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ABSTRACT

This article deals with the effective dynamic behavior of elastic materials periodically rein-
forced by stlf linear slender elastic incusions. By assuming a small scale ratio £ between the
period section size and the characteristic size of the system global strain, and by weighing
the constitients stiffness contrast by powers of & the dynamic macrescopic behavior at the
leading crder is derived through the asymptotic homoegenization methed of periodic media
considering different frequency ranges. A two order stiffness contrast (g, /p,  O{g*)} is
shown to lead to a dynamic macroscopic behavier spatially non-local in the transverse
direction, where the system behaves as ageneralized inner bending continuum, and tempo-
rally non-lecal in the axial directien, where the system behaves, at higher frequency, as a
metamaterial in whichinternal resenance phencmena take place. The consequences of such
non-lecalities on the reinforced medium modes are examined. The system axial and trans-

verse modes are shown to be significantly different from those of vseal composites.

1. Introduction

This paper is concerned with the dynamic response of
materials reinforced by stiff linear fibers. These highly con-
trasted media consist in a matrix in which long and stiff
inclusions, orientated along a single direction, are embed-
ded. Such materials are nowadays in frequent use in differ-
ent engineering domains, either as hand-made industrial
materials, for instance in aeronautics (mat of carbon or
glass fibers, ...), in civil engineering (reinforced concrete,
rigid inclusions fields, deep foundations,. ..}, or as natural
elements investigated in biomechanics {bones, vegetal
tissues,. ...

Practical applications generally involve a large number
of fibers and the individual description of each constituent
is often impossible and generally not necessary, Indeed,
heterogeneous media can be described as equivalent con-
tinuous media, provided that (i} the media morphology is
sulficiently regular to be described by a representative vol-
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ume element (EVE) and that (i) a scale separation condi-
tion is fulfilled between the characteristic size [ of the
studied phenomena, that should be significantly larger
than the RVE size, and I {Auriault, 1991), ie. 6= /L < 1.
These physical conditions are explicitly used in a rigorous
mathematical way in the asymptotic homogenization
methed of periodic media (Bensoussan et al, 1978;
Sanchez-Palencia, 1980), where the period £2 plays the role
of the RVE. This method presents the great advantage of
building up the macroscopic behavior {governing differen-
tial system and effective properties) from the EVE mor-
phology (geometry), the properties of the constituents
and the local balances, without any other requirement
than scale separation.

A straight application of this method to usual compos-
ites leads to an equivalent Cauchy medium whose effective
elastic tensor is determined by the material microstructure
(Léné, 1978; Sanchez-Palencia, 1980; Postel, 1985 for peri-
odic fiber composites) and whose effective density is the
mean density. In quasi-statics, when considering higher or-
der description, correctors appear and the macroscopic
description involves higher gradient of the macroscopic
strain (Gambin and Kréner, 1939; Boutin, 1996). Thus,



the medium behaves as a "slightly” generalized medium
with "non-local” second gradient effect of small amplitude.
In dynamics, higher order correctors also arise on the iner-
tia that induces an additional "slight” non-local effect in
time to be accounted for when describing wave scattering
(cf. Boutin and Auriault, 1993). In this paper, "non-local”
denomination is meant by reference to the classic descrip-
tion. For space non-locality, since the strain gradient(s) is
involved, the knowledge of the strain state in the RVE (lo-
cal in space) is not sufficient: the strain gradient requires
the knowledge of the strain state in the neighboring RVE
(spacial non-locality). Similarly, for time non-locality, the
instantaneous acceleration (local in time) is not sufficient
and the knowledge of acceleration at previous time is nec-
essary (time non-locality).

Stiff fiber reinforced materials depart from usual com-
posites in two non conventional key features. First, the
mechanical properties of the constituents are highly con-
trasted. Second, the axial geometry of each fiber is contin-
uous over a long distance, much larger than the RVE size
(in direction perpendicular to the fiber). It leads to infer
that the so-called non-local effects could arise at the lead-
ing order instead of arising as correctors. In fact, in addition
to the usual shear response of the soft matrix, one may ex-
pect from the long fibers a bending effect, that corresponds
to a second gradient non-local effect. Furthermore, for a
particular frequency range corresponding to large wave-
lengths (compared to the RVE size) carried by the stiff fi-
bers, the matrix may reach a dynamic regime at the local
scale, giving an inner resonance effect that results in a
non-local effect in time.

In quasi-statics, several studies argue in favor of non-
local effects at the leading order for elastic media made
of soft matrix and stiff fibers. By studying a single stiff
beam in a soft matrix, Caillerie (1980) identified an en-
riched kinematics at the leading order. For periodically
reinforced systems undergoing uniform distortion kine-
matics, Pideri and Seppecher (1997) and Bellieud and Bou-
chitté (1997) show through an asymptotic approach based
on energy (see also Dell'Isola et al. (1995)), that both shear
and bending effects remain in the macro energy. For the
same kind of materials and kinematics, De Buhan and Sud-
ret (1999) developed a "multiphase approach” that ac-
counts for shear effects from the matrix and inner
bending effects from the inclusions. Recently, through the
homogenization method of periodic media, Boutin and
Soubestre (2011) derived the macroscopic behavior of
those media under general kinematics. They show that a
two order stiffness contrast (i.e. O(¢?)) leads to a general-
ized continuum. For transverse kinematics, inner bending
from the reinforcements together with shear from the ma-
trix are involved at the same order; while axial kinematics
is governed by the reinforcements compression.

In dynamics of composites presenting a two order stiff-
ness contrast with a stiff component connected, the inner
resonance occurence has been evidenced in the pioneer pa-
per by Auriault and Bonnet (1985). The effect is shown to
drastically modify the dynamics of the system at frequen-
cies close to eigen frequencies of the soft domain. Such in-
ner resonating materials, now called "metamaterials”,
recently received further attention. Experiments on con-

trasted composites made of epoxy matrix-duraliminium
cylinders (Vasseur et al., 1998) or made of epoxy matrix
embedding lead spheres coated by silicon rubber (Liu
et al., 2000) clearly demonstrate the existence of band gaps
related to local resonances. The theoretical mathematical
study of the inner resonance has been investigated by Zhi-
kov (2000) and Avila et al. (2005) (for fiber composites).
Babych et al. (2008) and Smyshlyaev (2009), follow the
same line and provide results on the convergence of the
asymptotic approach. For reticulated structures experienc-
ing global vibrations, inner resonance related to bending
has also been evidenced in Boutin et al. (2010).

The aim of this paper is to explore these phenomena
and to identify the consequences on the modal features
of a layer made of such a material. The study focuses on
an elastic matrix (indice m) periodically reinforced by
linear stiff elastic inclusions (indice p) oriented in the same
direction, presenting a two-order stiffness contrast
(U/pt, = O(e%)). It is shown that both space and time
non-local effects can appear according to the kinematics
and the frequency range. More precisely, the reinforced
medium is spatially non-local in the transverse direction,
where the system behaves as a generalized inner bending
continuum, and temporally non-local in the axial direction,
where the system behaves as a metamaterial. The high
stiffness contrast associated with the oriented fiber geom-
etry implies a high anisotropy. Hence, the frequency range
associated with the dynamics in presence of inner bending
(e.g. transverse mode) is one order smaller than the
dynamics in presence of inner resonance (axial compres-
sion mode).

The paper is divided into five Sections. Section 2 pre-
sents the asymptotic method in the context of the dynam-
ics of highly contrasted fiber reinforced media. The
derivation of the quasi-static homogenized modelling is
summarized in Section 3, following the approach devel-
oped in Boutin and Soubestre (2011). The homogenized
model in dynamic regime is established in Section 4, evi-
dencing different frequency ranges and phenomena: sec-
ond gradient (namely bending) effects for the transverse
kinematics, inner resonance effects for the axial dynamics.
The modal analysis of a reinforced layer is conducted in
Section 5 considering several ad hoc boundary conditions
for such a medium and investigating successively trans-
verse and axial modes.

2. Asymptotic approach of fiber reinforced medium
2.1. Studied composite and two-scale variables

The studied composite, of infinite lateral extension, is
constituted by a matrix (index m) in which a periodic lat-
tice of parallel identical homogeneous straight beams (in-
dex p) is embedded with a perfect contact (Fig. 1 (a)).
Both constituents have an isotropic linear elastic behavior.
They are characterized by their Lame coefficients /; and
(g =m,p) or, equivalently, by their Young's modulus E,
and Poisson’s ratio v,. Their density are denoted by p,.
Such media present a 2D-period S : S =S, USp, where S,
stands for the beam section and S,, for the matrix section.



Fig. 1. Fiber reinforced material. (a) Periodic lattice of parallel identical homogeneous straight beams embedded in a matrix. (b) Period geometry and

dimensions.

The interface between the two constituents is denoted
I' = 8Sp, N 8Sy, and the period contour 9S (Fig. 2). The con-
centration of reinforcement c is defined as the surface ratio
c=[S,1/18.

The dimension H along the beam axis is significantly
larger than the lateral dimension [ of the period (Fig. 1
(b)). The typical size of the beam section h is of the same
order than I (Fig. 1 (b)), so that reinforcements may be in
finite concentration. By considering phenomena involving
a macroscopic length L much larger than [ (and less or
equal to H, i.e. | < L < H), the scale parameter of the prob-
lem, as used in the asymptotic expansions, is defined by:

e=l/L<«1

The geometry naturally introduces a distinction be-
tween the axial direction (unit vector a; ) and the directions
in the plane of the section (unit vectors a, with o = 2,3).
Herein, Greek indices run from 2 to 3 and Latin ones from
1 to 3. The relevant dimensionless space variables are
(xi/L,x,/1) and the appropriate physical space variables
are (x;,y,), where y, = (L/l)x, = & 'x,. Thus, any function
f(x;) is rewritten as f(x;,y,) and its gradient becomes
of Jox:a; + € 10f /0y ,,a,. According to the scale separation
assumption and to the in-plane periodic geometry of the
studied composite, variables related to the matrix are
S-periodic. For example, the displacements in both constit-
uents (ante-exponent g = m,p) are looked for in the form

9y = Yu;(xi,y,)a; with ™u S — periodic in y,.

It

.

Fig. 2. Notations of the fiber reinforced material period section.

Notice also that:
fa)diads =& [ Fx.y,)dyadys
Sq JSg
and [ fladus = ¢ [ fix.y,)dvi
as as
Further, we adopt the following notations (q = m,p)

\sq|:/ as. :/ ds = £ 7|, ;
Sq Sq

Iq“:/xids, Iqa/:/yids:8*4lqa
Sq Sq

Sy

and local problems are set on the “natural” y—frame orig-
inated at the beam section center of mass G and orientated
along its principal inertia axis, so that

y,ds=0 and / Voypds =0 for o#p.
Sp Sp

2.2. Appropriate two-scale representation of dynamic balance
equations

Note first that the specificity of the axial direction leads
to decompose strain tensor e, and stress tensor g
(g = itr(e)l + 2ue) - that take the values % and 9¢g in each

constituent (q = m,p) - into three reduced tensors:

A=A ®a + A ® 0 + a1 @A) + 4,
where A=gorA=g

with:

o A, = Aqq: scalar axial strain or stress;

o At = A1,a,: 2D strain or stress vector exerted out of the
plane of the section;

o As = Aup/2(a, ® ag + a3 ® a,): second rank tensor of
the strain or stress in the plane of the section.

By using the two scale formulation, these tensors read
(where I = a; ® @, + a3 ® g3 ):



€n = Upy,; On = 2[i€, + A(tr(es) + ey)

e = [(67 Ury, + Ui, + Uy )/2]0s; Oc = 2118
& = & [(Uny, +Upy,)/2)(az © G5 + 05 ® 4,)/2;
s = 2ues + A(tr(es) + en)ls

The beam and matrix dynamic equilibriums in harmonic
regime read (as the problem is linear, the term exp(iwt)
is omitted to lighten the notations):

{dlv(qo-) = 7pqw2qg in Sq (l)

[cn]=0, =0 onI;"g S-periodiciny

where [] denotes the jump at the interface. This set is
rewritten with the two scale variables (x;,y,) and split
into:

- scalar equations expressing the axial balance (along
ar):

{81divy(qat)+divx(q(i()+‘”""_pqwz‘lm inS,;, g=m,p @

23]
[:.n]=0, [u1]=0 onl';y"g, S—periodiciny

- vectorial sets expressing the in-plane balance (within
(a2, @3)):

[o5.n]=0, [u,a,]=0

Sflmy(qgs)Jr%("gsH%:7pqa)2u1g, inS,, g=m,p
onl;"gs S—periodiciny

2.3. Scaling of stiffnesses and frequency

The contrast between the matrix and the reinforcement
elastic properties plays a crucial role: without matrix, the
beam lattice is governed by bending; if the matrix and
the reinforcement material stiffnesses are identical, the
behavior of the infinite composite layer is governed by
shear. In particular, such a medium behaves as a general-
ized continuum - where both constituents contribute to
the macroscopic behavior at the leading order - when the
matrix elastic coefficients are two order smaller (in terms
of ¢ power) than the beam ones (see e.g. Boutin and Sou-
bestre, 2011). In dynamics, it has been demonstrated in
Auriault and Bonnet (1985) that the same level of contrast
leads to inner dynamic phenomena in stratified compos-
ites. That is why, in the sequel, we focus on media present-
ing a &2 stiffness contrast, i.e.:

Iy = O0(e%,) and consequently i, = O(&°7,)

To integrate this contrast in the asymptotic process, matrix
elastic coefficients are rescaled by taking the beam ones as
reference:

M = O(&*pt,) = &, with g, = O(,)
dm = O(&*2) = €2, with 2, = O(4,)

and the stresses in both constituents are written in the
form below:

Pg = ipuCel+2ple g = (iyu("el+2,"e)  (4)

A dynamic regime of characteristic macroscopic
length L, may either involve the beam compression
dynamics or a dynamic regime within the matrix. Both
phenomena are associated with a characteristic angular
frequency:

_ B, [l
(Dp\/p:pz7 WOy = me

With densities p, and p,, of the same order of magnitude,
the ratio wn,/w, is then of the order of magnitude of the
square root of the stiffness contrast:

Om_ [Pobn _ o[ [Hm) _ o)

wP meP :up

It leads us to identify different frequency ranges of
interest:

o < £20(e,) = €0(wy). In that case, the characteristic
wavelengths 4, and /., associated with both mecha-
nisms are significantly large compared to the reinforced
medium macroscopic size L

S Bl gy Il Els g
27 Pp® 2n P @

Hence, inertia effects related to both mechanisms are neg-
ligible and therefore the whole system is in a quasi-static
regime.
o w = &0(wp) = O(wp). The characteristic wavelengths
are then assessed as

)‘P: El:(@l[d. Am: @l:L
21 p,0 7 2m P @

Therefore, a macroscopic dynamics arises within the rein-
forced medium. Such a regime involves the macro-dynam-
ics of the matrix while the beam compression mechanism
remains in a quasi-static regime.

o = 0(wp) = &7'0(mp). It implies that:

b By Im [ j —el =1
2n Pp® 2n PmElw

Thus, another macroscopic dynamic regime is expected
within the reinforced medium. This particular regime
involves the beam compression macro-dynamics and the
dynamic phenomenon at the scale of the period in the
matrix. At higher frequencies (i.e. > ¢7'0(w,)) no phe-
nomenon presents a scale separation and those situations
cannot be described through homogenization. The differ-
ent regimes (quasi-static, macro-dynamic, local-dynamic,
non-homogenizable) for both mechanisms are represented
in Fig. 3 according to the angular frequency.

To study these different possibilities, the angular
frequency, hence inertial terms, is rescaled by taking w,
as reference, that is:




|
DYNAMIC 1

|
QUASI-STATIC 1 NON-
) I (Non-newtonian) | HOMOGENIZABLE
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32 ) =2 ! ) . =172
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e o p_| g L S .o
1 )' ! ) T 2 |' 3/9 i al
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plane & Wy Wm € Ty & wpy € Wy
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Fig. 3. Macroscopic behavior domains as a function of the angular frequency for a two order stiffness contrast reinforced medium (x,, =

w/2

w=¢e"?w, then — pqwz‘ig = _pqs‘”a)’zqg

with ' =0(wp)

)

and the cases w>2, w=2, and w=0 enable to go
through quasi-static states (Section 3) to dynamic states
(Section 4).

2.4. Asymptotic expansions and series of local problems

Finally, according to the asymptotic process, motions in
both constituents (q = m,p) are looked for in the form of
two-scale expansions in powers of &:

0

CIE = ZE’((qujl‘((xivya)gj)

k=0

with ™uf(x;,y,) S— periodiciny,.

Thereby, the reduced strain tensors expansions are:

de, = is" dek  with ek = ouj
n — n n = 9y
0 (9)(1
o . 1 /out ouk ouk
Te = ) & %ef with ‘el = ( vl 10
k;] t CT2\ 0y, | ox,  ox
o0
qes: ng qgl; with QE’;:E ( k+1)+e ( )
k=-1

(6)

and reporting those expressions into (4) provides the re-
duced stress tensors expansions. For example:

Pgs = Zr"”o with Pa¥ = 2, (divi(u*) + divy (")) + 21, el
k=-1

00
sz = ng mgl;
k=1

mgk = (dive(u*?) + divy (U 1)L + 2, me? (7)

In both constituents, local problems at different orders are
obtained by introducing the asymptotic expansions of re-
scaled stress (e.g. (7)) into the dynamic balance equations
(2) and (3) which are rescaled with (5). Then, local prob-
lems are solved successively (by increasing the & power)
until the macroscopic description is obtained.

Remark: As we focus on the leading order description,
the angular frequency is not expanded. Then w used herein
represents either the actual frequency when studying the
forced harmonic vibration, or the first order of the expan-

0(e,).

sion (w = »°) when studying the dynamic response or un-
der given boundary conditions.

3. Quasi-static homogenized model

Let us first focus on the quasi-static description reached
when considering o < €0(wp), i.e. w > 2 in (5). Since this
situation is similar to the homogenization of a “soft” elastic
material periodically reinforced by “stiff” linear slender
elastic inclusions already treated in Boutin and Soubestre
(2011), we restrict the presentation to the main steps nec-
essary for the sequel of the study.

3.1. Beam

Due to the stiffness contrast, the two first problems
concern the beam only, as in absence of matrix. Thus,
one obtains a solution close to the classic solution of
Euler-Bernoulli beams, that is (capital variables are inde-
pendent of y,):

Py’ = U°(x)
Ut
Pul = —2(ew(U°).y)a — vy W:X —es(U%).y
+20°%x )a1/\y+U (x)
Pel — i Llay @a; —vpls|; Po®=E 8—?[a1®a1}
= ax p=s = p 8X1 Y u

The leading order motion is a rigid translation U° of the
section. The first order motion Pu'! consists in

- an axial component split into a rigid axial translation
U%Ql and an axial term related to the tangential strain
e« (U°%) that expresses the out-of-plane rotation of the
section,

- in-plane components decomposed into, (i) a rigid in-
plane translation U;gu and rotation P@° of the beam
section (note that the actual torsion of the beam PQ°
is obtained by substracting the material rotation, i.e.
PQ° —2@° — (AUS /0x3 — OUY /0x2)/2), (ii) the Poisson
effect induced by the macro- compressnon L (iii) the
"local compensation” of the macro in- plane deforma—
tion e,s(U°).

Finally, strain and stress tensors at the leading order
correspond to a non-uniform state of simple compression
(or traction).



3.2. Matrix

Knowing the beam motion at the two first orders en-
ables to treat the two Dirichlet problems governing the
matrix equilibrium with continuity of motion with the
beam. At the leading order the matrix motion ™u® is gov-
erned by:

{my(mgw =0 inSpy

my0 — o onI'; ™u® S — periodic in y

Obviously, the matrix follows the uniform translation im-
posed by the beam section, so that there is a global

beam-matrix translation, and that the associated stress
tensor is null:

mgo — QO(X,‘); mgl — O

At the following order, the equations enabling the determi-
nation of ™u' and ™g? express the equilibrium of the
matrix subjected on I to the motion and the deformation
of the beam section:

my (mgz) = Q in Sm
"2 = Jn, (divy("u") + diva(U°) 1+ 244, (& ("u') + (L) )
myl =PulonI; ™u' S—periodiciny
8)
By linearity, as in usual homogenization of composites, the
solution ™u! is the sum of terms depending on the macro-
scopic strain tensor e,(U°) components and of a uniform

translation U'. Hence, the stress tensor is in the form
"g? —c(y):el°), or "o} = cflew(U°), where cf -

2= c@“ = ¢# = 0 due to the 2D geometry of the period
(see Appendix).
3.3. Beam and Matrix

Now, let us come back to the beam equilibrium together
with the stress continuity on the interface. Fields Pu? and
gl satisfy the following Neumann problem:

2% a, +divy(Pa') =0'in S,

gt = 2p(divu') + divy ()L + 241, (&) + ')

Pg'-n=0onT

9

Through the integration over S, of this balance equation,
the use of the divergence theorem and the Neumann
condition, one deduces the macroscopic axial equilibrium
at the leading order:

0
— [ Pg%s =0 10
X /5,, ! 19

Then, the resolution shows that Pu? is the sum of:

- arigid body motion composed by a plane rotation ?@'
and a uniform translation PUZ,

- terms induced by the second gradient of U° and by the
gradient of P@° and of U'.

Furthermore, diagonal and tangential components ap-
pear in Pe' and Pg' and we have Pg{ =0, [; Poids =0
and fs,, Pgl.yds = 0 (see Appendix).

At the next order, the global equilibrium of the beam/
matrix composite is described by

divy(Pg') +divy(Pg*)=0 inS,
divy("g*) =0
[%.n]=0

inSp,
onI; ™g?S—periodiciny
(11)

On the one hand, the integration over S, and S, of the ma-
trix and beam axial equilibriums with the usual integral
transformations and the properties of Pg!, provides the
macroscopic axial equilibrium at the first order:

i,i / Pglds =0 (12)

On the other hand, taking the product by y of the axial
equilibrium within the two constituents and integrating
over Sp, and S, leads, after some algebra, to the mean value
of tangential stresses on the period (g?) (where (.) stands
for (fs, ds+ [, ds)/[S']). Moreover, taking the tensorial
product by y of the in-plane equilibrium within the two
constituents and integrating over S,, and Sp leads to the
mean value of in-plane stresses (g2). And finally, the reso-
lution gives the mean value of the mean axial stress (g2).
The complete expression of (g2) is given below in equation
(14). B

To close the macroscopic description, it remains to con-
sider the equilibrium at the following order

div,("g?) +divy("g’) =0 inSp
div(Pg?) +divy(’g*)=0 inS,
[o®n]=0

onI; ™g*S—periodiciny
(13)

The integration over S, and S,, of both equilibriums yields the
macroscopic equilibrium of the beam/matrix composite:

divy((g?)) =0

3.4. Macroscopic description

To sum up, after coming back to the global motion

U(x) + U (%) + - = U(x) + 2U%(x) + -, the physical
mean stresses (g?) + @2) = (g% + ¢*(g?), and the un-
scaled elastic and geometric parameters, the macroscopic
behavior is described by the following macroscopic equi-
libriums and constitutive laws at the orders & and &
(the expressions of the macroscopic elastic tensor C - that

is transverse isotropic for bi-symmetric matrix/be.;m sec-
tion - and of J,, are given in the Appendix):



,UO
div,((a%)) =0; <g°>: p%%@@g]
172
div,((5*)) = 0; <§2>:§:9<g°)+5p@87”1g1®g1
= =/"== S| ox

S| 2 0x3 2 \Ox10x2 " T ox20oxy
I [ U8 PUS
+ (7E"@ <8x$8xx e | TH

According to the frequency range (@ < €0(wp,), i.e. w > 2)
no dynamic effect appears and the above description corre-
sponds to a quasi-static state.

Note that U! is disregarded without restriction since its
governing equation is identical to the one governing U°
(hence U' can be added to U°). For generality, the term
related to the beam torsion ?Q° is kept. However, this kine-
matics, independent of the translation, would require a
specific action on each beam and is not considered in the
sequel.

Due to the stiffness contrast and the parallel orientation
of the beams, the behavior is strongly linked to the type of
kinematics. This is evidenced by splitting the leading order
motion U° into its transverse part Ugg“ and its axial part
Uda;:

Transverse motions Uﬁ(&)ga.

3770 37170 3770
+ﬁ(vp(lpﬁlpg)a U1+Iﬂ< ;U oL >>g1®gl

Tps 02200
PIS] %1 0%, (a1 ®0;+0,®0a1)

(14)

- if the transverse motion is independent of the axial
variable, i.e. U% = U%(x,a5): the medium behaves as a
classical composite governed by the "in-plane reduc-
tion” of C (which is of the order of u,,),

- if the transverse motion only depends on the axial var-
iable, i.e. U = U2(x;): the medium behaves as a second
gradient continuum at the leading order. Noteworthy, the
mechanisms of shear of the matrix and bending of the
beam (8*U%/0x3) contribute to the mean stress at the
same order,

- if the transverse motion depends on both axial and in-
plane variables, ie. U=U%x): the medium also
behaves as a second gradient continuum. In addition to
the bending of the beam, the second gradient of the
deformation involves axial effects due to inhomoge-
neous kinematics of in-plane confinement (8°U%/
Ox30xy4). As a consequence of the axial equilibrium
requirement, an axial motion of two order smaller
ﬁ%(x)al arises as a corrector.

Axial motions US(x)a;.

- if the axial motion is independent of the axial variable,
ie. U9 = US(x;a;): the medium behaves as a classical
composite governed by the "(a;,a,) reduction” of C,

- if the axial motion just depends on the axial variable,
ie. U% = U%(x;): the material behaves at the leading
order as a highly anisotropic elastic medium governed
by the compression of the beams (of the order of E,).
Considering order &2, a corrector ﬁ%(xl )a;, appears to
balance the axial gradient of Poisson effects and the
compression in the matrix. Hence, conversely to

transverse motions, the second gradient continuum
only appears as a corrector,

- if the axial motion depends on both axial and in-plane
variables, i.e. U? = UJ(x): we observe a similar behavior
as for U?(xl )a; except that the corrector U%(xl)gl also
balances axial and transverse effects due to inhomoge-
neous kinematics of compression (8° U? /0X10X%,0%;).

In presence of a second gradient effect at the leading or-
der, the usual leading order boundary conditions, ex-
pressed in terms of mean stress and motion, have to be
completed by conditions relative to the momentum and
the rotation of the beam (in accordance with the actual
conditions imposed to the fibers). This point is detailed in
Section 5.

4. Dynamic homogenized model

In this Section, the different dynamic macroscopic
behaviors of an &?-contrast reinforced medium are exam-
ined considering successively the two frequency ranges
= &0(wp) = 0(wm) (i.e. w=2 in (5)) and then
o = 0(w,) = & 10(wn) (i.e. w= 0 in (5)). It is shown that
these two frequency ranges respectively correspond to
the macroscopic transverse and axial dynamics. The dy-
namic homogenized models are derived in the same way
as for the quasi-static modelling, except that inertial terms
appear at increasing orders.

4.1. Transverse dynamic behavior: w = £0(w,) = O(Wn)

In this frequency range, the inertial term is of order two
(w = 2in(5)). Hence, all problems solved in the quasi-static
state remain unchanged until the last closure problem (Sec-
tion 3.3) in which the inertia effect emerges. As the previous
problems (and then their solutions) are not modified, the
leading order stress state and the related balance equation
(10) still apply, therefore:

divy((a”)) = 0; <g°> :Eps——@ ®a (15)

Equations (15) give the axial equilibrium at the leading
order. The absence of inertia terms evidences that the axial
regime remains in a quasi-static state. Now, observing that
the expression of @2> given in 14 is also unchanged,
and noting that the leading order dynamic term reads

—p,@*U° = —p,&2w?U° the closure problem (13)
becomes:
divy("g?) +divy("g?) = ~p,, > U° inSp
div,(°g?) +div, (°g*) = — p,r*U° in§,

[6>n]=0 onI; ™g® S—periodiciny
(16)
Integrating both equilibriums, then coming back to the

usual variables, one obtains the macroscopic dynamics of
the beam/matrix composite:

div((8)) = —(p)V° (17)



By focusing on translation kinematics (without the inde-
pend_einut beam torsion i.e. PQ° = 0), and since (15) imposes
that 00;;1 = 0, the expression of @2) is simplified. Then, one
extracts from (17) the following leading order in-plane bal-
ance equations that were missed at the previous order
(where {ij} = {11,22,33,23}):

div,((62) © a1 + (@) = ~(p)0*Uja,

- - Ly O°U°
(e ®a +(a2) = (C}ﬁexw(uo) - Epﬁ W;)am
® a1+ Clyei(U%)a, ® gy (18)

This set expresses the dynamics associated with the trans-
verse kinematics. A second gradient effect is involved at
the leading order when the transverse component U,
presents an x;-axial variation (that induces inner bending).
Note that the elastic parameters identified in the quasi-
static regime remain unchanged. As for inertia, the equiv-
alent density is the mean density as in classic dynamics
of elastic composites. The specificity of the transverse
dynamics with second gradient effect is studied in Section
5.1.

Remark: The axial balance included in (17) is the second
order corrector of (15) and governs the axial corrector U%
of the motion. Thus, a slight ¢2-dynamic effect exists in
the axial direction.

4.2. Axial dynamic behavior: w = O(wp) = &7 10(wy)

Let us consider the higher frequency range w = O(w,) =
& 10(wp,). Here, the inertial term is of order zero (w = 0 in
(5) thus ' = w). Consequently, only the first and second
problems of the quasi-static case defining the beam
motions at the two first orders (Section 3.1) remain
unmodified.

However, at the leading order, the matrix now under-
goes a dynamic regime, and the motion ™u° is governed
by the following set, with Dirichlet conditions:

divy("g') = —pp@* "u’ in Sy

myd = Yo on I'; ™u® S — periodic in y

As the matrix is elastic isotropic and because of the in-
plane y dependence, this differential set can be split into
two independent sets expressing the axial balance (related
to mu?)

oAy (MU9) = —ppy@? MU in Sp
{mu?:U? onl; ™uY S—periodiciny
(19)
and the in-plane balance (related to ™ula,):

Imgrad, (divy ("ula,)) + pir, Ay ("UY,) = —pp*Mula, inSy
muda, =Ula, onI; ™ua, S-periodiciny

(20)

By linearity, the solutions of these dynamic problems
read

™M =N, y,,y3) U Muda, = (@, Y,,y5)Uy

where the frequency dependent scalar field ¢! (w,y,,y;) and
the vectorial fields {*(w,y,,ys) are respectively the partic-
ular solutions of (19) and (20) for unit vertical and in-plane
beam motions respectively.

Let us now establish the beam/matrix equilibrium. By
noticing that the leading order inertia terms within the
beam and the matrix are respectively —p,e®@?U° and
—p,E®?ul, the governing equation in each constituent is:

divy(Pg°) +divy (*g') = —p,?U° inS,
@y(mgl) =—p 0> "’ in Sy
=0 onI; "g' S—periodiciny
(21)

Integrating both equations provides:

- the axial macroscopic equilibrium and constitutive law
of the reinforced medium:

o) " _1 1
Txl——(p )w*Ui where (p >(‘»’~))—E(Pp|5p‘+ﬂm/syné dS>
oy_g IS0/ 0UY
<Un>7EP |S‘ axl
(22)

- the in-plane balance condition
0 1 S o votds /ZUO
:_E' pp| P|5/;+pm g cplo Uy

Note that the in-plane balance condition imposes
Ugga = 0. Indeed, in general the transverse inertia tensor
does not vanish (p,|S,|65 + p,, Js,, (5dS # 0 except possibly
on a discrete frequency spectrum). Therefore, in this
frequency range we have:

U° = Uay

Consequently, the description reduces to the axial macro-
scopic equilibrium (22). The salient feature of this latter
is that the density is not the mean density (p) but an
apparent density (p*)(w) that depends on the frequency
through ¢('(w). The axial regime is characterized by the
coexistence of a global dynamic regime carried by the
beam vibrating axially and of an internal dynamic regime
induced in the matrix undergoing a forced vibration state.
This situation matches the concept of "metamaterial” evi-
denced in the pioneer paper by Auriault and Bonnet
(1985) on periodically stratified composite media with
high stiffness contrast and investigated in particular rein-
forced media by Vasseur et al. (1998). The apparent loss
of the Newton law at the macroscale arises from the non
equilibrium local state in the matrix, that results in turn
in the non-uniform local motion. In the time domain, the
macro dynamics involves a convolution product whose
characteristic time is related to the resonance of the ma-
trix. Hence, the macroscopic axial behavior of the rein-
forced medium has a non-local time response.



4.3. Feature of the "apparent” density (p*)(w)

For a given period geometry, the resolution of (19) at
each frequency enables the determination of ¢! (for
U% =1) and then of (p*)(w). As ¢! is determined by the
elasto-dynamic problem (19) set in the matrix with a com-
bination of Dirichlet and periodic boundary conditions, the
properties of (p*) are intrinsically related to the inner eigen
modes associated with the resonance of the matrix in the
period under these imposed boundary conditions. This is
detailed hereafter, where, for convenience, we introduce

C(wuy) =-1 +é’] (wzy)

so that the boundary value problem (19) becomes

Py (0) = =pp@*(1+0) in Sp
(=0 on I'; ({ S-periodic iny

Similarly to Auriault and Bonnet (1985), let us consider the
associated eigenvalue problem:

{u;,,Ayw) = /¢ inSn
¢=0 onl; ¢ S-periodic in y

By following Courant and Hilbert (1970), this problem has
a discrete and positive spectrum

O<h<h<ia< -

Each eigenvalue 4 is associated with an eigenfunction ¢/
and they correspond respectively to the resonance fre-
quency of the matrix with the imposed boundary condi-
tions, and to the associated modes shapes (here and in
the sequel, capital indices are related to inner eigen mode
of the matrix in the period). The series {¢/} constitute an
orthogonal basis on which { can be decomposed. With this
aim in view, note that from the divergence theorem, the
periodicity condition and the zero motion condition on I’
we have:

Ay(¢/)(ds = / A(Q)dds
Sm Sm

This equality, re-expressed with the balance equation of
both fields ¢ and ¢/, reads (no summation on J on the left
hand side)

i,/ ¢ ds = wzpm/ (1+0)¢/ds
Sm Sm
Then, the orthogonality of the eigenfunctions enables us to
write ¢ in the form
o0 . ¢ds o

1 S
= _1= _y
¢=¢ = Ji, @7ds 11

@ pm

Therefore, a solution (' exists when w;éa),:,/;;f‘
J=1,2... If w =, the solution exists if [; ¢/ds=0.

When this condition is not met, ' - then the apparent
density (p*) - is not bounded in the vicinity of w; and
changes its sign if 4 is a single eigenvalue.

Note also the limit behavior ¢! (w,y) — 1 when @ — 0,
indicating that the apparent density tends to the real

density at low frequency. Consequently, the feature of
(p*)(w) can be qualitatively summarized as follows:

(p) < (pP)(w) < +oo for 0O< o<
—o00o < (P (W) < +oo for w; <o < Wy (23)

Furthermore, in the low frequency range, namely
w/w; < 1, expanding ¢! in the form

Hw,y) =1+ (@/o)’ny) +-,

we derive that in first approximation 7(y) is governed by:

nAy(1) = —pp®] I Sp

n=0 onl; n S-—periodiciny
Multiplying the balance equation by # and integrating
on S, leads, with the usual integral transformations

and the boundary conditions, to: p,®? fsm’7d5:
1, J5. lgrad, (i7)*ds > 0. Thus,

a1 [
=1 ).

then (p*) ~ (p) (1 +a<$]>2>

with a >0 when w/m; < 1

ds =1

\%

Consequently, the axial dynamics is governed by the
following differential equation:

*U° )’
cE, 1 ~ —(p)w? 1+a<—> Ul
P o, (p) o 1
meaning that the Newtonian inertia is corrected by a term
proportional to the time second derivative of the
acceleration.

The unusual features of (p*) are illustrated here below
in two particular cases.

4.3.1. Circular inclusion in square period

As an example, let us consider a square period of side [
containing a circular inclusion of radius R. Numerical
calculations through finite element method have been
performed for a surface concentration of inclusion
c=15% (i.e. R = 0.22]). Functions ¢! (w,y) corresponding
to different frequencies (f =0.2f,, f =fo, f = 1.4f, and
f = 2fo, with fo = \/i,/p,,/1) are illustrated in Fig. 4. For
f = 0.2f,, the matrix motion is not uniform, the vibrations
are amplified (up to about 18 %) and in phase with the
inclusion. This is consistent with the low frequency regime
associated with an apparent density higher than the real
density. Conversely, for f = f, motions in phase opposition
occur with a magnification of about 1.7. In that case
ks, ¢! ds < 0. When the frequency increases, the spatial
oscillations of motion in the matrix become richer (see
cases f = 1.4f, and f = 2f,) and the mean value decreases
(except at eigen frequencies).

4.3.2. Approximated apparent density: circular inclusion in
circular section

An exact knowledge of {!(w,y), and then of (p*), re-
quires the precise description of the period geometry. Con-
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Fig. 4. Finite elements bi-dimensionnal solutions {'(w, y) of a square period section containing a centered circular inclusion (¢ = 15%) for different

frequency values.

sequently, no general expression can be proposed even for
simple geometry (e.g. square or hexagonal symmetry).
However, by replacing such a period geometry by a simpler
idealized geometry, it becomes possible to determine, a
field governed by the same physics as expressed in (19).
One may expect that the approximated solution presents
similar features to the exact solution. It could also be of
interest for practical purposes, e.g. identifying trends as
the influence of the inclusion concentration.

The idealized geometry for square or hexagonal periods
of section S containing a centered inclusion of section S,
(e.g. circular, hexagonal or square), is a circular section
(of external radius R;) of area equal to the period one con-

taining acentered circular inclusion (of radius R,) of area
equal to the inclusion one. This implies the following
relations:

Rn=+/S/m; Ry=./S,/t=+CRy; = %

With this geometry, it is convenient to use polar coordi-
nates (r,0) originated at the center of the inclusion. The
approximated field ¢(* defined in the matrix domain
(Rp <1 < Rp) is governed by the same balance equation
and Dirichlet boundary condition on r = R, as ¢'. However,
the periodic boundary condition does not apply to the cir-



cular external periphery r = R, and other conditions guar-
anteeing the same physics have to be formulated. In this
aim, instead of the periodicity itself, we use the conse-
quence of the periodic assumption in terms of equilibrium
and energy. Indeed, the periodic condition imposes that
both mean force and mean energy flux on the boundary
of the period vanish:

/ Ur,grad, (¢

By considering the approximated problem, as (* only de-
pends on r (and not on 0) and n = e;, the gradient normal
component reduces to grad,({').n = "’“ . Then both integrals

).nds=0 and /,um (grad,((").n){'ds=0

yield:
(1
2anum m (r=Rm)=0
and 27Rn L, o (r=Rn) x{"(r=Rn)=0

or
Consequently, the "ersatz” problem governing {*

A+ fpanst =1
C(r=Ry)=1;

reads

roor

% (1 =Ru) =0

“a
arz A +”—Za)2£“:0 for R, <r<Ry

The Helmoltz equation is the canonical form of Bessel dif-
ferential equations of order zero. Thus, {“ is a linear combi-
nation of the Bessel functions of the first and second kind J,

and Y,. Posing a = /p,,,/ 1, and recalling that J; = —J; and
Y0 = -Yy, gives:
" Jo(awr) — AY(0uwr)
(w,r) =
OT) = 7 lawR,) = AV, (2R,
. _ J1(0wRy)
with A(w,Rn) = Y1 (R

The mean value of {* is derived by integrating the Helmoltz
equation and by using the boundary conditions:

grad, ({*).ndys,,

OSm

p—j"wz/ Cds=— [ A()ds = —
o Sm Sm

= 27R, (;: (r=Rp)

Thus, the dimensionless apparent density of the matrix in
the idealized geometry reads (with w* = awR,,):

a o L a
Em =5l J5, 7
_ 2\/c 1 Ji(00)Y1 (Vews) — ] (Vew)Yi(ws)
(1 —0) = Jo(Vews)Yi(wx) =]y (wx )Yo(vews )

At low frequency, by expanding Bessel functions, it yields

(@, ~1+ <4(l£1(_c)1) +%>(ocme)2 when w — 0
which matches the trends established previously for peri-
odic solutions.

The effects of the inner dynamics - in a frequency range
involving several modes of the idealized geometry - are
depicted in Fig. 5 which displays the dimensionless inertial
factor (¢%),, versus the dimensionless frequency w= for
inclusion concentrations of ¢ = 15% and ¢ = 5%. Note the
sign inversion of ({),, in the vicinity of the poles. As ex-
plained for periodic solutions, the infinite values are
reached at the eigen frequencies (of the idealized system).
Around each of them, the mean motion of the matrix - rel-
atively to the beam motion - switches from an in-phase re-
gime (positive apparent density) to an out-of-phase regime
(negative apparent density). Hence, the observed mono-
tonic variations of ((*),, in each frequency band [wy, w,1]
are in accordance with the analysis of the periodic case
(see (23)):

<400 for 0< wl,
O < Wy,

5. Modal analysis

This section investigates the consequences of the spe-
cific dynamic behavior, which is non-local in space for
transverse motions and non-local in time for axial motions.
The study is performed by analyzing the modes of a rein-
forced layer of finite thickness H in the direction of the
beams (0 < x; < H), and of infinite or finite lateral exten-
sion D. This latter dimension will be assumed sufficiently
large compared to the period size (D >>[) to apply the
homogenized modelling and to disregard the effect of the
boundary layer on the medium border. Furthermore, we
assume the matrix/beam period to be bi-symmetric so that

3

—c=15%
---c=5%

10

w*k

15 20

Fig. 5. Dimensionless matrix inertial factor ({*),, versus the dimensionless frequency = for inclusion concentrations ¢ = 15% and ¢ = 5%.



the elastic tensor
23 23 18
Ci=Cy= C1£c =0).

is transverse isotropic (hence

e

5.1. Transverse modes

As seen in Section 3.4, the kinematics of transverse
modes that involves a non-local in space (namely second
gradient) effect is either in the form Ug(xl )a, correspond-
ing to a uniform in-plane macroscopic displacement, hence
named "homogeneous” modes, or in the form Ug()_c)goc cor-

responding to "inhomogeneous” modes. Both cases are
analyzed hereafter.

5.1.1. Boundary conditions

Boundary conditions must be specified at the lower end
and at the top of the layer to determine the transverse
modal characteristics of the system. Due to the second gra-
dient effect, the conditions involve the motion Uggx, the
mean stress (G2), and also the beam rotation aU/dx,
and the beam momentum E,I,,,&*U%/9x3. Hence, four types

o

of simple boundary conditions are identified:
—Free(F): (62) =0 and E,l,,8°U)/9x2 =0
— Clamped(C) : Uda, =0 and 8U%/dx; =0
— Articulated(A) : USa, =0 and  E,l,,d*U%/0x3 = 0
—Sliding(S) : (¢2) =0 and aU%/dx; =0

5.1.2. Homogeneous transverse modes

The study of homogeneous transverse modes Uft(xl)g[x
is based on the following equations obtained from the gen-
eral model (18):

d -
d—x]@f) = —(p)w*Ujay;

N 1dU%  E,I, d*U°
< 2>: (Clli B pipo o a,

= Ta s e

By considering, for simplicity, motions polarized in the
direction @, and by using the following lightened notations
U =U; x; =x; I; =1,; C}3 =2G, the equilibrium condi-
tion verified by the mean displacement U reduces to the
scalar equation:
El, d'U _d°U

Y L (py@?U =0 24
S| dx* dx® ) (24)

The general solution of this fourth order differential equa-
tion (of the same nature as the governing equation of sand-
wich beams) is in the form:

U(x) = ach ((52 %) + bsh (52 %) +ccos ((51 %) +dsin (51 i)

H
22 o?lS|(p)H*
with { = 2s)
0 =01 = El, =K

where the dimensionless parameter K = (G|S|H?)/(E,l,)
“weighs” the bending effects compared to shear effects.
Bending predominates when K is small, shear when K is
large.

The modal analysis is performed for four pairs of
boundary conditions (the first and second conditions cor-
respond respectively to the bottom (x=0) and top
(x = H)) : clamped-free (CF), clamped-sliding (CS), articu-
lated-sliding (AS) and articulated-free (AF). Each of these
conditions is expressed in terms of displacements (7 stands
for derivative):

- Free condition imposes: GU’ — E,l,/|S|U” = 0and U" = 0,
- Clamped condition: U =0 and U’ =0,

- Articulated condition: U = 0 and U” =0,

- Sliding condition: GU' — E,I,,/|S|U"” = 0 and U" = 0.

Thus, the top and bottom conditions lead to a set of four
linear equations. The modes correspond to the non trivial
solutions which are obtained when the determinant van-
ishes. The null-determinant condition results in the modal
equations given hereafter for each case:

5102

. K th(d,) tan(sy) 2 1 _
- Clamped—Free. W 4 =222 4 (1 + m) =0

- Clamped-Sliding: tan(d;) + (ﬁg)

- Articulated-Sliding: cos(61) =0
- Articulated-Free: (K + 6%)th(3;) — g tan(s;) =0

th(s;) = 0

For each case, the modal equation can be solved numer-
ically as a function of K to derive the solutions J;; and J;
corresponding to the ith mode. Eigen frequencies and
mode shapes of the reinforced layer can then be derived.
As an example, Figs. 6 and 7 respectively depict the varia-
tion, according to K, of eigen frequencies ratios
fi/fi = (61i62i)/(611621) and of mode shapes for the first
three modes under the clamped-free boundary conditions.
As expected, it appears in Fig. 6 that for small values of K
(dominating bending) the reinforced medium has the same
frequency distribution as a clamped-free bending beam
(namely fi/fi = 1;6.27;17.55;...), and for large values of
K (dominating shear) f;/fi ratios are close to those of a
clamped-free shear layer (i.e. 1;3;5;...). Logically, mode
shapes depicted in Fig. 7 vary from bending to shear mode
shapes as K increases. Similar trends are observed with the
others boundary conditions.

5.1.3. Inhomogeneous transverse modes

To study inhomogeneous transverse modes (of motion
polarized for example in the direction a,) we introduce
in the homogenized model (18) a transverse motion field
at the leading order of the form UJ(x)a,. By accounting
for the transverse isotropy of the elastic tensor, the
in-plane macro-equilibrium at the leading order gives the
set:

7%84U2+C7}§82U‘2’ 20Uy 37U
IS| oxt "~ 2 ax3 R oaxk 2 0x3
C23 62U0
22 L33 2 _
(@G -0 @

Equation (27) imposes an affine dependance according
either to x, or to x3, and the general solution is split in
two fields (a, and b, are constant coefficients):

+{p)?*UI=0 (26)
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Fig. 6. Variation of the eigen frequencies ratios versus K for clamped-free boundary conditions.
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Fig. 7. Mode shapes evolution versus K for clamped-free boundary conditions.

U° = (A(X1,%2)(asX3 + bs) + B(x1,%3) (G2%2 + b))

Both kind of fields (related to A and B) can be studied inde-
pendently, and in each case the linear dependence simpli-
fies. It leads to focusing on generic solutions in the form
(disregarding the linear dependence on the “third”
variable):

U° = U3 (x1,%)a, or U° = UY(x1,%3)a

Fields Ug(xl,xz) are investigated as variables separated
functions, i.e. U3(x1,X;) = h(x;) x g(x2). Introducing this
expression in (26) and dividing by h(x;) x g(x,), leads to
the two following equations governing h(x;) and g(x):

12
- %""h + S (a1 ph=0
and g’ + (p)w*pg =0 (28)

where f is a constant to be determined according to the
boundary conditions. Note that fields UJ(x,x3) = h(x;)x

g(x3) lead to same equations (28) except that C2 is

replaced by C33/2.

As an example, consider a slot of reinforced medium of
height H, of infinite lateral extension along x; (hence there
is no x; dependence in the modes) and of finite lateral
extension D along x, (—D/2 < X, < D/2). By assuming that
the lateral surfaces x, = +D/2 are free of stress, we have:

Uy

020, +£D/2) = cgﬁa—xz(m,in/z) =0
therefore d—g(iD/Z) =0
dX2

For <0, g takes the form g(x,) = ach(dx,) + bsh(dx,),
with 6 = y/(p)®?|p|/C33, and the boundary conditions on

lateral faces cannot be satisfied. Thus g must be positive,
and g is in the form g(x,) = acos(dx,) + b sin(dx,). Conse-
quently, the boundary conditions can be fulfilled provided
that j takes positive discrete values g, each of these values
associated with a function g, (x,) characterizing compres-
sion modes in the direction a, :



e, =BT nen

2Nn7X, (2n+ 1)71tx;
)+ bosin (155

and g,(x2) = a,cos <

Equation (28) which governs h and equation (24) which
defines homogeneous modes simply differ by the inertial
coefficient (1 — ,) which may either be positive (e. g.
homogeneous modes reached when n =0, i.e. 8, =0) or
negative (e.g. for large transverse compression modes or-
ders n). By introducing the index n to specify the solution,
the roots of the characteristic equation of the h, function
(associated with g,) deduced from (28) read:

2 2 _ *(p)(A-py)ISH* _ [SH 2 22 2
01n%2n = Fplp =5, (@) — (%)
2 2 CI3ISIH?
52n 5111 = ]22Eplp =K

Thus, if 1 - 8, > 0, then &3,535, > 0 and we have, similarly
to homogeneous modes (25), an oscillating solution of
the form:

hy(x1) = aCh(5zn H> +bsh(bzn H) + ccos <(>1n H)
+dsin (61,,%)

Whereas, if 1 -, <0, then §2,53, <0 and we obtain a
combination of exponential solutions that correspond to
modes confined in the vicinity of the top and bottom
boundaries:

hu(x1) = ach(bZn H> + bsh(ézH H) + cch(oln H)

X1
+dsh (5m ﬁ)
Nevertheless, in both cases, top and bottom boundary con-
ditions expressed through U(x) for homogeneous modes
can be directly transposed to h,(x;). Therefore, modal
equations of inhomogeneous modes are identical to those

of homogeneous modes derived in paragraph 5.1.2 except
that 6; and &, have to be replaced by 6, and J,, for
0< B, <1 or by sy, (with i =-1) and &,, for g, > 1.
The modal frequencies f,,; are now characterized by the or-
der n of the compression modes (along x,) and the order j
of the associated transverse modes (along x;):

EpIp nﬂ: 2C3IS|H*
f”/} 27'CH2 1n/j 2n/_1 7) EI

and the corresponding mode shapes read:

inhom ég/j (xl , Xz) _

hyji(x1) X gq(x2)

In Fig. 8, an illustration of mode shapes i”"°mcl>2/] (X1,%2)
coupling the first transverse mode (j = 1) for each of the
first three lateral compression modes (n =1, 2, 3), is pre-
sented for a reinforced medium of parameter K = 10 with
clamped-free boundary conditions.

Remark: As mentioned in Section 3.4, an axial corrector
U? arises from the axial balance. In the present case
(Ug(x1,x2)), this latter simplifies into:

E [So| 2?03 (C22+C_}§> U

S a2\ T 2 ) 9ok,
_ 22 C}% h/ ’
=01+ bl (%1)g'(x2)

which enables, with the axial boundary condition, the
determination of U32.

5.2. Axial modes

As seen in Section 4.2, the kinematics of axial modes
that involves non-local in time effect is in the form U? (X)a;
Here again, boundary conditions must be specified at
the lower end and at the top of the layer to determine
the axial modal characteristics of the system. At the lead-

1 1 1 1 1
n=3 05 0.5 0.5 0.5 0.5
9 0 1Y 0 1Y 0 1Y 0 19 0 1
x2=-D/2 x2=-D/4 x2=0 x2=D/4 x2=D/2

Fig. 8. Inhomogeneous mode shapes (j = 1, n = 1;2;3) of a reinforced medium of parameter K = 10 with clamped-free boundary conditions.



ing order, only the scalar normal stress and strain are in-
volved. Consequently, only two types of boundary condi-
tions apply (note that for the axial kinematics, bending
disappears, thus clamped and sliding conditions are
respectively equivalent to articulated and free conditions):
— Free(F): (6%) =0

n

— Clamped(C): U =0

The scalar nature of these conditions departs from the
usual vectorial conditions. This specificity results from
high contrast and high anisotropy; however, it does not in-
duce any indetermination. Indeed, the complementary
vectorial conditions arise at the second order and read
(accounting for the leading order kinematics):

1o 470 3770
~Free(F): (62)a; + (62) =0; @%F(ﬁ"”l—E lex U, )g

2 x, TS| ox2ox,
— Clamped(C): U° =0 (29)

By associating the axial macroscopic equilibrium and con-
stitutive law (22) derived in paragraph 4.2 in the frequency
range @ = O(w,), the second order differential equation
verified by U reads:

U3 20
CE,,W-I— (px)(w)w*U; =0 (30)
1

This equation is formally identical to the classic compres-
sion dynamic equilibrium, while the apparent density var-
ies with the frequency. The general solution takes the
form:

X . X
U?(X],X27X3) = a(X,,X3) COS <5ﬁ1> + b(x,,x3) sin (aﬁ‘)

- _ (p)(®)
with ¢ = wH T (31)

To go further in the determination of U%, we have to specify
the boundary conditions. Consider for instance a reinforced
layer clamped at the bottom and free at the top. Then:

U’

U%(0,x,,%3) = 0, cEpa—xl

(H,%2,%3) =0

and therefore:
UY(x1,%2,X3) = b(x2, X3) sin (3,%3) with 6, =Z(2n —1).
Expressing now the free boundary condition on the top at
the second order (29), gives for both tangential stress:

8b(X27X3) C}i 2 Ipat _ _
T 7 + 5nEP ‘S|H2 =0 then b(X27X3) =b

Consequently, U} = bsin (6,%), and the mode shapes are
identical to those prevailing in classic media in absence
of inner resonance. Thus, the orthogonality of eigen modes
remains valid. However, both situations differ drastically
because of the frequency dependence of {p=) as described
in (23). The essential differences with the usual modal
analysis concern the relation between eigen modes and ei-
gen frequencies at the macroscopic scale, as underlined
below:

- as (p*)(w) continuously varies between (p) and +oco
for w < w;, all mode shapes at the global scale
(1 < n < +o0) are reached in the finite frequency band
[0,w1] (w1 being the first inner eigen mode of the
matrix in the period),

- since (p*)(w) varies between —oco and +oco for
w; < w < w4, the same phenomenon occurs in each
frequency band [wy, 4] defined by the series of eigen
frequencies of the periodic inner modes,

- as a consequence, the nth mode shape at the global
scale is reached for an infinite discrete spectrum fre-
quency oy, each value wy lying between the Jth and
the (J+1)th eigen frequencies of the periodic inner
modes,

- moreover, since (px) — +oco, when w — wj, in the
vicinity of each inner eigen frequency, an infinite num-
ber of mode shapes is possible. This implies a concentra-
tion of macroscopic modes in an infinite series of
narrow bands around each w; of the periodic inner
modes.

- finally, recall that §, are real whatever the thickness H
of the layer. Consequently, the medium presents band
gaps in the sense that, independently of H, the eigen
frequency of the layer necessarily excludes the frequen-
cies belonging to the series of frequency bands in which

(px) < 0.

Note, however, that these theoretical conclusions must be
tempered in practice. First, because real cases necessarily
involve damping, implying that (p*)(w) does not reach
infinite values. Second, because the description becomes
irrelevant when the scale separation is absent.

6. Conclusion

The effective dynamic behavior of elastic materials peri-
odically reinforced by linear slender elastic inclusions of
high stiffness has been derived through the asymptotic
homogenization method of periodic media considering dif-
ferent frequency ranges. The behavior of such media with a
stiffness contrast of order two significantly departs from
the behavior of usual composites.

Two distinct non-local effects, both significant at the
leading order, are present concurrently: spatial non-locality
traduced by a generalized inner bending behavior, and time
non-locality corresponding to a metamaterial behavior. The
high stiffness contrast associated with the oriented fiber
geometry also implies a high level of anisotropy. Conse-
quently, the motions are strongly oriented according to the
anisotropy directions. This imposes to split the kinematics
in "transverse and axial” categories, a specific non-local ef-
fect being relevant for each of them. Furthermore, the fre-
quency range associated with dynamics in presence of
inner bending (e.g. transverse mode) is one order smaller
than that associated with dynamics in presence of inner res-
onance (axial compression mode). Hence, the order of mag-
nitude of diffraction frequencies depends on the
propagation mode.

Axial and transverse (homogeneous and inhomoge-
neous) modes properties of such system differ signifi-



cantly from those of usual composites. In presence of in-
ner bending, the modes shapes and frequency distribu-
tions are modified. Nevertheless, the classic general
framework of modal analysis remains valid. In presence
of inner resonance, the modes shapes are usual
However, the basic principle of the modal analysis, stat-
ing that a mode is associated with a single frequency, is
lost.

All the constitutive parameters can either be com-
puted rigorously, or be simply estimated from the self
consistent approach, with an excellent approximation
for weak concentrations of fibers. Such atypical proper-
ties can be of interest, either to improve the understand-
ing of the actual behavior of this kind of media
(encountered e.g. at large scale in civil engineering) or
to design new types of materials (for instance nano-
materials) with tuned dynamic response. Indeed, recent
experiments on foam-matrix/steel-fiber evidence the in-
ner bending effect on the fundamental mode shape in
accordance with theoretical results (Soubestre et al.,
2011).

The extension of the homogenized model to visco-
elastic constituents is straightforward when complex
modulus (in the Fourier domain) are introduced. Simi-
larly, the global behavior of elastic fibers embedded in
a viscous matrix can also be addressed. The influence
of damping, on the inner resonance effect, remains to
be studied. The perfect contact condition between con-
stituents could also be modified by introducing elastic
or visco-elastic interface laws. Further, note that 3-D
cells with unconnected fibers (to keep inner bending) ori-
ented in the three orthogonal directions, could be ad-
dressed similarly. This morphology would lead to the
same type of inner bending and inner resonance general-
ized media, highly anisotropic by construction, present-
ing nevertheless identical properties in the three
directions.

Appendix A. Appendix

By linearity, the solution ™u! of the problem (8) is in the
form

m o, an
u' = (1 [eall)],)an + 9 [esU)] vyt G U

where ¥ functions are solutions of elementary problems
with Q(QO)] _=1. Consequently, the stress tensor "g>
reads: v

(Mol [olt o of 0 07 [ea (U]
"0%, Gy 5 Gy o 000 | |exnl
"m0 3o oy oy 0 0| |easU
"ok | | B B 00| |exm?)
mg2, 0 0 0 0 cf c2]]|eas®
L™e2,] LO 0 0 0 ¥ 2] lena(UO]

where (without summation on repeated indices)

o = I (1 + vpdivy, (Y1) + 2y,

3 = 200, vpeya3(Y')

oy =2 (1 + divy (™))

35" = 2 @y23 (™)

% = 27, divy (y2);

55 = 21, (1 + 2e,23(¥))

oy = I (14 Vpdivy (Y1) + 2085, Vpyoa (Y1)
ol =24, (1+ 17209 /0y,

ity = Iy (1 + divy (YP)) + 214, (95 + €y (YPF));
cif = 1,00 /0y,

oy = 202 divy (¥2) + 2107, €422 ()5

i = w00 /0y,

The expressions of the fields Pu?, Pe' and Pg' solutions
of the Neumann problem (9) are detailed hereafter:

2
Py? = 8;? Vp Hy2H +y.grady(e«(U%)y) +

y. [SXs (QO)] N

X

N —
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2
where & =y,y —%M a, and W(y,,y;), the wrapping
function of the beam section, verifies the following limit
problem defined on S,:



AJW) =0 in S,
grad,(W )ﬂ —(@mAy)n onl

fsp Wds = (uniqueness)

The macroscopic elastic tensor C and the scalar 7, in-
volved in the macroscopic descﬂptlon (14) have the fol-
lowing expressions:

=&l =8l O =&

o

Tpu =647, with {ij} = {11,22,33,23)

where CJ = % </ chds + v, / yaC;j;sn(st>
ST\ sn r

1 ”
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