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Abstract

In this note, we report on recent findings concerning the spectral and nonlinear
stability of periodic traveling wave solutions of hyperbolic-parabolic systems of balance
laws, as applied to the St. Venant equations of shallow water flow down an incline. We
begin by introducing a natural set of spectral stability assumptions, motivated by con-
siderations from the Whitham averaged equations, and outline the recent proof yielding
nonlinear stability under these conditions. We then turn to an analytical and numerical
investigation of the verification of these spectral stability assumptions. While spec-
tral instability is shown analytically to hold in both the Hopf and homoclinic limits,
our numerical studies indicates spectrally stable periodic solutions of intermediate pe-
riod. A mechanism for this moderate-amplitude stabilization is proposed in terms of
numerically observed “metastability” of the the limiting homoclinic orbits.
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1 Introduction

Nonclassical viscous conservation or balance laws arise in many areas of mathematical mod-
eling including the analysis of multiphase fluids or solid mechanics. Such equations are
known to exhibit a wide variety of traveling wave phenomena such as homoclinic or het-
eroclinc solutions, corresponding to the standard pulse and front or shock type solutions,
respectively, as well as solutions which are spatially periodic. Historically, a great deal
of effort has been applied to understanding the time-evolutionary stability of the homo-
clinic/heteroclinic solutions of such equation, and their spectral and nonlinear stability
theories are well understood (in general). In contrast, until recently the analogous stability
theories of the periodic counterparts have received relatively little attention. The goal of
this paper is to present recent progress towards the understanding of periodic traveling-wave
solutions within the context of a particular physically interesting hyperbolic–parabolic sys-
tem of second order PDE’s which we describe below. We begin, however, by briefly recalling
the known theory in the case of a strictly parabolic system of conservation laws.

There has been a great deal of recent progress towards the understanding of the stability
properties of periodic traveling waves of viscous strictly parabolic systems of conservation
laws of the form

(1.1) ut + ∇ · f(u) = ∆u, x ∈ R
d, u ∈ R

n;

see [JZ4, JZ2, OZ1, OZ2, OZ3, OZ4, Se1]. In particular, using delicate analysis of the
resolvent of the linearized operator it has been shown that any periodic traveling wave
solution of (1.1) that is spectrally stable with respect to localized (L2) perturbations is
(time-evolutionary) nonlinearly stable in Lp or Hs for appropriate values of p and s. In
fact, such solutions are asymptotically stable (in an appropriate sense) for dimensions d ≥ 2,
while they are only nonlinearly bounded stable for dimensions d = 1. However, while these
results are mathematically satisfying, up to now no example of a spectrally stable periodic
solution of equations of the form (1.1) has yet been found. In fact, in dimension one it
was shown in [OZ1] by rigorous Evans function computations that such solutions cannot
exist for certain model systems of form (1.1) admitting a Hamiltonian structure, due to the
existence of a spectral dichotomy.

Though these isolated results may seem discouraging, it should be noted that the explicit
examples of form (1.1) considered so far have possibly had too much or the wrong sort of
structure to admit stable periodic solution. In particular, it may very well be the case that
by considering more exotic potentials1 it may be possible to find a stable periodic solution
even within the class of examples studied in [OZ1]. And, for higher dimensional (n ≥ 3)
or more general systems, one may expect to find richer behavior, including, possibly, stable
periodic waves. Whether or not this occurs for systems of form (1.1) remains an interesting
open problem. However, within the slightly wider class of nonstrictly parabolic systems of
balance laws, it has recently been shown that stable periodic waves can indeed occur, which
leads us to the investigations presented in this paper.

1In particular, potentials for which the period is decreasing with respect to amplitude in some regime.
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A particular class of examples of more general (non-strictly parabolic) balance laws
which have been recently seen (numerically) to admit stable periodic traveling wave solutions
is given by the generalized St. Venant equations, which in Eulerian coordinates take the
form

(1.2)
ht + (hu)x = 0,

(hu)t + (h2/2F + hu2)x = h− u|u|r−1/hs + ν(hux)x,

where 1 ≤ r ≤ 2 and 0 ≤ s ≤ 2. Unlike (1.1), the St. Venant equations are a second order
hyperbolic–parabolic system of PDE’s in balance law form (due to the non-differentiated
source term in the parabolic part). Equations of this form arise naturally when approxi-
mating shallow water flow on an inclined ramp, in which case h represents the height of the
fluid, u the velocity average with respect to height, ν is a nondimensional viscosity equal
to the inverse of the Reynolds number, and F is the Froude number, which here is the
square of the ratio between the speed of the fluid and the speed of gravity waves2. Further,
the term u|u|r−1/hs models turbulent friction along the bottom surface and x measures
longitudinal distance along the ramp. Finally, we point out that the form of the viscosity
term ν(hux)x is motivated by the formal derivations from the Navier Stokes equations with
free surfaces; other choices are obviously available and are sometimes used in the litera-
ture [HC]. Typical choices for the parameters (r, s) are r ∈ {1, 2} and s ∈ {0, 1, 2}; see
[BM, N1, N2] and references therein. The choice (r, s) = (2, 0) is considered in detail in the
works [N1, N2, JZN, BJRZ].

Periodic and solitary traveling waves, known as roll waves, are well-known to appear as
solutions of (1.2), generated by competition between gravitational force and friction along
the bottom. Such patterns have been used to model phenomena in several areas of the
engineering literature, including landslides, river and spillway flow, and the topography of
sand dunes and sea beds and their stability properties have been much studied numerically,
experimentally, and by formal asymptotics; see [BM] and references therein. However, until
very recently, there was no rigorous linear (as opposed to spectral, or normal modes) or
nonlinear stability theory for these waves.

For the physically relevant system (1.2), it turns out that we are able to perform a
complete spectral, linear, and nonlinear stability analysis of the associated periodic traveling
wave solutions. Indeed, although the abstract nonlinear stability theory of [JZ2], developed
for equations of form (1.1) does not apply directly to the St. Venant equations due to its
hyperbolic-parabolic nature and source terms, a suitable modification of this theory can be
made to establish that spectral stability of a given periodic traveling wave implies nonlinear
bounded stability. This theory will be outlined briefly in the proceeding sections. The
interested reader is invited to find more details in [JZN, N1, N2, NR, BJNRZ].

The outline of this paper is as follows. In the next subsection, Section 1.1, we briefly
review the existence theory for the periodic traveling wave solutions of the generalized
St. Venant equations (1.2). In particular, we derive the Hopf bifurcation conditions which
guarantee the bifurcation of a family of periodic orbits from the equilibrium solution. Then,

2In particular, the Froude number F depends on the angle of inclination of the incline.
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in Section 2, we outline the known stability theory for the periodic solutions found in
Section 1.1. The main result of this section is that, under some “natural” spectral stability
assumptions, the given periodic wave is nonlinearly stable under the PDE dynamics in
an appropriate sense. The aforementioned spectral stability assumptions are motivated
through consideration of the associated Whitham averaged system and its hyperbolicity,
i.e. local well-posedness. The details of the nonlinear stability proof are beyond the scope
of the current presentation and hence only an outline of the argument is given; the interested
reader is referred to [JZN] for details.

After establishing that (an appropriate sense of) spectral stability implies nonlinear
stability, we then turn our attention in Section 3 to the verification of the spectral stability
assumptions, restricting our attention to the commonly studied case (r, s) = (2, 0) in (1.2).
We begin by looking in the Hopf and homoclinic limits, as these limits are amenable to
direct analysis.

A striking feature of the particular example chosen, corresponding to (r, s) = (2, 0) in
(1.2), is that, in the region of existence of periodic orbits, all constant solutions are spectrally
unstable with respect to frequencies in a neighborhood of the origin. At a philosophical level,
this means that, for this model, stability can only come about through dynamical effects
having to do with the variation of the underlying wave, and cannot be understood from
a “frozen-coefficients” point of view. To us, this makes it a particularly interesting and
illuminating example from a phenomenological point of view.

At a practical level, it means that periodic waves sufficiently close to either the Hopf
equilibrium or bounding homoclinic orbit must be spectrally unstable, as follows by standard
continuity arguments. Thus, stable periodic waves, if they exist, must be found within
intermediate amplitudes bounded away from either of these simplifying limits.

We pursue this line of investigation by conducting a numerical study of the spectrum of
the intermediate amplitude waves found in Section 3.2 and we find numerically that there
indeed exist periodic waves between the Hopf and homoclinic orbits which are spectrally
stable, and hence are nonlinearly stable by the main theorem in Section 2. We then conclude
with a brief conclusion and discussion of the future directions of this project.

1.1 Periodic Traveling Waves

We begin with a brief discussion of the traveling wave solutions of the generalized St. Venant
equations. Following [JZN] we restrict ourselves to positive velocities u > 0 and consider
(1.2) in Lagrangian coordinates3

(1.3)
τt − ux = 0,

ut + ((2F )−1τ−2)x = 1 − τ s+1ur + ν(τ−2ux)x,

3These coordinates are of course equivalent to the Eulerian formulation presented in (1.2), and stability
in one formulation is clearly equivalent to stability in the other. Moreover, we point out that while the
Eulerian formulation is possibly more physically transparent, the Lagrangian formulation is more analytically
convenient.
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where τ := h−1 and now the variable x denotes a Lagrangian marker, rather than a physical
location. Notice that since the equation (1.2) models waves propagating down a ramp, there
is no loss in enforcing the restriction u > 04. In this coordinate frame, a traveling wave
solution of (1.3) is a solution which is stationary in an appropriate moving coordinate frame
of the form x− st, where s ∈ R is the wavespeed. That is, they take the form

U(x, t) = Ū(x− st),

where Ū(·) = (τ̄(·), ū(·)) is a solution of the ODE

(1.4)
−cτ̄ ′ − ū′ = 0,

−cū′ + ((2F )−1τ̄−2)′ = 1 − τ̄ s+1ūr + ν(τ̄−2ū′)′.

Integration of the first equation yields ū = ū(τ ; q, s) := q− cτ̄ , where q is the corresponding
integration constant. Substitution of this identity into the second equation yields the second-
order scalar profile equation for the function τ̄ :

(1.5) c2τ̄ ′ + ((2F )−1τ̄−2)′ = 1 − τ̄ s+1(q − cτ̄)r − cν(τ̄−2τ̄ ′)′.

The orbits of (1.5) can be studied by simple phase plane analysis. In particular, we find
that the equilibrium solutions τ0 satisfy the algebraic identity

τ s+1
0 (q − cτ0)

r = 1.

Considering homoclinic solutions then, as in [BJRZ], under an appropriate normalization
we can assume τ0 = 1. Here, however, we are interested in the periodic orbits of the profile
ODE (1.5) which are easily seen not to exist in the case c = 0. Indeed, in that case (1.5)
reduces to the first order scalar ODE

(1.6) τ̄ ′ = F τ̄3(τ̄ s+1qr − 1),

which clearly has no nontrivial solutions with τ̄ > 0. The existence of periodic orbits for
non-zero values of c was considered in [N1, N2], and are generically seen to emerge from
a Hopf bifurcation from the equilibrium state generating a family of periodic orbits which
terminate into the bounding homoclinic. The conditions for a Hopf bifurcation to occur can
be derived from straightforward Fourier analysis as in [BJRZ]. Indeed, simply notice that
the linearization of the profile ODE (1.5) about an equilibrium solution τ0 (with q = u0+cτ0)
is given by

(

s+ 1

τ0
− cr

u0

)

τ + (c2 − c2s)τ
′ +

cντ ′′

τ2
0

= 0,

where we have used the relation τ s+1
0 ur

0 = 1. Taking the Fourier transform, it follows that
the Fourier frequency k must satisfy the polynomial equation

s+ 1

τ0
− cr

u0
+ ik(c2 − c2s) −

cνk2

τ2
0

= 0.

4However, we must always remember to discard any spurious solutions for which u may become negative.
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Evidently, such a k ∈ R exists if and only if c = cs and
(

s+1
r

)

u0

τ0
=

(

s+1
r

)

τ
−(r+s+1)/r
0 > cs, in

which case the solutions are ±kH with kH 6= 0. These translate then to the Hopf bifurcation
conditions

(1.7) c = cs =
τ
−3/2
0√
F

and

(

s+ 1

r

)

τ
−(r+s+1)/r
0 > cs.

When (r, s) = (2, 0), which is the case considered in [JZN], this reduces to F > 4. This is
in agreement with the experiments of [N2, BJNRZ], which indicate that when (r, s) = (2, 0)
and F > 4 there exists a smooth family of periodic orbits of (1.5) parametrized by the
period, which increase in amplitude as the period is increased and finally approaching a
limiting homclinic orbit as the period tends to infinity.

As far as the general existence theory is concerned, we notice that periodic orbits of
(1.5) correspond to values (X, c, q, b) ∈ R

5, where X, c, and q denote the period, constant of
integration, and wave speed, respectively, and b = (b1, b2) denotes the initial values of (τ, τ ′)
at x = 0 or, equivalently, at x = X. Furthermore, in the spirit of [Se1, OZ3, OZ4, JZ2, JZ3],
we make the following general assumptions:

(H1) τ̄ > 0, so that all terms in (1.4) are CK+1, K ≥ 4.

(H2) The map H : R
5 → R

2 taking (X, c, q, b) 7→ (τ, τ ′)(X, c, b;X) − b is full rank at
(X̄, c̄, b̄), where (τ, τ ′)(·; ·) is the solution operator of (1.5).

By the Implicit Function Theorem, then, conditions (H1)–(H2) imply that the set of periodic
solutions in the vicinity of Ū form a smooth 3-dimensional manifold {Ūβ(x − α − c(β)t)},
with α ∈ R, β ∈ R

2.
The goal of our analysis is to understand the modulational stability, i.e. the spectral and

nonlinear time evolutionary stability with respect to small localized initial perturbations. We
begin by considering the Whitham averaged system corresponding to the dynamical version
of (1.4), which yields a necessary condition for spectral stability. These considerations lead
to a natural set of spectral stability assumptions, and under these assumptions we outline
the recent nonlinear stability theory developed in [JZN]. With this theory in place, we
numerically study the spectrum of the linearized operator for various values of the turbulent
parameters (r, s). In particular, we are able to numerically find a spectrally stable periodic
traveling wave solution of (1.3). Recall that, up till now, the existence of such a stable
solution was not at all clear from the known examples, for example found in [OZ1].

2 Analytical Results

In this section, we review as briefly as possible the known analytical stability and instability
results concerning the periodic traveling wave solutions of (1.3). While this theory is similar
to that developed for the parabolic conservation laws (1.1) developed in [OZ4, JZ2, JZ4],
the extension to the current case involves a number of subtle technical issues associated with
lack of parabolicity and nonconservative form. In particular, the presence of non-divergence
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source terms in (1.3) requires a more detailed analysis of the associated Green function since
there are no derivatives to enhance decay. This is handled by an observation made from
the structure of this Whitham averaged equations that of all the modulations the wave
can undergo under low-frequency perturbation, modulations in translation dominate. This
serves as motivation for a decomposition of the linearized solution operator and allows us to
prove the time-asymptotic convergence of the underlying periodic profile to an appropriate
modulation of itself. The precise statement of this result is the main focus of this section.

We begin our study by analyzing the spectral stability of a periodic traveling wave
solution of (1.3). To this end, notice that (1.3) can be written in the abstract form

(2.1) Ut + f(U)x = (B(U)Ux)x + g(U)

and linearizing (1.3) about Ū(·), we obtain

(2.2) vt = Lv := (∂xB∂x − ∂xA+ C)v,

where the coefficients

(2.3)

A := df(Ū) − (dB(Ū)(·))Ūx =

(

−c −1
−τ̄−3(F−1 − 2νūx) −c

)

,

B := B(Ū) =

(

0 0
0 ντ̄−2

)

, C := dg(Ū) =

(

0 0
−ū2 −2ūτ̄

)

are periodic functions of x. As the underlying solution Ū depends on x only, equation (2.2)
is clearly autonomous in time. Seeking separated solutions of the form v(x, t) = eλtv(x), it
is clear that the stability of Ū requires a detailed analysis of the linearized operator L. In
particular, we say the underlying periodic traveling wave is spectrally stable provided the
linearized operator L has no spectrum in the unstable right half plane ℜ(λ) > 0. However,
the analysis of the spectrum of L is made exceedingly difficult by the following two facts:
first, as the coefficients of L are X-periodic, Floquet theory implies that the spectrum is
purely continuous and hence any spectral instability of the underlying periodic wave must
come from the essential spectrum; secondly, by the translation invariance of (1.3) it is
known that Ū ′ is an eigenfunction of L corresponding to λ = 0 and hence the essential
spectrum intersect the imaginary axis in at least one point. The first issue is dealt with
here by conducting a numerical study of the spectrum as opposed to a analytical spectral
stability study.

The second issue on the other hand actually gives us a starting point for our spectral
stability study. Since it is possible that the spectral curve through the origin might pass
through to the unstable half plane, a natural place to begin our study is to analyze the
spectrum of the linearized operator in a neighborhood of the origin λ = 0 in the spectral
plane. Physically, instability/stability in a neighborhood of the origin corresponds to the
underlying wave being spectrally stable to long-wavelength perturbations, i.e. to slow mod-
ulations of the traveling wave profile. Thus, we can analyze the long-wavelength stability
of a periodic traveling wave by using a well-developed (formal) physical theory for dealing
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with such stability problems known as Whitham theory. In the next section, we summarize
recent results concerning the application of Whitham theory to the current situation and
its rigorous verification through the use of Evans function techniques. This will lead to an
analytically necessary condition for spectral stability and hence to a natural set of stability
assumptions similar to those proposed by Schnieder in the context of reaction-diffusion and
related pattern-formation systems [S1, S2, S3].

2.1 Whitham averaging and spectral instability

Very recently a necessary condition for the spectral stability of periodic traveling wave
solutions of the generalized St. Venant equations in Eulerian coordinates (1.2) has been
derived by a novel relation between the Evans function and the corresponding linearized
Whitham averaged system proposed by Serre [Se1]; see [NR] for complete details. In par-
ticular, the authors show that the linearized dispersion relation obtained from the leading
order asymptotics of the Evans function near the origin can be derived formally through a
slow modulation (WKB) approximation yielding the Whitham averaged system. It follows
that the formal homogenization procedures introduced by Whitham [W] and Serre [Se1]
yields a necessary condition for the spectral stability of the underlying periodic traveling
wave. Here, we briefly review this procedure and its implication for spectral instability of
the periodic waves of (1.2), and hence of (1.3).

As a first step, we let ε > 0 be a small perturbation parameter and introduce a set of
slow-variables (x, t) = (εX, εT ). In these slow variables, we search for a solution of (1.2) of
the form

(h, u)(X,T ) = (h0, u0)

(

X,T ;
φ(X,T )

ε

)

+ ε(h1, u1)

(

X,T ;
φ(X,T )

ε

)

+ O(ε2),

where R ∋ y 7→ (hj , uj)(X,T ; y) are unknown 1-periodic functions. It follows then that the
local period of oscillation is ε/∂Xφ, where we assume the unknown phase a priori satisfies
∂Xφ 6= 0. Plugging this expansion into rescaled version of (1.2) and collecting like powers
of ε results in a hierarchy of consistency conditions which must hold. At the lowest order
O(ε−1), we find that the functions (h0, u0) satisfy the corresponding rescaled profile ODE
with wavespeed s in the variable ωy, where

s = −φT

φX
, and ω = φT .

Furthermore, notice then that ω denotes the local frequency and k = φX the local wave
number of the modulated wave. It follows then that (h0, u0) can be chosen to agree with a
given periodic traveling wave solution of (1.2) in the variable y.

Continuing, collecting the O(1) terms yields the mass conservation law

∂y

(

ω(k, q̄)h1 − ku1
)

= −
(

∂Th
0 + ∂Xu

0
)

,
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which has a solution if and only if the the right hand side has zero spatial average over a
period, i.e. if and only if

(2.4) ∂T (M(X,T )) + ∂X (cM(X,T ) − q) = 0,

where M(X,T ) :=
∫ 1
0 h

0(X,T, y)dy denotes the corresponding mass functional, c the wave
speed, and q = ch0 − u0 the corresponding integration constant. Together with the consis-
tency condition

(2.5) ∂Xk(X,T ) + ∂X(k(X,T )c(X,T )) = 0

these equations form a closed first order linear system of partial differential equations known
as the Whitham averaged equations5.

The linear system (2.4)-(2.5) is seen to be of evolutionary type provided that the non-
degeneracy condition

(2.6) ∂qM(X,T ) 6= 0,

holds. This condition is discussed in both the small-amplitude and small-viscosity regimes
in [NR]. Furthermore, the local well-posedness of this linear system is equivalent with its
local hyperbolicity, i.e. the fact that the dispersion relation ∆(λ, ν)

∆(λ, ν) := det

(

λ
∂(k,M)

∂(c, q)
− ν

∂(kc, cM − q)

∂(c, q)

)

= 0,

with (λ, ν) ∈ C× iR and where all arguments are evaluated at the underlying periodic wave
(h0, u0), corresponding to the linearization about the underlying wave (h0, u0), has all real
roots. Notice, in particular, that ∆(λ, ν) is a homogeneous quadratic polynomial in λ and
ν.

While hyperbolicity of the Whitham averaged system can heuristically be related to
its stability to long-wavelength perturbations, a rigorous proof of this fact has only been
recently given in [NR] through the use of the Evans function, which we briefly recall here.
Writing the linearization of (1.2) about a given X-periodic traveling wave solution as the
first order system

Y ′ = A(λ)Y,

the Evans function D(λ, σ) is defined for (λ, σ) ∈ C × S1 via

D(λ, eν) = det (Ψ(X;λ) − σI3) ,

where Ψ(·;λ) denotes the fundamental solution matrix, normalized so that Ψ(0;λ) = I3,
evaluated at the period point X. In particular, notice that λ belongs to the spectrum of the

5Notice that these are not the true Whitham equations for (1.2). Indeed, the Whitham equations are the
inherently nonlinear equations arising at order O(1) from substituting the above expansion in the rescaled
version of (1.2). Upon averaging these nonlinear equations over one spatial period, however, one arrives at
the given linear system; hence its naming as the Whitham averaged equations.
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linearized operator if and only if D(λ, σ) = 0 for some σ ∈ S1, and hence spectral stability
of the underlying wave is equivalent to the condition that D(λ, σ) does not vanish for any
ℜ(λ) > 0 and σ ∈ S1. Notice, however, that D(0, 1) = 0 by translation invariance, and
hence the spectrum must touch the imaginary axis. Whether or not the periodic wave is
spectrally stable in a neighborhood of the origin is connected to the hyperbolicity of the
Whitham averaged system through the following theorem.

Theorem 1 (Noble & Rodrigues [NR]). Let Ū be a periodic traveling wave solution of (1.2)
such that the non-degeneracy condition (2.6) holds. Then in the limit (λ, ν) → (0, 0) the
following asymptotic relation holds:

D(λ, eν) = Γ∆(λ, ν) + O((|λ| + |ν|)3)

for some non-zero constant Γ.

That is, the dispersion relation ∆(λ, ν) agrees to leading order with the Evans function
in a neighborhood of the origin. Recalling that ∆ is a homogeneous in the variables λ and
ν, introduction of the projective coordinate z = λ

ν reduces the dispersion relation to the
quadratic polynomial

(2.7) ∆(z, 1) = 0,

whose roots z1, z2 are distinct so long as the corresponding discriminate is non-zero. Under
this assumption, the implicit function theorem applies in a neighborhood of z = zj , κ = 0
and hence, in terms of the original spectral variable λ there are two spectral branches

(2.8) λj = zjν + O(ν2).

Thus, if the Whitham system is hyperbolic, corresponding to zj ∈ R, then the two spectral
branches emerge from the origin tangent to the imaginary axis. This is clearly a necessary
condition for spectral stability. On the other hand, failure of hyperbolicity of the Whitham
system implies that the zj have non-zero imaginary part and hence the corresponding spec-
tral branches must emerge from the origin and enter the unstable half plane, immediately
yielding spectral instability of the underlying wave.

Similar results concerning the spectral verification of the Whitham averaged equations
have also been derived in the viscous conservation law setting [OZ3, Se1]. Notice however,
that while hyperbolicity of the Whitham system is necessary for the spectral stability of a
given periodic traveling wave solution of (1.2), it may not be sufficient. Indeed, hyperbolicity
of the Whitham system is a first order condition, implying agreement of the spectrum near
the origin along lines. Thus, the Whitham system will be hyperbolic so long as the spectral
curve is tangent to the imaginary axis at the origin, whether or not the spectral curve then
proceeds to the stable or unstable half planes. Nevertheless these considerations lead us to
a natural set of spectral stability assumptions, which in the next section we show implies
nonlinear stability of the underlying wave.
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2.2 Bloch decomposition and spectral stability conditions

A particularly useful way to analyze the continuous spectrum of the linearized operator
L is to decompose the problem into a continuous family of eigenvalue problems through
the use of a Bloch decomposition. To this end, a straightforward application of Floquet
theory implies that the L2 spectrum of the linearized operator L is purely continuous and
corresponds to the union of the L∞ eigenvalues of the operator L taken with boundary
conditions v(x+X) = eiκv(x) for all x ∈ R, where κ ∈ [−π, π) is referred to as the Floquet
exponent. In particular, it follows that λ ∈ σ(L) if and only if the spatially periodic spectral
problem

(2.9) Lv = λv

admits a uniformly bounded eigenfunction of the form v(x) = eiξxw(x), where w is X-
periodic. Substitution of this Ansatz into (2.9) motivates the use of the Fourier-Bloch
decomposition of the spectral problem.

Following [G] then, we define a one-parameter family of linear operators, referred to as
the Bloch operators, via

Lξ := e−iξxLeiξx, ξ ∈ [−π, π)

operating on L2
per([0, X]), the space ofX-periodic square integrable functions. The spectrum

of L is then seen to be given by the union of the spectra of the Bloch-operators. Furthermore,
since the domain [0, X] is compact the operators Lξ, for each fixed ξ, have discrete spectrum
in L2

per([0, X]) and hence, by continuity of the spectrum, the spectra of L may be described
by the union of countable many continuous surfaces.

Continuing, taking without loss of generalityX = 1, we recall that any localized function
v ∈ L2(R) admits an inverse Bloch-Fourier representation

v(x) =

(

1

2π

)
∫ π

−π
eiξxv̂(ξ, x)dξ

where the functions v̂(ξ, ·) =
∑

j∈Z
e2πijxv̂(ξ + 2πj) belongs to L2

per([0, X]) for each ξ,
where here v̂(·) denotes with a slight abuse of notation the usual Fourier transform of the
function v in the spatial variable x. By Parseval’s identity it is seen that the Bloch-Fourier
transformation v(x) → v̂(ξ, x) is an isometry of L2(R), i.e.

‖v‖L2(R) =

∫ π

−π

∫ X

0
|v̂(ξ, x)|2dx dξ =: ‖ĝ‖L2(ξ;L2(x)).

Furthermore, this transformation is readily seen to diagonalize the periodic-coefficient lin-
earized operator L, yielding the inverse Bloch-Fourier transform representation

eLtv(x) =
1

2π

∫ π

−π
eiξxeLξtĝ(ξ, x)dξ

effectively relating the behavior of the linearized system to that of the diagonal operator
Lξ.
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Together with the long-wavelength stability analysis in the previous section, we now
state our main spectral stability assumptions in terms of the diagonal Bloch operators Lξ.

(D1) σ(Lξ) ⊂ {λ ∈ C : ℜλ < 0} for all ξ 6= 0.

(D2) There exists a constant θ > 0 such that ℜσ(Lξ) ≤ −θ|ξ|2 for all |ξ| ≪ 1.

(D3’) λ = 0 is an eigenvalue of L0 of multiplicity exactly two.6

Notice that assumption (D1) implies weak hyperbolicity of the Whitham averaged system,
while (D2) corresponds to “diffusivity” of the large-time (∼ small frequency) behavior of
the linearized operator L. Moreover, (D3′) holds generically and can be directly verified
through the use of the Evans function arguments as in [N1]. Finally, we point out that
(D1)−(D3′) are balance law analogues of the spectral assumptions introduced by Schneider
for reaction-diffusion equations [S1, S2, S3].

Furthermore, we make the following non-degeneracy hypothesis:

(H3) The roots zj of (2.7) are distinct.

(H4) The eigenvalue 0 of L0 is non-semisimple, i.e. dim ker(L0) = 1.

Conditions (H1) − (H4) generically imply that (D2) hold7. Moreover, (H3) corresponds
to strict hyperbolicity of the Whitham averaged system, and implies the analyticity of the
spectrum in a neighborhood of the origin. Specifically, since ∆(0, 1) 6= 0, as is readily seen
in [NR], it follows that the roots zj of (2.7) are non-zero and distinct by (H3) and hence
relation (2.8) and standard spectral perturbation theory [K] implies the spectral curves
λj = λj(ν) = λj(iξ) are analytic functions of ξ in a neighborhood of ξ = 0. Finally, notice
that assumptions (D3′) and (H4) imply the existence of a Jordan block at (λ, ξ) = (0, 0).
In particular, we have the following spectral preparation result.

Lemma 2.1 ([JZN]). Assuming (H1)–(H4), (D1), and (D3’), the eigenvalues λj(ξ) of Lξ

are analytic functions and the Jordan structure of the zero eigenspace of L0 consists of a
1-dimensional kernel and a single Jordan chain of height 2, where the left kernel of L0 is
spanned by the constant function f̃ ≡ (1, 0)T , and ū′ spans the right eigendirection lying at
the base of the Jordan chain. Moreover, for |ξ| sufficiently small, there exist right and left
eigenfunctions qj(ξ, ·) and q̃j(ξ, ·) of Lξ associated with λj(ξ) which are analytic in ξ for in
a neighborhood of ξ = 0. Furthermore, 〈q̃j , qk〉 = δk

j

Remark 2.2. Notice that the results of Lemma 2.1 are somewhat unexpected since, in gen-
eral, eigenvalues bifurcating from a non-trivial Jordan block typically do so in a nonanalytic
fashion, rather being expressed in a Puiseux series in fractional powers of ξ. The fact that

6Note that the zero eigenspace of L0, corresponding to variations along the three-dimensional manifold of
periodic solutions in directions for which the period does not change [Se1, JZ2], is at least two-dimensional
by the linearized existence theory and assumption (H2).

7This amounts to nonvanishing bj in the Taylor series expansion λj(ξ) = −izjξ−bjξ
2+o(|ξ|2) guaranteed

by Lemma 2.1 given (H1) − (H4), (D1), and (D3′).



2 ANALYTICAL RESULTS 13

analyticity prevails in our situation is a consequence of the very special structure of the left
and right generalized null-spaces of the unperturbed operator L0, and the special forms of
the equations considered.

From the standpoint of obtaining a nonlinear stability result, the existence of the non-
trivial Jordan block over the translation mode suggests that one can not expect traditional
orbital asymptotic stability of the original periodic traveling wave in any standard Lp or Hs

norm; see [OZ2]. Nevertheless, following the ideas of [JZ2] we are able to prove nonlinear
asymptotic stability to an appropriate modulation of the original wave, and hence an L∞

stability result for the underlying wave. The technical details driving this nonlinear stability
argument are beyond the scope of what we wish to discuss here; the interested reader can
see [JZ2, JZN]. However, for a sense of completeness we recall here the general outline of
the argument in the next section.

2.3 Nonlinear stability: a guided tour

Here, we wish to recall the basic ideas behind the nonlinear stability of periodic traveling
wave solutions of the St. Venant equations (1.2). For technical reasons, we find it essential
to utilize the Lagrangian formulation (1.3) throughout this analysis. To begin, let Ū(x)
denote a periodic traveling wave solution of (1.4) and let Ũ(x, t) denote any other solution
of (1.3). Our goal is to prove that if Ũ(x, 0) is sufficiently close to Ū(x) in a suitable
norm, then it remains close for all future times t > 0. To this end, define the nonlinear
perturbation variable

(2.10) v(x) := Ũ(x+ ψ(x, t)) − Ū(x),

where ψ : R
2 → R is a modulation function to be chosen later. Our starting point is the

following observation: by a direct computation and Taylor expansion, the nonlinear residual
(2.10) is seen to satisfy

(∂t − L) v = (∂t − L) Ū ′(x)ψ −Qx + T + P +Rx + ∂tS,

where

P = (0, 1)TO(|v|(|ψxt| + |ψxx| + |ψxxx|),
Q := f(Ũ(x+ ψ(x, t), t)) − f(Ū(x)) − df(Ū(x))v = O(|v|2),

T := (0, 1)T
(

(Ũ(x+ ψ(x, t), t))2 − (Ū(x))2 − Ū(x))v
)

= (0, 1)TO(|v|2),

R := vψt + vψxx + (Ūx + vx)
ψ2

x

1 + ψx
, and

S = O(|v|(|ψx|).
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Letting G(x, t; y) denote the Green function of (2.9) then, an application of Duhamel’s
formula implies the nonlinear residual must satisfy the integral equation

(2.11)

v(x, t) = ψ(x, t)Ū ′(x) +

∫ ∞

−∞
G(x, t; y)v0(y) dy

+

∫ t

0

∫ ∞

−∞
G(x, t− s; y)(−Qy + T +Ry + St)(y, s) dy ds.

In order to obtain control over v in a givenHs norm then, we seek to obtain pointwise bounds
on the Green function G and an appropriate expression for ψ for which (2.11) becomes
susceptible to an iteration argument. Since, as expected, the low-frequency behavior of
the solution operator near the neutral eigenvalue λ = 0 is the most difficult to control, we
decompose the solution operator S(t) = eLt corresponding to the linearized operator L into
high and low-frequency components.

To this end, standard spectral perturbation theory [K] implies that the total eigenpro-
jection P (ξ) onto the eigenspace of Lξ associated with the eigenvalues λj(ξ) described in
(2.8) is well-defined and analytic in ξ for |ξ| sufficiently small, since these (by discreteness
of the spectra of Lξ) are separated at ξ = 0 from the rest of the spectrum of L0. Choosing
an appropriate cut-off function φ(ξ) supported in a small neighborhood of the origin and
identically one in a slightly smaller neighborhood, we split S(t) into a low-frequency part

SI(t)u0 :=
1

2π

∫ π

−π
eiξxφ(ξ)P (ξ)eLξtû0(ξ, x)dξ

and the associated high-frequency part

SII(t)u0 :=
1

2π

∫ π

−π
eiξx(1 − φ(ξ))P (ξ)eLξtû0(ξ, x)dξ.

We begin by analyzing SII . Fairly routine semigroup estimates [He, Pa] imply the
bounds

∥

∥eLξtg
∥

∥

L2([0,X])
. e−θt‖g‖L2([0,X])

∥

∥∂xe
Lξtg

∥

∥

L2([0,X])
. e−θtt−1/2‖g‖L2([0,X])

∥

∥eLξt∂xg
∥

∥

L2([0,X])
. e−θtt−1/2‖g‖L2([0,X])

for all times t > 0 and some constant θ > 0. Since the Bloch-Fourier transform is an
isometry of L2, it follows by standard Lp interpolation and Sobolev’s inequality that there
exists a constant θ > 0 such that

‖SII(t)∂l
xg‖Lp(R) . e−θtt−l/t‖g‖L2(R).

for all 0 ≤ l ≤ 2 and, similarly, one obtains an estimate on terms of the form ‖SII(t)∂m
t g‖L2(R).
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Next, we seek analogous bounds on the low-frequency portion of the solution operator.
This however is complicated by the presence of spectral curves which touch the imaginary
axis at the origin, and hence a more delicate analysis is necessary. We begin by denoting
by

GI(x, t; y) := SI(t)δy(x)

the Green kernel associated with SI . Furthermore, recalling Lemma 2.1, for |ξ| sufficiently
small we denote by qj(x, ξ) and q̃j(x, ξ) the right and left eigenfunctions of the Bloch
operator Lξ, respectively, associated with the spectral curves λj(ξ) bifurcating from the
(ξ, λj(ξ)) = (0, 0) state and we enforce the normalization condition 〈q̃j(·, ξ), qk(·, ξ)〉L2([0,X]) =

δk
j . It follows then that we can express the low-frequency Green function as

GI(x, t; y) =

(

1

2π

)
∫

R

eiξ(x−y)φ(ξ)

2
∑

j=1

eλj(ξ)tqj(ξ, x)q̃j(ξ, y)
∗dξ,

where ∗ denotes the complex conjugate transpose. Notice that this Bloch expansion for
the Green kernel is analogous to using a Fourier representation in the constant coefficient
case. Similary as in the constant–coefficient case, we may read off decay from the spectral
representation using the following generalization of the Hausdorff–Young inequality.

Lemma 2.3 (Generalized Hausdorff–Young inequality [JZ2]).

(2.12) ‖u‖Lp(x) ≤ ‖û‖Lq(ξ;Lp(0,X)), for q ≤ 2 ≤ p and
1

p
+

1

q
= 1

Proof. Relation (2.12) holds in the extremal cases p = 2 and p = ∞ by Parseval’s identity
and the triangle inequality, respectively. This generalized version of the Hausdorff–Young
inequality then holds for all stated pairs (p, q) by a generalized version of Riesz-Thorin
interpolation theorem; see Appendix A of [JZ2] for more details.

In order to analyze the decay properties of the kernel GI in t, we notice that while
assumption (D2) implies eλj(ξ)t . e−θ|ξ|2t for all t > 0, this does not immediately yield decay
since the presence of the Jordan block (guaranteed by assumptions (D3’) and (H4)) implies
q1(ξ)q̃1(ξ) ∼ ξ−1, where q1(0)(x) = Ū ′(x) corresponds to the translation mode. Following
this intuition, we find that the terms in the Bloch expansion of the Green kernel GI not
associated with the Jordan block near ξ = 0 decay in Lp(x) as ‖e−θξ2t‖Lq(ξ) . t−

1

2
(1−1/p),

i.e. at the rate of a heat kernel, while the portion of the kernel associated with the Jordan
block decays in L∞(x) as ‖ξ−1e−θξ2t‖L1(ξ) . 1. These bounds, derived from the Bloch-
norm Hausdorff–Young inequality discussed above should be compared with those found by
weighted-energy estimate methods of Schneider [S1].

Using the above Lp
x → Lq

ξL
p
z bounds then it follows that the low-frequency Green kernel

GI can be decomposed as

GI(x, y; t) = Ū ′(x)e(x, t; y) + G̃I(x, t; y)
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where the residual G̃I and amplitude e satisfy the bounds

sup
y∈R

‖G̃I(·, t; y)‖Lp(x) . (1 + t)−
1

2
(1−1/p)

sup
y∈R

‖e(·, t; y)‖Lp(x) . (1 + t)−
1

2
(1−1/p)

for all 2 ≤ p ≤ ∞. Furthermore, it can be shown that the derivatives of these functions decay
in time even faster according to the variable and order of differentiation. These estimate
can be used to control the “free-evolution” type terms appearing in the integral equation
(2.11). To control the integrals associated with the (implicit) source terms, arguments like
those outlined above can be used to obtain the estimates

∥

∥

∥

∥

∫

R

∂̃r
yG(·, t; y)f(y)dy

∥

∥

∥

∥

Lp(x)

. (1 + t)−
1

2
(1/q−1/p)−r/2‖f‖Lq∩H1

∥

∥

∥

∥

∫

R

∂x,y,te(·, t; y)f(y)dy

∥

∥

∥

∥

Lp(x)

. (1 + t)−
1

2
(1/q−1/p)‖f‖Lq

where 1 ≤ q ≤ 2 ≤ p ≤ ∞ and r = 0, 1.
With these preparations, we return to (2.11) and define

ψ(x, t) := −
∫ t

0

∫

R

e(x, t− s; y)
(

−Qy +Ry +
(

∂t + ∂2
y

)

S
)

dy ds

and note that this choice cancels the “bad” term Ū ′(x)e in the decomposition GI = Ū ′e+G̃I .
Furthermore, using (2.11) this choice results in a closed system in the variables (v, ψx, ψt),
where now v satisfies

v(x, t) =

∫ t

0

∫

R

G̃I(x, t− s; y)
(

−Qy +Ry +
(

∂t + ∂2
y

)

S
)

dy ds,

and

ψx,t(x, t) =

∫ t

0

∫

R

ex,t(x, t− s; y)
(

−Qy +Ry +
(

∂t + ∂2
y

)

S
)

dy ds.

Recalling then that (Q,R, S) = O(|v, ψx,t|2) and G̃I and ex,t decay at Gaussian rates in
Lp(x), nonlinear stability follows by a direct iteration (contraction mapping) argument as
in the more well familiar viscous shock case (where the profile decays to constant solutions).
As with the linearized bounds derived above, these cancelation computations, carried out in
the physical variables, should be compared to the cancelation computations carried out in
the frequency domain by Schneider for the reaction diffusion case. In particular, we arrive
at the main theorem of [JZN].

Theorem 2. Assuming (H1)–(H4) and (D1)–(D3’), let Ū = (τ̄ , ū) be a traveling-wave
solution of (1.3) satisfying the derivative condition

(2.13) νūx < F−1.
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Then, for some C > 0 and ψ ∈WK,∞(x, t), K as in (H1),

(2.14)

‖Ũ − Ū(· − ψ − ct)‖Lp(t) ≤ C(1 + t)−
1

2
(1−1/p)‖Ũ − Ū‖L1∩HK |t=0,

‖Ũ − Ū(· − ψ − ct)‖HK (t) ≤ C(1 + t)−
1

4 ‖Ũ − Ū‖L1∩HK |t=0,

‖(ψt, ψx)‖W K+1,p ≤ C(1 + t)−
1

2
(1−1/p)‖Ũ − Ū‖L1∩HK |t=0,

and

(2.15) ‖Ũ − Ū(· − ct)‖L∞(t), ‖ψ(t)‖L∞ ≤ C‖Ũ − Ū‖L1∩HK |t=0

for all t ≥ 0, p ≥ 2, for solutions Ũ of (1.3) with ‖Ũ − Ū‖L1∩HK |t=0 sufficiently small. In
particular, Ū is nonlinearly bounded L1 ∩HK → L∞ stable.

Theorem 2 asserts not only bounded L1 ∩ HK → L∞ stability, a very weak notion of
stability, but also asymptotic convergence of Ũ to the space-time modulated wave Ū(x −
ψ(x, t)). The fact that we don’t get decay to Ū is the fundamental reason why we had
to factor out the translation mode from the low-frequency Green kernel GI : indeed, the
nonlinear (source) terms in (2.11) can not be considered as asymptotically negligible without
asymptotic decay of the modulation ψ to zero. After factoring out the translation mode,
however, it is found that the perturbation v decays to zero as ψx, which, thanks to the
diffusive nature of the linearized operator, decays at a rate t1/2 (in L2) faster than ψ.
Finally, we also note that the derivative condition (2.13) is effectively an upper bound
on the amplitude of the underlying periodic wave and is a technical condition needed to
control the HK norm of the perturbation v in terms of the L2 norm; this technical detail
is beyond the scope of our current presentation, and interested readers are referred to
[JZN]. It should be noted, however, that (2.13) is satisfied when either the wave amplitude
or viscosity coefficient ν is sufficiently small, and is seen to be satisfied for all roll-waves
computed numerically in [N2] and here in Section 3.2.

Our next goal is to verify, at least numerically, the spectral stability conditions necessary
in Theorem 2 to conclude nonlinear (bounded) stability of the underlying periodic wave Ū .

3 Spectral Stability

Now that we have established that the spectral stability of a given periodic traveling wave
solution of (1.3) implies nonlinear stability in the sense of Theorem 2, we continue our
investigation by analyzing the spectral stability question. To begin, we restrict to the
commonly studied case (r, s) = (2, 0) and depict in Figure 1(a) a typical phase portrait
for the corresponding profile ODE (1.5) in the τ, τ ′ variables. In this case, all periodic
orbits arise through a Hopf bifurcation, corresponding to minimun period X ≈ 3.9, as c
is decreased through the critical wavespeed cs, as depicted in Figure 1(b). An interesting
feature here is that the upper stability boundary, corresponding to the bold orbit of greatest
amplitude, is nearly indistinguishable from the limiting homoclinic orbit in both shape, by
Figure 1(a), and speed, by Figure 1(b).
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Figure 1: (a) A typical phase portrait depicting a family of periodic orbits parameterized by
the wave speed c generated through a Hopf bifurcation at the enclosed equilibrium solution.
The inner and outer most bold orbits correspond to the lower (period X ≈ 5.3) and upper
(X ≈ 20.6) stability boundaries, while the bold orbit in between corresponds to the stable
periodic traveling wave solution (X ≈ 6.2) depicted in Figure 5. (b) A plot of the period
X versus the wavespeed c of the corresponding periodic traveling wave. Notice that all
periodic orbits sufficiently close to the bounding homoclinic have approximately the same
wavespeed and hence locally resemble in both shape and speed the limiting homoclinic
wave. The diamond denotes the lower stability boundary, while the circle signifies the
stable solution depicted in Figure 5.

The goal of this section is to attempt to find a spectrally stable solution of the St.
Venant equation

(3.1)
τt − ux = 0,

ut + ((2F )−1τ−2)x = 1 − τu2 + ν(τ−2ux)x,

considered here again in Lagrangian coordinates, There are two natural limits in which the
spectrum of the corresponding linearized operator L seems amenable to direct analysis. The
first is a small-amplitude, i.e. Hopf, limit as one approaches the enclosed equilibrium solu-
tion, while the other corresponds to the large-period limit as the periodic wave approaches
the bounding homoclinic in phase space. In the next section, we recall recent results of
[BJRZ] concerning stability in these distinguished limits.

3.1 Hopf and homoclinic limits

We begin our search for stable periodic traveling wave solutions of (3.1) by considering
the small amplitude limit in which one approaches the enclosed equilibrium solution. More
generally, we consider the stability of the equilibrium solutions, which satisfy the relation
τ0u

2
0 = 1. To this end, we recall from [BJRZ] that the linearization of (3.1) about an

equilibrium solution (τ0, u0) satisfying τ0u
2
0 = 1 has as an associated dispersion relation
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between the eigenvalue λ of the linearized operator L and the Fourier frequency k given by

λ2 +

[

r

u0
− 2ick +

νk2

τ2
0

]

λ+ ik

[

s+ 1

τ0
− cr

u0
+ ik(c2 − c2s) −

cνk2

τ2
0

]

= 0.

Notice that the eigenvalues corresponding to frequency k = 0 are λ = −u−1
0 , which remains

negative for |k| ≪ 1, and λ = 0. To determine the behavior of the λ = 0 for small nonzero
k, we Taylor expand the dispersion relation about (λ, k) = (0, 0) with λ = λ(k) and find
that the spectral curve λ(k) must satisfy

λ′(0) = −i
[

u0

2τ0
− c

]

,

indicating stability, while

1

2
λ′′(0) =

u0

2

[

(

iλ′(0) + c
)2 − c2s

]

=
u0

2

[

(

u0

2τ0

)2

− c2s

]

.

Recalling the Hopf bifurcation conditions (1.7), we find that if the equilibrium solution
τ0 corresponds to a Hopf bifurcation point of the profile ODE (1.5) then we must have
λ′′(0) > 0, yielding instability of the equilibrium (Hopf) point. In particular, we see that in
the regime of existence of periodic waves, i.e. F > 4, all constant solutions are spectrally
unstable. Therefore, since the spectrum of the linearized operator L changes continuously as
we nearby periodic orbits we conclude that all periodic traveling wave solutions of (3.1) so-
lutions must be spectrally unstable in the small amplitude limit. This is verified numerically
in Figure 2(a).

Next, we turn to the large-period limit as the periodic orbits approach the bounding
homoclinic profile in phase space. In this case, we can use the same arguments as in the Hopf
limit in order to determine the stability of the limiting end state of the homoclinic orbit,
which recall determines the essential spectrum of the homoclinic [He]. It follows that the
limiting endstate is spectrally unstable in a neighborhood of the origin whenever the Hopf
bifurcation condition F > 4 hold, and this is numerically verified in Figure 2(b). Therefore,
we should not expect to find any spectrally stable periodic waves in the homoclinic limit.

It follows that any spectrally stable periodic traveling wave of (3.1), if one exists, must
be of intermediate amplitude. In particular, due to the complicated nature of the linearized
operator and the fact that we can not rely on perturbation techniques from a particular
limit, our analysis now turns over to a numerical study. Before continuing, however, we wish
to give a heuristic argument, reconciling physically observed stability with this analytically-
demonstrated instability, why one still might expect the existence of stable periodic waves
of intermediate amplitude despite the instability of the Hopf and homoclinic limiting states.
If one considers the stability of the limiting homoclinic profiles more carefully, it can be
found by rigorous Evans function calculations8 that there exist homoclinic orbits having

8More precisely, numerical Evans function computations with rigorous error bounds; see [BJRZ].
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Figure 2: (a) The essential spectrum for the unstable constant solution at the Hopf bifur-
cation point is depicted.(b) The essential spectrum of the bounding homoclinic is shown.
Both of these spectral plots, as well as the rest presented throughout this paper, are of ℜ(λ)
vs. ℑ(λ) and were generated using the SpectrUW package developed at the University of
Washington [DK], which is designed to find the essential spectrum of linear operators with
periodic coefficients by using Fourier-Bloch decompositions and Galerkin truncation; see
[CuD, CDKK, DK] for further information and details concerning convergence.

unstable essential spectrum, as predicted from the preceding discussion, and stable point
spectrum. As a result, we find that the associated homoclinic orbit stabilizes perturbations
across dynamic parts of the wave, i.e. where the gradient varies nontrivially, reflecting the
stable point spectrum of the wave, while the portion of the wave near the limiting constant
endstate amplifies the perturbation, reflecting the unstable essential spectrum; see Figure
3. Accordingly, one encounters an interesting “metastability” mechanism where the stable
point spectrum induces a stabilizing effect on a closely spaced array of solitary waves, since
the unstable constant endstates would have little effect due to the “closeness” of the array.
This leads one to a notion of the “dynamic stability” of a solitary wave, which is essentially
the spectrum of an appropriately periodically extended version of the original homoclinic;
this issue is discussed in more detail in [BJRZ]. Heuristically, then, considering a closely
spaced array of solitary solutions as a periodic orbit we are led to the possibility of finding
spectrally stable periodic waves away from either the homoclinic or Hopf limits. In the next
section, we numerically verify this heuristic by presenting numerical computations indicating
the existence of a stable periodic solution to the St. Venant equations (1.3). These numerical
stability results are formal in the sense that we do not present any error bounds or rigorous
high-frequency asymptotics precluding the existence of unstable spectrum sufficiently far
from the origin; in a future paper [BJNRZ] we hope to present such bounds and hence make
the formal numerical arguments here rigorous. For the purposes of this article, however,
our formal numerical investigation will suffice.

3.2 Numerical study

In this section, we use the SpectrUW package, which relies on Fourier-Bloch decompositions
and Galerkin truncation to numerically evaluate the spectrum of linear operators with
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Figure 3: Time evolution of square wave perturbation of a homoclinic orbit possessing stable
point spectrum and unstable essential spectrum. Here u− = 0.96, q = u− + c/u2

−, ν = 0.1,
r = 2, s = 0, and F = 6. Notice that the perturbation decays across the region of the
profile where the gradient varies non-trivially and grows near the unstable limiting constant
states and is eventually convected to minus infinity.

periodic coefficients, to numerically compute the spectrum of the periodic orbits depicted
in Figure 1. As described in the previous section, we expect the solutions near the Hopf and
homoclinic cycles to have unstable essential spectrum. Nevertheless, the metastability of
the limiting homoclinic profile suggests that waves of intermediate period may be spectrally
stable, and hence be nonlinearly stable by Theorem 2. In this investigation then, we animate
the spectrum as the period X is increased, or equivalently the wave speed c is decreased,
from the Hopf period X ≈ 3.9 to X = 29.9, which corresponds to a periodic orbit seemingly
very close to the homoclinic in phase space. The results of this study are shown in Figure
4 and indeed seem to indicate a region of stable periodic orbits. Indeed, it seems that the
unstable small-amplitude periodic waves eventually stabilize in a neighborhood of the origin
as the period is increased and then are later destabilized by the essential spectrum crossing
the imaginary axis at non-trivial complex conjugate points as the period is increased further.

We see then that there seems to be a regime of stability in which periodic orbits with
particular intermediate periods are spectrally stable solutions of (3.1). A spatial plot in the
original physical coordinates (h = τ−1 vs. x) of a periodic roll-wave in this stable regime
is depicted in Figure 5. In [BJNRZ], high frequency asymptotics have been obtained which
make this numerical evidence rigorous by proving that any spectral instability must occur
within a specified compact region of the complex plane. Furthermore, for the seemingly
stable spectra depicted in Figure 4 it is verified in [BJNRZ] through the development of
rigorous error bounds that the corresponding waves are indeed spectrally stable as solutions
of (3.1).

Finally, we make some remarks concerning the various instabilities present in Figure
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Figure 4: Evolution of spectra as period, here denoted as X = T , and wave speed, c, vary.
Here u− = 0.96, q = u− + c/u2

−, ν = 0.1, r = 2, s = 0, and F = 6. Starting in the top left
picture and running from left to right and from top to bottom, we see the evolution of the
spectra from the Hopf bifurcation at T ≈ 3.9 to a wave seemingly near the the homoclinic
in phase space with period T ≈ 29.9.
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Figure 5: A numerically stable periodic wave of the St. Venant equation 3.1, plotted in the
original physical coordinates (h = τ−1 vs. x). This particular wave has period X ≈ 6.2,
and corresponds to the bold orbit in Figure 1(a) between the upper and lower stability
boundaries, and whose period is designated by the circle in Figure 1(b) . In particular,
notice that the corresponding wave speed, as depicted in Figure 1(b), is close to the limiting
homoclinic speed.
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4 and their relation to the hyperbolicity of the associated Whitham averaged system. To
begin, we recall that by the recent work [NR] hyperbolicity of this Whitham system is
necessary for spectral stability; see Theorem 1. The lack of sufficiency in this theorem
is associated with the fact that it is only a first order verification. Hence, Theorem 1
essentially states that hyperbolicity of the Whitham averaged system is equivalent to the
spectrum of the associated linearized spectral problem being tangent to the imaginary axis
at the origin, which is clearly a necessary condition for stability but not sufficient9. As an
example, notice that the first three spectral plots, ordered from left to right and top to
bottom, in Figure 4 are spectrally unstable in a neighborhood of the origin due to lack of
hyperbolicity of the associated Whitham averaged system. The remaining six spectral plots
are seemingly associated with hyperbolic Whitham averaged systems, but we see instability
arising for sufficiently large period due to an essential instability occurring away from the
origin. Thus, as expected, hyperbolicity of this Whitham equation is only a local condition
for spectral stability, in the sense it only detects instabilities in a neighborhood of the origin.
In particular, the lower stability boundary, occurring with period within 0.1 of X = 5.3 is
marked by the hyperbolic Whitham criterion, while the upper stability boundary, occuring
around X = 20.6 is not.

Notice, however, that in the final spectral plot the wave seems to stabilize in a neighbor-
hood of the origin. While this seems to be a general phenonamon for periodic waves where
the period is not “too” large, tentative numerical experiments indicate that for periodic
waves with with very large periods the spectrum seems to destabilize in a neighborhood of
the origin; in particular, the spectrum eventually seems to resemble that of Figure 2(b) for
the limiting homoclinic. This seems to suggest that, although the Whitham averaged sys-
tem is hyperbolic, the wave is spectrally unstable in a neighborhood of the origin. Readers
should be warned, however, that a stabilization effect near the origin may still occur, but
we may not be able to see it due to a low-resolution of the spectral plot. Furthermore, it
seems to be quite difficult to numerically generate periodic orbits with very large period
and hence we had to resort to periodically extending a homoclinic orbit for these numer-
ics. Nevertheless, these experiments seem to suggest that it may be possible for a periodic
traveling wave solution of the St. Venant equations (3.1) with sufficiently large period to
have a hyperbolic Whitham averaged system but be spectrally unstable to long-wavelength
perturbations.

Continuing, we should note that using a Bloch-wave expansion, two of the authors of
the present paper have recently been able to rigorously validate the second order Whitham
expansion [NR], showing that this second order Whitham system determines the convexity of
the spectrum near the origin: a clearly more refined feature than the first order verification
provided by hyperbolicity. Thus, it may be possible to numerically verify the existence
of periodic waves where the spectrum leaves the origin at second order and moves into

9This is in contrast to the dispersive Hamiltonian case, such as the generalized Korteweg-de Vries or
nonlinear Schrodinger equations, where the Hamiltonian structure of the linearized operator implies the
stability spectrum is invariant with respect to reflections across the imaginary axis. In that case, generically
it can be shown that hyperbolicity of the Whitham equation is equivalent with spectral stability of the
underlying wave in a neighborhood of the origin. See, for example, [JZ1].



4 CONCLUSIONS & DISCUSSION 24

the unstable half plane by analyzing the associated second order Whitham system. This
system is however considerably more complicated than its first order counterpart discussed
in Section 2.1 and it is not immediately clear how to “compute” the necessary information
from this system for a given numerically generated solution.

4 Conclusions & Discussion

In this note, we have considered both analytical and numerical aspects of the stability
of periodic roll-wave solutions of the generalized St. Venant equations. In particular,
we reviewed known results concerning the nonlinear stability of such solutions and then
proceeded to numerically investigate the necessary spectral stability assumptions in the
nonlinear stability theorem. To this end, we utilized the SpectrUW package developed
at the University of Washington and, formally, we made the case for the existence of a
spectrally, and hence nonlinearly, stable periodic traveling wave solution of the governing
St. Venant equation. This stands in contrast to the fact that periodic solutions near
either the Hopf equilibrium solution or the bounding homoclinic solutions are unstable. By
briefly outlining the heuristic of the “dynamic stability” of the bounding homoclinic wave,
however, we were able to give a (possibly general) explanation of how an equation with
unstable solitary waves can admit stable periodic waves solutions.

This concept of “metastability” of solitary waves has been considered also by Pego,
Schneider, and Uecker [PSU] in the context of the related fourth-order diffusive Kuramoto–
Sivashinsky model

ut + ∂4
xu+ ∂2

xu+
∂xu

2

2
= 0,

which has been proposed as an alternative model for thin film flow down an inclined ramp.
Therein, the authors analyze the time-asymptotic behavior of solutions of this equation,
and conclude that they are dominated by trains of solitary pulses. As such, the mechanism
of stable “dynamic spectrum” seems to provide a partial answer for how a train of solitary
pulses can stabilize the convective instabilities shed from their neighbors.

In general, however, it seems that the mechanism by which an equation with an unstable
solitary wave can admit stable periodic waves is not completely clear, although we suspect
that it is closely tied with the notion of the “dynamic stability” of the limiting homoclinic
profile. In particular, to prove a general theorem describing this mechanism at a quantitative
level seems outside the realm of current methods and remains an interesting open problem.

Finally, we wish to emphasize again that the numerical evidence for stability presented
in Section 3.2 are formal in the sense that they are lacking the error estimates and high-
frequency asymptotics/energy estimates necessary to preclude the existence of unstable
spectrum outside the window of our computation. In a future paper [BJNRZ], we will carry
out these details and provide rigorous numerics which indicate the existence of a spectrally
stable periodic traveling wave solution of the St. Venant equation (3.1).

Acknowledgement: Thanks to Bernard Deconink for his generous help in guiding us
in the use of the SpectrUW package developed by him and collaborators. The numerical
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Evans function computations performed in this paper were carried out using the STABLAB
package developed by Jeffrey Humpherys with help of the first and last authors.
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