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Rayleigh scattering of acoustic waves in rigid porous media

Claude Boutin®

FLaboratoire Geomaterianx, DGCE URA CNRS 1632, Ecole Nationale des Travaux Publics de UEtat, 693518

Vaulx-en-Velin Cedex, France

This paper describes the long wave scattering effect in gas saturated porous media using the
homogenization method. To investigate the deviation from the continuum description, the multiscale
asymptotic expansions are developed up to the third order. The leading (zeroth) order leads to the
Biot-Allard continuum description. The correction of first order induces nonlocal terms in the
dynamic Darcy law and thermal behavior, without modifying the wave characteristics. The
correction of second order infroduces additional dispersion effects on the velocity and attenuation.
This theoretical approach is illustrated by analytical results in the simple case of a periodic array of

slits.

I. INTRODUCTION

This paper is devoted to the low frequency scattering of
acoustic waves propagating in heterogeneous media made of
air and motionless inclusions. This phenomenon occurs in
noise-absorbing materials consisting of air-saturated porous
media of sufficiently rigid and/or dense skeleton, and re-
ceives particular attention in this study. It may also appear in
outdoor acoustics, if one considers, for instance, sound
propagation through dense forest, crop fields, heavy rains,
ete., or in ultrasonics applied to cellular or reticulated media
{light concrete, foams, dried biological tissues, bones, etc.).

Usually, the equivalent fluid model (Zwikker and Kos-
ten, 1949; Allard, 1993) efficiently describes the acoustics of
such media, by means of the second compressional wave [P,
wave in the sense of Biot (1956)]. This modeling captures
the main physical effects, provided that the wavelength, A, is
significantly larger than the characteristic size, I, of the mi-
crostructure (for usual material ! is about three times the
largest pore diameter). However, when the wavelength is
large, though not too large compared to the microstructure
size, scattering phenomena begin to occur (Stanke and Kino,
1984). This long wave—or Rayleigh—scattering modifies
the wave propagation and must be taken into account to im-
prove the description of the effective properties in the corre-
sponding frequency range. This idea is supported by experi-
ments, e.g., Leclaire ef al. (1996), showing that some
deviations from modeling may result from scattering. The
Rayleigh frequency range is bounded by the diffraction fre-
quency, i.e., w < wy, where wy is such that A{w,) =27l

Rayleigh scattering in weakly dissipative heterogeneous
media has been extensively studied and reviews of the litera-
ture on this topic can be found in Bond (1989}, Ishimaru et
al. (1997) and Sheng (1995). Nevertheless, only a few stud-
ies [for instance, Tournat et al (2004)] focus on P, wave
scattering. In fact, the specific features of P, waves invali-
date the results on long wave scattering already established
for other materials for several reasons:
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(1) The physics couples viscous, thermal, and inertial effects
in the transient regime at the local scale that are not
accounted for in classical approaches.

{2} The strong dispersion of the P, wave—evolving from a
diffusion wave, at low frequency, to a propagation wave
at high frequency—induces significant differences com-
pared with purely elastic or diffusive cases.

i3) The high contrast of properties between gas and skeleton
makes the simplifying assumptions of guasihomoge-
neous material irrelevant (e.g., Hirsekorn, 1988).

i4) Finally, considering the usual porosity values, the Born
approximation, assuming weak heterogeneity concentra-
tion (e.g., Gubernatis er al, 1977), cannot be used.

Among several possible approaches, e.g., multiple scat-
tering techniques (Kafesaki and Economou, 1999} Bloch
waves (Turbe, 1982), etc., the method of homogenization of
periodic media (Benssoussan ef al., 1978; Sanchez-Palencia,
1980; Bakhvalov and Panasenko, 1989), will be used in this
paper. This multiscale asymptotic method enables one to de-
termine the macroscopic description from knowledge of the
physics at microscopic level, provided that a scale separation
between macro- and microscale is fulfilled (Auriault, 1991).
The procedure is generally restrained to the derivation of the
first significant term that defines the equivalent continuum
behavior. However, in the case of poor scale separation, the
macroscopic continuum description has to be enriched by the
next order terms that induce nonlocal effects [see Gambin
and Kréner (1989) or Boutin (1996) for elastostatic cases].
For mechanical waves in elastic composite materials (Boutin
and Auriault, 1993) it was shown that the so-derived correc-
tors properly describe the Rayleigh scattering effects, that is,
(i) a correction of polarization of the first order (whose am-
plitude linearly increases with the frequency), (ii) a disper-
sion of velocity of the second order (increasing with the
square of the frequency), and (iii) an apparent attenuation of
the third order, varying according to the cube of the fre-
quency. A similar approach applied to thermal waves (Bou-
tin, 1995} shows that the complex corrector of the effective
diffusivity induces perturbations of velocity and attenuation,



which both increase linearly with frequency. Recently, the
static Darcy’s law correctors have been established by Auri-
ault et al. (2005) and the adiabatic acoustic regime was in-
vestigated in Boutin and Bazaille (2005).

The paper is organized as follows. Section II is devoted
to the principle of the homogenization method and to the
basic physical assumptions concerning the medium. Section
IIT presents the macroscopic description up to third order,
and focus on the physical meaning of the correctors. In Sec.
1V, the perturbations of plane wave are examined. Finally, a
simple analytical example is given.

Il. HOMOGENIZATION APPLIED TO THE ACOUSTICS
OF GAS SATURATED POROUS MEDIA

A. Homogenization principle

The macroscopic representation of heterogeneous media
makes sense only if there is a scale separation. This implies
(Auriault, 1991) the following:

(1) The material is regular enough to show a representative
volume element. This is expressed by considering that
the material is composed of repeated identical cells of
characteristic size /.

(2) The phenomenon must vary according to a size L larger
than /. In acoustics, L is related to the wavelength by L
=\/2 (Boutin and Auriault, 1990).

In order to catch the variations at the well distinct lengths L
and /, two space variables are introduced: x for the macrova-
riations and y for the microvariations, x and y being related
by the scale ratio e=//L<1; y=¢€ 'x. It is worth mentioning
that, for a given medium, the actual physical scale ratio €
varies according to the wavelength, and therefore to the fre-
quency.

Moreover, the small parameter € suggests seeking vari-
ables (in the present case: the pressure p, the temperature 6,
and the velocity v) in the form of asymptotic expansions in
powers of e:

pxy) =2 € plx,y), 6x,y)=2 € '6x,y), (1)
0 0

v(x,y) = € vix,y),
0

where € means e to the power i, while ip(x, y) is the ith term
of the expansion of p(x,y), etc. The scale separation and
material periodicity induce the same periodicity for the
physical quantities, thus the terms ‘p, ‘6, and v are
Q-periodic according to the variable y. The homogenization
proceeds in three steps:

(1) Performing a physical analysis and rescaling the equa-
tions, using powers of € for expressing the order of mag-
nitude of the dimensionless terms (see Sec. III B).

(2) Two-scale expansions are introduced in the rescaled two-
scale equations and the terms of same power in € are
identified (developed in Sec. II C).

FIG. 1. Periodic cell () of porous media. {};is the pore volume filled of gas.
I is the air-solid interface. ¢=£2,/{) is the porosity.

(3) The resolution of the problems obtained in series (ex-
posed Sec. III).

B. Harmonic gas motion porous media: Basic and
rescaled equations

The gas saturating the motionless skeleton of porosity ¢
(ratio of the pore volume () to the volume () of the periodic
cell),

Q,
Yy
=0

is submitted to small harmonic perturbations (of frequency
f=w/2m) from its equilibrium state (where the pressure,
temperature, and density take the values P¢, 7%, and p°). The
variables describing the perturbations are the variations of
pressure, p, temperature, 6, density, p, and the gas velocity v
[D(v) is the strain rate]. The parameters governing the mo-
tion and the heat transfer are the gas viscosity, u, the thermal
conductivity, «, the specific heat ratio, y, and the heat mass
capacity c,. Considering air as a perfect gas, one has the
relation c,(1-1/y)=P¢/Tp".

The linearized equations governing harmonic oscilla-
tions are given by the following (here and in the following
the term exp(iwt) is omitted; V stands for the gradient, A for
the Laplacian, dot stands for contraction, double dots for
double contraction, etc.):

(1) In the pores (£)) of the periodic cell (Fig. 1):
Gas compressibility (mass balance):

div(v) +iwt = 0. )
p

Navier-Stokes equation (momentum balance):

div2uD(v)) = Vp —iwp‘v =0. (3)



Fourier equation (energy balance):
div(k V ) —iw(pc,0-p) =0. (4)

State equation of the gas

L_e b (5)
P pt T

(2) On the gas—solid interface I', the boundary conditions
are (here and in the following the notation ,; means the
value on I'):
Adherence condition of the gas:

vr=0. (6)

Isothermal condition imposed by the weak thermal imped-
N v .
ance of air, ercp, compared to that of the solid:

Or=0. (7)

During wave propagation, the pressure and the density oscil-
late according to the wavelength whereas the velocity and
temperature vary at the pore scale. Then, using the wave-
length as reference length, the Navier-Stokes and Fourier
equations (3) and (4) have to be rescaled, the mass balance
(2) being unchanged. The richest case is obtained when the
pore size is of the same order as the viscous and thermal skin
depths, i.e., |8,|=0(]) where &,=\u/iwp® and |8,|=0(l)
where 8,=Vk/iwp‘c,=O(l) (this is consistent with the fact
that viscous and thermal layer thicknesses are of the same
order for air). This situation leads one to replace Egs. (3) and
(4) by the two following rescaled equations [see, for in-
stance, Boutin et al. (1998)]:

Ediv(2uD(v)) - Vp —iwp‘v =0, (8)

div(x V 6) - iw(p’c,0—p) =0. 9)

Note that the gas state equation enables the elimination of
the density, and that the divergence of shear stresses, com-
bined with the mass balance, may be expressed as follows:

div2uD(v)) = u[A(v) + Vdiv(v)]

=,u[A(v)—in (%—%)}

Thus, the system is driven by the three differential operators
acting on the variables p, v, and 6:

G(p,v,0) =0, G(p,v,0)=div(v)+iw(1%—%>, (10)

N(p,v,0)=0, N(p,v,0)=-=Vp—-ip‘wv
+3M[A(v)—iwv<%—%>], (11)

F(p,0)=0, F(p,0)=io(p-p‘c,0)+ €div(k V 6).
(12)

C. Homogenization process

Using the two space variables x and y=¢"'x, the gradient
V is changed into e‘lVy+ V.. and the Laplacian A becomes
e‘sz+ 26‘1A”+ A, with Ayxzéiivi. Consequently, the opera-
tors G, N, F expressed with the two space variables are
changed into G,,, N,,, F,, whose expansions are given by
Eqgs. (13)-(15):

r
G)Cy(p7v’ 6) = _IG_I(U) + Go(p’v’ 0)?

G'(v) =div,(v), (13)

o L . g_ﬁ)
kG (p,v,&)—dlvx(v)+lw(Pg T ’
rny(P,U, 0)= _IN_](p)+NO(p’v)+ENl(p,U,a),
+ EN*(p,v,0)
N p)=-V,p

€

v i
< No(p,l))— pr MIU/U+Ay(Mv)’ (14)

Pe
N'(p,v,0) =24, () - iwﬁ%(;, - F&),

Nz(p’v’ 6) = Ax(/-Lv) - lwﬁvx<p - %60> 5
(Fo(p.0) = F(p.0) + €F'(p) + €Fp),
) F(p,0) =iwp - iwp‘c,0+ kA(6),
F'(6) =2kA,,(6),

L F2(0) = kA (6).

(15)

Introduce now the expansions (1) of p, v, and 6 in G,,,
N,,, and F,, and identify terms of identical power of €. These
balance equations become series in power of € identically
equal to zero whatever €<<1, so that each term must vanish.
The so-derived equations at each order—combined with the
adherence and isothermal conditions on I" satisfied by each
‘v and ‘f—lead to a series of problems to be solved recur-
rently. Section III presents the resolution up to the second
order.

lll. DESCRIPTION UP TO THE SECOND ORDER
A. Macroscopic mass balances

Before any resolution let us first mention that each mass
balance of order i=0, reads

{G'("v) +G"(p,'v,'0) = 0;

’+lv,r =0; ™'y Q-periodic}.

The local periodicity introduces a compatibility condition
obtained by integrating the local mass balance on the pore
cell volume:

)

¢

i i
(1 RPN —
{dlv},(' v) +div,('v) + zw( P T‘") }dQ =0.
From the divergence theorem, the periodicity and the
adherence condition on I, the first term vanishes. Then, in-
verting y integration and x derivative,



J, o)

Introducing the physical (i.e., observable) macrovariables,

divx( J "de)+iw< f —edﬂ
o o P

!

€ 'vdQ = i € 'vdQ,

iV 1
@Jo, 10,

w1
T=—
oy

o1
P=—
1oy

€ ‘pdQ, € '0dQ),

one obtains the macroscopic mass balance at order i,

div ('V) + iqu(;é - ’_T) =0. (16)

B. Expressions of local fields

To go further we need to determine the local fields
('p.'v,"6) by solving successively the harmonic viscothermal
linear problems on the cell. At each order, the problem may
be split into a leading set of equations related to the gas flow,
and a set of equations related to the heat transfer induced by
the gas pressure. The general scheme of the procedure and
the first steps of the resolution are presented hereafter. The
more technical steps are reported in Appendix A.

1. Pressure and temperature at the leading (zero)
order

1

The momentum balance at order € reduces to

N'(%p)= —Vyop =0, which gives

’p(x.y) = "P(x).

This result introduced in the heat transfer at order €, namely
FO(°P,°0)=0, leads to the differential system {S"} set on Q,
governing °6:

O{iw P(x) - iwpecp00+ KAy(OH) =0,

Oﬁ,r =0, % Q-periodic.

The solution of this linear problem, with °P(x) as forcing
term, may be expressed in the form:

"006y) (l)opﬁ
T - T 5) P (17)

The temperature distribution °7 [solution for °P(x)=P¢/T*]
is complex and depends on the local variable and the fre-
quency through the dimensionless variable y/§,. In the iso-
thermal regime, reached at low frequency (y/d8,—0), the
temperature vanishes and *7(y/8,) —0. In the adiabatic re-
gime, reached at high frequency (y/8,— ©), the temperature
tends to the uniform value (1-1/7y).

2. Local velocity, pressure, and temperature at the
first order

The local velocity, Ov, and the pressure of the first order,
!p, are obtained from the following system of equations {SS}
set on ()

(N'('p) + N°(°P,%) =0, G'(%)=

Ov,r =0, and Ov,lp Q-periodic}

which reads explicitly:

-V, p-v.'pP- iwp—,uov +A,(u') =0,
s # '
v| div,(*v) =0,

0

vr=0, “v, and 'p Q-periodic.

This set defines the linear dynamic permeability problem
with VXOP as forcing term, whose solution is as follows [see
Auriault (1980)]:

O (x,y) = Ok(g)v;’z),

v

(18)

'pley) = 1a<l>Vx0P + ().

S
The tensors *% and 'a are constituted by the three velocity
and pressure distributions (="k'/ 1, ') corresponding to unit
pressure gradient in the three directions, V °P(x)=¢;. The
solutions (%', 'a’) are complex and depend on the dimen-
sionless variable y/&,. In the quasistatic (low frequency) re-
gime (I/85,—0), the inertial effect vanishes and % tends to
be real. At high frequency (I//8,— =), the inertia dominates
and ’%k tends to a purely complex tensor. Note that the pres-

sure is defined up to a constant value 1; and that, by con-
struction, "o is of zero mean value on the cell.

Now, the first corrector '@ of the temperature is derived
from the heat transfer at order € governed by the differential
system FO('p,'0)+F'(°0)=0. This leads to the system {S,l}
set on ()

1{iwlp(x,y) - ia)pecp10+ /(Ay(l 0) + 2KA),X(00) =0,

'9r=0, '6Q-periodic.

The previously determined fields °6 and 'p [Egs. (17) and
(18)] introduce two independent forcing terms:

(1) 1/pf(x), inducing an identical problem than {S?} except
that 1;(yc) replaces “P(x) and

(2) V,°P, linked with 'a and V%7 [coming from the equal-
ity: A, (°0)=(1°/P)V)7r.V,°P].

Therefore, by linearity, the solution is in the form:

10 , gy VOP
() _o (3P0 (¥ y) v.p (19)
T* s5) P 5’5, P

The tensor of temperature distribution '7r is constituted
by the three solutions ' 7 corresponding to pressure gradient
in the three directions, V,°P(x)=(P°/T%)e;. These particular
solutions are complex and depend on the local variable and
frequency through the two dimensionless variables y/ &, and
y/,. This corresponds to a nonlocal transient equilibrium
with thermoviscous coupling.



3. Local fields at the two next orders

Following the process, the pressure and velocity, 2p and
'v, are determined from the set {S'}
N'Cp)+N('p,'v) + N'(°P,%v) = 0,
N5 G (') + G°P,%) =0,
,r=0, 'v, and ?p Q-periodic.
and the temperature 26 is solution of {S,z}:
2 2 11 0 _
g F°Cp,20)+ F'('0) + F°("9) =0,
! ZG,F =0, L) Q-periodic.
Finally, °p and v are derived from {Si}:
N'Cp)+N°Cp,%v) + N'('p,'v) + N*(°P,°v) = 0,
Si G '*v)+G('p,'v) =0,
zv/r =0, 2v, and lp Q-periodic.

The resolution of {S}, {52}, and {Si} is reported in Appendix
A. Let us underline that, at each order, the same differential
set as the previous order is recovered, except for new addi-
tive terms, involving the gradient of the solutions of lower
order. Thus, once ("*'p,7v,76), 0<j<i, have been deter-
mined, they become forcing terms in the problems related to
(*'p,,'6), and so on.

4. Local fields up to the second order

To sum up, the pressure, velocity, and temperature, read,
up to the second order:

p(x,y) = P(x) + € 'p(x) + 'aV, P(x)]

+ € 227\(x) +la. Vxli)\(x) +2a. V.V P(x)

+ #2VOP(X):| + e,
P,

— uo(x,y) =% . V. °P(x) + e[ok V. p()

+1%. . V.V P(x)+ l?fanP(x)]

4 ez[ok VW + k. VY, D)
+%... VY.V P+ l%ﬁ”n . VXOP(x)]
.o

(PIT) 0(x,y) = *7°P(x) + d "7'p(x) + '7. VO P(x)]

+é sz;?\(x) + . Vxl;)\(x)

+2m.  VV.P(x)+ l?fzgoP(x)]

4+ e

As previously, tensors "' and 'k, respectively of rank i+1
and i+2, are constituted by the 3/*! particular solutions of
the purely viscoinertial transient problems {S;} under the 3!
components of the forcing term (V,)*! °P. All of them are
complex and depend on the local variable and frequency
through y/ &, only (cf. Appendix A). More precisely,

(1) (='K™/w,>a™) are the 9 solutions of {S})} with
V.V.P(x)=¢,®e,.

(2) (=*"""/p,a’") are the 27 solutions of {S?} with
V.V.V.P(x)= e,®e,Qe,.

Tensors *'v and in, of rank i—1 and i, are constituted by the
3! particular solutions of the coupled thermoviscoinertial
transient problems {Sf)} under the 3~! components of the
forcing term (V,)""' °P. Consequently, they are complex and
depend on both y/ &, and y/,:

(1) (='n/w,%v) is the solution of {Sll)} with (iwu/ P?)°P(x)
=1.

(2) (=2n"/w,*v") are the 3 solutions of {Si} with
(iw,u/Pg)VXOP(x)=em.

Finally, tensors ‘o of rank i are constituted by the 3’ solu-
tions of {S;} under the 3/ unit components of the forcing term
(T¢/ P°)(V,)' °P. Except for %7, solution of the purely ther-
moinertial transient problem {S?}, i7r for i >0, involves ther-
moviscoinertial coupling, so that they are complex and de-
pend on both y/ &, and y/ §,. This is also the case of the scalar
2¢, solution of {Sf} under (iwu/P9)°P(x)=1.

It is important to keep in mind that the fields observable
in the reality are ‘p€’, ‘vé), and ‘@€', Thus, the actual physical
tensors—independent of the scale ratio !—are k€, '€, ‘€,
and “né.

C. Continuum description and correctors

Knowledge of the local fields enables to express the
macrovariables appearing in the macromass balances (16).
The averaging of the local fields (of nonzero mean value) on
the cell enables definition of the macroscopic tensors whose
dimension and magnitude are, respectively, 'K~ O(°K),
T~ 2N~ 2, and >Z~ O(1). They can be determined (nu-
merically) as soon as the physical parameters of the gas, the
frequency, and the pore geometry are given. Note that the
tensors issued from viscothermal coupled problems depend
on both dimensionless frequencies w/w, and w/w, [see Egs.
(21) and (22) for the definition of w, and w,],

24

and for i>1,

o 0 w 1 0
keédQ, VIl —)=— wed()
) w, JQ,



Their main properties, especially symmetries, and relations
enabling one to deduce effective tensors of the second order
from local solutions of the first order, are established in Ap-
pendix B.

1. Biot-Allard modeling

The leading equations (i.e., zero order) are in agreement
with the phenomenological approaches of Zwikker and Ko-
sten (1949), Attenborough (1983), and Allard (1993). The
equivalent continuum is described by the dynamic perme-
ability tensor °K/u and the effective compressibility ¢[1
—OH]/ P¢ (in the following, to save notations, the index x is
omitt(;d for the macroscopic derivatives):

o P 0T
div(’V) + iwe — =0,

P
§ wv=-"k.VP, (20)
0 0
T _oq?
T Pe
\

It is necessary for the following to recall the features of
the dynamic permeability (Auriault ef al., 1985). At low fre-
quencies, viscous effects dominate and °K tends toward the
real-valued intrinsic permeability, /C. At high frequencies,
inertia dominates and °K tends towards a pure imaginary
value, ¢pu/iwp®a.,, where a., is the tortuosity. Low and high
frequency domains are delimited by a critical frequency de-
rived by equalizing viscous and inertial effects of the mac-
roscopic flow:

o = du
© Kpla

(21)

As for the effective compressibility, at low frequencies
the temperature variation vanishes, so that °TT—0 and the
effective compressibility tends toward the isothermal com-
pressibility ¢/ P¢. At high frequencies, conduction effects are
negligible, except in close proximity to the solid. The pertur-
bations become quasiadiabatic so that °TI—1—1/7, and the
compressibility tends toward the adiabatic value ¢/ yP¢. The
thermal characteristic pulsation delimiting both regimes is
related to the length A,, defined—up to a geometric factor of
the order of one—as the ratio of the volume to the surface of
pore {),/I" (Champoux and Allard (1991)):

K

W, = A,zpecp' (22)
Whereas viscous and thermal layer thicknesses are of the
same order in air, the frequencies w. and w, can be rather
different because the permeability essentially depends on the
small ducts, while thermal transfer involves the whole pore
volume. In consequence, w.> w,. Note also that the effective
compressibility always contains a real part, and thus the
change from isothermal to adiabatic conditions has conse-
quences less drastic than the change from viscous to inertial
regime.

2. Correctors to Biot-Allard modeling

The equations governing the two next orders provide the
correctors to the continuum description.

First corrector:
r

div('V) + iwq{l—P - I—T] =0,
P T

{ plv=—"k vip_lk. vWwop-2Binop (23
PE

Second corrector:

( 2P 2T

div*V) +iwd| —-—1|=0

P¢ T ’
wVv=="Kk VP-'K. . VV'P-2K. . VVV'P
< —iw—M2N.V°P,
Pe
2 2 1 0 . 0
T P P P P
O 4 1L V— 4201, VV— 4 2H2y T
LT P° Pe pe pe TP
(24)

These equations underline that a poor scale separation intro-
duces deviations from the continuum description (strictly
valid for infinite scale ratio) involving the successive gradi-
ents of pressure. The origin of those correctors lies in the
terms neglected at preceding orders that become significant
at the considered order. They bring unusual nonlocal terms
and gas compressibility terms in both dynamic Darcy law
and thermal behavior.

3. Isotropy or symmetric cell case: Cancellation of
the first corrector of pressure, velocity, and
temperature

In the case of macroscopic isotropy of the medium (up
to the second order) or of cell presenting symmetry accord-
ing to three orthogonal planes, tensors of odd rank, 'K and
'TI cancel out. Therefore, Egs. (23) driving the first correc-
tors reduces to the same as that of the leading order (20).
Consequently, without loss of generality, 1P, 'V, T can be
canceled out, and the effective correction of the three vari-
ables is reported to the second order, that is:

P=P+°P+ ..., V="U+v+ ., T="T+%T+ ... .

Furthermore, as any fourth rank isotropic tensor, ’K
takes the following form (a,b,c are three independent sca-
lars and & the Kronecker symbol):

KM = a8+ bS8+ cod,
giving:
2K...VVVP=(a+b+c)V(A'P).

Consequently, K may be reduced to a scalar function k
=a+b+c and the velocity correctors read (%k and *n are the



scalar functions associated by the isotropic tensors 9K and
2N):
pw2V=—% V2P %V (A'P) - “2 nVOp

Wi,
P¢

2
k
=-%VvZ2p+ %A(Mov) nV°pP.

After adding the terms of zero order, we have

’k iou’n

M{v- %A(V)] =- Ok[l + P—fﬂ VP+O(). (25)
The effective dynamic Darcy’s law is enriched by two terms:
(a) One linked to %k is of viscoinertial nature—it corresponds
to a generalization of the Brinkmans law in the dynamic
range. (b) The other linked to ’n involves the thermoviscous
coupling induced by the gas compressibility—it introduces a
correction of permeability.

As for the thermal corrector in isotropic case, one ob-
tains (> is the scalar function associated to the isotropic
tensor TI):

T o)

P pe TP

e

which gives, added to the zero-order terms:

T |on iop, |P (P)
—=|M+—2 A 0
p [ * pe ]P”+ﬂ pe)* (€").

This effective state equation for the gas includes nonlocal
correction in the dynamic range with thermoviscous coupling
effects linked with the compressibility.

4. General case: Cancellation of the first corrector of
pressure

By combining the three equations of Eq. (20) governing
the leading order, the velocity and the temperature may be
eliminated, and the scalar wave equation expressed with the
pressure "P only is derived:

0 0
K 1-"T1

—div(— ) V°P> +iw¢[—e]0P=O. (26)
% P

Similarly, the first order set [Eq. (23)] yields

0 0
K 1-"T1

- div(— : V1P> + iw%? =5'(°P), (27)
“

1

K
S1(°P)=div<—. .VVOP) Dy, VOPHwilH vop.
M P¢ Pe

(28)

It is worth mentioning that, if the same differential op-
erator (left-hand side) applies for °P and 'P, the difference
between zero- and first-order equations (26) and (27) comes
from the source term on the right-hand side. In fact, Eq. (27)
means that the first corrector field 'P results from radiation
of a density of source S'(°P) generated by the °P field. How-
ever, the first corrector presents generally a particular ener-

getic property. In composite media, it was shown—in static
or dynamic elasticity or for thermal transfer—that the work
of the first corrective term under the zero-order field is null
(Boutin and Auriault, 1993; Boutin, 1995, 1996). This is
shown below in the frame of poroacoustics. The source term
S1(°P) reads
s'(°p) = IK”qu +i—w[1N +¢'TI’1°P

o Pe p P
However, the skew symmetry of 'K and identity between 'N
and ¢'TI can be demonstrated, see Appendix B:

'K?=-'K/" and 'N,=-¢'II". (29)
Combining this identity with °P , =P
S'°P)=0 then 'P=0.

Jqp» ONC deduces that

As a matter of fact, ' P being governed by the same equations
as P, it can be canceled out without loss of generality. Nev-
ertheless, contrary to the isotropic case, 'V and 'T do not
necessarily disappear.

5. Effective correctors

To sum up, in any case, the governing equations [Egs.
(23) and (24)] can be replaced by the following.
First corrector:

p=o, ,LLIV=—1K.VV0P—§1NOP, (30)
lT X
T

Because of the identities (29), the macromass balance in Eq.
(23) is necessarily satisfied.
Second corrector:
27 .
T(J' - ’

wv=-"K.VP-2K.. VVV'P-

{ZP
div*V) +iwd| — -
viEV) +iwd P
Ok gop,
P

2 2
T P P
— = °H— +21. VV ylop,, D

31
T° P¢ P 31

The equation governing the actual pressure corrector 2P de-
rived from Eq. (31) takes the form:

[’k
- le<—
M

with

1-°11

. V2P) + iw%zh s%(°p) (32)
ZK .

S2(°P)=div<— LVVVP |+ 2| 2N VY0P
M P

+ ¢<2H L VVP 4 ’%fzzopﬂ . (33)

As shown previously, the term on the right-hand side acts as
a density of source generated by the P field. However, at



this order the source S2(0P) does not cancel out and, in turn,
a corrective 2P field is radiated (according to the zero-order
macrobehavior): We are back to the Rayleigh scattering, in
which the passing of a long wave through heterogeneity gen-
erates sources that radiate perturbations. The interest of the
homogenization is to replace these sources and their precise
radiation by mean sources and equivalent fields at the con-
sidered order. Furthermore, theoretical expressions are pro-
vided for determining the effective coefficients from the
knowledge of the microstructure.

6. Simplification in adiabatic (or isothermal) regime

The above presented description [Egs. (20), (30), and
(31)] may be simplified if the adiabatic regime is assumed in
the gas. In that case, the conduction disappears and tempera-
ture, pressure, and density are related by
P p P

I o P

0

= 1-1/y) (34)
so that 0H=1—1/7 and the tensors TI, 2Z, 'N disappear.
Tensors °K, 'K, and K are the same as previously noted,
since they are independent of the heat transfer. However, the
tensor N is modified by the absence of thermal coupling.
The isothermal case, which implies #=0, then TI=0, and p
=P(p°/P°) leads to similar simplifications (with >N different
than in the adiabatic case).

IV. RAYLEIGH SCATTERING OF PLANE WAVES
A. The continuum approximation

Consider a porous medium (isotropy is not needed) and
investigate the scattering effect on an harmonic plane wave
propagating in a given direction (of unit vector d). Denoting
by hy=h,+ih; the complex wave number in this direction, the
variations of the zero-order pressure take the form:

0p_0p exp(—ihgx . d)exp(iwt). (35)

This plane wave is an eigenmode of the medium, and, from
the zero-order balance Eq. (26),

0
(= ihy)?= =T m
P K,
where
Kd = dIOK{d]

The wave velocity C, wavelength A4, and attenuation &; in
direction d are related to the wave number by

w
h;=—(1-1i§),
d Cd( i&,)

ie.,

w 27T h[
= N=T, &=

C,=
T p h,

Because of the variations of the dynamic permeability with
frequency recalled in Sec. III C 1, the P, wave shows a
strong dispersion, evolving from

(1) a diffusion wave at low frequency (0 < w,):
Co= (0! @) (Plaep?); £=1-0((0/ w,)).

(2) to a propagation wave at high frequency (0> w.):
Ca=N(yP¢ axp®); &~ (0] ).

B. Scattering effect

As 'P=0, the above-presented continuum description is
valid up to a precision € for the pressure and e for the flow
and temperature. This is sufficient for long waves. For
shorter waves the precision is improved by considering the
higher order terms. With this aim, let us first calculate the
source term S%(°P). Replacing in Eq. (33) °P by its expres-
sion (35), gives

1 iw
S*(°P) = {;219(— ihg)* + ;{[ZNd + 1 ](= ihy)*
+ %2&;5 ip exp (= ihgx . d)

where

’K,=d’KMddd), *N,=d’Nid,,

,=dT1/d,.

This source is proportional (but not in phase) to °P. Thus, it
acts as a forcing term loading the medium according to one
of the eigenmodes, i.e., the plane wave in the direction d.
This induces a self-resonance effect and subsequently the
radiated field 2P is linearly amplified as the wave progresses.

Thus, the field P satisfying Eq. (26) is in the form:
2p =~ Q (= ih)* (= ihp . d)'P exp(=ihpx .d),  (36)

where the frequency-dependent complex coefficients, Q, and
Q,(=ih,)?, read:

2 2 2
Ky Ny K,
007, i T ga-omp
and
. 2 2 2
g2 LK oy Ka | Ny
204(=ihy)" = pe [¢(1 H)(Kd)2+ K,
°z
+ - OH}' (38)

Expression (36) means that the scattered field is coherent
(consistently with the scale separation assumption) and radi-
ates in the same direction as the zero-order field. Finally, up
to the second order the macropressure reads:

0p 4 2P =[1 = Q (= ihy)*(= ihpx . d)]'P exp(=ihyx . d)
=P(1+0(€)).

At the same level of approximation (apparently within a dis-
tance x such as O(|h,|x.d)<1/Ve, however this restriction
can be removed by considering new boundary conditions
beyond this distance), the macropressure can also be ex-
pressed as

P =P (exp(= ihpx . d) + O(€))

with



hNd =hy(1 - Q,(-ihy)*].

Thus the diffraction modifies the wave number &, given by
the continuum approximation. As expected, the correction is
of the order of Q,(=ih,)>=0(I*/(N/2m)*)=0(€*). This per-
turbation comes from the interference between the zero-order
wave and the coherent and amplified wave generated by the
induced source distribution. Writing Q, on the polar form:
0,=|04lexp(ix), one derives the apparent velocity and at-
tenuation factor by expressing explicitly that

~ ~ )
hy=~<(1-i&)=—(- ifd)[l +|0Q,l(cos x +i sin x)
C, Cq

x{"’“ —ifd)}z}
Cq
Algebra leads to

- 2
Cy= Cd|:] - |Qd|<C2d) [(1 - &)(cos x + & sin y)

+24,(sin x - £ cos X)]] , (39)

~ 2
Ea=&at |Qd|(Cﬂd> [2£,(1+ &)cos x — (1 - &)sin x].
(40)

Those expressions point out the difference between the
scattering effect for poroacoustic waves and for elastic or
thermal waves. Let us recall that in the two latter cases the
analogue of Q, is a purely real constant (i.e., y=0) strictly
related to the geometry of the microstructure [the reason is
that—contrary to poroacoustics—in those cases, quasistatic
conditions govern the local physics, see [Boutin and Auriault
(1993), Boutin (1995), Chen and fish (2001)]. In elasticity,
the zero-order velocity is a constant, and there is no attenu-
ation (i.e., £=0): The scattering leads to a velocity dispersion
varying according to w? and an apparent attenuation increas-
ing acgording to @’. The thermal waves being dispersive
(C~+w) and damped (£=1), the scattering induces an addi-
tional velocity dispersion and attenuation both varying lin-
early with w.

In poroacoustics the rules for the physical consequences
of scattering are not so easy to draw, first, because of the
change in the P, wave from a diffusion to a propagation
mode, and, second, because Q, is a frequency-dependent
complex function. Consequently, the velocity and attenuation
are both modified, but no general simple trends in the whole
frequency range can be drawn for the frequency dependence.

In the viscous regime, the vanishing of the transient ef-
fects at the pore scale makes macroscopic tensors tend to-
ward real value, then Q;— Q40 and y— 0 and one obtains a
correction identical to that of a diffusion wave:

2

~ w 2 ~ w
Cy= Cd|:1 +2Qd0<az> }’ &= §d+4QdO<Ed)
(41)

with

fw | P |
Cd: - 2 §d=1_0( _)
w, V a,p w,

In the inertial regime (below diffraction), i.e., o, <w<w,,
the wave propagates with damping and one may expect per-
turbation in both velocity and attenuation:

~~ w 2 .
Cdzcd|:1_|Qd|<Ed> (cos x + 3¢, sm)()], (42)

§a=&i— |Qd|<?) [sin y —2&, cos x]
d

with

| yP¢ o)
Cd2 e §d~ _C'
a.p ®

In the whole frequency range and for common pore mor-
phology, the estimates of the tensors (Sec. III C) suggest the
following assessment, where G is a dimensionless geometric
factor, which accounts for the pore geometry and the ratio
between pore and elementary representative volume sizes:

K liow
—ih)2 ~ —_
O(~ih) gl OK] v

i.e.,

Ccl1-ié
cl-i¢

K liop
lNg[GJ yPe

C. Diffraction and critical frequency

Since the diffraction effects are O(€®) they are actually
significant when e— 1, i.e., for frequencies close to w,;. To
identify the qualitative nature of the diffraction when it be-
comes significant, it is necessary to compare w, to w,.

According to the properties of P, waves, the wavelength
may be assessed as (where C,=\yP?/p® is the sound veloc-
ity in air)

a

Ca
o< w.=N2m= s
Voo,

0> w.=>N22T=
W\ Aoy

Applied at the diffraction frequency (w, is such that N/27
=[), these relations give

C 2
&z<1:5&z:( )
wC

W, lo,
TNV R R o
W . lwc\"a’oc M ¢l

If we now consider:

(1) Air properties at the normal conditions, u/C,p°
=1.8107 Pas/343 m/s1.2 kg/m*=4,3.10"® m and

(2) The very rough permeability estimate KC=O(l%), it ap-
pears that as soon as />4 X 107 m, then w,> w,. This
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means that the diffraction effect is significant in the dy-
namic regime, except for materials of pores smaller than
about 50 nm.

The self-consistent approach for the intrinsic permeabil-
ity of granular material—of characteristic size /[=2R and po-
rosity ¢ (Boutin, 2000)—supplies the more realistic esti-
mate:

K=R¥(g),

1| 2+3(1-¢)? 1

V()= 3 34201-)P(1-) 1

Using this expression, Fig. 2 shows the ratio w;/w, versus
the porosity for several realistic characteristic sizes. Clearly,
the diffraction takes place in the viscous regime only for
materials presenting rather fine pores (say less than 1 wm)
and/or small porosity. For most of the sound-absorbing ma-
terials, the diffraction frequency is to be expected within the
dynamic regime.

V. A SIMPLE ACADEMIC EXAMPLE

To illustrate these results we consider a periodic array of
parallel slits, Fig. 3. The porous medium consists in parallel
impervious rigid plane plates of normal vector e3, of negli-
gible thickness (i.e., ¢p=1), separated by gas layers of con-
stant thickness 2a. This medium is isotropic in the plane
(e1,e,) and impervious in direction e;. The one-dimensional
geometry enables the exact determination (detailed in Ap-
pendix C) of the local fields and macroscopic tensors. For the
sake of simplicity, the adiabatic regime is assumed. From the

FIG. 3. Porous media made of a periodic array of slits.

i Porosity

FIG. 2. Logarithm of the ratio of diffraction and critical
frequencies, Log[w,/w.], vs porosity ¢ for media of
different elementary representative volume size /. Lines
from left to right corrrespond respectively to /=1 cm,
1 mm, 100 wm, 10 wm, and 1 pm.

“cell,” symmetry 'K=0 and the first corrector 'V cancel out.
According to Sec. III C 6 the description is, up to the second
order, as follows.
Zero order:
0

=0, wp'v=-"k.V'P (43)

div(®V) + iwp— =
vP°

Second order (with adiabatic tensor *N):
2

div(*V) + iwp—— =0,

yP¢

WV=="K VP K.VVVP- N VP

A. Macroscopic tensors

Using the notations, (recall that &,=\u/iwp®)

u= ?, S=sinh(u), T =tanh(u),

v

C = cosh(u),

the zero-order dynamip permeability tensor takes the classi-
cal diagonal form (OK{ =0 for i #j):

T
°K}=°K§=5§{1 ——], 'K3=0.
u

At the next order, as expected from the cell symmetry calcu-
lations show that 'K vanishes, whereas some local fields v

are not zero:
Vi jk K" =0.

After the algebra described in Appendix C, the nonvanishing
components of 2K are:

2K}”=2K§22=(54 %_2_(1_%)#]
L u

v 2u \6
212 gt 3 3r ¢ ,
12 2u 2

2Ké12=2K%21=54 —Z+(l+i2>T2],

v
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2Ké31 — 2K§32 — 2K’f‘l3 — 2Kg23 —

2K113 2K§23 2K331 2Kg32—54|:—1+<l+§)7{|.
u

Finally, tensor *N is diagonal (ZN{ =0 for i # j) and has the
following components:

K cos(B) + CKI + 7K1 + 2°K3 + 22K sin(B)”

0pl 2
K a K
2N}=2N§:_1, 2]\Ig:_:—

Y Y

B. Plane wave diffraction

Consider now a plane wave propagating in a direction d
inclined at an angle B with the slits, i.e., d=cos(B)e,
+sin(B)es. In this direction, the wave number 4, is given by

TR o m
(= iha)"= )/P‘”)K]cos(ﬁ)2

and the (adiabatic) coefficient Q, takes the form, see Eq.
(38):

20,= 0K1
1

Thus the dimensionless corrective term Q,(ih,)* reads:
2

1 K
Q= ihg)* = E{ 1+ )2 + tan(B)’ l 0!

ZK%33 + 2K§11 + 22K%13+ 22K%31 iw,u
(KD’ P

+

1. Propagation parallel to the slits

When focusing on waves propagating parallel to the
slits, the corrector reduces to

1 2K111 .
Qel(ihel)zzz[l 1 l(l)lu’

yPe
From expressions of ¢ } and °K }“, it can be shown that, all
over the whole frequency range, *K}''(°K})~2 is very close to
a constant real value (varying from 7/5 at low frequency to
4/3 at high frequency). Consequently:

(1) At low frequency, Q,, tends to the real value 2a%/5
=6K/5 and, according to Eq. (41), the scattering pertur-
bation is near to that of diffusion waves.

(2) At high frequency, Q,,~—i/w: This leads to atypical
effects, i.e., [cf. Eq. (42)], a velocity dispersion varying
according to V’Z, and an additional attenuation varying
according to .

2. Oblique propagation

In oblique directions a significant anisotropic effect is
induced in the whole frequency range by the magnification
coefficient tan(g)%. Further,

+ K} cos(B)? + K sin(B)>.

(1) At low frequency, Q, tends to a real constant (~K) and
therefore diffraction will be similar to that of diffusion
waves.

(2) At high frequency, terms that vary accordin ing to iw ex-
actly compensate each other Thus, Q,;~ Viw, implying
that Q,(ih,)* varies as w’ Vio. Again, the consequences
of diffraction differ from that of elastic waves: Both ve-
locity d1spers1on and additional attenuation vary accord-
ing to w*iw.

This simple case shows that the diffraction correction
presents a rather complex frequency dependence. Figures
4-6 depict the strong quantitative and qualitative differences
when (i) The diffraction frequency lies within the viscous,
critical, or inertial regime (those cases are reached by vary-
ing the thickness of the gas layer) and (ii) the propagation is
parallel to the slit or in oblique direction. It is worth noting
that the atypical results at high frequency are strongly related
to the one-dimensional-geometry and should not be general-
ized to other porous materials.

VI. CONCLUSION

To investigate the long wave scattering in air-saturated
porous media, the periodic homogenization method was ap-
plied, extending the analysis up to the second-order terms.
The actual enriched second-order description given by Eqgs.
(20), (30), and (31) accounts for the viscous, thermal, and
inertia effects at the pore scale and is valid even for large
concentration of solid.

In the Rayleigh domain, the improving of the continuum
description implies a nonlocal behavior (associated with mi-
crostructural sources) and specific tensors depending on the
microstructure and the frequency. It is shown that—up to the
second order at least—the tensors associated the viscoinertial
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FIG. 4. Diffraction effect within the viscous regime.
The thickness 2a=5X 10" m gives a diffraction fre-
quency ®;=0.0lw,, (f.=100 GHz). The relative
variation of velocity, AC/C=(C-0)/C, (plain line) and
variation of attenuation, Aé=&- ¢, (dashed line) are pre-
sented vs Log[w/w,], for propagation parallel to the
slits (tick line) and in oblique direction 8=m/4 (normal
line). Velocity and attenuation significantly increase,
similarly in both directions.

FIG. 5. Diffraction effect within the viscoinertial re-
gime. The thickness 2a=5 X 10~ m gives a diffraction
frequency w;= w,, (f,=10 MHz). Same legend as in
Fig. 4. Wave parallel to the slits presents an increase of
attenuation and a slight increase of velocity. Oblique
wave becomes more attenuated with a transition from a
slight increase of velocity to a decrease.

FIG. 6. Diffraction effect within the inertial regime.
The thickness 2a=5X10"* m gives a diffraction fre-
quency w;=10%w,, (f.=1 kHz). Same legend as in
Fig. 4. Diffraction makes oblique waves more attenu-
ated and of slower velocity, while parallel waves are
almost unaffected.



effects can be determined separately, while the thermal ef-
fects become coupled with viscous effects. A key result is
that the first-order macropressure is demonstrated to vanish
and that the correctors are reported at the second order. This
points out the robustness of the usual continuum description,
and explains in some manner the abrupt transition from the
behavior in the Rayleigh domain to the behavior at higher
frequencies.

The perturbation of plane wave propagation is derived
from this description and interpreted as interferences be-
tween the zero-order field and the field—coherent and lin-
early amplified by a self-resonance mechanism—built up
from the diffracted sources. The frequency dependence of the
velocity’s and attenuation’s correction is rather complex due
to the dispersion of the P, wave. Effects close to that ob-
served for diffusion waves are recovered at low frequency.
At high frequency an accurate discussion of these theoretical
results would require numerical computation of high order
tensors. An example is presented for the simple case of an
array of slits. In that case, the atypical effect in high fre-
quency range is strongly anisotropic and differs from what is
observed with purely elastic waves.

Let us underline that those results are only valid in the
scale separation frequency range. At higher frequencies, this
approach becomes irrelevant since the scattered waves radi-
ate in other directions than the initial wave. Another limita-
tion is the periodicity assumption. Nevertheless, it may be
inferred that this hypothesis does not modify the nature of
the results for long wave in random media, provided that
they can be characterized by a representative volume smaller
than the wavelength. However, regarding shorter waves,
strong divergences have to be expected, mostly because the
diffracted field in random media loses its coherence.

APPENDIX A: HOMOGENIZATION PROCESS UP TO
THE SECOND ORDER

This appendix gives the complement of the homogeni-
zation process not detailed in the main text. To save nota-
tions, the Einstein convention is used, the derivative df/dy; is
denoted by f;, the high indexes of the particular solutions are
related to the forcing term, the low indexes indicate the com-
ponents of the field and derivative, e.g., v=v;.¢; div,(v)
&' is the Kronecker symbol (8'=1 if i=m; =0

=Viis 9

r

<
A

0 0
divy(lv) __ diVx(OU) + diVx(<0u>) + iw{e_TW] ,

\v/lr=0, v, and 1pQ—periodic.

—iwplv + Ay(,ulv) - Vyzp =V 'p- ZA},X(,LLOU) +iouV,

otherwise). The average on the pores domain is denoted by
(-)=(1/9)fq - dO.

1. The leading and first order

These two first steps are detailed in Sec. III B. The dif-
ferential systems {S?} satisfied by the particular solutions %7,
is

Pe
iwpecpoﬂ'— KA),(OW) =iw—,

T¢

7 =0,"7 Q-periodic.

S?(O’ﬂ)
0

Keeping in mind that P¢/T¢=p‘c,(1—-1/1y), it clearly appears
that °7 depends on the frequency throughout the single pa-
rameter 6?2=iwp"’cp/f<. Thus, <%7>=°I1, is a function of
the thermal dimensionless frequency o/ o, [, being defined
by Eq. (22)].
As for the solutions (=°k"/w,'a™), they are governed
by the set {S°}:
.

0™k~ A (K - ol = 8,
p ,

SHCk™ @y °KLi=0,

r=0, (‘a")y=0.

Ok 1o Q-periodic.
\

This form points out that (=%, L™ depends on the fre-
quency throughout the single parameter b:2=iwpe/ . There-
fore, ¢(°k)="K is function of the viscous dimensionless fre-
quency w/w, [w, being defined by Eq. (21)].

The differential system {S} satisfied by the particular
solutions '7" is given in the following:

iwptel " — kA (M) = iwielam + 207

si(tm P TR 2o

'mpr=0, 'm Q-periodic.

The presence of 'o/" implies a viscothermal coupling. Then
("ar)="1I depends on both dimensionless frequencies w/w,
and o/ w,.

2. The second order
The gas flow problem {S!}

The set of equations {Sll)} governing ('v,’p) reads ex-
plicitly:

0

F,



Note the following:

(1) Taking advantage of (divy(lv))=0 (see Sec. IIT A) the
average mass balance equation has been subtracted from
the local mass balance.

(2) The set {Si} is identical to the set {SS}, except for the
right-hand side of the equations acting as forcing terms
induced by the solutions at previous order.

When substituting Eqs. (17) and (18) of °6, %, and !p it
appears that the forcing terms may be split into:

(1) A term associated with V, 1;7\, which leads to an identical
problem than at the preceding order.

(2) Terms coming from ‘v, (°v) and !p, associated with the
second gradient of the zero-order pressure V.V °P.

(3) Terms coming from %6 and (°6), associated to the zero-
order pressure op.

As a consequence of the linearity, the solution is a linear
combination of particular solutions associated with each of
these forcing terms. Consequently the solution is in the form:

2p(x,y) = 2;(x) +'la. Vxl;(x) +2a. . VXVxOP(x)

+ 2H2,0p0), (A1)
PE
—ulo(x,y)="%. VXIE;()C) +'%. . V.V °P(x)
+ 5 nOP). (A2)

The solutions (—'k”"/u,?a/™) corresponding to unit second
gradients of pressure, V.V °P(x)=e,, ®e,, are governed by

Sll)(lkmn’Za;nn)
( (4
iwp; e — Ay('k;””) - zaf;"l =o' + 2°k;7fn,
x{ k== + O,
it = 0: (™) = 0,
L Y and 2o Q-periodic.

As previously, the single parameter is 8, so that ¢('k)="K,
only depends on w/w,.

The solution (='n/u,?v) corresponding to a pressure,
OP(x)=P/iwu, is driven by

r

P
tw; ]ni - Ay(lni) - 21/’,- = 077’,~,
Sll)(ln,zV)< lni,i — OH _ Oﬂ_’

1}’[/1“ = 0,<2V> = 0,
1

7 and *v Q-periodic.

The source terms brought a thermal coupling. Therefore
('n)="N depends on w/w, and w/w,.

The heat transfer problem {S?}

As for the temperature, 26 is solution of {S,z}:

.2 20 _2 . 1 0
g iwpc, 0= kA,("0) = "piw+ 2k, (" 0) + kA,("0),
"1 6r=0, @ Q-periodic.

Inserting Eqs. (17)—(19) and (A1) giving °6, '6, and *p, one
notes that the forcing terms are constituted by the following:

(1) Terms associated with 2p and V,'p, which lead to iden-
tical problems than at the two preceding orders.

(2) Terms associated with the second gradient of the zero-
order pressure V.V °P.

(3) Terms associated with the zero order pressure op.

Again, from the linearity, the solution is a linear combi-
nation of particular solutions associated with each forcing
term:

(PIT)?0(x,y) = "m?p(x) + ' V. "p(x)
2. VYL P + ’%ﬁ’“zgop(x).

(A3)

The temperature distributions 27 solutions of {S,z} under
second gradient of pressure V.V."P(x)=(P¢/T)e, e, are
determined by

S22

P
iwpecpzﬂ'rm" - KAy(zﬂTmn) = iw;2am” + 2K17TT1 + K0775:ln,

2 n

=0, 2™ Q-periodic.

The temperature distribution 2¢ solution of {S,z} under pres-
sure P(x)=P/iop is determined by

Pe
iwpecng— KAy(zg) = inzv,

20r=0, *¢ Q-periodic.

SH0)

Note that the source terms introduce a viscous coupling in
the first case, and a thermoviscous coupling in the second
case. Then 2IT and *Z depend on w/w, and w/w,.

3. The third order: The gas flow problem {S?}

Finally, the set {S?} governing *p and v is
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kv/zr =0, v and *p Q-periodic.

Following the same reasoning as mentioned earlier, one
shows that the solution reads:

p(x,y) ="p(x) + . V,2p(x) + % . V.V, "p(x)

Sa...V.V.'P(x)

L “ V() + 309 2P()],
~ wo(x,y) =%. V.7 p(x) + k. . V.V, p(x)
.V.V.P(x)
Ml 1 XOP()C)].

The solutions (—2k""7/ w,3a™"?) corresponding to unit third
gradient of pressure, V,V,.V."P(x)=e, ®e¢,® e, are governed
by

Si(kanp’ 3a,mnp)
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2 .
e 3 gimnp Q-periodic.
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Once more, the single physical parameter is b:z so that
&(’k)="K, depends on w/w, only.

The solutions (—*n'/ ,LL,3VZ) corresponding to gradients
of pressure V. °P(x)=(P°/iwm)e; are governed by

202
Sv( nl’SVI)
4

Pzz

2N 3.1 _ 11 1] 0
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n,F 0; GihH=o0,
n' and *v/ Q-periodic.
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The source terms brought viscous and thermoviscous cou-
pling, and then (>2)=>N depends on w/w, and w/w,.

The existence and uniqueness of the solutions of all
these problems can be demonstrated from their variational
formulation, not developed here.

APPENDIX B: TENSORS PROPERTIES

The leading idea to establish the properties of the mac-
roscopic tensors is based on energy reciprocity. The principle
is to calculate separately the virtual energies of a solution
under another and reciprocally. Then, comparing the two ex-
pressions, and using the fact that the virtual kinetic and dis-
sipated energy (or inertial and conduction energy for thermal
problems) are identical in both cases, tensor identities are
derived.

As a first example, take the scalar product of the mo-
mentum balance of the solution °k™ [set SS(Ok’”, L), Appen-
dix A] with the solution °4" and integrate on the pore vol-
ume. It gives

(= a7k + ™=K K — (A KK = K.
" :

From the divergence theorem, the first term may be trans-
formed as

1
(- 1%k = (LK) - _f "% nds =0
O J 0,

[because of, (i) the zero divergence of °%k” and (ii) the adher-
ence and the periodicity conditions]. Similarly, from the di-
vergence theorem

<A (Ok’”)ok") <0km Okn> <(0km0kn) _OkmOkn>
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(V%" . n) . “k'ds

and the surface integral vanishes because of the adherence
and periodicity. Thus finally:

iwp;e<0km.°k”>+<Vy(0km) Y, CR) = k.

Inverting the role of %" and °%4” and comparing the two
expressions lead directly to

Uy = R,
which demonstrate the symmetry of the dynamic permeabil-
ity K, [Auriault, 1980].
1. Skew symmetry of 'K

Apply now this procedure to *k” and 'k"?. Consider first
the virtual work of %" under 'k



(= "aK) + i =R )y — (AR K = (R
)7

Using the same argument as above, and taking into account
(i) the expression of the divergence of 'k [set
Sllj(lk’””, '), Appendix A] and (i) (' @"y=0, the first term
becomes
(- laf?lkf”’> = <lam1k;f’l7> +0=_a"(- Ok;’, + <Ok;’,))) =
1 _mOgpn
~ ('K
For the same reasons as previously:
(AR Ky = (V) V()

and thus
(4
— (@K + iR ) + (V%) .V, ()
y2

= (k7). (B1)

In a second step, consider the virtual work of Lgnr under k™.
From the momentum balance [cf. set Si(lk’””, L), Appen-
dix A] we get

<_ 2a’r;p0k;n> + iwp_<lknp ) Okm> _ (Ay(lk:"’)ok;“)
M )

_ /1 _nOpm Ozn Opm
= ('K + 20k k).

(B2)
Here again, the first term is null because of the zero diver-
gence of k™, and —(A('k!”)°k") may be changed into
<Vy(0km). .Vy(lk””)>. Then, subtracting Egs. (B1) and (B2)
one obtains

=Pkl + (LK) + 20K K = (K. (B3)

Note that this expression enables one to calculate ('k7) from
the solutions at previous order without calculating lk:’np .
Moreover, inverting m and n gives

Chary + Ry = 2Ok Ky + CRERD) = - -

=2((%". k") ) =— 2

[°%" . %")e, . nds =0
Qf an P

(because of periodicity and adherence conditions). This dem-
onstrates the skew symmetry of 'K relative to the two first
indexes:

lgnp _  1yg-mp
K'P=— K"

2. Relation between 'N and 'TI

Similarly an expression of 'N is derived by considering
the following.

(1) The virtual work of k" under 'n:
=) + ik ny = (ALK 'y = ('m0
. :

which reads after transformation using the mass balance of
S'('n,?v), Appendix A:

(O =) + i (k™ ) + (V%% Y, )
p :

=('n,).
(2) The virtual work of 'n under °k” [cf. the momentum
balance of Sl')(ln,zv), Appendix AJ:
iof=(n k) — (A, () KE) = o Ky = O R,
“ )

which reduces to

(4
ik )+ (V,%"V, 0y = 0.
M

Reporting this result in the first equality gives
(") ==("a"m).

Independently, an expression of 'II is derived by consider-
ing:

. 0 0,0
(1) The virtual work of %z under 7, cf. set S; ("), Appen-
dix A:
e 0 1 _m A 0 1,77m . P_e 1ﬂ_m
(iwpc, m ") — (kA,("m) )—lee( ).

(2) The virtual work of '#* under %, cf. set S,l('ﬂ""), Ap-
pendix A:

Pe
(iwpecplw’”oﬂ') - <KA_V(17Tm)07T> = in<1a/"01T>
+ 2<K0’7T’m07T>.
Noting that

200, 0 = (O, ) = — ==

o (077)26,, .nds=0
Qd o,

(because of the periodicity and isotherm boundary condi-
tions), one deduces after usual transformations:

(@my= ().
Comparing with the above expression of ('n,,), one obtains

(nyy=-{"7", ie., 'N, =— ¢'TI".

3. Expression and symmetry of 2K

Pursuing the analysis for 2K, two identities can be estab-
lished from:

(1) The virtual work of %" under k"% and of k"4 under
0
k™

Clrty =kt = oGl + Ca k)
= 2"k

(2) The virtual work of 'k under 'k™4:



= Ca Oy + (k) LV R)) + itk ey
’ 7

= ('™ K7 + 2('KPOK ).

Combining these relations leads to

CRY = KRN &+ oK + Cal KD

- ((Vy(lk’”"). .Vy(lk””)>+iwp—(lkm". 1k””>>,
o’
which provides the demonstration of the symmetry of 2K

relative to the two pairs of indexes:

2gnpg _ 2 grmgp
K, ="K, ".

4. Expression of 2N and 2Z

As for 2N, the comparison of the virtual works of Opm
under n" and reciprocally gives

2Nn/¢ <2nn> <0k (1 7T)>+<1am(lan

Finally, the virtual works of %7 under > and inversely lead
to

— ).

Z=Co="m"v).

APPENDIX C: HIGH ORDER TENSOR FOR A
PERIODIC ARRAY OF SLITS

Owing to the one- dimensional geometry, the fields de-
pend locally on variable y; only, and the axes e; and e, play
the same role. In this context, the problem {Sg} governing the
dynamic permeability is rewritten in the simple form:

lw_okm ;"33 - a 3= (Sm
M

0
kg'f3=0,
%k™(£a)=0, ('a™y=0.
The resolution is straightforward and gives, where &,
=\(uliwp); Y =y;/68,; u=al 5,:
cosh(y”
O =2=k, k=&|1 coshy) | (1)
cosh(u)

'aP=—y;, other ij- and 'a/=0. After integrating on the gas

layer [—a+a] one obtains

tanh
%F%%%P_ (u)

u

], other OK; =0.

These solutions enable one to tackle the next problem {Si},
which takes the simplified form:
P lkmn lkl 2 - ’mn la/nan + 20km

Sl
v lkzlin=_0kz1+<0knm>’
<2amn>=0-

The resolution shows that the nonzero components read:

K" (xa) =0,

3 .
12 _ smh(u)}
ky = k3= h ,
3 37 cos h(u){ sinh(y") -y u
NN Lcosh(y”) usi.nh(y*)
cosh(u) sinh(u)

1,31 _ 1,32 _ 3 sinh(y)
ki =k'=0lu——- s
2 v[u sinh(u) y

tanh(u) | a
2 11_2 22 2
@« 2u [3 y*]’

1| a?
2.33__ 2|4 2
a” = 2[3 y3].

As the 'k components are odd functions, they all are of zero
mean value. Therefore,

'K=0.

The macroscopic tensors “K and N are calculated with the
expressions established in Appendix B that enable one to
shun the explicit resolution of (Sg):

and, within the adiabatic assumption:
PN =KL+ (Lol ).

From the previous results, the expressions of the nonzero
components become [k is defined in (C1)]:

ZK%II — 2K§22 — <(k)2> + <2a11k>,
2K122 2K§11 <(k)2>

2K£12 — 2K%21 — <2a”k>,

ZKP3 — 2K§33 — <(k)2> _ 2<k!31ki3>’

2K§“ — 2Kg22=<y3lk%l>’

2K131 2K222 2K312 2K§23=<y31k}3),
2K;13=2K§23=2K?3'— 332 =y 3'k§l),
k 132
2N}=2N§=—, 2N;=<( )>.
Y Y

Integration on the gas layer provides the expressions given in
Sec. V.
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