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In this study, the distribution of oscillators that constitutes the resonant surface shows some spatial invari-
ance in plane, or, in other words, is characterised by a representative surface element (RSE) containing several
oscillators. More precisely, a 2D periodic repetition of the same RSE pattern of surface R0 and characteristic
size l is assumed. Even in such a regular case, the response of the elastic half space coupled with the oscillators
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includes multiple crossed interactions and the exact treatment is extremely complex [7,16]. However, the com-
plexity is largely reduced when the surface motion shows a characteristic size of variation significantly larger
than the characteristic R0-size, l, [6]. This condition of scale separation [1], systematically assumed in this
study, is satisfied at sufficiently low frequency so that the wavelength k (macro-scale) is greater than l

(micro-scale). These assumptions allow to use the framework of two scale asymptotic homogenisation method
classically used for 3D periodic media, [12]. In the present case, the periodicity is restricted to the two dimen-
sions of the interface plane. The method allows to derive the behaviour at macro-scale, from phenomena at
micro-scale. The leading order gives the equivalent continuous description with an accuracy of the order of
the micro to macro-scale ratio. When the scale separation is not very large, the description is improved by
considering the next order terms.

The investigated phenomena is close to the so called ‘‘fuzzy structure’’ effect, i.e. the modification of the
vibration modes of a main structure by a multitude of small substructures attached to it. Despite the differ-
ences in the methods and problems in consideration, the results obtained from ‘‘fuzzy structure’’ probabilistic
[14,15] or deterministic theory [17] present some similarities with those derived from the asymptotic homog-
enisation method. The main improvement provided by this latter lies in the rigorous derivation of both leading
effects and first correctors for any kind of wave field that satisfies the scale separation. This condition is explic-
itely formulated and defines unambigousely the validity domain of the modelling. Asymptotic approaches
were already applied to wave refraction on regularly corrugated surfaces—see for instance [13,3,11]—however,
the imperfections are neither sufficiently sharp nor sufficiently slender to act as resonators. The key point of
the present analysis is to include the amplification phenomena linked to the resonance of the oscillators. This
allows to design ‘‘resonant surfaces’’ (as those described in the conclusion) in the purpose to modify in a pre-
scribed way the reflection properties.

The paper begins with a presentation of the homogenisation method that enables to treat two-dimensional
heterogeneity distributions by introducing a boundary layer, Sanchez-Palencia [12]. The application to an elas-
tic half space loaded by quasi-periodic surface forces yields the macro-scale boundary conditions at the leading
and next orders. When the force distribution results from attached oscillators, it is shown that boundary
conditions can be expressed in terms of equivalent surface impedance at the leading order, with local and
non-local correctors at the next order. These results are then used to study the perturbation of waves field
in presence of a resonant surface. The main features of the phenomena—atypical redistribution of mode
and mode conversion, frequency range of efficiency, characteristic time of response—are identified for oblique
incident plane waves. Further, the first correctors are explicitely determined. Finally the validity range of the
modelling is discussed.

2. Statement of the problem—homogenisation method

Consider a resonant surface made of a R0-periodic distribution of linear oscillators. These oscillators lie on
top plane surface C of an homogeneous elastic half space characterised by its elastic tensor C and its density q
(viscoelastic media may be similarly treated by considering complex moduli).

Our objective is to study in this system the propagation of small amplitude harmonic waves of frequency
f = x/2p, assuming a clear scale separation between the characteristic size l of the period R0 and the wave-
length in the medium:

� ¼ 2pl=k� 1 ð1Þ
Furthermore, wave frequency and oscillator’s natural frequencies are assumed to be of the same order of
magnitude.

The system linearity ensures that all the elements oscillate at the imposed frequency f. The oscillators set in

motio
n by the waves induce on the surface C of the medium an heterogeneous distribution of surface forces,

texp[ixt], (t has the dimension of a stress) (Fig. 1).



Without specifying the surface forces more precisely (this will be achieved in Section 4), it is clear that

• at the micro-scale, i.e. R0-scale, the force distribution is locally R0-periodic,
• the distribution may also vary at the macro-scale, i.e. the wavelength scale.

Fig. 1. Half-space loaded by quasi-periodic surface forces. Left: macroscopic description. Right: microscopic description of the boundary
layer.
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2.1. Multi-scale expansions

In order to describe the variations at both scales, two space variables linked by the scale ratio � will be used,
namely the macro-variables x and the micro-variables y, with y = ��1x. Following the homogenisation proce-
dure [2,12], the physical quantities are expressed in the form of asymptotic expansions in power of �.

The local 2D periodicity of the surface forces enforces the same 2D local periodicity of the physical quan-
tities in the medium. However, the sources of these small scale variations being located on the top surface only,
it is expected that far from the boundary, the small scale variations vanish, while the large scale variations
remain. Such situation can be described by introducing a boundary layer in the vicinity of the surface, as pro-
posed by Sanchez-Palencia [12] for thermal transfer conditions and Bouchitté et al. [4], for nonlinear contact
problems.

These assumptions lead to postulate a solution on the form defined hereafter. Conveniently, the x and y

frames are chosen in such a way that C (the interface between the elastic medium and the oscillator layer)
is defined by x3 = 0, (y3 = 0), with outward normal �e3. Throughout this paper, Latin index runs from 1
to 3, Greek index runs from 1 to 2, and xa denotes the projection of x on C.

2.2. Macro-field far from the surface

Far from the surface, only the macro-variables are relevant. The usual form of the elastodynamics equa-
tions then applies on the expanded quantities (here and in the following, the time dependence, exp[ixt] is sys-
tematically omitted):

uðxÞ ¼
X1
i¼0

�iuiðxÞ; rðxÞ ¼
X1
i¼0

�iriðxÞ ð2Þ

with
The i

Th
boun
rðxÞ ¼ C : exðuÞ; and divxðrÞ ¼ �qx2u ð3Þ

ndex x (or y) specifies the derivation variable, and u, e(u), (e = (u + u )/2), r, respectively denote the
ij i,j j,i
displacement, the strain tensor and the stress tensor.

is macro-field does not match the small scale variations of the surface forces. We shall see later that the

dary conditions to be respected by the macro-field on C are provided by the homogenisation procedure.



2.3. Boundary layer near the surface

In order to fit the conditions on the surface, a boundary layer (BL) field (denoted by w) is added to the
macro-field. This additional BL field, confined near the surface, varies at the micro-scale, i.e. according to
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y, and at the macro-scale according to xa. Keeping in mind that in the system of two space variables, the spa-
tial derivative becomes o/ox + ��1o/oy, the elastodynamics equations take the following form in the boundary
layer:

rðxÞ þ rHðxa; yÞ ¼ C : ð��1ey þ exÞðuþ uHÞ
ð��1 divy þ divxÞðrþ rHÞ ¼ �qx2ðuþ uHÞ

and from the Eqs. (3) governing the macro-field:
the m
impli

varia
• o

indice

2.4. H

Th
treate
rHðxa; yÞ ¼ C : ð��1ey þ exÞðuHÞ ð4Þ
ð��1 divy þ divxÞðrHÞ ¼ �qx2uH ð5Þ
We consider situations where the boundary layer plays an effective role. In other words, the surface forces t,
w
acro-field stress r, and the boundary layer stress r , should be of the same order of magnitude. This

es that the expansions of the surface forces and of the BL stresses take the form:X1 X1

i i H i Hi
tðxa; yÞ ¼

i¼0

� t ðxa; yÞ; r ðxa; yÞ ¼
i¼0

� r ðxa; yÞ ð6Þ

and consequently the BL displacement expansion begins at the order �1, (see the definition (4) of rw)
uHðxa; yÞ ¼
X1
i¼1

�iuHiðxa; yÞ ð7Þ
All the terms of the expansions in the boundary layer fulfill the condition of R0-periodicity according to the ya
bles. Moreover, by principle:
n C (y3 = 0), the total stress field balances the surface forces:

�ðrþ rHÞ � e3 ¼ t when y3 ¼ 0 ð8Þ

• far from C (from the local scale point of view), i.e. when y3!1, the total field should only present vari-

ations according to the macro-scale. Thus the small scale variations of the BL field vanish, which leads to the
condition:
ryuH ! 0 when y3 !1 ð9Þ
2.3.1. Other notations for macro-variables

Later on, the following notations will be used in the macro-descriptions (no summation on repeated

s i):
1
Z

UiðxÞ ¼ �iuiðxÞ; UH1ðxaÞ ¼ �~uH1ðxaÞ; ~uH1 ¼ jR0j R0

uH1 ds ð10Þ

TiðxaÞ ¼ �i~tiðxaÞ; ~tiðxaÞ ¼
1

jR0j

Z
R

tiðxa; yÞds ð11Þ

0

omogenisation procedure

e formal developments follow the homogenisation procedure [12], the convergence aspect will not be

d in the present paper. The terms of different orders appearing in the balance equations are separated
and the associated problems are solved successively. At each order, it is shown that the missed boundary
condition for the macro-field can be derived from the analysis of the boundary layer problem. Thus, the



macro-field is determined, enabling the boundary layer problem at the next order to be solved, and so on. . . In
this study the resolution is performed to the second order.

2.4.1. Remarks on �
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In the mathematical process � is an infinitesimal quantity that allows to solve separately the problems at
different orders. This ideal situation is never reached in practical applications because both micro and

macro-scale are finite. Then the actual physical value of � is a small but finite quantity, and the macro-descrip-

i i+1
tions at a given order � should not be considered as exact but simply correct to the precision � . Thus the
closer � is to 1, the larger the higher terms may influence the description. This explains the interest of inves-
tigating higher orders, specially for frequencies approaching the high bound of the low frequency range (i.e.
k/2p! l), when scattering effects begin to take place [5].

3. Local and non-local macro-boundary condition

In this section, the macroscopic boundary conditions equivalent to locally periodic surface forces are estab-
lished. As the surface forces are intended to represent the effect of a resonant surface subjected to harmonic

waves, they are assumed to oscillate in time at the frequency f = x/2p. However, the procedure and the results
also apply for prescribed static force distributions, provided that the scale separation is satisfied.

3.1. Macro-description at the leading order

The zero order description is fully determined by the field u0(x) � U0(x) governed by the elastodynamic Eq.
0
(3) at the order � and the boundary condition (13,14):
divx½C : exðU0Þ� ¼ �qx2U0 ð12Þ
� ½C : exðU0Þ� � e3 ¼ T0 on x3 ¼ 0 ð13Þ

T0 ¼ �jR0j�1

Z
t0 ds ð14Þ
The b
first p

This
the se
R1 r

A

R0

oundary condition is derived from a compatibility condition as demonstrated hereafter. Consider the
roblem in the boundary layer defined by Eq. (5) at the order ��1 and (8), (9) at the order �0:

divy½C : eyðuH1Þ� ¼ 0 ð15Þ
� C : ½eyðuH1Þ þ exðu0Þ� � e3 ¼ t0 on y3 ¼ 0 ð16Þ

ryuH1 ! 0 when y3 !1 ð17Þ
uH1 and t0 R0-periodic in ya ð18Þ

local problem, where xa is a parameter, is defined on the representative volume of the boundary layer, i.e.
mi-infinite cylindrical volume based on the period R0; X = R0 · [y3 6 0], Fig. 2. In the following, R0 and

espectively stand for the surface on y3 = 0 and y3!1.
compatibility condition must be satisfied to ensure the existence of a solution. This condition is obtained
by expressing the global equilibrium of X, taking into account the R0-periodicity, the vanishing gradient con-
dition and the condition on R0. Integrating equation (15) on X and using the divergence theorem givesZ

oX
½C : eyðuH1Þ� � nds ¼ 0

The R0-periodicity and vanishing gradient at infinity, yield:
Z

�

R0

½C : eyðuH1Þ� � e3 ds ¼ 0



so that, from the boundary condition on y3 = 0:Z
R0

t0 ds ¼ �
Z

R0

½C : exðu0Þ� � e3 ds ¼ �jR0j½C : exðu0Þ� � e3 ð19Þ

that supplies the boundary condition for the macro-field at the zero order. It is worth noting that this condi-

Fig. 2. The periodic volume X used for the definition of the boundary layer local problem.
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tion does not require the knowledge of the medium behaviour. At the leading order, the homogenised bound-

ary c
As a

The f
volve
order
when
ondition is simply given by the mean value of the surface forces: the exact distribution has no influence.
consequence, forces distribution of zero mean value (for instance a distribution of momentum) lead to the
usual free surface condition. Hence, at the leading order, the effect of a periodic distribution of momentum is
confined near the boundary and no macro-field is radiated.

The resolution of set (12)–(14) provides a zero order approximation sufficiently good when the scale sepa-
ration is large, i.e. when l� k/2p. When considering a less marked scale separation, the description can be
improved by taking into account the higher order terms. For this purpose, the local problem must be solved
before the first corrector of the macro-field is determined.

3.2. First order correctors

The first correctors consist of the BL field Uw1 = �uw1 and the macro-field U1 = �u1. The results established
in this section may be summarised concisely as follows. The BL field takes the form:

UH1ðxa; yÞ ¼ AðyÞ � T0ðxaÞ ð20Þ
and the first corrector of the macro-field is governed by (3) at the order � and the boundary condition (22,23)
derived by homogenisation:

divx½C : exðU1Þ� ¼ �qx2U1 ð21Þ

� ½C : exðU1Þ� � e3 ¼ T1 �D � rxaT

0 on x3 ¼ 0 ð22Þ
T1 ¼ �jR0j�1

Z
R0

t1 ds ð23Þ
eatures of the tensors A and D are detailed later. It is remarkable that the boundary condition (22) in-
s, in addition to the average force of first order, a term related to the gradient of the average force of zero
. This unusual term can be considered as a non-local contribution in the boundary condition. Obviously,
the mean surface force is uniform at the macro-scale the non-local term vanishes. This result is analo-
gous with the higher gradient continuum theories of heterogeneous media.



3.2.1. Features of the boundary layer field u1w

Normalise the imposed force distribution t0 on R0 by its mean value T0 5 0 and introduce the functions
siðyaÞ ¼ t0

i =T 0
i (no summation on i, O(si) = 1) specific for the considered problem. These R0-periodic functions

may have complex values if the harmonic surface forces are out of phase.
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Using the compatibility condition (19, 16) becomes:

�½C : eyðuH1Þ�e3 ¼ T0 � t0 ¼ ðI� sÞT0 ð24Þ

where I is the unit matrix and s the diagonal matrix, sij = sidij The set (15), (17), (18), (24) constitutes a linear
elastic problem concerning the volume X loaded on the top surface R0 by a forcing term of zero mean value.

The solution is determined up to a rigid body translation, since the 2D-R -periodicity avoid rotations in any
3D d

force

field �u
Th

Th
expre
ciated

As ab
(27) o
0

irections. Then, introducing the additional condition:
Z
R1

uH1 ds! 0 ð25Þ

the solution is uniquely determined. Denoting by ai the three particular solutions corresponding to unit mean
0 0
T in each directions ðT ¼ d Þ, the boundary layer field of vanishing average value over R , reads
j ij 1

uH1ðxa; yÞ ¼ aiðyÞT0
i ðxaÞ i.e. on matrix form uH1 ¼ a � T0 ð26Þ
where, as s, the matrix a of components ai
j takes real (respectively complex) values when the surface forces are

all in phase (respectively out of phase). Any pure translation field �uðxaÞ could be added to uw1. However such a
1
may be integrated in the first order macro-field u , then it is set equal to zero without loss of generality.
e particular solutions ai depend on the geometry of the surface force distribution si on R0 (obviously, an

i i
uniform distribution gives a = 0). The solutions a can be determined numerically using the equivalent weak

formulation deduced from set (15), (17), (18), (24), (25) (no summation on i in the second member):

�
Z

X
eyðwÞ : C : eyðaiÞdv ¼

Z
R0

ð1� siÞwi ds

for any continuous derivable field w defined in X and satisfying (17, 18, 25).
i
is local formulation proves that the order of magnitude of a is O(l /C), where l is the period dimension
y y

ssed with y variables. The consistency (in terms of length units) imposes the same system of unit (asso-
to variables) in a given set of equation. The macro-description being expressed using variables x, all the
quantities have to be expressed in this system. Thus, the true intrinsic tensor—independent of the scale ratio—
related to the physical field �uw1 is Ai = �ai = O(l/C), l being the dimension of period expressed in the system of
variables x.

Keeping in mind that the solution is established in harmonic regime, it is noticeable that no inertial terms
appear in the set defining uw1. To be consistent with the physics of waves, this implies that the thickness of the
boundary layer is of one order smaller than the wavelength, i.e. of the order of the characteristic size of R0.

On the basis of conical stress diffusion, an approximated BL field appropriate to simple tooth-like stress
distribution is proposed in Appendix 2.

3.2.2. Macro-boundary condition at the order one

The next problem in the boundary layer is governed by (5) at the order �0 and (8), (9) at the order �:

divyðrH1Þ þ divxðrH0Þ ¼ 0 ð27Þ
� ðr1 þ rH1Þ � e3 ¼ t1 for y3 ¼ 0 ð28Þ
ryu

H2 ! 0; rH1 ! 0 when y3 !1 ð29Þ

H2 1
u and t R0-periodic in ya ð30Þ

ove, the compatibility condition of this second local problem is derived by integrating the balance Eq.
n the volume X. Let us examine separately the contributions of the stress fields rw1 and rw0.



As for the integral related to rw1, the divergence theorem and the R0-periodicity yields:Z
X

divyðrH1Þdv ¼
Z

oX
rH1 � nds ¼ 0�

Z
R0

rH1 � e3 dsþ
Z

R1

rH1 � e3 ds
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The condition (28) on R0 gives
Z Z Z

of the
As

rem l

of u

The t

on m
mom
�
R0

rH1 � e3 ds ¼
R0

r1 � e3 dsþ
R0

t1 ds ¼ jR0jðr1 � e3 þ~t1Þ
and from the expressions of rw1 (4) and of the BL field (26):
Z
R1

rH1 � e3 ds ¼
Z

R1

½C : ðeyðuH2Þ þ exðuH1ÞÞ� � e3 ds ¼ C :

Z
R1

eyðuH2Þdsþ ex T0.

Z
R1

ads
� �� �

.e3 ¼ 0
Indeed both integrals cancel out, the first because of the vanishing gradient condition (29), the second, because

vanishing average value of the BL field (25) at infinity.

for the integral related to rw0 the inversion of x-derivation and y-integration and the divergence theo-

ead to
Z
X

divxðrH0Þdv ¼ divx C :

Z
X

eyðuH1Þdv
� �

¼ divx C :

Z
oX

1

2
ðuH1 � nþ n� uH1Þds

� �
then, from the R0-periodicity, the vanishing mean value (25) of the BL field at infinity and the expression (26)

w1
:
Z
divxðrH0Þdv ¼ �divx C :

Z
1 ðða � T0Þ � e3 þ e3 � ða � T0ÞÞds

� �

X R0

2

and considering the elastic tensor symmetry:
1

jR0j

Z
X

divxðrH0Þdv ¼ �divx½C : ðð~a � T0Þ � e3Þ� ¼ �~d � rxaT
0 ¼ �~d ia

j T0
i;aej
where tensor ~a of order 2 (3 · 3), and tensor ~d of order 3 (3 · 3 · 2) have the following components:Z

~ai

j ¼
1

jR0j R0

ai
j ds; ~dia

j ¼ ~ai
kCk3ja
Finally, multiplied by � the compatibility condition provides the following boundary condition
1 1 1 0
�½C : exðU Þ� � e3 ¼ ~T �D � rxaT on x3 ¼ 0 ð31Þ

ensor ~d ¼ OðlyÞ mixes the elastic properties of the medium and the features of the surface force distribu-

1
tion. In the system of macro-variables x, D ¼ �~d ¼ OðlÞ, and ~A ¼ �~a ¼ Oðl=CÞ. For an isotropic medium of

the Lame coefficients k, l, the non-zero components of D1 are
D1ia ¼ k~Ai ; D1ia ¼ l~Ai

a 3 3 a
If further ~A is diagonal ð~Ai
j ¼ ~Ajd

i
jÞ:

D1 � rxaT
0 ¼ k~A3ðT 0

3;1e1 þ T 0
3;2e2Þ þ lð~A1T 0

1;1 þ ~A2T 0
2;2Þe3
3.2.3. Remark

In the case—not developed here—where mean surface forces cancel out, the normalisation should be based

omentum. Except this point, the above results formally apply in a similar way replacing mean force by

entum. Thus, even in this case, the free surface condition must be corrected at the order one, meaning
that a first order macro-field is radiated by a quasi-periodic distribution of momentum.



3.3. Following orders

The descriptions including the following orders could be obtained in a similar way. The same elastodynamic
balance equation holds at each order. The general form of the macro-boundary condition is
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�½C : exðUnÞ� � e3 ¼ Tn �
Xn�1

i¼0

Dn�i.rn�i
xa Ti on x3 ¼ 0

The higher order tensors Di of order 2 + i, (3 · 3 · 2 · � � � · 2) are determined by the BL fields of order i + 1, and
i i
O(D )

The l
previ

Deno
tant f
= l . The BL fields at each order are governed by similar elastostatic problems except for the forcing terms.
atter are associated to the preceding BL fields and to the successive gradients of the macro-field at the
ous orders. Obviously, the non-local terms disappear for mean forces macro-homogenous at any order.
4. Macro-description of a resonant surface

We come now to the case of a periodic distribution of linear oscillators. To avoid unnecessary complica-
tions, a single oscillator, having a rigid base of surface S = s. R0, s < 1, is located on the period R0 (Fig. 3).
This situation partly differs from the previous case because:

• the surface forces result from the oscillator behaviour,
• the forces are transmitted through the rigid base of the oscillators.

Nevertheless, it can be shown (see Appendix 1) that formally, the results established in the previous section
hold in this slightly different context.

4.1. Oscillator impedance and mean surface force distribution

The oscillator is assumed to behave as a single degree of freedom system in each direction ej. Denoting
respectively by kj and cj the stiffness and the viscous damping coefficient in the direction j and the mass by
m, the resonant frequency fj = xj/2p and the damping ratio are calculated as

xj ¼ 2pfj ¼
ffiffiffiffiffiffiffiffiffiffi
kj=m

q
nj ¼ cj=2

ffiffiffiffiffiffiffiffi
kjm

p
As usual, a weak damping (i.e. nj of the order of 10�2 or less) will be considered.

The harmonic behaviour at the forced frequency f = x/2p, can be derived similarly for each direction ej.

ting Um the translation motion of the mass and Us the base motion, the non-zero component of the resul-
orce, Rj, is given by (no summation on j):
�ðkj � ixcjÞðUmj � U SjÞ ¼ Rj

and the balance equation of the mass reads

�ðkj � ixcjÞðUmj � U SjÞ ¼ �mx2Umj
Fig. 3. Half-space loaded by a periodic distribution of 3D oscillators.



Then, eliminating the mass motion (no summation on j):

Rj ¼ F jðxÞUSj; F jðxÞ ¼ mx2
x2

j þ 2injxxj

x2
j þ 2injxxj � x2

ð32Þ
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The transfer function, Fj(x), shows that at low frequency (compared to the natural frequency xj) the oscillator
2
acts as a mass (F � mx ), and at high frequency as a spring-damper system (F � k � ixc ). In the vicinity of

the n
Th

then

From

W
order

Z0 is

imped
j j j j

atural frequency, the resonant amplification leads to much larger values (Fj � kj/2inj).
e diagonal impedance matrix Z that relates the resultant force R to the oscillator base translation US is
derived from the transfer diagonal matrix (F, Fij = dijFj):

R ¼ ixZ �US; where ZðxÞ ¼ FðxÞ
ix

ð33Þ

Outside the oscillator base, the surface remains free, i.e. t = 0. Inside S, the exact surface force distribution is
unknown but t balances the resultant force R due to the oscillator:
T ¼ jR0j�1

Z
R0

tds ¼ jR0j�1

Z
S

tds ¼ jR0j�1
R ¼ jR0j�1ixZ �US ð34Þ
Denoting
Z0 ¼ Z=jR0j
T ¼ ixZ0 �US ð35Þ

the results of the previous section, the base translation is expanded in the form:
US ¼ jSj�1

Z
Uds ¼ U0 þ U1 þ jSj�1

Z
UH1 ds

� �
þ � � � ð36Þ
S S
4.2. Equivalent surface impedance at the leading order
e are now in a position to identify the boundary condition equivalent to a resonant surface at the leading

. Eqs. (35), (36) at zero order yield
T0 ¼ ixZ0 �U0ðxa; x3 ¼ 0Þ ð37Þ
and the zero order boundary condition (13) takes the form

�½C : exðU0Þ� � e3 ¼ ixZ0 �U0 on x3 ¼ 0 ð38Þ
the mean surface impedance matrix equivalent to the oscillators. Such result is used in the ‘‘fuzzy struc-

ture’’ approach [14,15] and in electromagnetics [9]. Situations with a finite number of oscillators I, of different

0 P

ances Z , orientated in various directions, would lead to: Z ¼ ð Z Þ=jR j.
I I 0
4.2.1. Isotropic and anisotropic resonant surface

As mentioned above, the impedance strongly depends on the frequency and the effect of oscillator domi-
nates at its eigen frequencies. Then, focusing on the two directions of the interface C, the mean impedance
matrix may be:

• either isotropic, i.e. Z1(x) = Z2(x), this will be the case if the oscillator presents the same characteristics in
both directions,

• or anisotropic, with an anisotropy ratio varying with the frequency if the two natural frequencies (x1,x2)
are different. For instance, if x2 = 2x1, according to the transfer functions (32), jZ2(x1)j/jZ1(x1)j =
jZ1(x2)j/jZ2(x2)j = n/3, i.e. jZ2j � jZ1j around x1 and inversely, jZ1j � jZ2j around x2. More generally



if the oscillator is perfectly rigid in one direction, then its impedance in this direction is negligible compared
to the impedance in the other directions, at least around resonant frequencies.
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4.3. Local and non-local impedance correctors

The next order boundary condition (31) needs to evaluate the local and non-local term to be balanced.
From the expression (37) of T0 and of the boundary layer field (26) the first order base motion becomes (B
stand for the base translations due to the BL field, see Appendices 1 and 2 for estimates):

U1
S ¼ U1 þ jSj�1

Z
S

UH1 ds ¼ U1 þ B � T0 ¼ U1 þ B � ðixZ0Þ �U0

Now, from the oscillator behaviour

1 0 1 0 1 0 0 0
The n

and t

wher

The m

4.3.1.

wher

On R

The n
T ¼ ixZ .US ¼ ixZ U þ ðixZ Þ � B � ðixZ ÞU
on-local term is calculated as
D1 � rxaT0 ¼ ixD1 � Z0 � rxaU0 ¼ ixY1 � rxaU
0

he boundary condition respected by the first corrector of the macro-field takes the form
�½C : exðU1Þ� � e3 � ixZ0 �U1 ¼ �x2Z1 �U0 þ ixY1 � rxaU
0 on x3 ¼ 0 ð39Þ
e

Z1 ¼ Z0.B � Z0; Y1 ¼ D1 � Z0
atrix Z1 constitutes the first corrector of the surface impedance and Y1 stands for the non-local imped-

ance matrix of third order (3 · 3 · 2).
Tensor estimates
The evaluation of correctors requires the knowledge of the several tensors associated to the BL field. In the
following, we systematically use the estimated BL field established in Appendix 2 for an isotropic medium of
rigidity l and Poisson ratio m, that leads to the values summarised below. ~A and B are diagonal tensors
ð~Ai

j ¼ ~Ajd
i
j; Bi

j ¼ Bjd
i
jÞ of components:

~A1 ¼ ~A2 ¼ l � p
8

2� m
l
ð1�

ffiffi
s
p
Þ; ~A3 ¼ l � p

8

1� m
l

1þ 1� 2m

ð1� mÞ2

" #
ð1�

ffiffi
s
p
Þ ð40Þ

B1 ¼ B2 ¼ �l � p 2� m ð1� ffiffi
s
p Þ2ffiffip ; B3 ¼ �l � p 1� m

1� 1� 2m ffiffi
s
p

" #
1� ffiffi

s
pffiffip ð41Þ
8 l 2 s 8 l ð1� mÞ2 s

e

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4R0=p

p
and s ¼ S=R0

0, the mean quadratic value of A components reads
p 2� m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip ffiffipq
A1 ¼ A2 ¼ l �
16 l

ð1� sÞð5� 3 sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiv
  !u

A ¼ l � p 1� m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffi
s
pq

ð1�
ffiffi
s
p
Þ 1þ 1� 2m

2

þ 1þ
ffiffi
s
put
3 2
16 2l ð1� mÞ

on-local term takes the form:

Y1 � rxaU
0 ¼ k~A3Z0

3ðU 0
3;1e1 þ U 0

3;2e2Þ þ l~A1ðZ0
1U 0

1;1 þ Z0
2U 0

2;2Þe3 ð42Þ



5. Perturbation of wave field by a resonant surface

The perturbations of wave propagation induced by a regular distribution of oscillators is now investigated.
The main features of the phenomena are illustrated from the study of plane wave refraction. The derivation
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will be supplied for the zero order approximation and for the correctors.
The elastic half space is assumed to be isotropic, with a shear wave (S) velocity cS ¼

ffiffiffiffiffiffiffiffi
l=q

p
, and a compres-

sional wave (P) velocity cP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
. As above, a single 3D oscillator of surface S = s Æ R0 is located on

R0 and characterised by an equivalent diagonal impedance matrix: Z0
ij ¼ Z0

i dij. We focus on the response to
incident harmonic plane waves (here again the time dependence exp[ixt] is systematically omitted).

Before analysing specific cases, let us prove that the Descartes law is preserved in the presence of the res-
onant surface. At the leading order, the governing equations are

divx½C : exðU0Þ� ¼ � qx2U0 ð43Þ
�½C : exðU0Þ� � e3 ¼ixZ0 �U0 on x3 ¼ 0 ð44Þ

Consider an incident plane wave of wave number h, (h = hS = x/cS for S wave, h = hP = x/cP for P wave),
propagating in the direction d = djej (jdj = 1):
The w

fracte

gives

where
Uinc ¼ U exp½ihðdaxa þ d3x3Þ�
ave field is decomposed into the incident and the diffracted field:
U0 ¼ Uinc þUdif

To fulfill the boundary condition (44) on the surface C (i.e. according to variables xa), the incident and dif-

d fields must present the same wave numbers in the plan C, i.e. h Æ da are identical so that the Descartes
law applies. For the same reason (see Section 5.1.2) this result holds at any order.
5.1. Refraction of oblique SH waves

This subsection presents the zero and first order effect of a resonant surface on the refraction of SH plane
waves of oblique incidence.

5.1.1. Macro-description to first order

Consider an incident SH1 wave polarised in the direction e1 coinciding with a main direction of the oscil-
lator. Suppose further that the wave propagates obliquely in the direction d = sin(u)e2 + cos(u)e3, u being the
incidence angle to the normal of the surface C. The incident field reads (to save notation the exponent 0 is
omitted)

Uinc ¼ Ui exp½ihSðsinðuÞx2 þ cosðuÞx3Þ�e1

As Z0 is diagonal in the frame (ei), the stress and motion on C have the same direction of polarisation e1. Then
according to the Descartes law, the diffracted field is a down warding SH1 wave

dif d
U ¼ U exp½ihSðsinðuÞx2 � cosðuÞx3Þ�e1
The boundary condition (44):

�lihS cosðuÞðUi � U dÞ ¼ ixZ1ðUi þ U dÞ ð45Þ
P

d i
1� 1

cosðuÞ

U ¼ U

1þ P 1
ð46Þ
cosðuÞ
P 1ðxÞ ¼ �
ixZ0

1

ilh
¼ g1

ix
x1

� x2
1 þ 2in1xx1

x2
1 þ 2in1xx1 � x2

and g1 ¼
ffiffiffiffiffiffiffiffi
k1m
p

R0
ffiffiffiffiffiffi
lq
p ¼ x1m

cSR0q
ð47Þ



Except in the case of vanishing surface impedance, (46) shows that the amplitude of the diffracted field differs
from that observed in the free surface situation. The function P1(x) plays the role of a frequency dependant
and complex impedance ratio between the elastic half space and the resonant surface. The main features of the
perturbations are detailed hereafter.
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5.1.1.1. Leading parameters. The amplitude of P1(x) linearly depends on g1. This dimensionless parameter that
compares the properties of the oscillator and the medium provides a first indicator of the efficiency of the res-
onant surface.

The perturbations strongly depend on the frequency:

– at low and high frequencies (compared to the natural frequency x1) the perturbations are negligible, as

P 1ðxÞ ! g1x=x1 when x=x1 ! 0 and P 1ðxÞ ! 2g1n1 when x=x1 !1
– in the vicinity of the natural frequency, the effect may be very significant when g1 = O(1) and n1� 1, as

P 1ðx1Þ ¼
g1 ð1þ 2in1Þ when x ¼ x1
5.1.1.

suffic

the o

and t

distri
has t
l · R0

given
and t
2n1
2. Conditions for a significant effect. To obtain a significant effect at the oscillator natural frequency, it
es that
g
1

2n1 cosðuÞ 	 �1 with �1 ¼ 2pl=k1 � 1
to satisfy the scale separation at this frequency. These two inequalities expressed in a less restrictive manner,
g1/(2n1 cos(u)) > �1 and �1 < 1, lead to the order of magnitude of the minimum mass and maximum rigidity of
scillators so that an influence on the macro-wave field may actually be observed. The first requirement

g1 x1m x1l

2n1 cosðuÞ ¼ 2cSR0qn1 cosðuÞ > �1 ¼ cS

gives
m > 2n1 cosðuÞM with M ¼ qlR0 ¼ Oðql3Þ ð48Þ

he second condition:
x1l
ffiffiffiffiffi
k1

p ffiffiffi
q
p

m m� �

�1 ¼ cS

¼ l ffiffiffiffi
m
p ffiffiffi

l
p < 1 gives k1 <

ql2
l ¼ O

M
ll ð49Þ
The inequality (48) underlines the key role of the damping and shows that even with ‘‘small’’ masses, a

bution of weak damped oscillators may have a significant effect near their resonance. Here ‘‘small’’

o be understood in comparison with the mass M of the medium contained in the ‘‘cubic’’ volume
defined from the typical size of R0. Note from (47) that g1 = �1m/M. Then, from practical considerations
on the mass of the oscillators, the reasonable assumption g1 < 1 is made in the following.
Furthermore, according to the homogenisation approach, the oscillator effect must be rejected to the order

one for frequencies x = x1 + dx such that P1(x)/cos(u) < O(�) = O(xl/cS), i.e. with the weak damping
assumption:

jP 1ðxÞj
cosðuÞ �

x1m
cS cosðuÞR0q

.
x
x1

.
x2

1

2x1jdxj <
xl
cS

so that
jdxj
x1

>
m

M cosðuÞ

Thus, the maximum extent of the frequency range where the resonant surface influences the leading order is

by: [x1(1 ± m/Mcos(u))]. Outside of this range, the free surface condition is valid at the leading order

he perturbation decreases of one order.



5.1.1.3. De-amplification effect. Around the resonance, the oscillator layer presents a larger impedance than the
elastic medium. This situation, quite opposite to the free surface condition, leads to a significant decrease of
the surface total motion (Ud � �Ui instead of Ud = Ui for the free surface). Note that the incidence angle
enhances the apparent impedance contrast, inducing in turn an effect even more marked for oblique waves.
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An illustration is given in Fig. 4, where the amplitude ratio between the surface total motion and the
incident motion, jUd + Uij/jUij, versus the dimensionless frequency x/x1 are presented for several values of
incidence angle. Clearly, the de-amplification effect is concentrated in the vicinity of the resonant frequency
and its amplitude increases when the incident wave obliquity increases.

This finding seems to corroborate some numerical results e.g., [7], and to be in contradiction with others
e.g., [16]. The reason lies in the type of oscillator’s distribution considered in these works. When the distribu-
tion is sufficiently regular and extended (relatively to the wave length) the notion of representative surface
element applies. Then numerical and homogenised modelling lead to similar results, at least in the scale sep-
aration frequency range. When the distribution is made of about ten oscillators all of them having different
properties (e.g., Tsogka and Wirgin’s case) none ERS exists and the homogeneisation approach is irrelevant.
Thus, it is not surprising that numerical description in this case presents other features than in a homogeni-
sable case. The same kind of discrepancy would be observed if the response of a group of a few (say 3–5)
identical oscillators (non-homogenisable case) were compared to the response of an infinite regular distribu-
tion of these oscillators (homogenisable case).

5.1.1.4. Characteristic time of response. Investigate now the consequences in the time domain of the frequency
dependence of the oscillator effect. Consider the difference Ud of the total surface motion in presence and in
absence of the oscillator layer. From (46) and (47)

Ud ¼ ðU d þ UiÞ � 2Ui ¼ 2Ui
� g1

cosðuÞ

1þ 2n1
g1

cosðuÞ
½�2nx2 þ ixx1�JðxÞ

where
trans

Fig. 4.
(bold l
motion
JðxÞ ¼ 1

�x2 þ 2ifx ~x1 þ ~x1
2
; ~x1 ¼

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n1

g1

cosðuÞ

q ; f ¼
n1 þ g1

2 cosðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n1

g1

cosðuÞ

q

The time response to an incident impulsive wave, i.e. Ui = d(t), is directly obtained by the inverse Fourier
form of J(x):

dUdðtÞ ¼ 2
� g1

cosðuÞ

1þ 2n g1
½2n1

€bJ ðtÞ þ x1
_bJ ðtÞ�
1 cosðuÞ
Effect of a resonant surface (g1/2n1 = 10) on the total surface motion according to x/x1 for SH waves of different incidence angle
ine: normal incidence, dashed line p/3 incidence, normal line 5p/12 incidence). The amplitude ratio between surface to incident
s would be equal to 2 for a free surface.



where, assuming g1/cos(u) < 1

bJ ðtÞ ¼ 1

~x1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p sin ~x1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
t

� �
exp½�f ~x1t�
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Therefore instead of an instantaneous response (case of a free surface), the oscillators layer induces a delayed
response showing damped oscillations of pulsation ~x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
different from x and a characteristic duration
1 1

time
trum

Begin

effect
oscill

Fig. 5.
inciden
for g1/
tc ¼ 2p=ðf ~x1Þ � 2p cosðuÞ=ðg1x1Þ. Thus, if the resonant frequency belongs to the incident motion spec-
, it is expected that this ‘‘surface memory effect’’ increases the surface motion by a duration of the order
of tc. Note that in presence of a top layer the surface motion may also be altered by beatings see for instance [18,6].

5.1.2. First correctors

The macro-stresses (or displacements) on the surface are needed to evaluate the first correctors, i.e. the BL
field Uw1 and the macro-field U1. From (46)

U0
ðx3¼0Þ ¼ Uinc þUdif ¼ 2

1þ P 1

cosðuÞ
exp½ihS sinðuÞx2�Uie1 ð50Þ

T0
ðx3¼0Þ ¼ ixZ0 �U0

ðx3¼0Þ ¼
2ixZ0

1

1þ P 1
exp½ihS sinðuÞx2�U ie1 ð51Þ
cosðuÞ

with the BL field defined by (20). From Appendix 2, A is a diagonal tensor Aij = Aidij so that

UH1 ¼ A1ðyÞT0 ¼ A1

2ixZ0
1

1þ P 1

cosðuÞ
exp½ihS sinðuÞx2�U ie1 ð52Þ
Thus, on the top surface, the spatial mean quadratic deviation induced by the BL field is
UH1 ¼ A1Ui 2ixZ0
1

1þ P 1

cosðuÞ
¼ �lA1i

x
cS

cosðuÞ
2 P 1

cosðuÞ

1þ P 1

cosðuÞ
U ie1 ð53Þ
and from expression (42):
UH1 ¼ pð2� mÞ
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�

ffiffi
s
p
Þð5� 3

ffiffi
s
p
Þ

q
ixl
cS

cosðuÞ
2 P 1

cosðuÞ

1þ P 1

cosðuÞ
Uie1 ð54Þ
This expression underlines the significant influence of the scale ratio (� = xl/cS) conjuged with the resonance

and shows that the BL corrector is in phase quadrature (neglecting the damping) around the natural

ator frequency. The Fig. 5 that depicts the amplitude variations of the BL corrector with frequency,
Mean quadratic deviation of the BL field on the top surface according to x/x1 for two SH incidence angles (plain line: normal
ce, dashed line p/3 incidence) and two values of �1 = x1l/cS (�1 = 0.2: bold lines; �1 = 0.05: normal lines). Calculations performed
2n1 = 10, s = 0.5, m = 1/3.



shows the dominating effect around the oscillator eigen frequency, the significant influence of the scale ratio
and of the incidence angle.

Now determine the macro-field U1 governed by the equations

divx½C : exðU1Þ� þ qx2U1 ¼ 0 ð55Þ
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� ½C : exðU1Þ� � e3 � ixZ0 �U1 ¼ �x2Z1 �U0 þ ixY1 � rxaU
0 on x3 ¼ 0 ð56Þ

In the elastic half-space with surface impedance Z0, U1 balances the remaining surfaces forces neglected at
0
the le

for U

In

whos

with t
and r

Fig. 6.
line p/
s = 0.5
ading order (second term of (56)). As these later are derived from U , the Descartes law continues to hold
1.
this particular case, the non-local term cancels out:
Y1 � rxaU0 ¼ l~A1Z0
1U 0

1;1e3 ¼ 0

and the source on the surface C reduces to

�x2Z1 �U0 ¼ ðixZ0
1Þ

2B1

2
P exp½ihS sinðuÞx2�U ie1
1þ 1

cosðuÞ
The diffracted field radiated by this source is a SH1 plane wave
U1 ¼ U 1 exp½ihS sinðuÞx2 � cosðuÞx3�e1 ð57Þ
e amplitude is defined by the boundary condition (56):
½lihS cosðuÞ � ixZ0
1�U 1 ¼ ðixZ0

1Þ
2B1

2
P 1

Ui
1þ
cosðuÞ
giving " #

U 1 ¼ lihSB1 cosðuÞ

2P 1

cosðuÞ

1þ P 1

cosðuÞ

2

and from expression (41)
U 1 ¼ � p
8

2� m
2
ffiffi
s
p 1�

ffiffi
s
p	 
2 ixl

cS

cosðuÞ
2P 1

cosðuÞ

1þ P 1

cosðuÞ

" #2
In the vicinity of the natural oscillator frequency, this wave is in phase quadrature (neglecting the damping)

he diffracted wave at the zero order. As shown on Fig. 6, its amplitude is directly related to the scale ratio
each a maximum around the oscillator natural frequency.
Amplitude of the first macro-field corrector U1 according to x/x1 for two SH incidence angles (plain line: normal incidence, dashed
3 incidence) and two values of �1 = x1l/cS (�1 = 0.2: bold lines; �1 = 0.05: normal lines). Calculations performed for g1/2n1 = 10,
, m = 1/3.



5.2. Anisotropic resonant surface

In the case of an isotropic surface, the preceding results apply for any SHa wave polarised in the direction a

inclined of an angle a with the main direction e1 (a = cos(a)e1 + sin(a)e2).
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If the layer is anisotropic, i.e, Z1 5 Z2, it can be shown that a conversion of polarisation arises. For this
purpose, suppose for instance that the impedance Z1 dominates i.e. Z2 = 0 and consider a vertical incident
SHa wave

Uinc ¼ U i exp½ihSx3�a
The diffracted field is evaluated by applying results (46) to each component in the two main directions

dif i 1� P 1

� �
i 1� P 1 cosð2aÞ P 1 sinð2aÞ

� �
(a Æ a?

Th
deriv

Fig. 7.
in the
directi
U ¼ U exp½�ihSx3�
1þ P 1

cosðaÞe1 þ sinðaÞe2 ¼ U exp½�ihSx3�
1þ P 1

aþ
1þ P 1

a?
At the natural frequency x1 a p/2-conversion of polarisation from incident SHa to refracted SHa?

= 0) will be observed at angles a0 such that

1� cosð2a0ÞP 1ðx1Þ ¼ 0 i.e. cosð2a0Þ ¼ �2n1=g1
With the weak damping assumption, this leads to a0 � ± (p/4 + n1/g1). Thus, around the resonant frequency,
such oscillator layer works as a mechanical ‘‘depolariser’’ of SHa0

waves, see Fig. 7.

e corrected fields present only a component polarised according to e1. Their expression are directly

ed by multiplying by cos(a) the expressions obtained in the previous subsection.

In the more general case of oblique incidence, when the polarisation does not coincide with a main direction

of the oscillators, the surface force would present three components. Consequently, a mode conversion from
SH wave to SV and P wave arises.

5.3. Refraction of SV and P waves

Consider now an incident SV wave propagating obliquely in the direction d = sin(u)e1 + cos(u)e3, and
polarised in the direction d? = cos(u)e1 � sin(u)e3

Uinc ¼ U i exp½ihSd � xÞ�d?
As Z0 is diagonal in the frame (ei), the incident wave induces on C stress and motion in the plane (e1,e3). Then,
to satisfy the Descartes law, the diffracted field is decomposed into down warding SV and P waves respectively
propagating in the directions dS and dP:
Depolarisation effect of an anisotropic resonant surface (Z2 = 0) according to x/x1 for an SHa0
wave of normal incidence polarised

direction a0 (see text). Bold line: refracted component a0-polarised. Normal line: refracted component polarised in the perpendicular
on. Calculations performed for g1/2n1 = 10 corresponding to a polarisation angle a0 = 47087.



USV ¼ SV exp½ihSdS � x�dS
? dS ¼ sinðuÞe1 � cosðuÞe3 dS

? ¼ cosðuÞe1 þ sinðuÞe3

UP ¼ P exp½ihPdP � x�dP dP ¼ sinðwÞe1 � cosðwÞe3 sinðwÞ ¼ cP

cS

sinðuÞ

The boundary condition (44) expressed on matrix form gives two equations involving the impedance of the
oscill
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ator layer in both tangential (e1) and normal (e3) directions:

U iðd� d? þ d? � dÞ þ SV ðdS � dS
? þ dS

? � dSÞ þ P
cS

cP

2dP � dP þ k
l

I

� �� �
� e3
¼ P½U id? þ SV dS
? þ PdP� where P ¼ � ixZ

lihS
usly, the SV–P mode conversion is strongly frequency dependant with phase shifts, specially around the
al frequency in both directions.
e analytical resolution in the general case would lead to cumbersome expressions of SV and P and a full
sis is out of the scope of this paper. For this reason we focus on particular cases where the impedance is
large in one direction and vanishes in the other. This corresponds to an atypical situation, as ‘‘rigid’’ and free
conditions, respectively in the direction of large and negligible impedance, are mixed in the same problem.

If we consider Z0
1 large and Z0

3 ¼ 0, we obtain (the terms Uwi, w = s, p involve trigonometric functions of u
and w):

SV � U i 1þ Us1

P 1

� �
and P � Ui Up1

P 1

Inversely the case Z0
3 large and Z0

1 ¼ 0 leads to� �

SV � �U i 1þ Us3

P 3

and P � U i Up3

P 3
Thus in both cases, the converted P wave is of weak amplitude around the natural frequencies. Further cal-
culation shows that in both cases the total motion polarised in the direction of large impedance tends to van-
he refracted field is therefore constituted by the almost fully reflected incident mode (with the adequate
shift), and a weak converted mode. The same approach applied to incident P wave gives similar results,
i.e. a weak conversion. Consequently, if the natural frequencies x1 and x3 differ sufficiently, around both res-
onances the oscillator layer tends to reduce significantly the SV to P, and P to SV mode conversion for a wide
range of incidence angle (compared to the free surface case where conversion disappears at normal incidence
only). An illustration of this effect is given on Fig. 8, where the comparison with the free surface shows the
drastic modification of the diffracted field induced by the resonant surface.
Reduction of conversion of SV to P wave (Z3 = 0) at the resonant frequency (x = x1) according to the incidence of SV wave. Bold
ine: amplitude of the refracted SV wave; bold dashed line: amplitude of the refracted P wave. Normal lines correspond to a free

(SV plain line, P dashed line). Calculations performed for g1/2n1 = 10, m = 1/3.



The features of the correctors are qualitatively the same as in the previous cases with a more complex geom-
etry. The BL field presents a normal and a tangential component. The surface forces radiating the macro-field
take the form (here the non-local source does not cancel out):

ixY1 � rxaU0 ¼ k~A3ixZ0
3ihS sinðuÞU 0

3e1 þ l~A1ixZ0
1ihS cosðuÞU 0

1e3 � x2Z1 �U0
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¼ ðixZ0
1Þ

2B1U 0
1e1 þ ðixZ0

3Þ
2B3U 0

3e1

Therefore, U1 is constituted of two diffracted P and S plane waves respecting the Descartes law with an ampli-

tude

6. Lim

const

that i

The t

the a
of the order of the scale ratio around the natural frequency.

it of validity of the modelling
Let us now come back to the limitations of the proposed modelling. The main restriction lies in the fre-
quency range of validity, related to the scale separation hypothesis. To investigate this point consider for
instance the response to an oblique incident SH wave. By spatial Fourier transform, the quasi-periodic stress
may be split up into a discrete series (assuming a square period l · l) modulated by the horizontal wavelength
(in the case of normal incidence a strict periodicity is recovered):

t ¼
X1

m;n¼�1
tm;n
u exp½ð2ipm=lÞx1� exp½ð2ipn=lÞx2�

 !
exp½ihS sinðuÞx1� with m; n integers ð58Þ

Using the argument of the Descartes law for each term, the wave field inside the isotropic elastic medium is

ituted by discrete series of S and P waves in the form (W = S or P):

W ¼
X1

Wm;n
u exp½ðihS sinðuÞ þ 2ipm=lÞx1� exp½ð2ipn=lÞx2� exp½inW

m;nhSx3�

m;n¼�1

with
ðhS sinðuÞ þ m2p=lÞ2 þ ðn2p=lÞ2 þ ðhW
mnÞ

2 ¼ ðx=cWÞ2 ¼ ð2p=kWÞ2

s, using � = xl/cS:
½sinðuÞ þ m2p=��2 þ ½n2p=��2 þ ½nW �2 ¼ ½cS=cW�2
m;n

erms m = n = 0 correspond to a P and a S wave propagating in the direction defined by the Descartes law

applied to the incident S wave. By construction, their amplitudes are directly related to the term t0;0

u of (58), i.e.

verage value of t on the period. The nature of the next term depends on the � value:
W 2
• if � < p, that defines a frequency range including the scale separation range, then, whatever u, ðnmnÞ < 0 for
any m, n, mn 5 0: these inhomogeneous waves vanish as the depth increases. Then, the far diffracted field
only consists of the (mn = 0) waves resulting from the mean loading on the surface. This is fully consistent
with the boundary layer approach (including high orders), the whole inhomogeneous waves standing for
the boundary layer, and the single S and P homogeneous wave for the far field.

• if � > 2p, that is when the scale separation is not satisfied, in addition to the (mn = 0) waves, a finite number
of homogeneous waves (such that ðhW

mnÞ
2
> 0) propagate in discrete directions and must be integrated in the

far field. As their amplitudes depend on the terms tm;n
u ;mn 6¼ 0 of (58) the single knowledge of the average

loading is not sufficient to determine the far field. The periodicity imposed on the surface is transmitted to
the far diffracted field. This is in contradiction with the boundary layer assumption (i.e. vanishing small
scale variations far from C) and the homogenised approach breaks down.

Such arguments, independent of the resonant surface properties, can be extended with slight modifications
to other geometry of the period. Without giving a complete justification, it tends to prove that the range of
validity initially defined by the scale separation expressed in the form, l� k/2p may be extended (including
higher orders in the description) to a less restrictive domain, i.e. l < k/2p.



Note that the key point of the reasoning (i.e. homogeneous or inhomogeneous waves) is not strictly related
to the periodicity. In fact, if the stress distribution takes the more general non-quasi-periodic form:

t ¼ tuð0; 0Þ þ
Z

tuðu; vÞ exp½ð2ipu=lÞx1� exp½ð2ipv=lÞx2�dudv

 !
exp½ihS sinðuÞx1�
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i.e. if the local variations appear at a scale of the order (and smaller) than l, the same kind of conclusions con-

tinue
perio
at a s
s to hold for the scale separation frequency range. This lead us to think that the second restriction i.e. the
dicity assumption may be relaxed. Very likely, a non-periodic distribution presenting a spatial invariance
cale l (in other word resulting from an elementary representative surface), would lead to phenomena of
the same nature if the scale separation is satisfied. Particularly, it may be inferred that the notion of BL field
may be extended in a similar form by considering a mesoscopic surface (of the order of l=

ffiffi
�
p

) that permits to
cancel out statistically the non-periodic l-scale variations at the border. The high order terms should also fol-
low the Descartes law, the other contributions to the field being inhomogeneous. It is also worth mentioning
that results presented in this paper take a similar form that results established on the random assumption by
Lombaert et al. [10].

Inversely, at shorter wavelengths, diffraction phenomena are very different in ordered and disordered media
and the descriptions significantly differ. Finally, for a fully disordered surface (if any), the stress would present
variations at any scale so that the notion of scale separation disappears and any homogenisation method
(fuzzy structure approach included) is irrelevant to describe the continuous spectrum of the diffracted field.

7. Conclusion

Within the frame of homogenisation methods, the effective boundary conditions adapted to quasi-periodic
forces have been established. The natural macroscopic condition given by the average equilibrium on the peri-
odic surface is recovered at the leading order, independently of the properties of the medium. It is shown that,
at the next order, a non-local term associated to the macro-gradient of the surface force distribution and
involving the medium elasticity must be taken into account. These results, established for forces harmonically
oscillating in time, are also valid in the static case. They prove that the non-local concepts mainly used when
studying heterogenous medium should also be considered for boundary conditions.

From this approach, it is demonstrated that the description of an oscillator layer by an equivalent surface
impedance corresponds to the first order approximation. For poor scale separation, a local and a non-local
corrector of the impedance must be added. This provides a improvement to the impedance-type boundary
condition used in the ‘‘fuzzy structure’’ and deterministic approaches [6]. This also gives a justification by
defining the effective range of validity of these modelling. One may consider that for practical application
the relevant frequency range is such that l < k/2p.

As for wave propagation, the present paper shows that, owing to the resonance, the perturbations by an
oscillator layer may be of the leading order even for light oscillating masses, and induce a de-amplification
associated to a memory effect. The main parameters that govern the phenomena are given and assessed. Some
non-classical features, such as modes conversion, frequency band of efficiency, effect of anisotropic layer, and
corrector fields are described. The method enables to consider more complex situations than those presented in
the paper, i.e. several oscillators of different natural frequencies and orientations, oscillators presenting several
modes or other homogeneous and inhomogeneous, plane, cylindrical, spherical waves fields including surface
waves, provided that the scale separation is respected.

As a concluding example, consider a very corrugated surface obtained by making parallel and periodically
spaced slots of depth H on the surface of an elastic medium.

If the slots are realised in a single direction, we get series of parallel ‘‘walls’’ of thickness e, height H, repro-
duced every l, Fig. 9. Slots in the two perpendicular directions give on the top surface a periodic distribution of
square ‘‘beams’’ of section S = e2, height H, located each l · l, Fig. 10.

In the three directions, when focusing on the first vibration mode of the surface elements, each of them can
be modelised as a single degree of freedom oscillator whose mass is the modal mass. This enables to define
one anisotropic and one isotropic resonant surface whose characteristics are presented in Tables 1 and 2 in



function of the geometric parameters and the mechanical properties of the medium. According to the require-
ments (48) and (49), significant effects will be observed around the eigen frequencies if, for instance, e/l = O(1)
and e/H � 0.1. The isotropic layer whose horizontal and vertical frequency are very different will be favorable
to the reduction of P–S conversion (as described in Section 5.3), while the depolarisation of SH waves (as

Fig. 9. Anisotropic resonant surface made of a series of parallel ’’walls’’ of thickness e, height H, reproduced every l.

Fig. 10. Isotropic resonant surface made of a series of beams of section S = e2, height H, located each l · l.

Table 1
Characteristic parameters of an anisotropic resonant surface made of a parallels slots drawn in the direction e1 on the surface of an elastic
medium, see Fig. 9

Direction e1 e2 e3

Vibration mode Shear Out of plane bending Compression

First eigen frequency x1 ¼ p
2H

ffiffi
l
q

q
x2 ¼ pc

2H

	 
2
ffiffiffiffiffi
E0I
qS

q
x3 ¼ p

2H

ffiffiffiffi
E0
q

q
c � 1.195; I

S ¼ e2

12 E0 ¼ 2l
1�m

Modal mass/mass 8/p2 b � 0.613 8/p2

gi g1 ¼ 4
p

e
l g2 ¼ b pc

2

	 
2
ffiffiffiffiffiffiffiffiffiffiffi

1
6ð1�mÞ

q
e
H

e
l g3 ¼ 4

p

ffiffiffiffiffiffiffiffi
1�2m
p

1�m
e
l

�(xi) �1 ¼ p
2

l
H �2 ¼ pc

2

	 
2
ffiffiffiffiffiffiffiffiffiffiffi

1
6ð1�mÞ

q
e
H

l
H �3 ¼ p

2

ffiffiffiffiffiffiffiffi
1�2m
p

1�m
l
H

200 C. Boutin, P. Roussillon / International Journal of Engineering Science 44 (2006) 180–204



described in Section 5.2) will be observed with the anisotropic layer. Number of variations can be contem-
plated from this simple example, which shows that resonant top layers can be designed rather simply in order
to control at a given frequency the refracted wave field.

Table 2
Characteristic parameters of an isotropic resonant surface made of a periodic pattern of square beams of the same material than the elastic
medium, see Fig. 10

Direction e1, e2 e3

Vibration mode Bending Compression

First eigen frequency x1 ¼ x2 ¼ pc
2H

	 
2
ffiffiffiffi
EI
qS

q
x3 ¼ p

2H

ffiffiffi
E
q

q
c � 1.195; I

S ¼ e2

12 E = 2l(1 + m)

Modal mass/mass b � 0.613 8/p2

gi g1 ¼ g2 ¼ b pc
2

	 
2
ffiffiffiffiffiffi
1þm

6

q
e
H

e
l

	 
2
g3 ¼ 4

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þmÞð1�2mÞ

1�m

q
e
l

	 
2
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q
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Appendix 1. Boundary layer field in the case of rigid basement

In fact, a full description of the oscillator behaviour should also include the base rotation w and the trans-
mitted momentum M. However, as the leading motions and macro-stresses only depend on the macro-vari-
ables, they are not able to describe neither rotation nor momentum which necessarily imply local
variations. Therefore, this complementary part of the behaviour only arises at the next order and is balanced
by the BL field. Hence, the consistency with the two scales expansions imposes to write the generalised imped-
ance relations on the form (assuming negligible the momentum-translation and force-rotation coupling imped-
ance matrix)

R

M

� �
¼ ix

Z 0

0 0

� �
.

uS

w

� �
þ �ix

0 0

0 Zw

� �
.

uS

w

� �
ð59Þ

and, expanding the base motions:
Cons
is suffi
of the

In
R0 ¼ ixZ �U0
S; and

R1

1

" #
¼ ix

ZU1
S

0

" #
ð60Þ
M ZwW
equently, the behaviour defined by the impedance matrix restricted to forces and translation motions (33)

cient for the leading order analysis, while the global impedance matrix is needed for the determination
BL field.

presence of a rigid base, the BL field is governed by the same equations as previously (15), (17), (18), (9),

except for the condition (16) on R0 that must now be decomposed in three parts:

(i) outside S, the surface force t0 vanishes,

t0 ¼ �C : ½eyðuH1Þ þ exðu0Þ� � e3 ¼ 0 ð61Þ
(ii) on S, the medium follows the rigid base motion,

uH1 ¼ �uH1 þ y
W0 unknown rigid body motion ð62Þ



(iii) moreover, the surface force t0 balances the resultant force and the momentum:Z
S

t0 ds ¼ �
Z

S
C : ½eyðuH1Þ þ exðu0Þ� � e3 ds ¼ R0 ¼ R0T0 ð63ÞZ Z
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S
t0 
 yds ¼ �

S
C : ½eyðuH1Þ� � e3 
 yds ¼M1 ¼ ZwW0 ð64Þ
It is c
the B

He
tion c

exact
lear that the solution of this linear problem only depends on the single forcing term T0. Thus, as asserted,
L field takes the same form, where now a depends on Zw

uH1ðxa; yÞ ¼ aiðyÞT0ðxaÞ ð65Þ
i

and consequently the translation and rotation defining the rigid base motion read:
H1 i 0 0 i 0
�u ðxaÞ ¼ b Ti ðxaÞ; and W ðxaÞ ¼ U Ti ðxaÞ ð66Þ
Appendix 2. Approximated boundary layer field
re is a proposal to construct an approximated boundary layer field adapted to tooth-like stress distribu-

orresponding to one oscillator of surface S = s Æ R0 in the period. The idea is to follow the main require-
ments identified by homogenisation (elasto-static problem, zero mean force on the top surface, zero stress and
displacement on the bottom, periodicity and ‘‘thickness’’ of the order of the period) using the concept of con-
ical stress diffusion widely used in engineering sciences (see for instance [19]).

Consider a rigid circular plate of surface S and radius r0 loaded by a static force R, resting on the top sur-
face of an elatic half-space. The cone approximation (denoted by c) is based on the following simplifying
assumptions:

• the stresses are confined in a truncated cone C of vertical axis passing through the plate center,
• the cone appex located at the high h = br0 above the medium is determined by equating the exact plate-on-

medium rigidity and cone model rigidity,
• only the components and the stress balance in the direction of the loading are considered, and the variables

depend only on the depth (here denoted by z).

Assume an horizontal force R = Re1 (vertical force can be treated similarly). In the loading direction, the
balance of forces applied to a thin cone section reads

d

dz
½scðzÞScðzÞ� ¼ 0 ð67Þ

where ScðzÞ ¼ zþh
h

	 
2
S is the cone section at the depth z, and, according to the elastic behaviour, the shear stress

sc and motion uc are related by:
scðzÞ ¼ l
d

dz
U cðzÞ ð68Þ
Integrating (67), (68) and disregarding rigid motion gives the cone shaped field defined on C only:� �2 c � � � �

h s h h h
scðzÞ ¼ sc
0 zþ h

UcðzÞ ¼ � 0

l zþ h
¼ U c

0 zþ h
The force R = T0R0 is balanced by the stress on the surface and is related to the base displacement U c
0 by the
plate-on-medium rigidity

R ¼ �pr2
0s

c
0 ¼ U c

0l
pr2

0 ; and R ¼ Uc
0l

8r0
h 2� m



so that

b ¼ h
r0

¼ pð2� mÞ
8
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Consider now a R0-periodic distribution of such plates identically loaded. The cone shaped field diffused by
each plate cover the whole medium surface at a depth H such that
Ca
the v
mediu
T 0

3e3

Sim
4.3. N
The l
One c
ScðHÞ ¼ H þ h
h

� �2

S ¼ R0 i.e. H ¼ ð1=
ffiffi
s
p
� 1Þh
By construction H defines the boundary layer thickness estimate, and at this level the displacement and stress
can be looked as uniform in a first approximation (disregarding un- and over-lapped zones) and given by
scðHÞ ¼ sc
0

h
H þ h

� �2

¼ sc
0s ¼ �R=R0 ¼ T 0 U cðHÞ ¼ � sc

0h
l

h
H þ h

� �

To satisfy the BL requirements, add to this field an homogeneous field, Uh, in the layer (i.e. inside and outside
the cone C) defined in such a way that the total stress and displacement cancel out on z = H.
UhðzÞ ¼ � ðz� HÞ s
cðHÞ
l
þ U cðHÞ

� �

The field Uwe1 = (Uc + Uh) e1 (Uc is set to zero outside C) follows all the aforementioned requirements for an
approximated BL layer field. On the top surface C, one obtains
on S UH ¼ � T 0

l
h
s
ð1�

ffiffi
s
p
Þ2; sH ¼ T 0 1� s

s

on R0 � S UH ¼ T 0

l
h
s
½1� ð1�

ffiffi
s
p
Þ2�; sH ¼ �T 0
lculations are very similar for vertical force. The differences come from the cone aspect ratio that takes
alue b 0 = p/2 and the normal stress–strain relation that reads in the cone confined by the surrounding
m rcðzÞ ¼ 2l=ð1� mÞ d

dz UcðzÞ. The approximated BL field Vwe3 associated to a vertical mean stress
takes the following values on the top surface C:
on S V H ¼ � T 0
3

2l
ð1� mÞh

s
1�

ffiffi
s
p

1þ 1� 2m

ð1� mÞ2
ð1�

ffiffi
s
p
Þ

" # !

on R0 � S V H ¼ T 0
3 ð1� mÞh ffiffi

s
p

1þ 1� 2m ð1�
ffiffi
s
p
Þ

" #

2l s ð1� mÞ2

ple estimates of tensors (all diagonal) A, A and B derived from those expressions are given in Section
ote that only the elastic properties of the medium and the surface density of oscillator basis are involved.

ocal organisation of the oscillators that influences the exact solution disappear in this approximation.
an refer to Boutin and Roussillon [6] for a generalisation of this approach treating more complex cases
including different oscillators.
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