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Study of permeability by periodic and self-consistent homogenisation

Claude Boutin !

Ecole Nationale des Travanx Publics de ['Etat, Laboratoire Géomatériaux, DGCE, URA CNRS N° 1652, Rue Maviriee Audin,
695158 Vailx-en-Velin Cedex, France

Abstract — This paper presents a study into permeability of porous media in which both homogenisation of periodic media (HPM) and self-consistent
method (SCM) are used. By taking advantage of the physical principles identified with HPM, the application of SCM led to the determination of two
permeability assessments. It is shown that these conjectured values comrespond in fact to the exact bounds of permeability of various classes of porous
media with a clear identification of their microstructures (grain and fluid size distribution). Applications are presented for granular media with spherical
grains, and for fibrous media with parallel cylindrical fibres.
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Nomenclature

Ey, Eg, E; Dissipated powers, in medium A, medium B, inclusion I

E.(vp, Vy) Dissipated power between any kinematically and statically continuous fields.

H, Higher bound of the intrinsic permeability of medium PM based on statically
continuous fields.

Hy Lower bound of the intrinsic permeability of medium PM based on kinematically
continuous fields.

IR, p) Spherical inclusion characterised by R and p.

K,= Rz‘bp(p} Intrinsic permeability of the Darcy medium statically consistent with the spherical
inclusion I (R, g).

KF Actual intrinsic permeability of a Darcy medium PM;,.

K, = R*,(p) Intrinsic permeability of the Darcy medium kinematically consistent with the spherical
inclusion I (R, g).

K" Actual intrinsic permeability of a Darcy medium PM,,

Pe Pressure in the Darcy medium such that grad( P*) =e..

PM; Class of porous media based on statically spherical inclusions, such that for each
inclusion ¥, (p, )R> = K*.

M, Class of porous media based on kinematically spherical inclusions, such that for each

inclusion ¥, (p, )R = K*.
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R  External radius of the inclusion.

R; Radius of the solid sphere in the inclusion.

V¢ Homogeneous velocity in the Darcy medium relatedrad(P®) = e..

vy  Statically continuous field such that on any inclusion boundary.n[] = 0.

vk Exact velocity field in medium P

vy Kinematically continuous fields such that on any inclusion boundagy=f 0.
v Exact velocity field in medium P\

Greek symbols

®p(p), Prp(p) Idem as functionky(p) but for cylindrical inclusion and longitudinaj J or transverse

(1) flow.

D, (p), Dy(p)  ldem as functiond,(p) but for cylindrical inclusion and longitudinaj Y or transverse
(1) flow.

0 Ratio of internal and external radii of the inclusion.

Wp(p) Function related to the static assumption for spherical inclusion.

Wy, (p) Function related to the kinematic assumption for spherical inclusion.

@p Exact velocity in the fluid shell of the inclusiah(R, p) under static conditions at the
external boundary.

wy Exact velocity in the fluid shell of the inclusiah(R, p) under kinematic conditions at
the external boundary.

Note For fibrous porous media the same notations are used with the indarest for

longitudinal and transverse flow.

1. Introduction

The permeability of porous materials is a physical parameter which is considered in various domains of
mechanics, such as soil mechanics, petroleum engineering, acoustics of noise absorbing materials, moulding
of fibre reinforced composites, etc. Predicting the permeability of a given medium is then of great interest and
a great number of studies address the identification and the characterisation of this parameter.

With this aim, various methods were applied and have contributed widely to the clarification and the
understanding of the mechanisms linked with the Darcy coefficient. These are: the phenomenological
thermodynamics-based approach such as developed by Biot (1941), the micro—macro approach using either
the homogenisation of periodic media (HPM) (Auriault and Sanchez-Palencia, 1977), or, more rarely, the self-
consistent method (SCM) as investigated by Berdichevsky and Cai (1993), and finally numerical simulations
as developed, for example, by Sangani and Acrivos (1982). However, despite the fact that the physics of the
phenomenon is well known, the question of a simple assessment of the permeability remains an open-ended
problem.

In this paper we focus on this topic by using both HPM and SCM.

One of the advantages of HPM is to rigorously derive the macroscopic Darcy law from the Navier—Stokes
equation at the pores scale. It also gives the theoretical expression of the Darcy tensor, whatever the periodic
microstructure. However, the permeability value can only be obtained through computer simulations due to



the significant complexity of the flow through the pores. This requires performing a number of simulations
for identifying approximate relationships between permeability and microstructure. Moreover, for technical
computing reasons, only rather simple microstructures can actually be investigated. Nevertheless the HPM
constitutes an excellent guideline for studying physical phenomena at both micro- and macro-scale.

The interest of SCM is to propose a permeability value from analytical solutions in simplified configurations.
Contrary to HPM the microstructure is not identified with accuracy, and if the basic analytical solution is
correct, the application of the result to real porous media is generally conjectured (Christensen and Lo, 1979)
for the case of elastic composites. In addition, in the case of the Darcy law, an additional difficulty arises due
to the difference in the nature of governing equations in the fluid — vectorial balance equation with tensorial
variables — and in the equivalent conjectured Darcy medium — scalar balance equation with vectorial variables.
This led various authors to propose various permeability values based on the assumptions made for basic
solutions (Berdichevsky and Cai, 1993;Tarnow, 1996).

This paper aims at combining the HPM and SCM approaches in order to obtain rigorous results for classes
of porous media with an explicit description of their microstructures.

The paper is divided in four parts. In section 2 we review the derivation of the macroscopic description of
the flow of a viscous fluid through porous media using the HPM method. Section 3 is devoted to the same
problem using SCM and the basic principles identified with HPM. It is shown that two values of permeability
can be conjectured. The interpretation of these results is treated in section 4. We obtain exact bounds for the
permeability of various classes of porous media constituted by fixed arrays of spherical grains — or cylindrical
fibres — surrounded by a concentric fluid shell, the whole filling all the space. The result depends on both grain
size distribution and fluid shell size distribution, and is valid for random or periodic spatial distribution.

2. From Navier—Stokes to Darcy law using HPM
2.1. Homogenisation principles of periodic media

Let us briefly review the basic principles of HPM. The homogenisation method of periodic structures is an
asymptotic two-variable method (Sanchez-Palencia, 1980). The two well distinct macro-lengttt micro-
length,/, led us to use two space variablegjescribing variations at the macroscopic scale,atiek variations
at the microstructure level. The small parameté& the scale ratio:

e=I/L, y=¢ tx.

The two space variables transform the common spatial derivatives dnt¢%~19,. Due to the different
orders of magnitude introduced ey any quantityg is expressed in the form of asymptotic expansions in
powers ofe:

q(x,y)=2elg!(x,y) with: O(¢’/¢°%) = 1.

The microperiodicity of the medium induces the same periodicity for the tgfmaccording to variable.

The process consists of introducing expansions in the scaled equations governing physical phenomena
at local scale (using powers offor expressing the order of magnitude of the various quantities), then in
identifying the terms of same power énand finally in solving the problems obtained in series.



2.2. Darcy law

The macroscopic description of the quasi-static laminar flow of a Newtonian viscous fluid through a non-
deformable porous matrix was extensively studied by Auriault and Sanchez-Palencia (1977) in which the Darcy
law was derived using the HPM approach. Nevertheless it is necessary to expose and comment the main steps
and teachings of this approach prior to proceeding with the reasoning.

2.2.1. The governing equations

Considering the above assumptions, the set of equations governing the fluid motion in porofts cell
(figure 1), whereo is the stress in the fluidys the stress in the infinitely rigid porous solig,the pressure,
v the velocity,D the rate of strain, angd the viscosity, can be written:

In fluid ¢

Incompressibility div) =0, 1)
Viscous behaviour o =—pl+2uD(),
Navier—Stokes equation div (c) = —grad(p) + uA(v) =0.

At fluid—solid interfacel’

Adherence condition v=0. 2

Stress continuity os.N=o0.N. 3)
In solid Q5

Equilibrium  div (o5) = 0. 4

Figure 1. The periodic celk2 of a porous mediumQ; and2 are, respectively, the volume of the fluid and the volume of the solid in theltélthe
fluid—solid interface insid&2; I't andI's are the fluid and the solid interface at the boundargof



2.2.2. Scaling
The pressure gradient, which evolves at the macroscopic scale, is balanced by the viscous forces, which — as

velocity — vary at the pores scale. This leads to the following estimations:
gradp) =O(p/L),  nA@)=O0(uv/l?)
so that:
O(p/L) = O(uv/1?).

Then, usingL as a reference length, the Navier—Stokes scaled equation, and the scaled expression of the
stress are:

—grad(p) + e’uA(v) =0, (5)

o =—pl+&2uD(V). (6)
With these scaled equations (others are unchanged), we can proceed to the solving of the problems posed on
the cell, all the quantities being-periodic according to variable.

2.2.3. Solution
The first problem to be solved is (5-)

div ,(c°) = —grad, (p°) =0
the solution of which is:
o= —po(x)l =—PI.
The second set of equations to be solved isdB{1-c71), (2-°)
div,(o!) +div,(c°) = —grad, (p*) — grad, (P) + nA,(v°) =0,
div, (V%) =0,
VvO=0.

The solution of this linear problem with the forcing tegrad, (P), is written in the form:
v(x, y) =—[kj(y»)/ulgrad (P)i,  pl(x,y)=—[7'(y)]grad.(P); + p*(x),

wherek’(y)/u and 7’ (y) are the particular velocity and pressure solution for unit macroscopic pressure
gradient in directior, (grad, (P) =€,i =1, 2, 3). Bothk’ andx’ only depend on the geometry of the pores
with a rough order of magnitude of@®) =12, O(x’) = [. Finally the macroscopic description is obtained by
using (1£9), (2-eY):

div , (V') +div, (V%) =0,
vi=0.

Due to the periodicity ob?, it remains after integration on the fluid volume of the cell:

divx</9f v°> —o0.



Thus notingV = (1/ ) fo v? dw, the Darcy law takes the form:
div,(V)=0, V=—(K/wgrad (P) with: K} =(1/ Q)/ ki (y) do.
Q2

2.3. Comments

2.3.1. From micro to macro variables
The quantities, which appear in the macroscopic description, are related to the local quantities in the pores:

— the macroscopic velocity, is the average of the microscopic velocity in the cell.

— pressureP is exactly given by the pore pressure. More precisely, this pressure is the stress of the zero
order, which is constant in the fluid.

— as shown by Auriault and Sanchez-Palencia (1977), the intrinsic permeability ténsditained by
averaging the particular solutiois, is directly related to the local viscous dissipation through:

K;=(2/Q) [ D(k'):D(k/)dw

Qf

or

2,L(1/sz)/Q D(v%) : D(V°) dw = grad, (P).(K/u).grad, (P) = —V.grad, (P).

In other words, the dissipation, which occurs on the elementary representative cell, is identical to that which
would occur in the same volume of the equivalent Darcy medium. This demonstrates the energy consistency of
the micro—macro passage using the HPM.

Conversely, the Darcy law obliterates the information from the pore level:

— the stress of the first order! = — pl + 2D, (v°), which exists and varies at the local scale, disappears,
— only the average value of local velocity is known. Thus no simple relation can be a priori proposed to
relate punctually the micro-velocity and the Darcy flow.

2.3.2. Overall equilibrium of the cell

An important point is that the Darcy law is obtained from the compatibility equation of the fluid mass balance.
Since there is a stress transfer from the fluid to the skeleton, no compatibility equation can be obtained for the
momentum balance on the fluid only. However a momentum compatibility equation can be established for both
phases. Equations &, (3-¢), (4-°) give the following set:

div (o) —grad, (P) =0,
oln=oln,

div , (o) +div, (Gg) =0.

Notice that, according to the periodicity of the variables, we get:

/ olnds+ [ olnds=0.
I's T



This important equality expresses the fact that, on average, the stresses of the first order (and also highest)
are self-equilibrated in the cell. In the particular case studied later on, where the solid is isolated in the cell, the
equality reduces to:

/ olnds =0.
't

Integrating each balance equation over its own domain, the contributions" @ihd o' disappear by
continuity so that we get for the overall momentum balance:

div, (0d)dw= [ grad,(P)dw.
Qs J 82

This means that the pressure gradient in the fluid is counterbalanced by stresses in the solid skeleton.
To conclude this section, the HPM has given:

— the nature of the macroscopic behaviour (Darcy law),
— the description of local phenomena (flow governed by the Navier—Stokes equations),
— the effective relationship between local phenomena and macro quantities.

Nevertheless the HPM method does not provide a simple approach for obtaining an explicit expression of
the Darcy coefficient. The next section is aimed at introducing the information obtained by HPM in the self-
consistent approach for assessing the permeability of a class of porous media.

3. Conjectured permeability by SCM using spherical fluid-solid inclusions

3.1. Principles of the self-consistent method

As exposed in the introduction, the self-consistent method provides a way to conjecture the effective
macroscopic coefficients of heterogeneous media. Following Hashin (1968), the steps of this approach
developed for various phenomena, are:

— assume the macroscopic behaviour, the coefficients of which being to determined,

— consider a (or various) complex (or simple) inclusion(s) embedded in such medium,

— solve the basic problem under homogeneous boundary conditions (applied at the bounds of the infinite
medium),

— express energy equivalence between the whole of the representative inclusions and the equivalent
medium,

— deduce from this relation the value of the macroscopic coefficients.

The application of SCM to the derivation of Darcy coefficient was recently investigated by Berdichevsky and

Cai (1993) for fibrous materials. Other authors use the same ‘philosophy’ as SCM, but, instead of the energy
consistency, additional kinematic assumptions are introduced for determining the basic solution.



Grad(P) = ez ez b

Figure 2. The generic fluid—solid spherical inclusidnof volume ; and boundand$2; and the associated spherical system of co-ordinates. Solid
sphere: radiu;, volumeQs. Concentric spherical shell filled by the viscous Newtonian fluid: external raliwslumeQs = Q; — Qs.

Grad(P)=ez

PRSURR—— -

i i e

Figure 3. The two infinite media A and B. Medium A is constituted by the homogeneous equivalent medium. Medium B is the same medium in which
a volume2; and replaced by inclusioh.

3.2. Setting of the problem
3.2.1. Macroscopic behaviour
Taking into account the results obtained using HPM, we consider that the behaviour of the equivalent
macroscopic medium is given by the Darcy law.
div,(V) =0, V=—(K/u).grad (P).

Moreover we limit the analysis to isotropic media so that the intrinsic permeability tensor is defined by a
single scalarK = K.



3.2.2. Generic inclusion

Concerning inclusiori (volume2;, boundaryd2;), we treated the case of a solid sphere (radiysolume
Q) surrounded by a concentric spherical shell filled with a viscous Newtonian fluid of external radiug
volume Qs = Q; — Qg (figure 2.

As usual in the self-consistent approach we considered two infinite media A afigui (3. Medium A
is constituted by a homogeneous equivalent medium, whereas medium B corresponds to the same medium in
which a given volume has been removed and replaced by composite inclugiba main idea was to compare
both media, when A is submitted to homogeneous conditions (unit pressure gradient):

grad(P®) =e, sothat: V®=—(K/n)e (7)

and when boundary conditions applied to whole structure B (equivalent megdiasomposite inclusion) tend
to (7) at infinity.

3.2.3. General expression of the fields

Because of the spherical symmetry of the structure, and the privileged direction introduced by the pressure
gradient at infinity, we used the spherical co-ordinate®,() oriented as described ifigure 2 (6§ =0
corresponds te. = e,). The governing equations in both domains are (uppercase variables concern the Darcy
medium and lowercase variables the fluid in the inclusion):

—inthe Darcy mediumz: > R div(V)=0; V=—(K/uw)grad(P), (8)
—inthe fluid shellR > r > R; div(v)=0; —grad(p)+ uA(v)=0. 9)

According to the symmetry of the problem, the solutions are independefit afid are considered in the
following form:

Darcy mediumr > R Fluid shell:R > r > R;

V, =—(K/uw)F(r)cos6), v =—(K/n) f(r)codg0),
V=1 Vo= (K/n)G(r)sin@®), V=1 ve = (K/n)g(r)sin®),

Vs =0, vy =0,

P = H(r)cog0). p = Kh(r)cog#).

In the fluid, the components of the tensor of the rate of deformatiornstem@s for ddr):

D, = (=K /) f'(r)cog),
Dgs = Dy = (=K /){[f(r) — g()]/r} cog6),
D,y = (=K /{8 (r)/2+ [g(r) — f(r)]/2r} sin@).
Introducing these functions into equations (8), (9) led after algebraic calculations to the following generic
expressions which (foF, G, H) tend to the boundary condition (7) at infinity:

Hr) = [a(R/r)*+1r,  h(r)=[-2b(R/r)—10d(R/r)?]/r,

F(r)=—-2a(R/r)?+1,  f(r)=2a(R/r)?+2b(R/r)+c+d(R/r)2

G(r)=—a(R/r)?+1, g(r)=—a(R/r)*+b(R/r)+c+2d(R/r)2



Two convenient relations will be used in the following:
h+ f'+2¢' =—(6b/R)R/r)?,  f'==2(f—g)/r

Hence the problem involves five parametersh, ¢, d, ) and unknowrk . To determine them we have now
to specify the conditions these fields have to fulfil.

3.3. Conditions for the fields

3.3.1. The argument of energy

Let us now express the energy equivalence between both loaded media A and B. For the problem studied,
we have to determine the dissipated powéig,and Eg in medium A and B. For simplicity, these values are
calculated over spherical domains of radRis > R.

In medium A, the pressure gradient and velocity are constant so that:
2Ex = /A —grad(P®).Vedw = (K /)R 4r /3.
In medium B we have to separate the external homogeneous domain and the inclusion.
2ER :/B ) —grad(P).Vdw + 2E; where: Z&; = ZM/Q D(v) : D(v) dw.
- t
With the divergence theorem and the flow incompressibility,is transformed into:
2EB=/ —PV.nds + 2E;.
AB=1)

Using the expressions @f andV given in the above section, we get:
2Eg = 47 /3(K /1) { [a(R/ Roo)® + 1] [—2(R/Roo)® + 1 RS, — [ + 1][—2« + 1]R®} + 2E.
Now, both medium A and B are energetically equivalent if:
En=FEg oOr Eg/Ean=1,
ie.
[14+a(R/Rx)? [1—20(R/Ro0)?] — [+ 1][—20 + LI(R/Roo)* + 2[E; /(K /) R®47 /3] (R / Rs)® = 1. (10)

Whatever could be the characteristics of the inclusion, such a relation is obviously validRyltRen— O,
for the simple reason that the volume of the inclusion becomes negligible.

However, we are looking for a specific situation which optimises the energetic equivalence. This imposes
the identification of the parameters for which the equality is reached as rapidly as possibl& whenr— 0.
Organising relation (10) in decreasing powersRgiR,, lead successively to cancel:



—the term in (R/R+)®, which gives:—a — [« + 1][—2«a + 1] + 2[E; /(K /i) R®47 /3] = 0,
— the remaining term iGR / R,)®, which gives:—20? =0, i.e.a = 0.
Therefore the preceding relation reduces to:

(K/w)R%4r /3=2E;,.

It should be noted that with these optimised conditions, the energy equivalence is satisfied whatever the
radiusR., > R. This result has two consequences:

First,a = 0, means that the interactions between the equivalent medium and the representative inclusion are
reduced to zero. In other terms, the fields in the Darcy medium in absence (medium A) or in presence of the
inclusion (medium B) are exactly the same, i.e.,for R:

grad(P) =grad(P®) =e. and: V=V®=—(K/ne..

Second(K /i) R%*4r /3 = 2E; means that the energy equivalence for both medium A and B simply reduces
to the equality of the dissipated power in the inclusion on the one hand, and in a same volume of the equivalent
Darcy medium on the other hand. We will come back to this condition later on.

3.3.2. Conditions for the fields in the inclusion
In accordance with the adherence condition, the velocity at the fluid—solid interface must vanish. Therefore:

f(Ri) =0, (11-r)

g(R) =0. (119)

Moreover, the average velocity in the representative inclusion must equal the velocity in the equivalent Darcy
medium. We get:

W) [vdo=1/@) [ r.(ve)ds+0=@r/Q) [ rulsino)e, +coso)e]sin®) R ds
Qf a2
=—(K/n) f(R)e, +0=—(K/n)e,
and therefore:
FR) =1 (12)

Notice that sincer = 0, with f(R) = 1, the normal velocity in the fluid and in the equivalent Darcy medium
is continuous at any point of the boundary:

v,(R) = V,(R) = V& (13)

This relation expresses the local mass balance at the boundary. Assuming this condition would have been
another way to deduae = 0 independently of the above energy considerations.

3.3.3. Condition at the Inclusion — Darcy medium boundary: overall equilibrium

This condition is less obvious than the previous one. The question of boundary conditions between a fluid
and a porous medium was discussed in detail in Levy and Sanchez-Palencia (1975). However the analysis is



only valid if the fluid domain is significantly larger than the pores, which is not the case in the considered
condition.

The difficulty arises from the fact that the Darcy law doesn'’t integrate the momentum balance in the fluid.
Since a part of the viscous stress is transferred to the skeleton, it is not possible to agstioniethe local
continuity of the pressure or of the stress.

However, is has been proven using HPM (section 2.3) that the force exerted by the ‘corrective’ stresses —
i.e., stresses of order higher than one — applied at the boundary of the representative volume equals zero. This
corresponds to the fact that the equilibrium of the ERV is satisfied on average by a stress of the zero order. It
is physically acceptable to transpose this result to the present situation. The correctiverStrissgiven by
the difference between the stress in the fluid é&nd the stress (opposite of pressure) in the Darcy medium
(—P| = —P®):

o°=0+ P°l = [—pl +2uD(v)] + P®1 and: / o.nds =0,
99,

/ a.nds:—/ Pends. (14)
082y a2

In this latest form it clearly appears that this condition is an ‘averaged’ continuity equation between the
stress in the fluid and the pressure in the Darcy medium, or an overall equilibrium condition of the inclusion.
Introducing the components of the stress tensor gives:

/ ofeds= / [P®— p+2uD,,(V)|e +2uD,y(v)e, ds =0,
02 Q2

" {[P®— p+2uD,,(v)][sin(®)e, + cogh)e;] + 2uD,s(v)[cog0)e, — sin(®)e.]| } ds =0.

Due to the symmetry of the problem, tlee component vanishes and only a singlecomponent-related
equation remains:

{[P®— p+2uD,,(v)] cog6) — 2uD,¢(v)sin@) } ds =0
Joy
and, after calculations:

R—K{h(R)+2[f'(R) + g (R)+ (f(R) — g(R))/R]} =0. (15)

3.3.4. Back to the energy condition
From the above results, we can proceed with the energy condition.
In the fluid shell, due to incompressibility, we get for the dissipated power:

2E1=2,LL./Q D(V):D(V)da):/

Qf

[—pl +2uD(V)] : D(V) dw=/ o :D(V) dow

Qf

which, using the divergence theorem and the adherence condition, is also equal to

2E; = (o.n).vds.
9Q



In the Darcy medium (A), the power dissipated in a volume identical to that of the inclusion takes the form:

/ —grad(P®).Védw = [ (P°V°.n)ds.
Q

EIof}

However, ad/€ is constant and because of (14), we obtain successively:

/ (PeVen)ds = V. / (P°n)ds = V©.
082y a2

Therefore the equality of the two dissipated powers becomes:

(o.n)ds:/ (o.n).VEds.
Q, B1oT

]

(o.n).(v—V&)ds = (0.8).(v—V®ds = / [(0y) (v, = V) + (076) (Vs — V)] ds = 0.
Jog, Jagy Jog,

Finally, owing to the continuity of the normal velocity at the interface (13), it only remains:

(ZMDrQ)(UQ - Vee) ds =0.
J Oy
According to the expressions of the fields, two alternatives are available at the boundary:
— either the tangential velocities are continuous.

v(R)=V; andthen: g(R)=1 (16)

With f(R) = 1, this necessarily leads #(R) = 0, so that 2D,, = 0. Then (15) becomes:
R—K[h(R)+2¢'(R)] =0. (17)

— or the shear stress, = 2uD,y vanishes uniformly, and thereforen = o,,.€. = Pe. which enables to
simplify (15):
D=0 ie: g(R)+[f(R)—g(R)]/R=0, (18)

o, —P=0 ie: R—KI[h(R)+2f (R)]=0. (19)

To summarise, we obtain two sets of five conditions (in additiom £©0).

Three of them are common to both sets, i.e., the two conditions related to the adherence conditjpn (11-
(11-9), and the one expressing the continuity between normal velocity and Darcy flow (12). This latter, derived
here from the energy condition, is usually directly assumed by the authors.

The two remaining are derived from combining the energy equivalence and the ‘averaged’ stress continuity or
overall equilibrium condition. This last one is determined directly from a comparison with the HPM approach
and has not been proposed up to now. It appears that two alternatives can be selected:

— either the micro-velocity fits the Darcy flow and neither the pressure nor the stress is continuous. This will
be called the kinematic approach hereafter.

— or the shear stress vanishes and the stress is continuous with pressure in the Darcy medium. It will be
called the static approach below. In this case we find the assumptions made by Berdichevsky and Cai (1993).
The tangential micro-velocity is not continuous with the tangential Darcy flow.



It should be noted that when using such an approach, the assumption of vanishing vorticity at the boundary
of the cell — used in various studies (for example Tarnow (1996)) — does not appear naturally. This latter
assumption does not meet the global equilibrium of the cell and seems to be an acceptable approximation only
for very porous mediumsg;s/ 2; — 0).

3.4. Solutions

Since no physical reasons enable us to discard the kinematic or the static hypothesis, the two approaches
have to be treated.

3.4.1. Kinematic approach: fielar,

Under the kinematics assumption, the five conditions allow the determination of the five remaining
parametersa, b, ¢, d, K,). Using the expression of functions g, i, and introducing the notation = R; /R
lead to a linear system (11-r), (205 (12), (16), (17):

2ap3+2bp™t + ¢ + dp? =0, v (Ri) =0,
—ap > +bpt+c+2dp*=0,  ve(R) =0,
2a+2b+c+d=1, v (R)= V7,
—a4+btc+2d=1, v (R) = Vg,
+b=—R?/6Ky, a7

The resolution of this set can be divided in two steps: first, the calculation using the adherence and kinematic
conditions of parameten&, b, ¢, d) of field wy, then the determination of the Kalue. Finally we obtain:

Ky/R?*=Wy(p) = [(1—p)/p][4—5p(L+ p)(L - p?) /(1 - p*)]/18 (20)
and:
a=—(—1)/18¥,, b=-1/6V,, c=1-5g+4/18V,, d = /18y,
where:
B=(1-p%/(1=r°)

From expression (20) it can be proven tiigtis positive. Note thato, is the ‘exact field’ for the flow through
the fluid shell under the imposed kinematic conditions at the external boutdarR) : w, = —(K,/1)e€,.

3.4.2. Static approach: fieldr,
From the static assumption, the five conditions (11-r),{L1(18), (19), (12) can be written:

2ap 3+ 2bp L + ¢ + dp? =0, v, (R;) =0,
—ap 3+ bp 4 c+2dp?*=0, ve(R;) =0,
2a+0+0+d=0, D,y =0,
2a+b+0+d=—R?/6K,, o.+(R) = P(R),

20+2b+c+d=1, v, (R)=V¢.



The treatment of this set gives:

Kp/R? = Wp(p) = [(1 = p)/p][1 = (1= p%) /(1= p)(2p° + 3)] /3 (21)

and:
a=p?/6(2p° + 3y, b=—1/6W,, c=1-2b, d=—-2a.

Here again it can be proven thk, is positive. Note thatoy, is the ‘exact field’ for the flow through the fluid
shell under the imposed static condition at the external boun@dasyR): op,.n = —Pn, with grad(P) =e,.

3.4.3. Comparison of the kinematic and static values

Expression (20) gives the intrinsic permeability of the Darcy medium kinematically consistent with the
inclusion I characterised by and R. Similarly, expression (21) gives the intrinsic permeability of the Darcy
medium statically consistent with the inclusidrcharacterised by andR. In such a medium of permeability
K, (respectivelyK,) the inclusion is kinematically (respectively statically) neutral since its presence does
not modify neither the average density of dissipated power nor the field in the Darcy medium, and the flow
continuity (respectively stress continuity) is provided.

Figure 4 shows the variations of functiond, and ¥, versusp. The analysis of both functions shows that
¥, > W, and their limit values whep tends to 0 and to 1 are:

p —> 0, p — 17
W(p) —> (2/9p t=1/2,  W(p) > (1—p)*/6,
Wp(p) = (2/9p T =1/3,  Wy(p) = 2(L—p)*/3,

Then, for same values ¢f and R, K,/Ky — 1 whenp — 0 (dilute solid concentration) whereas, when
p — 1 (dense solid concentration§,, and K, differ significantly sincek,/K, — 4.

Generally the determination of the equivalent parameter constitutes the ultimate step of a self-consistent
approach. The obtained value is assumed to be the effective coefficient of the heterogeneous medium
characterised by inclusiorfs

However, the case of the Darcy law is specific for two main reasons. First the analysis leads to two different
values which both seems physically acceptable. Second, contrary to other physical problems (elasticity,
conductivity, etc.) the value oK depends on the size of the inclusion (in addition to the usual dependence
on the concentration of the constituents). It is then necessary to examine in which situations the above results
can be applied. This point is discussed below.

4. Interpretation bounds for permeability of classes of porous media
4.1. From neutral inclusions to classes of permeable mBdiig, PM,

Up to now we have considered the problem of finding an equivalent medium from a given inclusion. Let as
examine the inverse question. Consider a Darcy medium of permeabilitfve have seen above that, without
changing the macroscopic description, a sphere of ragljusan be replaced by a neutral inclusifyiog, Ro)
kinematically consistent witlk*, i.e.:

K* = Wy(po) RE.



0.2 0.4 0.6 0.8 1 P
Figure 4. Spherical inclusions. Functiong, (straight line) anddy, (dashed line). Top¥p and Wy versusp. Middle: Log(¥p) and Log¥y) versusp
(Log decimal). Bottom: Ratialp/Wy versusp.



Figure 5. Classes of porous media (fixed arrays of particles),PRMp, PM. Top: Two examples of porous media of the same clasg Bt with
two sphere distributions. Each inclusion follows (20). Down: Porous media PMp (each inclusion follows (21)) and PM built from the same sphere
distribution as PN.

Due to the neutrality ofp(og, Ro), this operation can be repeated in any location (without superposition)
to build a heterogeneous medium constituted by a permeable matrix in which identical neutral inclysions
are inserted (periodically, randomly, etc.). If we want to tend to a more realistic medium, the spaces remaining
between inclusiong, can be filled with smaller neutral inclusiodisof radiusR;. However to keep the energy
consistencyp; must be such that:

Wy (1) RZ = Wy(po) R3 = K*.

This process can be continued up to replacing the entire initial permeable matrix by a series of inclusions
I, of radius Ry where\D\,(p,,)R,f = K*. Note that as the functiod, uniformly decreases witlp, the solid
concentration is reduced & decreases.

By this operation we built a class of porous mediaRMore exactly of fixed arrays of particles, Segire 5.
The geometry of all these porous media is rather diversified since it includes numerous possible grain size
distributions and arrangements, but, on the other hand, it is rather restricted by the imposed relation between
the fluid shell and the grain size.

Similarly another class of porous media PWased on statically neutral inclusions can be defined in order to
obtainWp(p,)RZ = K*.
Does valueK* correspond to the intrinsic permeability of the two classes of porous medjaR#PNM,?

To answer this question we examine if the local fields determined by the self-consistent approach fit the
exact field in the pores. By construction, the Navier—Stokes and the incompressibility equations as well as the
adherence condition are fulfilled in the fluid of each inclusion. The difference lies in the boundary conditions:

As all the inclusions are in contact with other inclusions, the velocity and stress of the exact solution
are continuous at the boundary of each inclusion. However, by construction, in the kinematic approach,
the continuity of the micro-velocity is provided, but not the continuity of stresses. Conversely for the static
approach, the continuity of stresses is ensured, but not the velocity continuity.



This led us to consider that the actual permeabiityand KP of any media PM (build in such way that for
each inclusiork, = K*) and media PM (build in such way that for each inclusiaty, = K*) differs from K*.
This we will demonstrate hereafter.

4.2. Kinematically and statically continuous fields for classes of permeable rRbtlia

Consider an arrangement of spheres of various (&jj, filling the whole space. From that structure a wide
class of media PM can be built by inserting a solid concentric spherical particle into each sphere. Among these
media PM, the two media PMand PN, related toK* are obtained when the radius of the solid concentric
spheres are such thalt, (p,) R? = K* (medium PM) or by Wp(p,) R? = K* (medium PM).

In order to approximate the exact solution, let consider (for any porous medium PM) local fields such that
the Navier—Stokes equation, the incompressibility and the adherence condition are fulfilled in the fluid shell
volume of any sphere. Among these fields we distinguigrstands here for the jump through the boundary):

— kinematically continuous fields, such that on any inclusion boundafy;] = 0,
— statically continuous field, such that on any inclusion boundafy;.n] =0,
—the exact solutiony, which is the only field statically and kinematically continuous.

For the whole inclusions, we introduce the coupled dissipated power between any kinematically and statically
continuous fields by:

2E(Vp, W) = (21) > / D(Vp — V) : D(Vp — W) do.
7 s

By construction E. is positive. Its minimum value (zero) is reached for fielgs= v, which is only possible
for the exact solutiow. Therefore:

YWp, W 2Ec(Vp, Vy) = 0. (22)

Developing the expression of2(v,, vy) leads to:

(ZM)Z{ /Q D(Vp) : D(Vp) do + /Q D(w) : D(vv)dw} > (4> /Q ”D(vp) :D(vy) dow (23)
I If If 1
and, according to the properties of the fiel@8y (vy) = 0; div (op) = 0), the right-hand member is in the form:

(4p) ZI: /Q ) D(Vp) : D(Wy) dw = 22; /d QI(o—p.n).vv ds. (24)

4.3. Bounds of permeability

The inequality (22) is applied hereafter to media Pahd PN, related toK ™, using fields defined for a unit
macroscopic pressure gradigmad(P) = e,.

— the kinematically continuous field is given in each inclusion of,Ry the fields obtained using the SCM
with the kinematic approactk* = K, ):

vw=w, ongy, w, =V =—(K"/n)e, ond,



— the statically continuous field is given in each inclusion of Ay the fields obtained using the SCM with
the static approachk™ = Kp):

vp:zzr;‘ ongy, a;‘.n:—P.n onogy,

— the (unknown) exact field in media RV’ (/ Vdw =Q;V¥ = —Q,(K"/M)ez)
Q

and in media P¢ VP (/ VPdw = Q;VP = —Q,(K”/M)ez>.
Jo,

4.3.1. Lower bound for mediaM,

First consider inequality 2:(v¥, /) > 0 applied to medium PM For each inclusion the volume integrals
in (23) are now written:

ZM/ D(v') :D(v") dw = Q2,K"/u, 2,u/ D(wy) :D(wy) dw =, K* /1
Qf J Qg

and the surface integral (24) becomes:

/ (Gv.n).w\j‘ds=/ (av.n).Vds=V./ o'.nds
027 027 092

= —V./ P.nds =-V. grad(P) dw = —Q;grad(P).V = Q;K* /1.
02 Q

By summing up the volume and surface terms corresponding to each inclusion and dividing the value thus
obtained by the total volume, the inequalitf 2v', =) > 0 becomes

K'Y+ K*>2K* ie. K'>K*'=K,.

4.3.2. Upper bound for mediaM,

Now consider inequality E.(w;,VvP) > 0 applied to medium PM The volume integrals in (23) are
respectively:

zM/ D(wy) : D(wy) do = 2 K"/, ZM/ D(V) : D(VP) dow = 2, KP /1t
Qf Qf

and the surface integrals (24) become:

/ (op-n)VPds= [ (=P.n).vPds
3Qy

EIof}

= / —grad(P).vP dw = —grad(P). /vp dw = —Q;grad(P).VP =Q;KP/pu,
Jo,
Q

i.e. inequality Z.(v¥, w,) > 0 gives:

K*+KP>2KP, ie: Ky=K*>KP.



In conclusion the kinematic assumption underestimates the actual perme&Bibfyany medium PN, and
the static assumption overestimates the actual permeaktityf any medium PN.

K'Y > Ky, Kp > KP. (25)
4.4. Bounds for a large class of porous media

The method developed above is extended to any porous media PM, the structure of which being an
arrangement of spheres filling the whole space. Each sphere contains a solid concentric sphere, as already
described above. Unlike for media RMind PM, no additional conditions are imposed to the inclusions
constituting the medium PM. We assume that the medium presents an elementary representative volume ERV
constituted by inclusions and that its permeabilityKisThe volumeQegy is given by:

Qerv = {Z R?}(47‘[/3).
1

To establish theoretical bounds for permeability, we built a kinematically and a statically continuous field
adapted to medium PM submitted to a unit macroscopic pressure grgdie{tP) = e,. For both fields the
Navier—Stokes equation, as well as the incompressibility and the adherence condition, are fulfilled in the fluid
of each inclusion.

4.4.1. Kinematically continuous field

In order to ensure the kinematic continuity @f, we must have at the boundary of each inclusion:
vy =V = —(K/n)e,. Ininclusionsl, we use kinematic fieldsr, determined in section 3.2. To fit the imposed
kinematic condition, in each inclusiorid, R), v, takes the value,; = (K/K,;)@y. Thenv, is completely
defined in the medium. The related dissipated power for the representative volumeEERMN be thus
calculated and takes the form, wheig has the dimension of an intrinsic permeability:

Ey = QervHy/10 = Z{ZM/ D(vyr) : D(vyr) da)}
I Qi

= ;{mmﬂmz /Q ) D(w) : D(wv) dw}
= (KY/m){>Qu/Ku } = (K2/) {3 R/ (o) | (4/3).
1 1

4.4.2. Statically continuous fielg,

Concerningvp, the static continuity is obtained by imposing at the boundary of inclusigns:= P.n. In
each inclusion/ (p, R), v, is directly given byv,; = @, which fits the imposed static condition. The related
dissipated power for the representative volume ERY, takes the form, wheréf, has the dimension of an
intrinsic permeability:

Ep = QervHp/ 10 = Z{ZM/Q D(Vpr) : D(vpr) da’}
1 f1

= {3 QuKp } /= {3 RS0 } (4n/3) /1.
I I



4.4.3. Upper bound

The upper bound is deduced from inequalit].2vp, v) > 0 applied to the representative volume ERV,
v being the exact solution in the ERV of medium PM submitted to the unit macroscopic pressure gradient
grad(P) = e,. The dissipated powers due to fieldsandv are respectively2eryHp/ and QervK /. The
coupled power at each inclusion boundary is:

(op.n).vds = (=P.n).vds
082y a2

= —grad(P).vdw = —grad(P). | vdw=—Q,;grad(P).V =Q;K/u.
Q Q

By summing up all the inclusions of ERV we g8lgry K /1.
Thus the inequality becomes:

Hy,+K >2K, ie. Hy>K,

K < {Z R}"wp(p,)}/{z R}"}.

4.4.4. Lower bound

We express now thatR.(v, v,) > 0 for the representative volume ERV. The dissipated powers due to fields
vy andyv are respectivel2ervHy /1 andQeryK /1. The coupled power at each inclusion boundary is:

(a.n).vvds:/ (o.n).Vds:V./ o.nds
Joaqy Q2 092

= —V./ P.nds =-V. /grad(P) dow = —Q;grad(P).V = Q;K /.
9y I
After the summation of all the inclusions of ERV the inequality gives:

K+ H,>2K, ie. H,>K,

K> {3 RS Ri/wion .

In conclusion, the method provides a way to bound the permeability of a given porous media PM with a
given known structure. The kinematically continuous field gives an underestimation, whereas the statically
continuous field gives an overestimation of the actual permeability of the medium.

H, = {Z R?}/{Z R,/\va(p,)} <K< {Z R?\yp(p,)}/{z Ri} = H,. (26)
1 1 1 1

Inversely to the lower/upper bound (25) valid for any media,Rvd PM, related tok ™, in the bounds (26),
H, andH,, can be calculated only if the porous structure is known, i.e., the grain size distribution (granulometry)
and the fluid shell size distribution. This is an additional demonstration of the complexity of the relationship
which links the permeability and the microstructure, even in simple configurations.



4.4.5. Application to various classes of porous media

Let us apply inequality (26) to porous media PMf actual permeabilityk"). In this case (by construction)
we get for all the inclusionst.lf\,(p,)Rf = K,. Thus, as already established in section 4R.= K,. Now,
dividing (26) by K, yields:

1< KY/Ky < {3 R3Wo(on) }/{° RE} K= {3 R} [Wolon)/ (o0 } /{3 R3}.
1 1 1 1

But, we have seen in section 3.4 thak W, (p;)/ Wy (p;) <4, which implies:
1<KY/K, <4 (27)

The same reasoning applies to mediumRbf actual permeabilityk ) for which W(p;) R? = K,, first gives,
H, = K, and then, dividing (26) b :

1> KP/Kp> {3 RI{D R/ wion J Ko = {37 BRI} /{3 RY[Woton/ ion)] }
1 I 1 I

and, for the same reason:
1/4< KP/K, < 1. (28)

Inequalities (27) and (28) are of great interest since they are valid for any mediyrarRMPM, whatever the
spatial distribution of the inclusions, and the inclusion size distribution. Considering these elements, it seems
that despite the factor 4 between the bounds in equations (27)—(28), the range extent is rather narrow.

Nevertheless the bounds can be improved when considering a medium with dilute concentration of solid
particles p; <« 1) so that the use of limit values fab, and W, is valid andW¥,(p;)/ Wy (p;) =14 (3/p;.
Then we get:

1< KY/Ky <1+ Q/{> R0} /{3 RS,
1 1

1— (3/4){2 R?p,}/{z R?} < KP/Kp < 1.
1 1

Therefore in the case of a dilute array of fixed partickEsand K, are, respectively, good approximations of
the actual permeability of media RMind PM,. Note that for very weak solid concentrations, this mathematical
inequality is no more valid physically since the Brinkman'’s law has to be used instead of the Darcy law (Levy,
1983).

As a last example let consider a medium, the ERV of which being constituted by one fixed solid sphere
surrounded by the fluid. Such medium corresponds to a medium PM constituted by a single inglusioRy),
and by other fully fluid inclusions/ (O, R;) to complete the ERV. Then we have (wheres the solid
concentration in the ERV):

H, = 3QeryWy (p0) /41 Ro = [poWy(p0)] (Ropo)?/c < K < Hp = oc.

The fact that the second bound is infinite shows that the approximated fields are much less pertinent when
the microstructure deviates from those of media,RVIPM,.



4.5. Fibrous porous media

The previous analysis can be applied to fibrous materials. Considering cylindrical fluid—solid inclusions
(figure 6, and a flow parallel or perpendicular to the cylinder, conjectured values of transverse and longitudinal
permeability are established, based either on the kinematic or static assumption. Calculation steps are given in
the Appendix, and analytical values &f, Kt,, Ky and K, are, respectively, given by A2, A3, A5 and A6,
which introduce function®r,, ®1,, &1y, Pip, plotted infigures 7and8, similar to functionsd, and .

As for spherical inclusions, fibrous media FM constituted by an arrangement of parallel cylinders of radius
R, filling all the space can be built, each of them containing a solid coaxial cylinder. Among these media FM,
the media FMy, FMrp, related toKy, and media FM,, FM,,, related toK|", are obtained when the radius of
the solid coaxial cylinders are such thé#, (p,) R? = K% (medium FMy), ®1p(p0,) RZ = K5 (medium FMy),
etc.

For any fibrous medium FM, the following bounds are obtained for the transverse and longitudinal intrinsic
permeabilities:

Hyy = {Z RIZ}/{Z RI/CDTv(,OI)} <Ky < {Z R?CDTD(/OI)}/{ZRIZ} = Hrp, (29)
1 1 1 1

Hy = { S RIS 1youon} < K < {3 Riowpon }/{S k)= Hip. (30)
1 1 1 1

Note: In the case of a transverse flow, the pressure gradient is perpendicular to the cylinder axis (direction
e,), and the problem is fully determined in a §) plane of zero thickness in directian (figure §. Then the
intrinsic permeability is related to a flow per length perpendicular to the pressure gradient ingthpléne,

instead of an usual flow per area. That is the reason K#fpave the dimension of a length (instead of square
length). In order to recover the usual dimension of intrinsic permeabili®), fve have to consider a unit length

of material in the cylinder directiom,. In the SlI, the actual value of the intrinsic permeability of the medium
(expressed in R) is K.(1 m). It should be noted that this exact value differs from the expressions proposed in
a number of papers where the length unit, the meter, is arbitrarily replaced by the radius of fibres.

Taking into account the properties of functioss the application of (29) and (30) to media M FMry,
and FM.y, FMy,, gives the bounds:

Figure 6. Generic fluid—solid cylindrical inclusiot of volume2; and boundary2; and the cylindrical system of co-ordinates. Solid cylinder: radius
R;, volumeQs. Coaxial cylindrical shell filled by the viscous Newtonian fluid: external radiuend volumeQ; = Q; — Qs.
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Figure 7. Cylindrical inclusions. Flow perpendicular to the cylinder axis. Functidmg (straight line) andbry (dashed line). Topdp and @ty versus
p. Middle: Log(®Tp) and LogfpTy) versusp (Log decimal). Bottom: Rati@1p/ Py versusp.
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Figure 8. Cylindrical inclusions. Flow parallel to the cylinder axis. Functighs, (straight line) anddy (dashed line). Top®| p, and Ly versusp.
Middle: Log(®Lp) and Logy) versusp (Log decimal). Bottom: Rati@b p /Py versusp.



1< KY/K7y <4, 1/4 < KP/Kp < 1,
1< K'/Ky, <4, 1/4 < KP/Kip < L.

Finally, for weak solid density of fibrous material, which is very often encountered in noise absorbing
medium, we have:

1< K/ K< 1= A2 {30 Ri/nGon } {32 RE},
1+ (1/2>{; R?/Ln(pz)}/{; R}} < KP/Kmp <1,
1< KY/Kiy <1- (1/4>{; RZ/Ln(pp) |/ {; R},
1+ <1/4>{; R?/Ln(m)}/{; R} < KP/Kip <1

4.6. Periodic spatial distribution

The bounds established in this section are independent of the spatial distribution of the inclusions. Therefore
they are valid for periodic media and they can be applied within the HPM framework. Since the sphere (or
cylinder) size distribution is filling the whole space, this enables us to consider complex microstructures with
a finite maximum value for the inclusion size. Such a medium presents a finite ERV, the structure of which can
be built using auto similar structure such as those studied by Gilbert (1987).

Moreover the analytical solution established for local fields can be used as first approximated solution in
numerical simulations, and provides a reference field for testing numerical codes.

5. Conclusion

Though the microscopic and macroscopic governing equations are rather different, SCM can still be applied.
However in this case the nature of the macroscopic law cannot be derived from SCM. The rigorous physical
analysis performed with the HPM therefore plays a determining role. In the studied problem, it is clear that
other results would have been obtained if, instead of the Darcy law, the Brinkman'’s law, which is actually
pertinent for very dilute array of particles (Levy, 1983) was assumed, or if a viscous behaviour, which is the
required approach for fluids of very high viscosity (Boutin and Auriault, 1990) was assumed. Note that the
results obtained are expressed in terms of intrinsic permeability, which only depends on the pores geometry,
and they are also applicable to linear viscoelastic saturating fluids.

The conjectured value given by SCM is generally taken as a good approximation of the macroscopic
properties of a medium presenting the same fluid—solid concentration as the generic inclusion (see for example
Berdichevsky and Cai (1993); Tarnow (1996)). This study shows that for the permeability assessment the
situation is actually more complex for two reasons:

— first, the size of inclusions explicitly intervenes in the result,

— second, two values can be conjectured.

Reasoning based on the comparison of the dissipated power related on the one hand to the exact solution,
and on the second hand to kinematically and statically continuous fields proves that SCM conjectured values



constitute the bounds of permeability. The analysis of approximated fields at the micro-scale allows the
identification of two classes of porous media for which bounds lie in a narrow range (1 to 4). The results
of SCM also enable the establishment of more open bounds valid for a wide class of porous media with a clear
identification of their microstructures (grain and fluid size distribution).

Finally, and perhaps beyond the permeability-related results themselves, this study demonstrated that, from
a methodological point of view, the combined use of both HPM and SCM provides an interesting approach for
investigating the properties of heterogeneous media in various physical domains.

Appendix A. Cylindrical fluid—solid inclusions

We consider here the case of fibrous porous media. The generic inclusion is now constituted by a solid
cylinder of radiusk; surrounded by a fluid shell of external radiRs This inclusion is embedded in a Darcy
medium. Because of the cylindrical symmetry we use the cylindrical co-ordinateg) oriented as described
in figure 6 As in section 3, the governing equations in the Darcy domain R) are given by (8), and in the
fluid shell (R; < r < R) by (9).

It is not necessary to reproduce all the steps of the above demonstration because the reasoning for spherical
inclusions is similar. Therefore we directly start with an unmodified field in the Darcy medium:

grad(P®)=e and V®=—(K/we.

The cylindrical symmetry requires to distinguish the following cases:
— flow perpendicular to the cylinder, i.e. whee=¢, (e. = e, for 6 =0),
— flow parallel to the cylinder, i.e. whex=¢€,.

Al. Flow perpendicular to the cylinder axis

According to the symmetry of the problem, the field in the fluid shRIr > R;) is independent of, and
then is written in the form:

v, = —(K/p) fr(r) cog6),
V=14 vy = (K/nw)gr(r)sin®), p = Kht(r)cog0).
v, =0,
The general expressions of the functidns ft, gr, solutions are:
ht(r) = [=2b(R/r) + 8d(R/r) %] /r,
fr(r)y=a(R/r)?>+bLn(r/R) +c+d(R/r)72,
gr(r)=—a(R/r)?>+bLn(r/R) +b+c+3d(R/r)~?
they meets the relationshit + f1 + g1 =4b/r, fr+2(fr—g1)/r=0.

Kinematic approach: fieldor,

As for the case of a spherical inclusion, under the assumption of kinematics continuity, the conditions to be
expressed for determining the four parameter$(c, d) and unknownk+, are:

—the adherence condition at the fluid—solid interfager;) = 0),



— the flow continuity at the Darcy—fluid interface(R) = V°),

—and finally the condition resulting from the overall equilibrium (14), which takes the following form for a
flow perpendicular to the cylindrical inclusion:

R=K{—ht(R)+ fr(R) + gr(R)}. (A1)
Then, the set to be solved is:
ap~24+bLn(p) +c +dp? =0, v (R;) =0,
—ap?+b(Ln(p) +1) +c+3dp”°=0,  vy(R) =0,
a+0+c+d=1, v (R) = V7,
—a+b+c+3d=1, ve(R) = Vy,
+b=R/4Kry, (Al).

Static approach: fieldor,

For the static assumption, we maintain the adherence condition, but instead of the flow continuity, we express
the stress continuity, i.e.n = — P°®n, and the system is completed by the averaged flow ide@tiyR) = V°).
This leads to a set of five equations:

ap~2+bLn(p) +c +dp®>=0, v (R;) =0,
—ap P +b(Ln(p) + 1) +c+3dp’=0,  vy(R) =0,
a+0+0+d=0, or9 =0,

+b = R/4Kp, o, (R) = P(R),
a+0+c+d=1, v (R) = VE.

Solutions
The resolution of the kinematic and static sets yields the following kinematic and static values respectively:

Krv/R = ®1y(p) = —[LN(p) + (1= p) /(14 p%)] /4, (A2)

Ktp/R = ®1p(p) = —[Ln(p) + (1 — p*)/2(1+ p*)] /4. (A3)
It can be easily demonstrated thl, > @, and that the limit values whemtends to 0 and to 1 are:

p—0 p—1
®1y(p) > —[Ln(p) + 1] /4, drv(p) > (1—p)3/12
Orp(p) = —[LN(p) +1/2] /4, Prp(p) = (1= p)*/3.

A2. Flow parallel to the cylinder axis

In this configuration the fields are independent @ndéd, and thed component vanishes. In the fluid shell
the general expressions feland p are:



v =—(K/)fL(r), p=—Kh.(2),
v, =—(K/m)gL(r),

where:
h(z)=z@a/R)?f(r)=d(R/r),  g.(r)=bLn(r/R)+c+ (a/HR/r) >

It is clear that the adherence condition impoges 0, thenv, uniformly vanishes.

Kinematic approach: fieldo,,

If the kinematic continuity is assumed, the conditions to be expressed for determining the three remaining
parametersa, b, ¢) and the unknowrk, are:

—the adherence condition at the fluid—solid interfagg R;) = 0),
—the flow continuity at the Darcy—fluid interfage(R) = V®),

—and finally the condition resulting from the overall equilibrium (14), which takes the following form for a
flow parallel to the cylindrical inclusion:

R=K{—d(h)/dz 4+ 2g/ (R)}. (A4)

Then, the set to be solved is the following:

(a/%p%+bLn(p) +c =0, v(R;) =0,
(@/8)(1—p*) = b(1/2+4 p*(Ln(p) — 1/2)) + c(1— p*) /4=1, v (R) =V,
a/4+0+c=1, v.(R)=VE,
+b = R?/2K,,, (A4).

Static approach: fieldoy

Under the static assumption, we maintain the adherence condition, but instead of the flow continuity, we get
the stress continuity, i.e.n = — P°n, and the system is completed by the averaged flow identityr) = V°).
This leads to the following set:

(a/4)p? + bLn(p) + ¢ =0, v(R;) =0,
a/2+b=0 0, =0,
—|—b:R2/2K|_p, Urr(R):Pe(R)v

(a/8)(1—p*) —b(1/2+ p?(Ln(p) — 1/2)) +c(1— p*)/4=1, v, (R) = V&

Solutions

The resolution of the kinematic and static sets gives the kinematic and static values:
Kiy/R? =1y (p) = —[Ln(p) + (1— p?) /(14 p?)] /2, (AS5)
Kip/R? = ®1p(p) = =[Ln(p) + (1 - p?) (3= p?) /4] /2. (AB)



Here again it is demonstrated thbt, > ¢, and that the limit values whemtends to 0 and to 1 are:

p—0 p—1
®ry(p) > —[Ln(p) +1]/2, DLy(p) > (11— p)*/6,
Dip(p) = —[LN(p) +3/4]/2,  Dip(p) = 21— p)°/3,

Notice that we find in equations (A3), (A6) the expression given by Berdichevsky and Cai (1993), which
were obtained from the static continuity assumption as in (A3), (A6).

References

Auriault J.L., Heterogeneous medium. Is an equivalent macroscopic description possible? Int. J. Engng. Sc. 29 (1991) 785-795.

Auriault J.L., Sanchez-Palencia E., Etude du comportement macroscopique d'un milieu poreux saturé déformable, J. de Mécanique 16 (1977)
575-603.

Berdichevsky A.L., Cai Zhong, Perform permeability predictions by self-consistent method and finite element simulation, Polymer Composites 14
(1993) 132-143.

Biot M.A., General theory of three-dimensional consolidation, J. Applied Phys. 12 (1941) 155-164.

Boutin C., Auriault J.L., Dynamic behaviour of porous media saturated by a viscoelastic fluid. Application to bituminous concretes, Int. J. Engng.
Sci. 28 (1990) 1157-1181.

Christensen R.M., Lo K.H., Solution for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids 27 (1979)
315-330.

Gilbert F., Descriptions thermo-mécaniques de milieux a plusieurs constituants et applications aux milieux poreux saturés, These d'état. Univers
P. et M. Curie, Paris VI, 1987.

Hashin Z., Assessment of self-consistent scheme approximation: Conductivity of particulate composites, J. Comp. Mater. 2 (1968) 284—-304.

Levy T., Sanchez-Palencia E., On boundary conditions for fluid flow in porous media, Int. J. Engng. Sc. 13 (1975) 923-940.

Levy T., Fluid flow through an array of fixed particles, Int. J. Engng. Sc. 21 (1983) 11-23.

Sanchez-Palencia E., Nonhomogeneous media and vibration theory, Lecture Note in Physics 127, Springer-Verlag, Berlin, 1980.

Sangani A.S., Acrivos A., Slow flow past periodic arrays of cylinders with applications to heat transfer, Int. J. Multiphase Flow 8 (1982) 193-206.

Tarnow V., Air flow resistivity of models of fibrous acoustic materials, J. Acoust. Soc. Am. 100 (1996) 3706—-3713.





