The small parameter e is not intrinsic to the particular investigated bubbly ¯uid, since from (1) it
depends on the wavelength. It is clear that changing the wavelength changes e, which then could

Fig. 1. (a) Bubbly ¯uid at ®nite concentration and (b) period X.
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modify the value of the dimensionless numbers in function of the powers of e, and therefore could
result in a di�erent macroscopic model. The liquid is assumed to be water and the gas in the
bubbles is water vapour. The bubbly ¯uid is initially at rest at atmospheric pressure and the
temperature is T � 370 K. We investigate a low frequency acoustic perturbation of this initial
state.

3. Physics at the bubble scale

An acoustic perturbation of small amplitude and constant frequency is superimposed onto the
initial equilibrium. The small parameter of the perturbation is assumed small enough to not in-
terfere with the homogenization process. Any quantity U in the medium can be put in the form

Ut
a � Ue

a � Ua exp�ixt�; jUaj � jUe
aj;

where the superscripts t and e stand for ``total'' and ``equilibrium'', respectively. a � l is for the
liquid and a � v is for the vapour. Since the amplitude of the perturbation is small, the equations
for the wave propagation are linearized.

3.1. Momentum balance

The two ¯uids are assumed viscous Newtonian. The momentum balance at constant frequency
(linearized Navier±Stokes equation) is written as

ÿgradpa � ixla�graddivua � Dua� � ÿqe
ax

2ua; �3�

where p is the pressure perturbation, l the viscosity, u the displacement and q is the density.

3.2. Heat balance

In the vapour and in the liquid the energy balances at constant frequency x are respectively in
the form

div �kv gradTv� � ix�qe
vCpvTv ÿ pv�; �4�

div �kl gradTl� � ixqe
l CplTl: �5�

where k is the thermal conductivity, T the temperature perturbation and Cpa; a � l; v, is the
speci®c heat at constant pressure.

3.3. Mass balance

The mass balance of the ¯uids is in the form
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div qt
a

ou

ot

� �
� oqt

ot
; a � l; v:

For the perturbation, the mass balance at constant frequency is linearized in the form

qa � qe
a divua � 0; a � l; v: �6�

3.4. Equation of state of the vapour

The vapour is assumed as a perfect gas

ptVt � nRT t

that yields for the perturbation

pv � pe
v

qv

qe
v

�
� Tv

T e

�
: �7�

3.5. Conditions on the bubble surface C

Because of capillarity, the stress perturbation r is discontinuous on C

�rv ÿ rl� � n � pcn; pc � 2rr
R2

: �8�

Vector n is a unit normal to C, pc the capillary pressure perturbation, r the surface tension, R the
bubble radius at rest and r is the perturbation of the bubble curvature.

As in [2], the surface C is assumed to be at thermodynamic equilibrium

Tv � Tl � TC: �9�

However, due to phase change the temperature T t
C is now given by the Clausius±Clapeyron re-

lation

dT t
C

dpt
v

� T t
C

Luqt
v

:

For the perturbation, we get

TC � pv

T e

Luqe
v

; �10�

where Lu is the enthalpy of vaporization.
The heat ¯ux perturbation is discontinuous on C because of the phase change
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kl gradTl � n � kv gradTv � nÿ Lu j � n: �11�

where j is the mass ¯ux of vaporization±condensation at the vapour±liquid boundary C.
The last condition on C concerns displacements u which is also discontinuous because of the

phase change

ixuC � n � ixul � nÿ j � n
qe

l

� ixuv � nÿ j � n
qe

v

: �12�

4. Estimations

With a view to make dimensionless the bubble scale description, we investigate the orders of
magnitude of the di�erent terms in Eqs. (3)±(12). To illustrate the analysis, we consider a par-
ticular bubbly ¯uid composed of water and water vapour bubbles. Changing the liquid±gas
mixture or changing the equilibrium state before perturbation could change the orders of mag-
nitude of the di�erent terms in Eqs. (3)±(12). However, the macroscopic behaviours that are
described in the following would be preserved for corresponding appropriate bubble sizes and
frequencies. The concentration b of the bubble is ®nite, b � O�1�. The medium is initially at rest,
and the liquid is at the temperature T e � 370 K, and at atmospheric pressure, P e � 105 Pa. The
characteristic length l is considered as of the same order of magnitude as the bubble diameter,
l � O�2R�. We investigate an acoustic perturbation characterized by a small scale separation
parameter e� 1 and we consider low acoustical frequencies, 1 sÿ1 < x < 500 sÿ1.

4.1. Material constants

We use the typical values shown in Table 1 for the liquid and the vapour. The enthalpy of
vaporization is Lu � 2:5� 105 J/kg. The surface tension is r � 0:075 N/m. Notice that the Jacob
number J and the vapour Prandtl number Prv are of order 1

J � CpT e

L
� O�1�; Prv � lvCpv

kv

� O�1�:

Table 1

Medium characteristic constants

Medium Liquid Vapour

Density qe (Kg/m3) 103 1:2
Rigidity K (Pa) 2� 109 1:4� 105

Dynamic viscosity l (Pa s) 10ÿ3 20� 10ÿ6

Kinematic viscosity m (m2/s) 10ÿ6 15� 10ÿ6

Conductivity k (W/K m) 0:6 0:026

Heat capacity Cp (J/K kg) 4:18� 103 103

Di�usivity d (m2/s) 1:4� 10ÿ7 2:1� 10ÿ5
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4.2. The three characteristic bubble sizes

Viscous and thermal e�ects are characterized by the viscous and thermal layer thickness lvisc

and ltherm in the liquid and in the vapour, respectively

lvisc
a �

����
ma

x

r
; ltherm

a �
�����
da

x

r
; a � l; v:

These thicknesses are to be compared to the bubble radius R. It is easy to check that they are all of
similar order of magnitude relatively to e� 1

lvisc
a � O�ltherm

a � a � l; v:

On the other hand, capillary e�ects are characterized by the capillary membrane rigidity Kc

Kc � 2r
3R

to be compared to the rigidity P e=b of the vapour±liquid mixture in absence of thermal and
capillary e�ects. Therefore, by following [2], three cases of interest are pointed out:
· Large-size bubbles. The layer thickness is much smaller than the bubble radius. Outside the

boundary layer, the heat transfer is negligible and the process is adiabatic. The rigidity that
is due to capillarity is very small

lvisc
a � O�ltherm

a � � R; Ta � O
pa

qe
aCpa

� �
; Kc � P e

b
: �13�

As the pressure perturbations are of the same order in the liquid and the vapour, when using
the heat capacity values shown in Table 1, it is found that

Tv � O�eÿ1Tl�:
· Medium-size bubbles. The layer thickness is of the order of magnitude as the bubble radius.

Heat transfer occurs in the entire bubble volume. The heat transfer is transient. However,
the above temperature estimation remains valid, Tv � O�eÿ1Tl�. Capillarity still remains small

lvisc
a � O�ltherm

a � � O�R�; Kc � P e

b
: �14�

· Small-size bubbles. The layer thickness is much larger than the bubble radius. The process is
isothermal, Tv � O�Tl�. Capillarity becomes important

lvisc
a � O�ltherm

a � � R; Kc � O
P e

b

� �
: �15�
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4.3. Phase change e�ects, thermal ¯ux condition on C

Let us investigate the heat ¯ux condition (11) on C. An estimate of the heat ¯ux ratio is in the
form

jkl gradTlj
jkv gradTvj

� �
C

� O
klltherm

v

kvltherm
l

dTl

dTv

� �
;

where dT � jTa ÿ TCj stands for the temperature increment in the boundary layers. For large
bubbles the process in the vapour is adiabatic. We get from (10) and (13) and from the adopted
characteristic values that

TC

Tv

� T eCpv

Lu
� Jv � O�1�:

This estimation remains valid for medium- and small-size bubbles. As shown in Section 4.2, we
have for large- and medium-size bubbles

Tl � O�eTv� � O�eTC�;

and for small-size bubbles

Tl � O�Tv� � O�TC�:

Whatever the bubble size is, we get from the above estimations that

dTl

dTv

� O�1�; klltherm
v

kvltherm
l

�
����������������
klqlCpl

kvqvCpv

s
� O�eÿ1�:

That yields

jkl gradTlj
jkv gradTvj

� �
C

� O�eÿ1�:

Therefore the mass ¯ux j � n is mainly generated by the heat ¯ux in the liquid. This result is in
agreement with the estimation in [13]

Luj � n � O�ÿkl grady Tl � n�: �16�

4.4. Temperature ®elds in the ¯uid

Let us investigate the temperature ®eld in the liquid, when ltherm
l � O�R�. The boundary value

problem for Tl is in the form
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div�kl gradTl� � ixqe
l CplTl in Xl; �17�

Tl � TC � pv

T e

Luqe
v

on C; �18�

where Tl is X-periodic. It will be seen that pv does not depend on the local variable in the period, at
the ®rst order of approximation. Therefore, from relation (18) TC is also a constant on the period.
After introducing the new unknown w

w � Tl ÿ TC;

we get

div�kl gradw� � ixqe
l Cpl�w� TC� in Xl;

w � 0 on C:

This is a problem already solved in [22]. The temperature is in the form

w � ÿh�y� T epv

1

Luqe
v

;

Tl � pvT e

Luqe
v

�1ÿ h�y��; �19�

where h�y� is a complex function of the dimensionless frequency x=xtherm
l , with xtherm

l � dl=R2. As
shown in [22],

lim
x!0

h�y� � 0; lim
x!1

h�y� � 1:

For small-size bubbles, h is small. For medium-size bubbles, h � O�1�. For large-size bubbles,
1ÿ h� 1 and the temperature perturbation in the liquid is obtained as Tl � 0. In this later case, a
boundary layer is to be introduced to match this temperature ®eld in the liquid to the boundary
condition (18).

4.5. Temperature ®eld in the vapour

Let us ®rst consider the boundary value problem for Tv in the case of medium-size bubbles

div�kv gradTv� � ix�qe
vCpv Tv ÿ pv� in Xv; �20�

Tv � TC � pv

T e

Luqe
v

on C: �21�
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We proceed as for the liquid temperature by introducing the new unknown w

w � Tv ÿ TC:

We obtain

div�kv gradw� � ix�qe
vCpv�w� TC� ÿ pv� in Xv;

w � 0 on C:

This problem resembles the problem for the liquid temperature. It is already solved in [22]. With
the notations in [2], the temperature is in the form

w � ÿg�y� TC

�
ÿ pv

qe
vCpv

�
� g�y�T epv 1

��
ÿ 1

c

�
1

pe
v

ÿ 1

Luqe
v

�
;

Tv � g�y�T epv 1

�
ÿ 1

c

�
1

pe
v

� pvT e

Luqe
v

1� ÿ g�y��: �22�

When Lu !1, we recover the temperature ®eld in the absence of phase change. g�y� is a complex
function of the dimensionless frequency x=xtherm

v , with xtherm
v � dv=R2. As shown in [22],

lim
x!0

g�y� � 0; lim
x!1

g�y� � 1:

For small-size bubbles, the boundary value problem becomes

div�kv gradTv� � 0 in Xv; �23�

Tv � TC � pv

T e

Luqe
v

on C: �24�

That yields

Tv � pv T e

Luqe
v

: �25�

Finally, for large-size bubbles, Tv veri®es

qe
vCpvTv ÿ pv � 0 in Xv; �26�

Tv � TC � pv

T e

Luqe
v

on C: �27�
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Relation (22) becomes

Tv � pv

qe
vCpv

� T epv 1

�
ÿ 1

c

�
1

pe
v

: �28�

To match (28) with (27), a boundary layer should be introduced. Eqs. (25) and (28) are obtained
from (22) by letting g�y� � 0 and g�y� � 1, respectively. Phase change has no e�ect for large
bubbles.

4.6. Bulk rigidity of the bubbly ¯uid

First, let us evaluate the vaporization±condensation ¯ux. Denoting by nl the outward normal to
Xl, we obtain from (16)

Lu

Z
C

j � nl dC � ÿ
Z

C
kl grady Tl � nl dC � ÿ

Z
Xl

div�kl grady Tl� dX � ÿixqe
l Cpl

Z
Xl

Tl dX

� ixXl

pvqe
l CplT e

Luqe
v

�1ÿ H�; �29�

H � 1

Xl

Z
Xl

h dX;

where we used the divergence theorem and (19). For small-size bubbles we have H � 1. For
medium-size bubbles, the thermal layer thickness is ltherm

l � O�R� and therefore 1ÿ H � O�1�.
For large-size bubbles, we obtain ltherm

l � R and therefore 1ÿ H � 1. The vaporization±con-
densation ¯ux j � n becomes much smaller as bubble radius increases. From the above estimation
we get

Z
C

j � n dC � O
xpvXlqe

l CplT e

Lu2qe
v

�1
�

ÿ H�
�
� O Cx

p0
v

P e
Xlq

e
v�1

�
ÿ H�

�
; �30�

where

C � qe
lCplT eP e

�qe
vLu�2 � 620� 1:

The corresponding amplitude hu of the relative vapour volume produced by vaporization±con-
densation is in the form

hu � ÿj � n 4pR2

xqe
vXv

� O

�
ÿ Xl

Xv

C
pv

P e
�1ÿ H�

�
:
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The total relative vapour volume change hv is the sum of the relative volume change hpT in the
absence of phase change plus the relative volume change hu due to phase change. hpT can be
estimated from (7)

hpT � O

�
ÿ pv

pe
v

� Tv

T e

�
� O

�
ÿ pv

pe
v

� TC

T e

�
:

Then we get

hv � O�hpT � hu� � O

�
ÿ pv

P e

P e

pe
v

�
ÿ P e

Luqe
v

� 1ÿ b
b

C�1ÿ H�
��

: �31�

Now, the stress discontinuity (8) on C yields

pl � pv � 2rr
R2

; �32�

where pv is related to hv by Eq. (31) and r is given by

r � Rhv

3
: �33�

When eliminating p0
v and r between 31, 32 and 33 and denoting by h � bhv, the bulk deformation

of the period, we obtain

pl � ÿ ~Kh

with the bulk rigidity de®ned by

~K � O
P e

b� P e

P e�2r=Rÿ P e

Luqe
v
� 1ÿb

b C�1ÿ H��

 
ÿ 2r

3bR

!
: �34�

Depending on the values of H and Kc � 2r=3R, three behaviours are again distinguished:
· Large-size bubbles. Kc and the phase change contribution are negligible

~K � O
P e

b

� �
� O�P e�:

We recover the order of magnitude of the rigidity cP e of an adiabatic mixture.
· Medium-size bubbles. Phase change e�ects are dominant

~K � O
P e

�1ÿ b�C�1ÿ H�
� �

� P e:
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· Small-size bubbles. Capillary e�ects become preponderant.

~K � O

�
ÿ 2r

3bR

�
:

The bulk rigidity is negative. The perturbation does not propagate.
The real and imaginary parts Kr and Ki of the rigidity K are shown in Figs. 2 and 3, respectively,

for x � 100 Hz and b � 0:2. Note that the large-size bubble behaviour is not realistic in the
present investigated case. Realistic large-size behaviours are obtained for higher frequencies. The
thermal memory function H was approximated in the following form [1]:

H � ix�

ix� � ������������������
F 2

t � ix�
p ;

where x� � x=xt is a dimensionless frequency, where the characteristic frequency x� is given by

Fig. 2. Real part Kr (Pa) of the bulk rigidity versus the bubble radius R (m), x � 100 Hz: (a) small-size bubble and (b)

medium-size and large-size bubble.
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xt � dl

K2
t

; Kt � xl

C
� 1ÿ b

3b
R:

where Kt is a geometric characteristic length. Ft is a shape factor. Ft � 2 for cylindrical pores and
Ft � 5=3 for spherical pores. We used the value Ft � 2 to calculate.

4.7. Scale separation

The characteristic size of the period is related to the bubble radius by

l � R
4p
3b

� �1=3

;

whereas the macroscopic characteristic length is given by

L � k
2p
� jcj

x
� 1

x

~K
~q

 !1=2

;

where c is the wave celerity, that is of pure imaginary value in case of small-size bubbles, and
~q � �1ÿ b�qe

l is the bulk density of the mixture. Considering a bubble concentration b � 0:1 and
x � 50 sÿ1 yields for medium-size bubbles

e � l
L
� 10ÿ2:

This value of the small scale separation parameter is preserved for large-size bubbles on the
condition that, according to Eq. (13), we have R � O�eÿ1=2

��������
m=x

p �; x � 500 and for small-size
bubbles on the condition that, according to Eq. (15), we have R � O�e1=2

��������
m=x

p �; x � 5. For
simplicity, we adopt these values in the following.

Fig. 3. Imaginary part Ki (Pa) of the bulk rigidity as a function of R (m), x � 100 Hz.
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4.8. Displacement and radius perturbation

The perturbation is assumed to be small. Therefore the bulk volume perturbation h itself is
small. We consider

h � O
u
L

� �
� O�e2�;

where u is for the displacement. Therefore, since r � O�Rh=3�; we get

r � O�eu� � O�e2R� � O�e3L�:

5. Dimensionless bubble-scale description

We use l as the characteristic length to make dimensionless the equations

X � ly:

With the above estimations, we introduce the following characteristic values for the displacement,
density, pressure and temperature, respectively

U c � eR; qc � ~q; P c � O ~K
U c

L

� �
; T c � P c T e

Luqe
v

� O�TC�:

With the help of Table 1 and the above characteristic values we de®ne dimensionless quantities
shown by a star

ul � U cu�l ; uv � U cu�v; qe
l � qcqe�

l ; qe
v � eqcqe�

v ;

pl � P cp�l ; pv � P cp�v; T � T cT �:

To avoid cumbersome notation we shall drop the stars that show dimensionless quantities.

5.1. Momentum balance

Viscous e�ects introduce the following dimensionless number

Nvisc � O
lvisc

R

� �2
 !

;

where lvisc
l and lvisc

v are the viscous layer thickness in the liquid and the vapour, respectively. They
are of the same order of magnitude
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Nvisc
l � O�Nvisc

v � �Nvisc:

where Nvisc is the inverse of the acoustic Reynolds number. We obtain Nvisc � O�e�; O�1� and
O�eÿ1� for large, medium and small-size bubbles, respectively. The dimensionless momentum
balances are in the form

eÿ1 gradpl ÿ ixllN
visc�grad divul � Dul� � qe

l x
2ul; �35�

eÿ1 gradpv ÿ iexlvN
visc �grad divuv � Duv� � eqe

vx
2uv: �36�

Corresponding to Eqs. (35) and (36), the stress perturbations take the forms

rl � ÿpvI� 2eixNviscE�ul�;
rl � ÿpvI� 2e2ixNviscE�uv�;

where E is the linear strain

Eij�u� � 1

2

oui

oXj

�
� ouj

oXi

�
:

5.2. Heat balance

The energy balances introduce the dimensionless numbers Ntherm
a

Ntherm
a � ka

qe
aCpaR2x

� da

xR2
� ltherm

a

R

� �2

; a � l; v:

From the values in Table 1 we have

Ntherm
l � O�eNtherm

v �: �37�

Therefore the temperature ®eld is quasi-static in the liquid. However, for larger generality we
consider a transient regime in the liquid and we use equal estimation of the Ntherm

a 's

Ntherm
l � O�Ntherm

v � � O�Nvisc�: �38�

Then we obtain Ntherm � O�e�; O�1� and O�eÿ1� for large-, medium- and small-size bubbles,
respectively. In the vapour the corresponding dimensionless energy balance takes the form

Ntherm
v div �kv gradTv� � ix�qt

vCpv Tv ÿ pv� �39�
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and in the liquid we get

Ntherm
l div �kl gradTl� � ixqt

lCplTl: �40�

5.3. Stress discontinuity on C

Capillarity is measured by the Weber number W

Wÿ1 � pc

P c
� 2rr

R2

L
~KU c
� Kc

~K

3rL
RU c

; Kc � 2r
3R
:

Kc is for the capillary membrane rigidity. Kc= ~K is a rigidity dimensionless number. 3rL=RUc is a
dimensionless number related to the bubble deformation. From the above estimations it is O�1�.
Therefore the dimensionless capillary condition on C is in the form

�rv ÿ rl� � n �Wÿ1pcn; �41�

where Wÿ1 � O�e2�; O�e� and O�1� for large-, medium- and small-size bubbles, respectively.

5.4. Displacement condition on C

We now investigate the boundary condition (12). From (30) we obtain

j � n
qe

lxul

� O C
qe

v

qe
l

R
ul

pv

P e
�1

�
ÿ H�

�
� O eÿ1 pv

P e
�1

�
ÿ H�

�
: �42�

In all cases pv � O�pl� � O� ~Kh� � O�e2 ~K�. Therefore we obtain pv=P e � O�e2� for large and small-
size bubbles, whereas for medium-size bubbles we have pv=P e � O�e3�. From this result we deduce
that r=R � O�e2� for very large, large or medium bubbles and r=R � O�e� for small bubbles. The
above estimations yield approximately similar dimensionless forms of the boundary condition
(12) for large- or medium- or small-size bubbles

ixuC � n � ixul � nÿ e2 j � n
qe

l

� ixuv � nÿ e
j � n
qe

v

: �43�

5.5. Equation of state of the vapour

Consider now the vapour state equation (7). The analysis in [2] remains valid; the relative
changes of pressure, temperature and density are in all cases of the same order of magnitude. The
formal scaled state equation is then

pv � pe
v

qv

qe
v

�
� Tv

T e

�
: �44�
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5.6. Mass balances

Here also the evaluations in [2] are valid:

eqv � qe
v divuv � 0; �45�

e2ql � qe
l divul � 0: �46�

6. Macroscopic description and wave propagation

Most of the homogenization process is similar to the one conducted in [2], where phase change
is neglected. To avoid repetition, only the modi®cations introduced by the presence of phase
change are addressed here. The reader is referred to [2] to complete the analysis. The phase change
e�ects concern the boundary conditions on C, only; the temperature of the bubble surface is now
given by the Clausius±Clapeyron relation (10) and the thermal ¯ux and the displacement are no
longer continuous, Eqs. (11) and (12), respectively. The macroscopic momentum balances are left
unchanged. In particular we note that the ®rst-order terms in the expansions of the pressures are
y-independent

p0
l � p0

l �x�; p0
v � p0

v�x�:

In the cases of medium, large or very large-size bubbles we have

p0
l � p0

v � P �x�:

Each physical quantity is sought as an expansion in the form (2). The di�erent stages of the
process of homogenization are as in [2]. We ®rst address the case of medium bubbles.

6.1. Medium-size bubbles: macroscopic description

Phase change a�ects the vapour temperature ®eld only. The vapour density becomes, after
recalling that p0

v � p0
l � P�x�

q0
v

qe
v

� P
P e
ÿ T 0

v

T e
;

q0
v �

Pqe
v

P e
1

�
ÿ g�y� 1

�
ÿ 1

c

��
ÿ P

Lu
�1ÿ g�y��:

The macroscopic mass balance is obtained from the local mass balances in the vapour and the
liquid (Eqs. (4A-1) and (9A-1) in [2]) and (43) at the second-order of approximation, that are
respectively,
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divy�u1
l � � divx�u0

l � � 0 in Xl; �47�

q0
v � qe

v�divy�u1
v� � divx�u0

v�� � 0 in Xv; �48�

ixu1
l � n � ixu1

v � nÿ
j0 � n
qe

v

on C; �49�

where j0 � n is given by (16)

Lu j0 � n � ÿkl grady T 0
l � n: �50�

Integrating (47) and (48) on Xl and Xv, respectively, applying the divergence theorem and using
(49) yields the macroscopic mass balance

�1ÿ b�divx �Ul� � bdivx �Uv� � b
P
P e

�
ÿ 1� G 1

�
ÿ 1

c

��
� b

P
Luqe

v

�1ÿ G� ÿ �1ÿ b�P

� qe
l CplT e

qe
v2Lu2 �1ÿ H�; �51�

where

Ul � 1

Xl

Z
Xl

u0
l dX; Uv � 1

Xv

Z
Xv

u0
v dX; G � 1

Xv

Z
Xv

g dX:

The last two terms in Eq. (51) are related to the presence of phase change. The macroscopic
description is completed by the macroscopic momentum balances of the liquid and the vapour
(see [2])

�1ÿ b� Ul � 1

qe
l x

2
gradP ; �52�

bUv � b
qe

l x
2
�I�M� � gradP ; �53�

where M is a real symmetric and x-dependent tensor that describes the inertial coupling between
liquid and bubbles. Its properties are studied in [2]. Eliminating Ul and Uv between 51, 52 and 53
yields, in the case of an isotropic medium for which M � MI
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�1� b�1�M��DP � qe
l x

2 b
P e

��
ÿ 1� G 1

�
ÿ 1

c

��
� b

Luqe
v

�1ÿ G�

��1ÿ b�q
e
l CplT e

qe
v2Lu2 �1ÿ H�

�
P :

�54�

As Lu !1, i.e. when neglecting phase change, we recover the result in [2].

6.2. Large-size bubbles: macroscopic description

The equations to be investigated for large bubbles are similar to Eqs. (47)±(50) that where
obtained for medium-size bubbles. However, we have now 1ÿ H � 1 and G � 1. Therefore the
mass balance (51) simpli®es to

�1ÿ b�divx �Ul� � bdivx �Uv� � ÿb
P

cP e
: �55�

Hence, we recover the macroscopic description in [2], which is de®ned by (55) and

�1ÿ b�Ul � 1

qe
l x

2
gradP ; �56�

bUv � b
qe

l x
2
�I�M0� � gradP ; �57�

where M0 is a complex symmetric and x-dependent tensor that describes both inertial and viscous
coupling between liquid and bubbles (see [2]). In the case of an isotropic medium, we obtain the
following macroscopic behaviour

�1� b�1�M 0��DP � ÿbqe
l x

2 P
cP e

: �58�

6.3. Small-size bubbles: macroscopic description

We start from similar mass balances and boundary condition as for medium-size bubbles, Eqs.
(47)±(49):

divy �u1
l � � divx �u0

l � � 0 in Xl; �59�

q0
v � qe

v�divy �u1
v� � divx �u0

v�� � 0 in Xv; �60�

u1
C � n � u1

l � n � u1
v � nÿ

j0 � n
ixqe

v

on C: �61�
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From [2] we have now

p0
l � p0

l �x�; p0
v � p0

v�x�; p0
v ÿ p0

l � p0
c�x�;

Ul � 1

Xl

Z
Xl

u0
l dX � Uv � 1

Xv

Z
Xv

u0
v dX � U:

Using (44), (27) and (41) yields

q0
v

qe
v

� p0
v

P e � �2r=R� ÿ
T 0

v

T e
� p0

v

P e � �2r=R� ÿ
T 0

C

T e

and the vaporization±condensation ¯ux is given by

Lu

Z
C

j0 � nl dC � ÿixXl q
e
l Cpl T 0

C :

Notice that

u1
C � nv � r0 � ÿp0

c

R2

2r
;

1

Xv

Z
C

u1
C � nv dC � ÿ p0

c

Kc

; Kc � 2r
3R
:

Integrating (59) on Xl, using the divergence theorem and the ®rst equality in (61) yields

divx U � b
1ÿ b

p0
l ÿ p0

v

Kc

: �62�

Integrating (60) on Xv, using the above relations for the density and the vaporization±conden-
sation ¯ux through C gives the macroscopic mass balance for the bubbles

divx U � ÿ p0
v

P e � �2r=R� ÿ
p0

l ÿ p0
v

Kc

� p0
v

Luqe
v

ÿ 1ÿ b
b

qe
l CplT 0

C

qe
vLu

�63�

with

T 0
C �

p0
vT e

Luqe
v

:
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Once again, as Lu !1, i.e. when neglecting phase change, we recover the result in [2]. The
macroscopic description is completed by the bulk momentum balance, [2]

gradx p0
l �

b
1ÿ b

gradx p0
v � qe

l x
2U: �64�

After eliminating p0
v and U between 62, 63 and 64, we get

A
�
� b

1ÿ b

�
Dp0

l � qe
l x

2 b
�1ÿ b�Kc

�Aÿ 1�p0
l �65�

with

A � 1� Kc�1ÿ b� 1

qe
vLu

�
ÿ 1

P e
ÿ 1ÿ b

b
C

P e

�
:

In the above relation, the vaporization±condensation is large. A can be approximated by

A � ÿKc�1ÿ b� 1ÿ b
b

C

P e
� 1:

By neglecting small terms, the wave equation (65) becomes

�1ÿ b�Kc

b
Dp0

l � qe
lx

2p0
l :

That gives the following macroscopic behaviour

�1ÿ b�Kc

b
DP � qe

l x
2P ; �66�

where P stands for the ®rst order approximation p0
l of the ¯uid pressure perturbation.

Note that Eq. (66) was obtained from underestimated vaporization±condensation ¯ux. Note
also that the perturbation in Eq. (66) is not propagative, which is coherent with the negative
rigidity obtained above. This is also in agreement with the results in [2,18].

7. Conclusion

We have used the method of double scale asymptotic expansions to derive the macroscopic
modelling of acoustic waves in bubbly ¯uids in presence of capillarity and phase change. The
macroscopic modelling strongly depends on the bubble size compared to the viscous and thermal
layer thickness. In case of isotropic behaviour, acoustics in large-size bubbly ¯uids is described by
the following wave equation:
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�1� b�1�M 0��DP � ÿbqe
l x

2 P
cpe

: �67�

Phase change and thermal e�ects are negligible. M 0 is a real and frequency dependent parameter
which contains inertial and capillary e�ects.

For medium-size bubbles, phase change as well as thermal e�ects are present and the isotropic
wave equation takes the form:

�1� b�1�M��DP � qe
l x

2;

b
P e

��
ÿ 1� G 1

�
ÿ 1

c

��
� b

Luqe
v

�1ÿ G� ÿ �1ÿ b� qe
l CplT e

qe
v2Lu2 �1ÿ H�

�
P : �68�

Finally for small-size bubbles, we obtained:

�1ÿ b�Kc

b
DP � qe

l x
2P : �69�

As it can be seen, there is no wave propagation. We can say that the apparent rigidity of the
bubbly ¯uid becomes negative. As the bubble radius R decreases, Kc increases. However, the
validity of Laplace relation becomes questionable as R < 100 �A (see [23]). Note that the e�ect of
the curvature on the surface tension r is negligibly small when R > 100 �A.
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