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R External radius of the inclusion.

Ri Radius of the solid sphere in the inclusion.

Ve Homogeneous velocity in the Darcy medium related tograd(P e)= ez.
vp Statically continuous field such that on any inclusion boundary: [σp.n] = 0.

vp Exact velocity field in medium PMp.

vv Kinematically continuous fields such that on any inclusion boundary: [vv] = 0.

vv Exact velocity field in medium PMv.

Greek symbols

8Lp(ρ),8Tp(ρ) Idem as function9p(ρ) but for cylindrical inclusion and longitudinal (L) or transverse
(T) flow.

8Lv(ρ),8v(ρ) Idem as function9v(ρ) but for cylindrical inclusion and longitudinal (L) or transverse
(T) flow.

ρ Ratio of internal and external radii of the inclusion.

9p(ρ) Function related to the static assumption for spherical inclusion.

9v(ρ) Function related to the kinematic assumption for spherical inclusion.

$p Exact velocity in the fluid shell of the inclusionI (R,ρ) under static conditions at the
external boundary.

$v Exact velocity in the fluid shell of the inclusionI (R,ρ) under kinematic conditions at
the external boundary.

Note For fibrous porous media the same notations are used with the indicesL and T for
longitudinal and transverse flow.

1. Introduction

The permeability of porous materials is a physical parameter which is considered in various domains of
mechanics, such as soil mechanics, petroleum engineering, acoustics of noise absorbing materials, moulding
of fibre reinforced composites, etc. Predicting the permeability of a given medium is then of great interest and
a great number of studies address the identification and the characterisation of this parameter.

With this aim, various methods were applied and have contributed widely to the clarification and the
understanding of the mechanisms linked with the Darcy coefficient. These are: the phenomenological
thermodynamics-based approach such as developed by Biot (1941), the micro–macro approach using either
the homogenisation of periodic media (HPM) (Auriault and Sanchez-Palencia, 1977), or, more rarely, the self-
consistent method (SCM) as investigated by Berdichevsky and Cai (1993), and finally numerical simulations
as developed, for example, by Sangani and Acrivos (1982). However, despite the fact that the physics of the
phenomenon is well known, the question of a simple assessment of the permeability remains an open-ended
problem.

In this paper we focus on this topic by using both HPM and SCM.

One of the advantages of HPM is to rigorously derive the macroscopic Darcy law from the Navier–Stokes
equation at the pores scale. It also gives the theoretical expression of the Darcy tensor, whatever the periodic
microstructure. However, the permeability value can only be obtained through computer simulations due to
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the significant complexity of the flow through the pores. This requires performing a number of simulations
for identifying approximate relationships between permeability and microstructure. Moreover, for technical
computing reasons, only rather simple microstructures can actually be investigated. Nevertheless the HPM
constitutes an excellent guideline for studying physical phenomena at both micro- and macro-scale.

The interest of SCM is to propose a permeability value from analytical solutions in simplified configurations.
Contrary to HPM the microstructure is not identified with accuracy, and if the basic analytical solution is
correct, the application of the result to real porous media is generally conjectured (Christensen and Lo, 1979)
for the case of elastic composites. In addition, in the case of the Darcy law, an additional difficulty arises due
to the difference in the nature of governing equations in the fluid – vectorial balance equation with tensorial
variables – and in the equivalent conjectured Darcy medium – scalar balance equation with vectorial variables.
This led various authors to propose various permeability values based on the assumptions made for basic
solutions (Berdichevsky and Cai, 1993;Tarnow, 1996).

This paper aims at combining the HPM and SCM approaches in order to obtain rigorous results for classes
of porous media with an explicit description of their microstructures.

The paper is divided in four parts. In section 2 we review the derivation of the macroscopic description of
the flow of a viscous fluid through porous media using the HPM method. Section 3 is devoted to the same
problem using SCM and the basic principles identified with HPM. It is shown that two values of permeability
can be conjectured. The interpretation of these results is treated in section 4. We obtain exact bounds for the
permeability of various classes of porous media constituted by fixed arrays of spherical grains – or cylindrical
fibres – surrounded by a concentric fluid shell, the whole filling all the space. The result depends on both grain
size distribution and fluid shell size distribution, and is valid for random or periodic spatial distribution.

2. From Navier–Stokes to Darcy law using HPM

2.1. Homogenisation principles of periodic media

Let us briefly review the basic principles of HPM. The homogenisation method of periodic structures is an
asymptotic two-variable method (Sanchez-Palencia, 1980). The two well distinct macro-length,L, and micro-
length,l, led us to use two space variables,x describing variations at the macroscopic scale, andy the variations
at the microstructure level. The small parameterε is the scale ratio:

ε= l/L, y = ε−1x.

The two space variables transform the common spatial derivatives into?∂x + ε−1∂y . Due to the different
orders of magnitude introduced byε, any quantityq is expressed in the form of asymptotic expansions in
powers ofε:

q(x, y)=6εjqj (x, y) with: O
(
qj /q0)= 1.

The microperiodicity of the medium induces the same periodicity for the termsqj , according to variabley.

The process consists of introducing expansions in the scaled equations governing physical phenomena
at local scale (using powers ofε for expressing the order of magnitude of the various quantities), then in
identifying the terms of same power inε, and finally in solving the problems obtained in series.
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2.2. Darcy law

The macroscopic description of the quasi-static laminar flow of a Newtonian viscous fluid through a non-
deformable porous matrix was extensively studied by Auriault and Sanchez-Palencia (1977) in which the Darcy
law was derived using the HPM approach. Nevertheless it is necessary to expose and comment the main steps
and teachings of this approach prior to proceeding with the reasoning.

2.2.1. The governing equations

Considering the above assumptions, the set of equations governing the fluid motion in porous cell�

(figure 1), whereσ is the stress in the fluid,σs the stress in the infinitely rigid porous solid,p the pressure,
v the velocity,D the rate of strain, andµ the viscosity, can be written:

In fluid �f

Incompressibility div(v)= 0, (1)

Viscous behaviour σ =−pI + 2µD(v),

Navier–Stokes equation div (σ )=−grad(p)+µ1(v)= 0.

At fluid–solid interface0

Adherence condition v= 0. (2)

Stress continuity σs.n= σ.n. (3)

In solid�s

Equilibrium div (σs)= 0. (4)

Figure 1. The periodic cell� of a porous medium.�f and� are, respectively, the volume of the fluid and the volume of the solid in the cell;0 is the
fluid–solid interface inside�; 0f and0s are the fluid and the solid interface at the boundary of�.



Study of permeability by periodic and self-consistent homogenisation 607

2.2.2. Scaling

The pressure gradient, which evolves at the macroscopic scale, is balanced by the viscous forces, which – as
velocity – vary at the pores scale. This leads to the following estimations:

grad(p)=O(p/L), µ1(v)=O
(
µv/l2

)
so that:

O(p/L)=O
(
µv/l2

)
.

Then, usingL as a reference length, the Navier–Stokes scaled equation, and the scaled expression of the
stress are:

−grad(p)+ ε2µ1(v)= 0, (5)

σ =−pI + ε2µD(v). (6)

With these scaled equations (others are unchanged), we can proceed to the solving of the problems posed on
the cell, all the quantities being�-periodic according to variabley.

2.2.3. Solution

The first problem to be solved is (5-ε−1)

div y

(
σ 0)=−grady

(
p0)= 0

the solution of which is:

σ 0=−p0(x)I =−P I .

The second set of equations to be solved is (5-ε0), (1-ε−1), (2-ε0)

div y

(
σ 1)+ div x

(
σ 0)=−grady

(
p1)− gradx(P )+µ1y

(
v0)= 0,

divy
(
v0)= 0,

v0= 0.

The solution of this linear problem with the forcing termgradx(P ), is written in the form:

v0
j (x, y)=−

[
kij (y)/µ

]
gradx(P )i, p1(x, y)=−[πi(y)]gradx(P )i + p1(x),

where ki(y)/µ and πi(y) are the particular velocity and pressure solution for unit macroscopic pressure
gradient in directionei , (gradx(P )= ei , i = 1,2,3). Bothki andπi only depend on the geometry of the pores
with a rough order of magnitude of O(ki)= l2, O(πi)= l. Finally the macroscopic description is obtained by
using (1-ε0), (2-ε1):

div y
(
v1)+ div x

(
v0)= 0,

v1= 0.

Due to the periodicity ofv1, it remains after integration on the fluid volume of the cell:

div x

(∫
�f

v0

)
= 0.
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Thus notingV = (1/�) ∫�f v0 dω, the Darcy law takes the form:

div x(V)= 0, V =−(K/µ)gradx(P ) with: Ki
j = (1/�)

∫
�f

kij (y)dω.

2.3. Comments

2.3.1. From micro to macro variables

The quantities, which appear in the macroscopic description, are related to the local quantities in the pores:

− the macroscopic velocity,V, is the average of the microscopic velocity in the cell.
− pressureP is exactly given by the pore pressure. More precisely, this pressure is the stress of the zero

order, which is constant in the fluid.
− as shown by Auriault and Sanchez-Palencia (1977), the intrinsic permeability tensorK , obtained by

averaging the particular solutionski , is directly related to the local viscous dissipation through:

Ki
j = (2/�)

∫
�f

D
(
ki
) :D(kj)dω

or

2µ(1/�)
∫
�f

D
(
v0) :D(v0)dω = gradx(P ).(K/µ).gradx(P )=−V.gradx(P ).

In other words, the dissipation, which occurs on the elementary representative cell, is identical to that which
would occur in the same volume of the equivalent Darcy medium. This demonstrates the energy consistency of
the micro–macro passage using the HPM.

Conversely, the Darcy law obliterates the information from the pore level:

− the stress of the first order,σ 1=−p1I +2µDy(v0), which exists and varies at the local scale, disappears,
− only the average value of local velocity is known. Thus no simple relation can be a priori proposed to

relate punctually the micro-velocity and the Darcy flow.

2.3.2. Overall equilibrium of the cell

An important point is that the Darcy law is obtained from the compatibility equation of the fluid mass balance.
Since there is a stress transfer from the fluid to the skeleton, no compatibility equation can be obtained for the
momentum balance on the fluid only. However a momentum compatibility equation can be established for both
phases. Equations (5-ε0), (3-ε), (4-ε0) give the following set:

div y

(
σ 1)− gradx(P )= 0,

σ 1
s .n= σ 1.n,

div y

(
σ 1

s

)+ div x

(
σ 0

s

)= 0.

Notice that, according to the periodicity of the variables, we get:∫
0s

σ 1
s .nds +

∫
0f

σ 1.nds = 0.
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This important equality expresses the fact that, on average, the stresses of the first order (and also highest)
are self-equilibrated in the cell. In the particular case studied later on, where the solid is isolated in the cell, the
equality reduces to:

∫
0f

σ 1.nds = 0.

Integrating each balance equation over its own domain, the contributions ofσ 1
s and σ 1 disappear by

continuity so that we get for the overall momentum balance:

∫
�s

div x

(
σ 0

s

)
dω =

∫
�f

gradx(P )dω.

This means that the pressure gradient in the fluid is counterbalanced by stresses in the solid skeleton.

To conclude this section, the HPM has given:

− the nature of the macroscopic behaviour (Darcy law),
− the description of local phenomena (flow governed by the Navier–Stokes equations),
− the effective relationship between local phenomena and macro quantities.

Nevertheless the HPM method does not provide a simple approach for obtaining an explicit expression of
the Darcy coefficient. The next section is aimed at introducing the information obtained by HPM in the self-
consistent approach for assessing the permeability of a class of porous media.

3. Conjectured permeability by SCM using spherical fluid-solid inclusions

3.1. Principles of the self-consistent method

As exposed in the introduction, the self-consistent method provides a way to conjecture the effective
macroscopic coefficients of heterogeneous media. Following Hashin (1968), the steps of this approach
developed for various phenomena, are:

− assume the macroscopic behaviour, the coefficients of which being to determined,
− consider a (or various) complex (or simple) inclusion(s) embedded in such medium,
− solve the basic problem under homogeneous boundary conditions (applied at the bounds of the infinite

medium),
− express energy equivalence between the whole of the representative inclusions and the equivalent

medium,
− deduce from this relation the value of the macroscopic coefficients.

The application of SCM to the derivation of Darcy coefficient was recently investigated by Berdichevsky and
Cai (1993) for fibrous materials. Other authors use the same ‘philosophy’ as SCM, but, instead of the energy
consistency, additional kinematic assumptions are introduced for determining the basic solution.
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Figure 2. The generic fluid–solid spherical inclusionI of volume�I and boundary∂�I and the associated spherical system of co-ordinates. Solid
sphere: radiusRi , volume�s. Concentric spherical shell filled by the viscous Newtonian fluid: external radiusR, volume�f =�I −�s.

Figure 3. The two infinite media A and B. Medium A is constituted by the homogeneous equivalent medium. Medium B is the same medium in which
a volume�I and replaced by inclusionI .

3.2. Setting of the problem

3.2.1. Macroscopic behaviour

Taking into account the results obtained using HPM, we consider that the behaviour of the equivalent
macroscopic medium is given by the Darcy law.

div x(V)= 0, V =−(K/µ).gradx(P ).

Moreover we limit the analysis to isotropic media so that the intrinsic permeability tensor is defined by a
single scalar:K =KI .
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3.2.2. Generic inclusion

Concerning inclusionI (volume�I , boundary∂�I ), we treated the case of a solid sphere (radiusRi , volume
�s) surrounded by a concentric spherical shell filled with a viscous Newtonian fluid of external radiusR and
volume�f =�I −�s (figure 2).

As usual in the self-consistent approach we considered two infinite media A and B (figure 3). Medium A
is constituted by a homogeneous equivalent medium, whereas medium B corresponds to the same medium in
which a given volume has been removed and replaced by composite inclusionI . The main idea was to compare
both media, when A is submitted to homogeneous conditions (unit pressure gradient):

grad(P e)= ez so that: Ve=−(K/µ)ez (7)

and when boundary conditions applied to whole structure B (equivalent medium+ composite inclusion) tend
to (7) at infinity.

3.2.3. General expression of the fields

Because of the spherical symmetry of the structure, and the privileged direction introduced by the pressure
gradient at infinity, we used the spherical co-ordinates (r, θ, φ) oriented as described infigure 2 (θ = 0
corresponds toer = ez). The governing equations in both domains are (uppercase variables concern the Darcy
medium and lowercase variables the fluid in the inclusion):

– in the Darcy medium:r > R div (V)= 0; V =−(K/µ)grad(P ), (8)

– in the fluid shell:R > r > Ri div (v)= 0; −grad(p)+µ1(v)= 0. (9)

According to the symmetry of the problem, the solutions are independent ofφ, and are considered in the
following form:

Darcy medium:r > R Fluid shell:R > r > Ri

V =


Vr =−(K/µ)F(r)cos(θ),

Vθ = (K/µ)G(r)sin(θ),

Vφ = 0,

v=


vr =−(K/µ)f (r)cos(θ),

vθ = (K/µ)g(r)sin(θ),

vφ = 0,

P =H(r)cos(θ). p=Kh(r)cos(θ).

In the fluid, the components of the tensor of the rate of deformation are (′stands for d/dr):

Drr = (−K/µ)f ′(r)cos(θ),

Dθθ =Dφφ = (−K/µ){[f (r)− g(r)]/r}cos(θ),

Drθ = (−K/µ){g′(r)/2+ [g(r)− f (r)]/2r}sin(θ).

Introducing these functions into equations (8), (9) led after algebraic calculations to the following generic
expressions which (forF,G,H ) tend to the boundary condition (7) at infinity:

H(r)= [α(R/r)3+ 1
]
r, h(r)= [−2b(R/r)− 10d(R/r)−2]/r,

F (r)=−2α(R/r)3+ 1, f (r)= 2a(R/r)3+ 2b(R/r)+ c+ d(R/r)−2,

G(r)=−α(R/r)3+ 1, g(r)=−a(R/r)3+ b(R/r)+ c+ 2d(R/r)−2.
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Two convenient relations will be used in the following:

h+ f ′ + 2g′ = −(6b/R)(R/r)2, f ′ = −2(f − g)/r.

Hence the problem involves five parameters(a, b, c, d,α) and unknownK . To determine them we have now
to specify the conditions these fields have to fulfil.

3.3. Conditions for the fields

3.3.1. The argument of energy

Let us now express the energy equivalence between both loaded media A and B. For the problem studied,
we have to determine the dissipated powers,EA andEB in medium A and B. For simplicity, these values are
calculated over spherical domains of radiusR∞�R.

In medium A, the pressure gradient and velocity are constant so that:

2EA =
∫

A
−grad(P e).Vedω = (K/µ)R3

∞4π/3.

In medium B we have to separate the external homogeneous domain and the inclusion.

2EB =
∫

B−I
−grad(P ).V dω+ 2EI where: 2EI = 2µ

∫
�f

D(v) :D(v)dω.

With the divergence theorem and the flow incompressibility,EB is transformed into:

2EB =
∫
∂(B−I )

−PV.nds + 2EI .

Using the expressions ofP andV given in the above section, we get:

2EB = 4π/3(K/µ)
{[
α(R/R∞)3+ 1

][−2α(R/R∞)3+ 1
]
R3
∞ − [α+ 1][−2α + 1]R3}+ 2EI .

Now, both medium A and B are energetically equivalent if:

EA =EB or EB/EA = 1,

i.e.:[
1+α(R/R∞)3][1−2α(R/R∞)3

]−[α+1][−2α+1](R/R∞)3+2
[
Ei/(K/µ)R

34π/3
]
(R/R∞)3= 1. (10)

Whatever could be the characteristics of the inclusion, such a relation is obviously valid whenR/R∞→ 0,
for the simple reason that the volume of the inclusion becomes negligible.

However, we are looking for a specific situation which optimises the energetic equivalence. This imposes
the identification of the parameters for which the equality is reached as rapidly as possible whenR/R∞→ 0.
Organising relation (10) in decreasing powers ofR/R∞ lead successively to cancel:
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– the term in (R/R∞)3, which gives:−α− [α+ 1][−2α + 1] + 2[Ei/(K/µ)R34π/3] = 0,

– the remaining term in(R/R∞)6, which gives:−2α2= 0, i.e.α = 0.

Therefore the preceding relation reduces to:

(K/µ)R34π/3= 2EI .

It should be noted that with these optimised conditions, the energy equivalence is satisfied whatever the
radiusR∞ >R. This result has two consequences:

First,α = 0, means that the interactions between the equivalent medium and the representative inclusion are
reduced to zero. In other terms, the fields in the Darcy medium in absence (medium A) or in presence of the
inclusion (medium B) are exactly the same, i.e., forr > R:

grad(P )= grad(P e)= ez and: V = Ve=−(K/µ)ez.

Second,(K/µ)R34π/3= 2EI means that the energy equivalence for both medium A and B simply reduces
to the equality of the dissipated power in the inclusion on the one hand, and in a same volume of the equivalent
Darcy medium on the other hand. We will come back to this condition later on.

3.3.2. Conditions for the fields in the inclusion

In accordance with the adherence condition, the velocity at the fluid–solid interface must vanish. Therefore:

f (Ri)= 0, (11-r)

g(Ri)= 0. (11-θ )

Moreover, the average velocity in the representative inclusion must equal the velocity in the equivalent Darcy
medium. We get:

(1/�I )
∫
�f

vdω= (1/�I )
∫
∂�I

r .(v.er )ds + 0= (2π/�I)
∫
rvr [sin(θ)ex + cos(θ)ez]sin(θ)R2 dθ

=−(K/µ)f (R)ez + 0=−(K/µ)ez
and therefore:

f (R)= 1. (12)

Notice that sinceα = 0, with f (R)= 1, the normal velocity in the fluid and in the equivalent Darcy medium
is continuous at any point of the boundary:

vr(R)= Vr(R)= V e
r . (13)

This relation expresses the local mass balance at the boundary. Assuming this condition would have been
another way to deduceα = 0 independently of the above energy considerations.

3.3.3. Condition at the Inclusion – Darcy medium boundary: overall equilibrium

This condition is less obvious than the previous one. The question of boundary conditions between a fluid
and a porous medium was discussed in detail in Levy and Sanchez-Palencia (1975). However the analysis is
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only valid if the fluid domain is significantly larger than the pores, which is not the case in the considered
condition.

The difficulty arises from the fact that the Darcy law doesn’t integrate the momentum balance in the fluid.
Since a part of the viscous stress is transferred to the skeleton, it is not possible to assumea priori the local
continuity of the pressure or of the stress.

However, is has been proven using HPM (section 2.3) that the force exerted by the ‘corrective’ stresses –
i.e., stresses of order higher than one – applied at the boundary of the representative volume equals zero. This
corresponds to the fact that the equilibrium of the ERV is satisfied on average by a stress of the zero order. It
is physically acceptable to transpose this result to the present situation. The corrective stress,σ c, is given by
the difference between the stress in the fluid (σ ) and the stress (opposite of pressure) in the Darcy medium
(−P I =−P eI):

σ c= σ + P eI = [−pI + 2µD(v)
]+P eI and:

∫
∂�I

σ c.nds = 0,

i.e.: ∫
∂�I

σ.nds =−
∫
∂�I

P en ds. (14)

In this latest form it clearly appears that this condition is an ‘averaged’ continuity equation between the
stress in the fluid and the pressure in the Darcy medium, or an overall equilibrium condition of the inclusion.
Introducing the components of the stress tensor gives:∫

∂�I

σ c.er ds =
∫
∂�I

[
P e− p+ 2µDrr(v)

]
er + 2µDrθ (v)eθ ds = 0,

i.e.: ∫
∂�I

{[
P e− p+ 2µDrr (v)

][
sin(θ)ex + cos(θ)ez

]+ 2µDrθ (v)
[
cos(θ)ex − sin(θ)ez

]}
ds = 0.

Due to the symmetry of the problem, theex component vanishes and only a singleez component-related
equation remains: ∫

∂�I

{[
P e− p+ 2µDrr (v)

]
cos(θ)− 2µDrθ (v)sin(θ)

}
ds = 0

and, after calculations:

R−K{h(R)+ 2
[
f ′(R)+ g′(R)+ (f (R)− g(R))/R]}= 0. (15)

3.3.4. Back to the energy condition

From the above results, we can proceed with the energy condition.

In the fluid shell, due to incompressibility, we get for the dissipated power:

2EI = 2µ
∫
�I f

D(v) :D(v)dω =
∫
�I f

[−pI + 2µD(v)
] :D(v)dω = ∫

�I f

σ :D(v)dω

which, using the divergence theorem and the adherence condition, is also equal to

2EI =
∫
∂�I

(σ.n).vds.
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In the Darcy medium (A), the power dissipated in a volume identical to that of the inclusion takes the form:∫
�I

−grad
(
P e).Vedω =

∫
∂�I

(P eVe.n)ds.

However, asVe is constant and because of (14), we obtain successively:∫
∂�I

(
P eVe.n

)
ds = Ve.

∫
∂�I

(
P en

)
ds = Ve.

∫
∂�I

(σ.n)ds =
∫
∂�I

(σ.n).Veds.

Therefore the equality of the two dissipated powers becomes:∫
∂�I

(σ.n).
(
v−Ve)ds =

∫
∂�I

(σ.er ).(v−Ve)ds =
∫
∂�I

[
(σrr

)(
vr − V e

r

)+ (σrθ)(vθ − V e
θ

)]
ds = 0.

Finally, owing to the continuity of the normal velocity at the interface (13), it only remains:∫
∂�I

(2µDrθ )
(
vθ − V e

θ

)
ds = 0.

According to the expressions of the fields, two alternatives are available at the boundary:

– either the tangential velocities are continuous.

vθ (R)= V e
θ and then: g(R)= 1. (16)

With f (R)= 1, this necessarily leads tof ′(R)= 0, so that 2µDrr = 0. Then (15) becomes:

R −K[h(R)+ 2g′(R)
]= 0. (17)

– or the shear stressσrθ = 2µDrθ vanishes uniformly, and thereforeσ.n = σrrer = Per which enables to
simplify (15):

Drθ = 0 i.e.: g′(R)+ [f (R)− g(R)]/R = 0, (18)

σrr − P = 0 i.e.: R−K[h(R)+ 2f ′(R)
]= 0. (19)

To summarise, we obtain two sets of five conditions (in addition toα = 0).

Three of them are common to both sets, i.e., the two conditions related to the adherence condition (11-r),
(11-θ ), and the one expressing the continuity between normal velocity and Darcy flow (12). This latter, derived
here from the energy condition, is usually directly assumed by the authors.

The two remaining are derived from combining the energy equivalence and the ‘averaged’ stress continuity or
overall equilibrium condition. This last one is determined directly from a comparison with the HPM approach
and has not been proposed up to now. It appears that two alternatives can be selected:

– either the micro-velocity fits the Darcy flow and neither the pressure nor the stress is continuous. This will
be called the kinematic approach hereafter.

– or the shear stress vanishes and the stress is continuous with pressure in the Darcy medium. It will be
called the static approach below. In this case we find the assumptions made by Berdichevsky and Cai (1993).
The tangential micro-velocity is not continuous with the tangential Darcy flow.
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It should be noted that when using such an approach, the assumption of vanishing vorticity at the boundary
of the cell – used in various studies (for example Tarnow (1996)) – does not appear naturally. This latter
assumption does not meet the global equilibrium of the cell and seems to be an acceptable approximation only
for very porous medium (�Is/�I→ 0).

3.4. Solutions

Since no physical reasons enable us to discard the kinematic or the static hypothesis, the two approaches
have to be treated.

3.4.1. Kinematic approach: field$v

Under the kinematics assumption, the five conditions allow the determination of the five remaining
parameters(a, b, c, d,Kv). Using the expression of functionsf,g,h, and introducing the notationρ = Ri/R
lead to a linear system (11-r), (11-θ), (12), (16), (17):

2aρ−3+ 2bρ−1+ c+ dρ2= 0, vr(Ri)= 0,

−aρ−3+ bρ−1+ c+ 2dρ2= 0, vθ (Ri)= 0,

2a + 2b+ c+ d = 1, vr(R)= V e
r ,

−a + b+ c+ 2d = 1, vθ (R)= V e
θ ,

+b=−R2/6Kv, (17)

The resolution of this set can be divided in two steps: first, the calculation using the adherence and kinematic
conditions of parameters(a, b, c, d) of field$v, then the determination of the Kvvalue. Finally we obtain:

Kv/R
2=9v(ρ)= [(1− ρ)/ρ][4− 5ρ(1+ ρ)(1− ρ2)/(1− ρ5)

]
/18 (20)

and:

a =−(β − 1)/189v, b=−1/69v, c= 1− (5β + 4)/189v, d = β/189v,

where:

β = (1− ρ2)/(1− ρ5).
From expression (20) it can be proven thatKv is positive. Note that$v is the ‘exact field’ for the flow through

the fluid shell under the imposed kinematic conditions at the external boundary(r =R) :$v =−(Kv/µ)ez.

3.4.2. Static approach: field$p

From the static assumption, the five conditions (11-r), (11-θ ), (18), (19), (12) can be written:

2aρ−3+ 2bρ−1+ c+ dρ2= 0, vr(Ri)= 0,

−aρ−3+ bρ−1+ c+ 2dρ2= 0, vθ (Ri)= 0,

2a + 0+ 0+ d = 0, Drθ = 0,

2a + b+ 0+ d =−R2/6Kp, σrr(R)= P e(R),

2a + 2b+ c+ d = 1, vr(R)= V e
r .
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The treatment of this set gives:

Kp/R
2=9p(ρ)= [(1− ρ)/ρ][1− (1− ρ5)/(1− ρ)(2ρ5+ 3)

]
/3 (21)

and:

a = ρ2/6(2ρ5+ 3)9p, b=−1/69p, c= 1− 2b, d =−2a.

Here again it can be proven thatKp is positive. Note that$p is the ‘exact field’ for the flow through the fluid
shell under the imposed static condition at the external boundary(r =R): σp.n=−Pn, with grad(P )= ez.

3.4.3. Comparison of the kinematic and static values

Expression (20) gives the intrinsic permeability of the Darcy medium kinematically consistent with the
inclusionI characterised byρ andR. Similarly, expression (21) gives the intrinsic permeability of the Darcy
medium statically consistent with the inclusionI characterised byρ andR. In such a medium of permeability
Kv (respectivelyKp) the inclusion is kinematically (respectively statically) neutral since its presence does
not modify neither the average density of dissipated power nor the field in the Darcy medium, and the flow
continuity (respectively stress continuity) is provided.

Figure 4 shows the variations of functions9v and9p versusρ. The analysis of both functions shows that
9p>9v and their limit values whenρ tends to 0 and to 1 are:

ρ→ 0, ρ→ 1,

9v(ρ)→ (2/9)ρ−1− 1/2, 9v(ρ)→ (1− ρ)3/6,
9p(ρ)→ (2/9)ρ−1− 1/3, 9p(ρ)→ 2(1− ρ)3/3.

Then, for same values ofρ andR,Kp/Kv→ 1 whenρ→ 0 (dilute solid concentration) whereas, when
ρ→ 1 (dense solid concentration),Kp andKv differ significantly sinceKp/Kv→ 4.

Generally the determination of the equivalent parameter constitutes the ultimate step of a self-consistent
approach. The obtained value is assumed to be the effective coefficient of the heterogeneous medium
characterised by inclusionsI .

However, the case of the Darcy law is specific for two main reasons. First the analysis leads to two different
values which both seems physically acceptable. Second, contrary to other physical problems (elasticity,
conductivity, etc.) the value ofK depends on the size of the inclusion (in addition to the usual dependence
on the concentration of the constituents). It is then necessary to examine in which situations the above results
can be applied. This point is discussed below.

4. Interpretation bounds for permeability of classes of porous media

4.1. From neutral inclusions to classes of permeable mediaPMv,PMp

Up to now we have considered the problem of finding an equivalent medium from a given inclusion. Let as
examine the inverse question. Consider a Darcy medium of permeabilityK∗. We have seen above that, without
changing the macroscopic description, a sphere of radiusR0 can be replaced by a neutral inclusionI0(ρ0,R0)
kinematically consistent withK∗, i.e.:

K∗ =9v(ρ0)R
2
0.



618 C. Boutin

Figure 4. Spherical inclusions. Functions9p (straight line) and9v (dashed line). Top:9p and9v versusρ. Middle: Log(9p) and Log(9v) versusρ
(Log decimal). Bottom: Ratio9p/9v versusρ.
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Figure 5. Classes of porous media (fixed arrays of particles) PMv, PMp, PM. Top: Two examples of porous media of the same class PMv built with
two sphere distributions. Each inclusion follows (20). Down: Porous media PMv, PMp (each inclusion follows (21)) and PM built from the same sphere

distribution as PMv.

Due to the neutrality ofI0(ρ0,R0), this operation can be repeated in any location (without superposition)
to build a heterogeneous medium constituted by a permeable matrix in which identical neutral inclusionsI0
are inserted (periodically, randomly, etc.). If we want to tend to a more realistic medium, the spaces remaining
between inclusionsI0 can be filled with smaller neutral inclusionsI1 of radiusR1. However to keep the energy
consistency,ρ1 must be such that:

9v(ρ1)R
2
1 =9v(ρ0)R

2
0 =K∗.

This process can be continued up to replacing the entire initial permeable matrix by a series of inclusions
In of radiusRN where9v(ρn)R

2
n = K∗. Note that as the function9v uniformly decreases withρ, the solid

concentration is reduced asRn decreases.

By this operation we built a class of porous media PMv (more exactly of fixed arrays of particles, seefigure 5).
The geometry of all these porous media is rather diversified since it includes numerous possible grain size
distributions and arrangements, but, on the other hand, it is rather restricted by the imposed relation between
the fluid shell and the grain size.

Similarly another class of porous media PMp based on statically neutral inclusions can be defined in order to
obtain9p(ρn)R

2
n =K∗.

Does valueK∗ correspond to the intrinsic permeability of the two classes of porous media PMv and PMp?

To answer this question we examine if the local fields determined by the self-consistent approach fit the
exact field in the pores. By construction, the Navier–Stokes and the incompressibility equations as well as the
adherence condition are fulfilled in the fluid of each inclusion. The difference lies in the boundary conditions:

As all the inclusions are in contact with other inclusions, the velocity and stress of the exact solution
are continuous at the boundary of each inclusion. However, by construction, in the kinematic approach,
the continuity of the micro-velocity is provided, but not the continuity of stresses. Conversely for the static
approach, the continuity of stresses is ensured, but not the velocity continuity.
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This led us to consider that the actual permeabilityKv andKp of any media PMv (build in such way that for
each inclusionKv =K∗) and media PMp (build in such way that for each inclusionKp=K∗) differs fromK∗.
This we will demonstrate hereafter.

4.2. Kinematically and statically continuous fields for classes of permeable mediaPM

Consider an arrangement of spheres of various radii(Rn), filling the whole space. From that structure a wide
class of media PM can be built by inserting a solid concentric spherical particle into each sphere. Among these
media PM, the two media PMv and PMp related toK∗ are obtained when the radius of the solid concentric
spheres are such that:9v(ρn)R

2
n =K∗ (medium PMv) or by9p(ρn)R

2
n =K∗ (medium PMp).

In order to approximate the exact solution, let consider (for any porous medium PM) local fields such that
the Navier–Stokes equation, the incompressibility and the adherence condition are fulfilled in the fluid shell
volume of any sphere. Among these fields we distinguish ([ ] stands here for the jump through the boundary):

– kinematically continuous fieldsvv such that on any inclusion boundary:[vv] = 0,

– statically continuous fieldvp such that on any inclusion boundary:[σp.n] = 0,

– the exact solution,v, which is the only field statically and kinematically continuous.

For the whole inclusions, we introduce the coupled dissipated power between any kinematically and statically
continuous fields by:

2Ec(vp,vv)= (2µ)
∑
I

∫
�I

D(vp− vv) :D(vp− vv)dω.

By construction,Ec is positive. Its minimum value (zero) is reached for fieldsvp= vv which is only possible
for the exact solutionv. Therefore:

∀vp,vv 2Ec(vp,vv)> 0. (22)

Developing the expression of 2Ec(vp,vv) leads to:

(2µ)
∑
I

{∫
�I f

D(vp) :D(vp)dω+
∫
�I f

D(vv) :D(vv)dω

}
> (4µ)

∑
I

∫
�I f

D(vp) :D(vv)dω (23)

and, according to the properties of the fields,(div (vv)= 0; div (σp)= 0), the right-hand member is in the form:

(4µ)
∑
I

∫
�I f

D(vp) :D(vv)dω= 2
∑
I

∫
∂�I

(σp.n).vv ds. (24)

4.3. Bounds of permeability

The inequality (22) is applied hereafter to media PMv and PMp related toK∗, using fields defined for a unit
macroscopic pressure gradientgrad(P )= ez.

– the kinematically continuous field is given in each inclusion of PMv by the fields obtained using the SCM
with the kinematic approach(K∗ =Kv):

vv =$ ∗v on�I , $ ∗v = V =−(K∗/µ)ez on ∂�I ,
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– the statically continuous field is given in each inclusion of PMp by the fields obtained using the SCM with
the static approach(K∗ =Kp):

vp=$ ∗p on�I, σ ∗p .n=−P.n on∂�I ,

– the (unknown) exact field in media PMv: vv

(∫
�I

vv dω =�IVv =−�I(Kv/µ)ez

)

and in media PMp: vp

(∫
�I

vp dω=�IVp=−�I(Kp/µ)ez

)
.

4.3.1. Lower bound for mediaPMv

First consider inequality 2Ec(vv,$ ∗v ) > 0 applied to medium PMv. For each inclusion the volume integrals
in (23) are now written:

2µ
∫
�f

D
(
vv) :D(vv)dω =�IKv/µ, 2µ

∫
�f

D
(
$ ∗v
) :D($ ∗v )dω =�IK∗/µ

and the surface integral (24) becomes:∫
∂�I

(
σ v.n

)
.$ ∗v ds =

∫
∂�I

(
σ v.n

)
.V ds = V.

∫
∂�I

σ v.n ds

=−V.
∫
∂�I

P .n ds =−V.
∫
�I

grad(P )dω=−�Igrad(P ).V =�IK∗/µ.

By summing up the volume and surface terms corresponding to each inclusion and dividing the value thus
obtained by the total volume, the inequality 2Ec(vv,$ ∗v ) > 0 becomes

Kv +K∗ > 2K∗ i.e.: Kv >K∗ =Kv.

4.3.2. Upper bound for mediaPMp

Now consider inequality 2Ec($
∗
p ,v

p) > 0 applied to medium PMp. The volume integrals in (23) are
respectively:

2µ
∫
�f

D
(
$ ∗p
) :D($ ∗p )dω =�IK∗/µ, 2µ

∫
�f

D
(
vp) :D(vp)dω =�IKp/µ

and the surface integrals (24) become:∫
∂�I

(
σ ∗p .n

)
.vp ds =

∫
∂�I

(−P.n).vp ds

=
∫
�I

−grad(P ).vp dω =−grad(P ).
∫
�I

vp dω =−�Igrad(P ).Vp=�IKp/µ,

i.e. inequality 2Ec(vv,$v) > 0 gives:

K∗ +Kp> 2Kp, i.e.: Kp=K∗ >Kp.
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In conclusion the kinematic assumption underestimates the actual permeabilityKv of any medium PMv, and
the static assumption overestimates the actual permeabilityKp of any medium PMp.

Kv >Kv, Kp>K
p. (25)

4.4. Bounds for a large class of porous media

The method developed above is extended to any porous media PM, the structure of which being an
arrangement of spheres filling the whole space. Each sphere contains a solid concentric sphere, as already
described above. Unlike for media PMv and PMp no additional conditions are imposed to the inclusions
constituting the medium PM. We assume that the medium presents an elementary representative volume ERV
constituted by inclusions and that its permeability isK . The volume�ERV is given by:

�ERV=
{∑

I

R3
I

}
(4π/3).

To establish theoretical bounds for permeability, we built a kinematically and a statically continuous field
adapted to medium PM submitted to a unit macroscopic pressure gradientgrad(P ) = ez. For both fields the
Navier–Stokes equation, as well as the incompressibility and the adherence condition, are fulfilled in the fluid
of each inclusion.

4.4.1. Kinematically continuous fieldvv

In order to ensure the kinematic continuity ofvv, we must have at the boundary of each inclusion:
vv = V =−(K/µ)ez. In inclusionsI , we use kinematic fields$v determined in section 3.2. To fit the imposed
kinematic condition, in each inclusion I(ρ,R),vv takes the valuevvI = (K/KvI )$v. Thenvv is completely
defined in the medium. The related dissipated power for the representative volume ERV,Ev, can be thus
calculated and takes the form, whereHv has the dimension of an intrinsic permeability:

Ev =�ERVHv/µ=
∑
I

{
2µ
∫
�fI

D(vvI ) :D(vvI )dω

}

=∑
I

{
2µ(K/KvI )

2
∫
�fI

D($v) :D($v)dω

}

= (K2/µ
){∑

I

�I/KvI

}
= (K2/µ

){∑
I

RI /9v(ρI )
}
(4π/3).

4.4.2. Statically continuous fieldvp

Concerningvp, the static continuity is obtained by imposing at the boundary of inclusions:σp.n = P.n. In
each inclusionI (ρ,R),vp is directly given byvpI =$p which fits the imposed static condition. The related
dissipated power for the representative volume ERV,Ep, takes the form, whereHp has the dimension of an
intrinsic permeability:

Ep=�ERVHp/µ=
∑
I

{
2µ
∫
�fI

D(vpI ) :D(vpI )dω

}

=
{∑

I

�IKpI

}
/µ=

{∑
I

R5
I9p(ρI )

}
(4π/3)/µ.
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4.4.3. Upper bound

The upper bound is deduced from inequality 2Ec(vp,v) > 0 applied to the representative volume ERV,
v being the exact solution in the ERV of medium PM submitted to the unit macroscopic pressure gradient
grad(P )= ez. The dissipated powers due to fieldsvp andv are respectively�ERVHp/µ and�ERVK/µ. The
coupled power at each inclusion boundary is:∫

∂�I

(σp.n).vds =
∫
∂�I

(−P.n).vds

=
∫
�I

−grad(P ).vdω =−grad(P ).
∫
�I

vdω=−�Igrad(P ).V =�IK/µ.

By summing up all the inclusions of ERV we get:�ERVK/µ.

Thus the inequality becomes:

Hp+K > 2K, i.e.: Hp>K,

i.e.

K <
{∑

I

R5
I9p(ρI )

}
/
{∑

I

R3
I

}
.

4.4.4. Lower bound

We express now that 2Ec(v,vv) > 0 for the representative volume ERV. The dissipated powers due to fields
vv andv are respectively�ERVHv/µ and�ERVK/µ. The coupled power at each inclusion boundary is:∫

∂�I

(σ.n).vv ds =
∫
∂�I

(σ.n).V ds = V.
∫
∂�I

σ.nds

=−V.
∫
∂�I

P .n ds =−V.
∫
I

grad(P )dω=−�Igrad(P ).V =�IK/µ.
After the summation of all the inclusions of ERV the inequality gives:

K +Hv > 2K, i.e.: Hv >K,

i.e.

K >
{∑

I

R3
I

}
/
{∑

I

RI/9v(ρI )
}
.

In conclusion, the method provides a way to bound the permeability of a given porous media PM with a
given known structure. The kinematically continuous field gives an underestimation, whereas the statically
continuous field gives an overestimation of the actual permeability of the medium.

Hv =
{∑

I

R3
I

}
/
{∑

I

RI/9v(ρI )
}
<K <

{∑
I

R5
I9p(ρI )

}
/
{∑

I

R3
I

}
=Hp. (26)

Inversely to the lower/upper bound (25) valid for any media PMv and PMp, related toK∗, in the bounds (26),
Hv andHp can be calculated only if the porous structure is known, i.e., the grain size distribution (granulometry)
and the fluid shell size distribution. This is an additional demonstration of the complexity of the relationship
which links the permeability and the microstructure, even in simple configurations.
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4.4.5. Application to various classes of porous media

Let us apply inequality (26) to porous media PMv (of actual permeabilityKv). In this case (by construction)
we get for all the inclusions:9v(ρI )R

2
I = Kv. Thus, as already established in section 4.2.:Hv = Kv. Now,

dividing (26) byKv yields:

1<Kv/Kv <
{∑

I

R5
I9p(ρI )

}
/
{∑

I

R3
I

}
Kv =

{∑
I

R3
I

[
9p(ρI )/9v(ρI )

]}
/
{∑

I

R3
I

}
.

But, we have seen in section 3.4 that: 1<9p(ρI )/9v(ρI ) < 4, which implies:

1<Kv/Kv < 4. (27)

The same reasoning applies to medium PMp (of actual permeabilityKp) for which9p(ρI )R
2
I =Kp, first gives,

Hp=Kp, and then, dividing (26) byKp:

1>Kp/Kp>
{∑

I

R3
I

}
/
{∑

I

RI /9v(ρI )
}
Kp=

{∑
I

R3
I

}
/
{∑

I

R3
I

[
9p(ρI )/9v(ρI )

]}
and, for the same reason:

1/4<Kp/Kp< 1. (28)

Inequalities (27) and (28) are of great interest since they are valid for any medium PMv and PMp whatever the
spatial distribution of the inclusions, and the inclusion size distribution. Considering these elements, it seems
that despite the factor 4 between the bounds in equations (27)–(28), the range extent is rather narrow.

Nevertheless the bounds can be improved when considering a medium with dilute concentration of solid
particles (ρI � 1) so that the use of limit values for9p and9v is valid and9p(ρI )/9v(ρI ) = 1+ (3/4)ρI .
Then we get:

1<Kv/Kv < 1+ (3/4)
{∑

I

R3
I ρI

}
/
{∑

I

R3
I

}
,

1− (3/4)
{∑

I

R3
I ρI

}/{∑
I

R3
I

}
<Kp/Kp< 1.

Therefore in the case of a dilute array of fixed particles,Kv andKp are, respectively, good approximations of
the actual permeability of media PMv and PMp. Note that for very weak solid concentrations, this mathematical
inequality is no more valid physically since the Brinkman’s law has to be used instead of the Darcy law (Levy,
1983).

As a last example let consider a medium, the ERV of which being constituted by one fixed solid sphere
surrounded by the fluid. Such medium corresponds to a medium PM constituted by a single inclusionI0(ρ0,R0),
and by other fully fluid inclusionsI (0,RI ) to complete the ERV. Then we have (wherec is the solid
concentration in the ERV):

Hv = 3�ERV9v(ρ0)/4πR0= [ρ09v(ρ0)
]
(R0ρ0)

2/c <K <Hp=∞.

The fact that the second bound is infinite shows that the approximated fields are much less pertinent when
the microstructure deviates from those of media PMv or PMp.
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4.5. Fibrous porous media

The previous analysis can be applied to fibrous materials. Considering cylindrical fluid–solid inclusions
(figure 6), and a flow parallel or perpendicular to the cylinder, conjectured values of transverse and longitudinal
permeability are established, based either on the kinematic or static assumption. Calculation steps are given in
the Appendix, and analytical values ofKTv, KTp, KLv andKLp are, respectively, given by A2, A3, A5 and A6,
which introduce functions8Tv,8Tp,8Lv,8Lp, plotted infigures 7and8, similar to functions9v and9p.

As for spherical inclusions, fibrous media FM constituted by an arrangement of parallel cylinders of radius
Rn filling all the space can be built, each of them containing a solid coaxial cylinder. Among these media FM,
the media FMTv, FMTp, related toK∗T, and media FMLv, FMLp, related toK∗L , are obtained when the radius of
the solid coaxial cylinders are such that:8Tv(ρn)R

2
n =K∗T (medium FMTv),8Tp(ρn)R

2
n =K∗T (medium FMTp),

etc.

For any fibrous medium FM, the following bounds are obtained for the transverse and longitudinal intrinsic
permeabilities:

HTv=
{∑

I

R2
I

}
/
{∑

I

RI /8Tv(ρI )
}
<KT <

{∑
I

R3
I8Tp(ρI )

}
/
{∑

I

R2
I

}
=HTp, (29)

HLv =
{∑

I

R2
I

}
/
{∑

I

1/8Lv(ρI )
}
<KL <

{∑
I

R4
I8Lp(ρI )

}
/
{∑

I

R2
I

}
=HLp. (30)

Note: In the case of a transverse flow, the pressure gradient is perpendicular to the cylinder axis (direction
ez), and the problem is fully determined in a (r, θ ) plane of zero thickness in directionez (figure 6). Then the
intrinsic permeability is related to a flow per length perpendicular to the pressure gradient in the (r, θ ) plane,
instead of an usual flow per area. That is the reason whyKT have the dimension of a length (instead of square
length). In order to recover the usual dimension of intrinsic permeability (m2), we have to consider a unit length
of material in the cylinder directionez. In the SI, the actual value of the intrinsic permeability of the medium
(expressed in m2) isKT.(1 m). It should be noted that this exact value differs from the expressions proposed in
a number of papers where the length unit, the meter, is arbitrarily replaced by the radius of fibres.

Taking into account the properties of functions8, the application of (29) and (30) to media FMTv, FMTp,
and FMLv, FMLp, gives the bounds:

Figure 6. Generic fluid–solid cylindrical inclusionI of volume�I and boundary∂�I and the cylindrical system of co-ordinates. Solid cylinder: radius
Ri , volume�s. Coaxial cylindrical shell filled by the viscous Newtonian fluid: external radiusR and volume�f =�I −�s.
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Figure 7.Cylindrical inclusions. Flow perpendicular to the cylinder axis. Functions8Tp (straight line) and8Tv(dashed line). Top:8Tp and8Tv versus
ρ. Middle: Log(8Tp) and Log(8Tv) versusρ (Log decimal). Bottom: Ratio8Tp/8Tv versusρ.
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Figure 8. Cylindrical inclusions. Flow parallel to the cylinder axis. Functions8Lp (straight line) and8Lv (dashed line). Top:8Lp and8Lv versusρ.
Middle: Log(8Lp) and Log(8Lv ) versusρ (Log decimal). Bottom: Ratio8Lp /8Lv versusρ.
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1<Kv
T/KTv < 4, 1/4<Kp

L/KLp < 1,

1<Kv
L/KLv < 4, 1/4<Kp

L/KLp < 1.

Finally, for weak solid density of fibrous material, which is very often encountered in noise absorbing
medium, we have:

1<Kv
T/KTv < 1− (1/2)

{∑
I

R2
I /Ln(ρI )

}
/
{∑

I

R2
I

}
,

1+ (1/2)
{∑

I

R2
I /Ln(ρI )

}
/
{∑

I

R2
I

}
<K

p
T/KTp< 1,

1<Kv
L/KLv < 1− (1/4)

{∑
I

R2
I /Ln(ρI )

}/{∑
I

R2
I

}
,

1+ (1/4)
{∑

I

R2
I /Ln(ρI )

}
/
{∑

I

R2
I

}
<K

p
L/KLp < 1.

4.6. Periodic spatial distribution

The bounds established in this section are independent of the spatial distribution of the inclusions. Therefore
they are valid for periodic media and they can be applied within the HPM framework. Since the sphere (or
cylinder) size distribution is filling the whole space, this enables us to consider complex microstructures with
a finite maximum value for the inclusion size. Such a medium presents a finite ERV, the structure of which can
be built using auto similar structure such as those studied by Gilbert (1987).

Moreover the analytical solution established for local fields can be used as first approximated solution in
numerical simulations, and provides a reference field for testing numerical codes.

5. Conclusion

Though the microscopic and macroscopic governing equations are rather different, SCM can still be applied.
However in this case the nature of the macroscopic law cannot be derived from SCM. The rigorous physical
analysis performed with the HPM therefore plays a determining role. In the studied problem, it is clear that
other results would have been obtained if, instead of the Darcy law, the Brinkman’s law, which is actually
pertinent for very dilute array of particles (Levy, 1983) was assumed, or if a viscous behaviour, which is the
required approach for fluids of very high viscosity (Boutin and Auriault, 1990) was assumed. Note that the
results obtained are expressed in terms of intrinsic permeability, which only depends on the pores geometry,
and they are also applicable to linear viscoelastic saturating fluids.

The conjectured value given by SCM is generally taken as a good approximation of the macroscopic
properties of a medium presenting the same fluid–solid concentration as the generic inclusion (see for example
Berdichevsky and Cai (1993); Tarnow (1996)). This study shows that for the permeability assessment the
situation is actually more complex for two reasons:

– first, the size of inclusions explicitly intervenes in the result,

– second, two values can be conjectured.

Reasoning based on the comparison of the dissipated power related on the one hand to the exact solution,
and on the second hand to kinematically and statically continuous fields proves that SCM conjectured values
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constitute the bounds of permeability. The analysis of approximated fields at the micro-scale allows the
identification of two classes of porous media for which bounds lie in a narrow range (1 to 4). The results
of SCM also enable the establishment of more open bounds valid for a wide class of porous media with a clear
identification of their microstructures (grain and fluid size distribution).

Finally, and perhaps beyond the permeability-related results themselves, this study demonstrated that, from
a methodological point of view, the combined use of both HPM and SCM provides an interesting approach for
investigating the properties of heterogeneous media in various physical domains.

Appendix A. Cylindrical fluid–solid inclusions

We consider here the case of fibrous porous media. The generic inclusion is now constituted by a solid
cylinder of radiusRi surrounded by a fluid shell of external radiusR. This inclusion is embedded in a Darcy
medium. Because of the cylindrical symmetry we use the cylindrical co-ordinates (r, θ, z) oriented as described
in figure 6. As in section 3, the governing equations in the Darcy domain (r > R) are given by (8), and in the
fluid shell (Ri < r < R) by (9).

It is not necessary to reproduce all the steps of the above demonstration because the reasoning for spherical
inclusions is similar. Therefore we directly start with an unmodified field in the Darcy medium:

grad(P e)= e and Ve=−(K/µ)e.
The cylindrical symmetry requires to distinguish the following cases:

– flow perpendicular to the cylinder, i.e. whene= ex (er = ex for θ = 0),

– flow parallel to the cylinder, i.e. whene= ez.

A1. Flow perpendicular to the cylinder axis

According to the symmetry of the problem, the field in the fluid shell (R > r > Ri) is independent ofz, and
then is written in the form:

v=

vr =−(K/µ)fT(r)cos(θ),

vθ = (K/µ)gT(r)sin(θ), p=KhT(r)cos(θ).

vz = 0,

The general expressions of the functionshT, fT, gT, solutions are:

hT(r)= [−2b(R/r)+ 8d(R/r)−2]/r,
fT(r)= a(R/r)2+ bLn(r/R)+ c+ d(R/r)−2,

gT(r)=−a(R/r)2+ bLn(r/R)+ b+ c+ 3d(R/r)−2

they meets the relations:−hT + f ′T + g′T = 4b/r, f ′T + 2(fT − gT)/r = 0.

Kinematic approach: field$Tv

As for the case of a spherical inclusion, under the assumption of kinematics continuity, the conditions to be
expressed for determining the four parameters (a, b, c, d) and unknownKTv are:

– the adherence condition at the fluid–solid interface(v(Ri)= 0),
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– the flow continuity at the Darcy–fluid interface(v(R)= Ve),

– and finally the condition resulting from the overall equilibrium (14), which takes the following form for a
flow perpendicular to the cylindrical inclusion:

R =K{−hT(R)+ f ′T(R)+ g′T(R)
}
. (A1)

Then, the set to be solved is:

aρ−2+ bLn(ρ)+ c+ dρ2= 0, vr(Ri)= 0,

−aρ−2+ b(Ln(ρ)+ 1)+ c+ 3dρ2= 0, vθ (Ri)= 0,

a + 0+ c+ d = 1, vr(R)= V e
r ,

−a + b+ c+ 3d = 1, vθ (R)= V e
θ ,

+b=R/4KTv, (A1).

Static approach: field$Tp

For the static assumption, we maintain the adherence condition, but instead of the flow continuity, we express
the stress continuity, i.e.σ.n=−P en, and the system is completed by the averaged flow identity(vr(R)= V e

r ).
This leads to a set of five equations:

aρ−2+ bLn(ρ)+ c+ dρ2= 0, vr(Ri)= 0,

−aρ−2+ b(Ln(ρ)+ 1)+ c+ 3dρ2= 0, vθ (Ri)= 0,

a + 0+ 0+ d = 0, σrθ = 0,

+b=R/4KTp, σrr(R)= P e(R),

a + 0+ c+ d = 1, vr(R)= V e
r .

Solutions

The resolution of the kinematic and static sets yields the following kinematic and static values respectively:

KTv/R =8Tv(ρ)=−[Ln(ρ)+ (1− ρ2)/(1+ ρ2)]/4, (A2)

KTp/R =8Tp(ρ)=−[Ln(ρ)+ (1− ρ4)/2(1+ ρ4)]/4. (A3)

It can be easily demonstrated that8Tp>8Tv and that the limit values whenρ tends to 0 and to 1 are:

ρ→ 0 ρ→ 1

8Tv(ρ)→−[Ln(ρ)+ 1
]
/4, 8Tv(ρ)→ (1− ρ)3/12,

8Tp(ρ)→−[Ln(ρ)+ 1/2
]
/4, 8Tp(ρ)→ (1− ρ)3/3.

A2. Flow parallel to the cylinder axis

In this configuration the fields are independent ofz andθ , and theθ component vanishes. In the fluid shell
the general expressions forv andp are:
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vr =−(K/µ)fL(r), p =−KhL(z),

vz =−(K/µ)gL(r),

where:

hL(z)= z(a/R)2fL(r)= d(R/r), gL(r)= bLn(r/R)+ c+ (a/4)(R/r)−2.

It is clear that the adherence condition imposesd = 0, thenvr uniformly vanishes.

Kinematic approach: field$Lv

If the kinematic continuity is assumed, the conditions to be expressed for determining the three remaining
parameters(a, b, c) and the unknownKLv are:

– the adherence condition at the fluid–solid interface(vθ (Ri)= 0),

– the flow continuity at the Darcy–fluid interface(v(R)= Ve),

– and finally the condition resulting from the overall equilibrium (14), which takes the following form for a
flow parallel to the cylindrical inclusion:

R =K{−d(hL)/dz+ 2g′L(R)
}
. (A4)

Then, the set to be solved is the following:

(a/4)ρ2+ bLn(ρ)+ c= 0, vz(Ri)= 0,

(a/8)
(
1− ρ4)− b(1/2+ ρ2(Ln(ρ)− 1/2

))+ c(1− ρ4)/4= 1, vr(R)= V e
r ,

a/4+ 0+ c= 1, vz(R)= V e
z ,

+b=R2/2KLv, (A4).

Static approach: field$Lp

Under the static assumption, we maintain the adherence condition, but instead of the flow continuity, we get
the stress continuity, i.e.σ.n=−P en, and the system is completed by the averaged flow identity (vr(R)= V e

r ).
This leads to the following set:

(a/4)ρ2+ bLn(ρ)+ c= 0, vz(Ri)= 0,

a/2+ b = 0 σrz = 0,

+b=R2/2KLp, σrr(R)= P e(R),

(a/8)
(
1− ρ4)− b(1/2+ ρ2(Ln(ρ)− 1/2

))+ c(1− ρ4)/4= 1, vr(R)= V e
r .

Solutions

The resolution of the kinematic and static sets gives the kinematic and static values:

KLv/R
2=8Lv(ρ)=−[Ln(ρ

)+ (1− ρ2)/(1+ ρ2)]/2, (A5)

KLp/R
2=8Lp(ρ)=−[Ln(ρ)+ (1− ρ2)(3− ρ2)/4]/2. (A6)
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Here again it is demonstrated that8Lp >8Lv and that the limit values whenρ tends to 0 and to 1 are:

ρ→ 0 ρ→ 1

8Lv(ρ)→−[Ln(ρ)+ 1
]
/2, 8Lv(ρ)→ (1− ρ)3/6,

8Lp(ρ)→−[Ln(ρ)+ 3/4
]
/2, 8Lp(ρ)→ 2(1− ρ)3/3.

Notice that we find in equations (A3), (A6) the expression given by Berdichevsky and Cai (1993), which
were obtained from the static continuity assumption as in (A3), (A6).
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