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the medium behaves as a ’’slightly’’ generalized medium
with ’’non-local’’ second gradient effect of small amplitude.
In dynamics, higher order correctors also arise on the iner-
tia that induces an additional ’’slight’’ non-local effect in

trasted composites made of epoxy matrix-duraliminium
cylinders (Vasseur et al., 1998) or made of epoxy matrix
embedding lead spheres coated by silicon rubber (Liu
et al., 2000) clearly demonstrate the existence of band gaps

2.1. Studied composite and two-scale variables
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time to be accounted for when describing wave scattering
(cf. Boutin and Auriault, 1993). In this paper, ’’non-local’’
denomination is meant by reference to the classic descrip-
tion. For space non-locality, since the strain gradient(s) is
involved, the knowledge of the strain state in the RVE (lo-
cal in space) is not sufficient: the strain gradient requires
the knowledge of the strain state in the neighboring RVE
(spacial non-locality). Similarly, for time non-locality, the
instantaneous acceleration (local in time) is not sufficient
and the knowledge of acceleration at previous time is nec-
essary (time non-locality).

Stiff fiber reinforced materials depart from usual com-
posites in two non conventional key features. First, the
mechanical properties of the constituents are highly con-
trasted. Second, the axial geometry of each fiber is contin-
uous over a long distance, much larger than the RVE size
(in direction perpendicular to the fiber). It leads to infer
that the so-called non-local effects could arise at the lead-
ing order instead of arising as correctors. In fact, in addition
to the usual shear response of the soft matrix, one may ex-
pect from the long fibers a bending effect, that corresponds
to a second gradient non-local effect. Furthermore, for a
particular frequency range corresponding to large wave-
lengths (compared to the RVE size) carried by the stiff fi-
bers, the matrix may reach a dynamic regime at the local
scale, giving an inner resonance effect that results in a
non-local effect in time.

In quasi-statics, several studies argue in favor of non-
local effects at the leading order for elastic media made
of soft matrix and stiff fibers. By studying a single stiff
beam in a soft matrix, Caillerie (1980) identified an en-
riched kinematics at the leading order. For periodically
reinforced systems undergoing uniform distortion kine-
matics, Pideri and Seppecher (1997) and Bellieud and Bou-
chitté (1997) show through an asymptotic approach based
on energy (see also Dell’Isola et al. (1995)), that both shear
and bending effects remain in the macro energy. For the
same kind of materials and kinematics, De Buhan and Sud-
ret (1999) developed a ’’multiphase approach’’ that ac-
counts for shear effects from the matrix and inner
bending effects from the inclusions. Recently, through the
homogenization method of periodic media, Boutin and
Soubestre (2011) derived the macroscopic behavior of
those media under general kinematics. They show that a
two order stiffness contrast (i.e. Oðe2Þ) leads to a general-
ized continuum. For transverse kinematics, inner bending
from the reinforcements together with shear from the ma-
trix are involved at the same order; while axial kinematics
is governed by the reinforcements compression.

In dynamics of composites presenting a two order stiff-
ness contrast with a stiff component connected, the inner
resonance occurence has been evidenced in the pioneer pa-
per by Auriault and Bonnet (1985). The effect is shown to
drastically modify the dynamics of the system at frequen-
cies close to eigen frequencies of the soft domain. Such in-
ner resonating materials, now called ’’metamaterials’’,
recently received further attention. Experiments on con-
related to local resonances. The theoretical mathematical
study of the inner resonance has been investigated by Zhi-
kov (2000) and Avila et al. (2005) (for fiber composites).
Babych et al. (2008) and Smyshlyaev (2009), follow the
same line and provide results on the convergence of the
asymptotic approach. For reticulated structures experienc-
ing global vibrations, inner resonance related to bending
has also been evidenced in Boutin et al. (2010).

The aim of this paper is to explore these phenomena
and to identify the consequences on the modal features
of a layer made of such a material. The study focuses on
an elastic matrix (indice m) periodically reinforced by
linear stiff elastic inclusions (indice p) oriented in the same
direction, presenting a two-order stiffness contrast
(lm=lp ¼ Oðe2Þ). It is shown that both space and time
non-local effects can appear according to the kinematics
and the frequency range. More precisely, the reinforced
medium is spatially non-local in the transverse direction,
where the system behaves as a generalized inner bending
continuum, and temporally non-local in the axial direction,
where the system behaves as a metamaterial. The high
stiffness contrast associated with the oriented fiber geom-
etry implies a high anisotropy. Hence, the frequency range
associated with the dynamics in presence of inner bending
(e.g. transverse mode) is one order smaller than the
dynamics in presence of inner resonance (axial compres-
sion mode).

The paper is divided into five Sections. Section 2 pre-
sents the asymptotic method in the context of the dynam-
ics of highly contrasted fiber reinforced media. The
derivation of the quasi-static homogenized modelling is
summarized in Section 3, following the approach devel-
oped in Boutin and Soubestre (2011). The homogenized
model in dynamic regime is established in Section 4, evi-
dencing different frequency ranges and phenomena: sec-
ond gradient (namely bending) effects for the transverse
kinematics, inner resonance effects for the axial dynamics.
The modal analysis of a reinforced layer is conducted in
Section 5 considering several ad hoc boundary conditions
for such a medium and investigating successively trans-
verse and axial modes.

2. Asymptotic approach of fiber reinforced medium
The studied composite, of infinite lateral extension, is
constituted by a matrix (index m) in which a periodic lat-
tice of parallel identical homogeneous straight beams (in-
dex p) is embedded with a perfect contact (Fig. 1 (a)).
Both constituents have an isotropic linear elastic behavior.
They are characterized by their Lame coefficients kq and lq

(q ¼ m; p) or, equivalently, by their Young’s modulus Eq

and Poisson’s ratio mq. Their density are denoted by qq.
Such media present a 2D-period S : S ¼ Sp [ Sm, where Sp

stands for the beam section and Sm for the matrix section.



The interface between the two constituents is denoted
C ¼ @Sp \ @Sm and the period contour @S (Fig. 2). The con-
centration of reinforcement c is defined as the surface ratio
c ¼ jSpj=jSj.

Notice also that:Z
Sq

f ðxiÞdx2dx3 ¼ e2
Z

Sq

f ðxi; yaÞdy2dy3

Note first that the specificity of the axial direction leads

Fig. 1. Fiber reinforced material. (a) Periodic lattice of parallel identical homogeneous straight beams embedded in a matrix. (b) Period geometry and
dimensions.
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The dimension H along the beam axis is significantly
larger than the lateral dimension l of the period (Fig. 1
(b)). The typical size of the beam section h is of the same
order than l (Fig. 1 (b)), so that reinforcements may be in
finite concentration. By considering phenomena involving
a macroscopic length L much larger than l (and less or
equal to H, i.e. l� L 6 H), the scale parameter of the prob-
lem, as used in the asymptotic expansions, is defined by:

e ¼ l=L� 1

The geometry naturally introduces a distinction be-
tween the axial direction (unit vector a1) and the directions
in the plane of the section (unit vectors aa with a ¼ 2;3).
Herein, Greek indices run from 2 to 3 and Latin ones from
1 to 3. The relevant dimensionless space variables are
ðxi=L; xa=lÞ and the appropriate physical space variables
are ðxi; yaÞ, where ya ¼ ðL=lÞxa ¼ e�1xa. Thus, any function
f ðxiÞ is rewritten as f ðxi; yaÞ and its gradient becomes
@f=@xiai þ e�1@f=@yaaa. According to the scale separation
assumption and to the in-plane periodic geometry of the
studied composite, variables related to the matrix are
S-periodic. For example, the displacements in both constit-
uents (ante-exponent q ¼ m; p) are looked for in the form
qu ¼ qujðxi; yaÞaj with mu S� periodic in ya:
Fig. 2. Notations of the fiber reinforced material period section.
and
Z
@S

f ðxiÞdx@S ¼ e
Z
@S

f ðxi; yaÞdy@S

Further, we adopt the following notations (q ¼ m; p)

Sq

�� �� ¼ Z
Sq

dS; S0q
��� ��� ¼ Z

Sq

ds ¼ e�2 Sq

�� ��;
Iqa ¼

Z
Sq

x2
adS; Iqa0 ¼

Z
Sq

y2
ads ¼ e�4Iqa

and local problems are set on the ‘‘natural’’ y�frame orig-
inated at the beam section center of mass G and orientated
along its principal inertia axis, so thatZ

Sp

yads ¼ 0 and
Z

Sp

yaybds ¼ 0 for a – b:

2.2. Appropriate two-scale representation of dynamic balance
equations
to decompose strain tensor e, and stress tensor r
(r ¼ ktrðeÞIþ 2le) – that take the values qe and qr in each
constituent ðq ¼ m; pÞ – into three reduced tensors:

A ¼ Ana1 � a1 þ ðAt � a1 þ a1 � AtÞ þ As;

where A ¼ e or A ¼ r

with:

� An ¼ A11: scalar axial strain or stress;
� At ¼ A1aaa: 2D strain or stress vector exerted out of the
plane of the section;
� As ¼ Aab=2ðaa � ab þ ab � aaÞ: second rank tensor of
the strain or stress in the plane of the section.

By using the two scale formulation, these tensors read
(where Is ¼ a2 � a2 þ a3 � a3):



en ¼ u1;x1 ;rn ¼ 2len þ kðtrðesÞ þ enÞ

et ¼ ½ðe�1u1;ya þ u1;xa þ ua;x1 Þ=2�aa; rt ¼ 2let

e ¼ e�1½ðu þ u Þ=2�ða � a þ a � a Þ=2;

A dynamic regime of characteristic macroscopic
length L, may either involve the beam compression
dynamics or a dynamic regime within the matrix. Both
phenomena are associated with a characteristic angular

Hence
ligible
regim
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s a;yb b;ya a b b a

rs ¼ 2les þ kðtrðesÞ þ enÞIs

The beam and matrix dynamic equilibriums in harmonic
regime read (as the problem is linear, the term expðixtÞ
is omitted to lighten the notations):

divðqrÞ ¼ �qqx2qu in Sq

½r:n� ¼ 0; ½u� ¼ 0 on C; mr S� periodic in y

(
ð1Þ

where ½:� denotes the jump at the interface. This set is
rewritten with the two scale variables ðxi; yaÞ and split
into:

– scalar equations expressing the axial balance (along
a1):

e�1divyðqrtÞþdivxðqrtÞþ@qrn
@x1
¼�qqx2qu1 inSq; q¼m;p

½rt:n�¼0; ½u1�¼0 onC;mrt S�periodic iny

8<: ð2Þ

– vectorial sets expressing the in-plane balance (within
ða2; a3Þ):

e�1divyðqrsÞþdivxðqrsÞþ@qrt
@x1
¼�qqx2uaaa inSq; q¼m;p

½rs:n�¼0; ½uaaa�¼0 onC;mrs S�periodiciny

8<: ð3Þ

2.3. Scaling of stiffnesses and frequency

The contrast between the matrix and the reinforcement

elastic properties plays a crucial role: without matrix, the

There
forced
ics of

Th
within
involv
beam lattice is governed by bending; if the matrix and
the reinforcement material stiffnesses are identical, the
behavior of the infinite composite layer is governed by
shear. In particular, such a medium behaves as a general-
ized continuum - where both constituents contribute to
the macroscopic behavior at the leading order - when the
matrix elastic coefficients are two order smaller (in terms
of e power) than the beam ones (see e.g. Boutin and Sou-
bestre, 2011). In dynamics, it has been demonstrated in
Auriault and Bonnet (1985) that the same level of contrast
leads to inner dynamic phenomena in stratified compos-
ites. That is why, in the sequel, we focus on media present-
ing a e2 stiffness contrast, i.e.:

lm ¼ Oðe2lpÞ and consequently km ¼ O e2kp
� �

To integrate this contrast in the asymptotic process, matrix
elastic coefficients are rescaled by taking the beam ones as
reference:

lm ¼ Oðe2lpÞ ¼ e2l0m with l0m ¼ OðlpÞ
km ¼ Oðe2kpÞ ¼ e2k0m with k0m ¼ OðkpÞ

and the stresses in both constituents are written in the
form below:

pr ¼ kptrðpeÞIþ 2lp
pe mr ¼ e2 k0mtrðmeÞIþ 2l0m

me
� �

ð4Þ
frequency:

xp ¼
ffiffiffiffiffiffi
Ep

qp

s
1
L

; xm ¼
ffiffiffiffiffiffiffi
lm

qm

r
1
L

With densities qp and qm of the same order of magnitude,
the ratio xm=xp is then of the order of magnitude of the
square root of the stiffness contrast:

xm

xp
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
qplm

qmEp

s
¼ O

ffiffiffiffiffiffiffi
lm

lp

s !
¼ OðeÞ

It leads us to identify different frequency ranges of
interest:

� x 6 e2OðxpÞ ¼ eOðxmÞ. In that case, the characteristic
wavelengths kp and km associated with both mecha-
nisms are significantly large compared to the reinforced
medium macroscopic size L

kp

2p¼
ffiffiffiffiffiffi
Ep

qp

s
1
x

P e�2L� L;
km

2p¼
ffiffiffiffiffiffiffi
lm

qm

r
1
x

P e�1L� L
, inertia effects related to both mechanisms are neg-
and therefore the whole system is in a quasi-static

e.

� x ¼ eOðxpÞ ¼ OðxmÞ. The characteristic wavelengths
are then assessed as

kp

2p
¼

ffiffiffiffiffiffi
Ep

qp

s
1
x
¼ e�1L;

km

2p
¼

ffiffiffiffiffiffiffi
lm

qm

r
1
x
¼ L
fore, a macroscopic dynamics arises within the rein-
medium. Such a regime involves the macro-dynam-

the matrix while the beam compression mechanism

remains in a quasi-static regime.
� x ¼ OðxpÞ ¼ e�1OðxmÞ. It implies that:

kp

2p
¼

ffiffiffiffiffiffi
Ep

qp

s
1
x
¼ L;

km

2p
¼

ffiffiffiffiffiffiffi
lm

qm

r
1

e�1x
¼ eL ¼ l
us, another macroscopic dynamic regime is expected
the reinforced medium. This particular regime

es the beam compression macro-dynamics and the

dynamic phenomenon at the scale of the period in the
matrix. At higher frequencies (i.e. x P e�1OðxpÞ) no phe-
nomenon presents a scale separation and those situations
cannot be described through homogenization. The differ-
ent regimes (quasi-static, macro-dynamic, local-dynamic,
non-homogenizable) for both mechanisms are represented
in Fig. 3 according to the angular frequency.

To study these different possibilities, the angular
frequency, hence inertial terms, is rescaled by taking xp

as reference, that is:



x ¼ ew=2x0; then � qqx
2qu ¼ �qqe

wx02qu

with x0 ¼ OðxpÞ ð5Þ

and the cases w > 2; w ¼ 2, and w ¼ 0 enable to go

sion (x ¼ x0) when studying the dynamic response or un-
der given boundary conditions.

when considering x 6 eOðxmÞ, i.e. w > 2 in (5). Since this

concern the beam only, as in absence of matrix. Thus,

Fig. 3. Macroscopic behavior domains as a function of the angular frequency for a two order stiffness contrast reinforced medium (lm ¼ Oðe2lpÞ).
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through quasi-static states (Section 3) to dynamic states
(Section 4).

2.4. Asymptotic expansions and series of local problems

Finally, according to the asymptotic process, motions in
both constituents (q ¼ m; p) are looked for in the form of
two-scale expansions in powers of e:

qu ¼
X1
k¼0

ekðquk
j ðxi; yaÞajÞ

with muk
j ðxi; yaÞ S� periodic in ya:

Thereby, the reduced strain tensors expansions are:

qen ¼
X1
k¼0

ek qek
n with qek

n ¼
@uk

1

@x1

qet ¼
X1
k¼�1

ek qek
t with qek

t ¼
1
2

@ukþ1
1

@ya
þ @uk

1

@xa
þ @uk

a

@x1

� 	
aa

qes ¼
X1
k¼�1

ek qek
s with qek

s ¼ eysðukþ1Þ þ exsðukÞ

ð6Þ

and reporting those expressions into (4) provides the re-
duced stress tensors expansions. For example:

prs ¼
X1
k¼�1

ek prk
s with prk

s ¼ kp divxðukÞþdivyðukþ1Þ
� �

Isþ2lp
pek

s

mrs ¼
X1
k¼1

ek mrk
s

mrk
s ¼ k0m divxðuk�2Þ þ divyðuk�1Þ

� �
Is þ 2l0m

mek�2
s ð7Þ

In both constituents, local problems at different orders are
obtained by introducing the asymptotic expansions of re-
scaled stress (e.g. (7)) into the dynamic balance equations
(2) and (3) which are rescaled with (5). Then, local prob-
lems are solved successively (by increasing the e power)
until the macroscopic description is obtained.

Remark: As we focus on the leading order description,
the angular frequency is not expanded. Then x used herein
represents either the actual frequency when studying the
forced harmonic vibration, or the first order of the expan-
3. Quasi-static homogenized model

Let us first focus on the quasi-static description reached
situation is similar to the homogenization of a ‘‘soft’’ elastic
material periodically reinforced by ‘‘stiff’’ linear slender
elastic inclusions already treated in Boutin and Soubestre
(2011), we restrict the presentation to the main steps nec-
essary for the sequel of the study.

3.1. Beam

Due to the stiffness contrast, the two first problems
one obtains a solution close to the classic solution of
Euler–Bernoulli beams, that is (capital variables are inde-
pendent of ya):

pu0 ¼ U0ðxÞ

pu1 ¼ �2ðextðU0Þ:yÞa1 � mp
@U0

1

@x1
y� exsðU0Þ:y

þ pH0ðxÞa1 ^ yþ U1ðxÞ

pe0 ¼ @U0
1

@x1
a1 � a1 � mpIs

h i
; pr0 ¼ Ep

@U0
1

@x1
a1 � a1½ �

The leading order motion is a rigid translation U0 of the
section. The first order motion pu1 consists in

- an axial component split into a rigid axial translation
U1

1a1 and an axial term related to the tangential strain
extðU0Þ that expresses the out-of-plane rotation of the
section,
- in-plane components decomposed into, (i) a rigid in-
plane translation U1

aaa and rotation pH0 of the beam
section (note that the actual torsion of the beam pX0

is obtained by substracting the material rotation, i.e.
pX0 ¼ pH0 � ð@U0

2=@x3 � @U0
3=@x2Þ=2), (ii) the Poisson

effect induced by the macro-compression @U0
1

@x1
, (iii) the

’’local compensation’’ of the macro in-plane deforma-
tion exsðU0Þ.

Finally, strain and stress tensors at the leading order
correspond to a non-uniform state of simple compression
(or traction).



3.2. Matrix

Knowing the beam motion at the two first orders en-
ables to treat the two Dirichlet problems governing the

- terms induced by the second gradient of U0 and by the
gradient of pH0 and of U1.

Furthermore, diagonal and tangential components ap-

U0ðxÞ þ eU2
ðxÞ þ � � � ¼ U0ðxÞ þ e2U2ðxÞ þ � � �, the physical
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matrix equilibrium with continuity of motion with the
beam. At the leading order the matrix motion mu0 is gov-
erned by:

divyðmr1Þ ¼ 0 in Sm

mu0 ¼ U0 on C; mu0 S� periodic in y

(
Obviously, the matrix follows the uniform translation im-
posed by the beam section, so that there is a global
beam-matrix translation, and that the associated stress
tensor is null:

mu0 ¼ U0ðxiÞ; mr1 ¼ 0

At the following order, the equations enabling the determi-
nation of mu1 and mr2 express the equilibrium of the
matrix subjected on C to the motion and the deformation
of the beam section:

divyðmr2Þ¼0 in Sm

mr2¼ k0m divyðmu1ÞþdivxðU0Þ
� �

Iþ2l0m eyðmu1ÞþexðU0Þ
� �

mu1¼ pu1 on C; mu1 S�periodic in y

8>><>>:
ð8Þ

By linearity, as in usual homogenization of composites, the
solution mu1 is the sum of terms depending on the macro-
scopic strain tensor exðU0Þ components and of a uniform

translation U1. Hence, the stress tensor is in the form
mr2 ¼ c0ðyÞ : exðU0Þ, or mr2

ij ¼ c0kl
ij exklðU0Þ, where c0ii1a ¼

c023
1a ¼ c01a

ii ¼ c01a
23 ¼ 0 due to the 2D geometry of the period

(see Appendix).

3.3. Beam and Matrix

Now, let us come back to the beam equilibrium together
with the stress continuity on the interface. Fields pu2 and
pr1 satisfy the following Neumann problem:

@pr0
n

@x1
a1 þ divyðpr1Þ ¼ 0 in Sp

pr1 ¼ kp divxðpu1Þ þ divyðpu2Þ
� �

Iþ 2lp eyðpu2Þ þ exðpu1Þ
� �

pr1 � n ¼ 0 on C

8>>><>>>:
ð9Þ

Through the integration over Sp of this balance equation,
the use of the divergence theorem and the Neumann
condition, one deduces the macroscopic axial equilibrium
at the leading order:

@

@x1

Z
Sp

pr0
nds ¼ 0 ð10Þ

Then, the resolution shows that pu2 is the sum of:

- a rigid body motion composed by a plane rotation pH1

and a uniform translation pU2,
pear in pe1 and pr1 and we have pr1
s ¼ 0,

R
Sp

pr1
t ds ¼ 0

and
R

Sp

pr1
t :yds ¼ 0 (see Appendix).

At the next order, the global equilibrium of the beam/
matrix composite is described by

divxðpr1Þþdivyðpr2Þ¼0 in Sp

divyðmr2Þ¼0 in Sm

½r2:n� ¼0 on C; mr2 S�periodic in y

8><>:
ð11Þ

On the one hand, the integration over Sm and Sp of the ma-
trix and beam axial equilibriums with the usual integral
transformations and the properties of pr1

t , provides the
macroscopic axial equilibrium at the first order:

1
S0
�� �� @

@x1

Z
Sp

pr1
nds ¼ 0 ð12Þ

On the other hand, taking the product by y of the axial
equilibrium within the two constituents and integrating
over Sm and Sp leads, after some algebra, to the mean value
of tangential stresses on the period hr2

t i (where :h i stands
for (

R
Sp

dsþ
R

Sm
dsÞ= S0

�� ��). Moreover, taking the tensorial
product by y of the in-plane equilibrium within the two
constituents and integrating over Sm and Sp leads to the
mean value of in-plane stresses hr2

s i. And finally, the reso-
lution gives the mean value of the mean axial stress hr2

ni.
The complete expression of hr2i is given below in equation
(14).

To close the macroscopic description, it remains to con-
sider the equilibrium at the following order

divxðmr2Þþdivyðmr3Þ¼0 in Sm

divxðpr2Þþdivyðpr3Þ¼0 in Sp

½r3:n� ¼0 on C; mr3 S�periodic in y

8><>:
ð13Þ

The integration over Sm and Sp of both equilibriums yields the
macroscopic equilibrium of the beam/matrix composite:

divxðhr2iÞ ¼ 0

3.4. Macroscopic description

To sum up, after coming back to the global motion
mean stresses hr0i þ her2i ¼ hr0i þ e2hr2i, and the un-
scaled elastic and geometric parameters, the macroscopic
behavior is described by the following macroscopic equi-
libriums and constitutive laws at the orders e0 and e2

(the expressions of the macroscopic elastic tensor C - that

is transverse isotropic for bi-symmetric matrix/beam sec-
tion - and of J pa are given in the Appendix):



divxðhr0iÞ¼0; r0
D E

¼ Ep
Sp

�� ��
Sj j
@U0

1

@x1
a1�a1

divxðher2iÞ¼ 0; her2i¼C : exðU0ÞþEp
Sp

�� ��
Sj j
@p eU2

1

@x1
a1�a1 ! !

transverse motions, the second gradient continuum
only appears as a corrector,
- if the axial motion depends on both axial and in-plane
variables, i.e. U0

1 ¼ U0
1ðxÞ: we observe a similar behavior
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þ Ep

Sj j mp
ðIp2þ Ip3Þ

2
@3U0

1

@x3
1

þ Ipa

2
@3U0

1

@x1@x2
a
þ2

@3U0
a

@x2
1@xa

a1�a1

þ �Ep
Ipa

Sj j
@3U0

1

@x2
1@xa

þ@
3U0

a

@x3
1

 !
þlp

J pa

Sj j
@2 pX0

@x1@xa

 !
ða1�aaþaa�a1Þ

ð14Þ

According to the frequency range (x 6 eOðxmÞ, i.e. w > 2)
no dynamic effect appears and the above description corre-
sponds to a quasi-static state.

Note that U1 is disregarded without restriction since its
governing equation is identical to the one governing U0

(hence U1 can be added to U0). For generality, the term
related to the beam torsion pX0 is kept. However, this kine-
matics, independent of the translation, would require a
specific action on each beam and is not considered in the
sequel.

Due to the stiffness contrast and the parallel orientation
of the beams, the behavior is strongly linked to the type of
kinematics. This is evidenced by splitting the leading order
motion U0 into its transverse part U0

aaa and its axial part
U0

1a1:
Transverse motions U0

aðxÞaa.

- if the transverse motion is independent of the axial
variable, i.e. U0

a ¼ U0
aðxbabÞ: the medium behaves as a

classical composite governed by the ’’in-plane reduc-
tion’’ of C (which is of the order of lm),

- if the transverse motion only depends on the axial var-
iable, i.e. U0

a ¼ U0
aðx1Þ: the medium behaves as a second

gradient continuum at the leading order. Noteworthy, the
mechanisms of shear of the matrix and bending of the
beam (@3U0

a=@x3
1) contribute to the mean stress at the

same order,
- if the transverse motion depends on both axial and in-
plane variables, i.e. U0

a ¼ U0
aðxÞ: the medium also

behaves as a second gradient continuum. In addition to
the bending of the beam, the second gradient of the
deformation involves axial effects due to inhomoge-
neous kinematics of in-plane confinement (@3U0

a=

@x2
1@xaÞ. As a consequence of the axial equilibrium

requirement, an axial motion of two order smallereU2
1ðxÞa1 arises as a corrector.

Axial motions U0
1ðxÞa1.

- if the axial motion is independent of the axial variable,
i.e. U0

1 ¼ U0
1ðxbabÞ: the medium behaves as a classical

composite governed by the ’’(a1; aa) reduction’’ of C ,
- if the axial motion just depends on the axial variable,
i.e. U0

1 ¼ U0
1ðx1Þ: the material behaves at the leading

order as a highly anisotropic elastic medium governed
by the compression of the beams (of the order of Ep).
Considering order e2, a corrector eU2

1ðx1Þa1 appears to
balance the axial gradient of Poisson effects and the
compression in the matrix. Hence, conversely to
as for U0
1ðx1Þa1 except that the corrector eU2

1ðx1Þa1 also
balances axial and transverse effects due to inhomoge-
neous kinematics of compression (@3U0

1=@x1@xa@xi).

In presence of a second gradient effect at the leading or-
der, the usual leading order boundary conditions, ex-
pressed in terms of mean stress and motion, have to be
completed by conditions relative to the momentum and
the rotation of the beam (in accordance with the actual
conditions imposed to the fibers). This point is detailed in
Section 5.

4. Dynamic homogenized model

In this Section, the different dynamic macroscopic
behaviors of an e2-contrast reinforced medium are exam-
ined considering successively the two frequency ranges
x ¼ eOðxpÞ ¼ OðxmÞ (i.e. w ¼ 2 in (5)) and then
x ¼ OðxpÞ ¼ e�1OðxmÞ (i.e. w ¼ 0 in (5)). It is shown that
these two frequency ranges respectively correspond to
the macroscopic transverse and axial dynamics. The dy-
namic homogenized models are derived in the same way
as for the quasi-static modelling, except that inertial terms
appear at increasing orders.

4.1. Transverse dynamic behavior: x ¼ eOðxpÞ ¼ OðxmÞ

In this frequency range, the inertial term is of order two
(w ¼ 2 in (5)). Hence, all problems solved in the quasi-static
state remain unchanged until the last closure problem (Sec-
tion 3.3) in which the inertia effect emerges. As the previous
problems (and then their solutions) are not modified, the
leading order stress state and the related balance equation
(10) still apply, therefore:

divxðhr0iÞ ¼ 0; r0
D E

¼ Ep
Sp

�� ��
Sj j

@U0
1

@x1
a1 � a1 ð15Þ

Equations (15) give the axial equilibrium at the leading
order. The absence of inertia terms evidences that the axial
regime remains in a quasi-static state. Now, observing that

the expression of her2i given in 14 is also unchanged,
and noting that the leading order dynamic term reads
�qqx2U0 ¼ �qqe2x02U0, the closure problem (13)
becomes:

divxðmr2Þþdivyðmr3Þ¼�qmx02U0 in Sm

divxðpr2Þþdivyðpr3Þ¼�qpx02U0 in Sp

½r3:n� ¼0 on C; mr3 S�periodic in y

8><>:
ð16Þ

Integrating both equilibriums, then coming back to the
usual variables, one obtains the macroscopic dynamics of
the beam/matrix composite:

divxðher2iÞ ¼ �hqix2U0 ð17Þ



By focusing on translation kinematics (without the inde-
pendent beam torsion i.e. pX0 ¼ 0), and since (15) imposes
that @2U0

1
@x2

1
¼ 0, the expression of her2i is simplified. Then, one

extracts from (17) the following leading order in-plane bal-

mu0
1 ¼ f1ðx; y2; y3ÞU

0
1; mu0

aaa ¼ faðx; y2; y3ÞU
0
a

where the frequency dependent scalar field f1ðx; y2; y3Þ and
the vectorial fields faðx; y2; y3Þ are respectively the partic-

Sj j @x1

- the
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ance equations that were missed at the previous order
(where fijg ¼ f11;22;33;23g):

divx her2
t i � a1 þ her2

s i
� �

¼ �hqix2U0
aaa

her2
t i � a1 þ her2

s i ¼ C1b
1aex1bðU0Þ � Ep

Ipa

Sj j
@3U0

a

@x3
1

 !
aa

� a1 þ Cij
abexijðU0Þaa � ab ð18Þ

This set expresses the dynamics associated with the trans-
verse kinematics. A second gradient effect is involved at
the leading order when the transverse component Ua

presents an x1-axial variation (that induces inner bending).
Note that the elastic parameters identified in the quasi-
static regime remain unchanged. As for inertia, the equiv-
alent density is the mean density as in classic dynamics
of elastic composites. The specificity of the transverse
dynamics with second gradient effect is studied in Section
5.1.

Remark: The axial balance included in (17) is the second
order corrector of (15) and governs the axial corrector eU2

1

of the motion. Thus, a slight e2-dynamic effect exists in
the axial direction.

4.2. Axial dynamic behavior: x ¼ OðxpÞ ¼ e�1OðxmÞ

Let us consider the higher frequency range x ¼ OðxpÞ ¼

e�1OðxmÞ. Here, the inertial term is of order zero (w ¼ 0 in No

U0
aaa ¼

does n

(5) thus x0 ¼ x). Consequently, only the first and second
problems of the quasi-static case defining the beam
motions at the two first orders (Section 3.1) remain
unmodified.

However, at the leading order, the matrix now under-
goes a dynamic regime, and the motion mu0 is governed
by the following set, with Dirichlet conditions:

divyðmr1Þ ¼ �qmx2 mu0 in Sm

mu0 ¼ U0 on C; mu0 S� periodic in y

(

As the matrix is elastic isotropic and because of the in-
plane y dependence, this differential set can be split into
two independent sets expressing the axial balance (related
to mu0

1)

l0mDyðmu0
1Þ¼�qmx2 mu0

1 in Sm

mu0
1¼U0

1 on C; mu0
1 S�periodic in y

(
ð19Þ

and the in-plane balance (related to mu0
aaa):

k0mgradyðdivyðmu0
aaaÞÞþl0mDyðmu0

aaaÞ¼�qmx2 mu0
aaa in Sm

mu0
aaa ¼U0

aaa on C; mu0
aaa S-periodic in y

(
ð20Þ

By linearity, the solutions of these dynamic problems
read
ular solutions of (19) and (20) for unit vertical and in-plane
beam motions respectively.

Let us now establish the beam/matrix equilibrium. By
noticing that the leading order inertia terms within the
beam and the matrix are respectively �qpe0x2U0 and
�qme0x2u0

m, the governing equation in each constituent is:

divxðpr0Þþdivyðpr1Þ¼�qpx2U0 in Sp

divyðmr1Þ¼�qmx2 mu0 in Sm

½r1:n� ¼0 on C; mr1 S�periodic in y

8><>:
ð21Þ

Integrating both equations provides:

- the axial macroscopic equilibrium and constitutive law
of the reinforced medium:

@ r0
n


 �
@x1

¼�hq	ix2U0
1 where hq	iðxÞ¼ 1

Sj j qp Sp

�� ��þqm

Z
Sm

f1dS
� 	

r0
n


 �
¼Ep

Sp

�� �� @U0
1

ð22Þ

in-plane balance condition

0 ¼ � 1
Sj j qp Sp

�� ��da
b þ qm

Z
S

fa
bdS

� 	
x02U0

b

m

te that the in-plane balance condition imposes
0. Indeed, in general the transverse inertia tensor

ot vanish (q Sp

�� ��da þ q
R

fadS – 0 except possibly
p b m Sm b

on a discrete frequency spectrum). Therefore, in this
frequency range we have:

U0 ¼ U0
1a1

Consequently, the description reduces to the axial macro-
scopic equilibrium (22). The salient feature of this latter
is that the density is not the mean density hqi but an
apparent density hq	iðxÞ that depends on the frequency
through f1ðxÞ. The axial regime is characterized by the
coexistence of a global dynamic regime carried by the
beam vibrating axially and of an internal dynamic regime
induced in the matrix undergoing a forced vibration state.
This situation matches the concept of ’’metamaterial’’ evi-
denced in the pioneer paper by Auriault and Bonnet
(1985) on periodically stratified composite media with
high stiffness contrast and investigated in particular rein-
forced media by Vasseur et al. (1998). The apparent loss
of the Newton law at the macroscale arises from the non
equilibrium local state in the matrix, that results in turn
in the non-uniform local motion. In the time domain, the
macro dynamics involves a convolution product whose
characteristic time is related to the resonance of the ma-
trix. Hence, the macroscopic axial behavior of the rein-
forced medium has a non-local time response.



4.3. Feature of the ’’apparent’’ density hq	iðxÞ

For a given period geometry, the resolution of (19) at
each frequency enables the determination of f1 (for

density at low frequency. Consequently, the feature of
hq	iðxÞ can be qualitatively summarized as follows:

hqi 6 hq	iðxÞ 6 þ1 for 0 6 x 6 x1;

24 J. Soubestre, C. Boutin / Mechanics of Materials 55 (2012) 16–32
U0
1 ¼ 1) and then of hq	iðxÞ. As f1 is determined by the

elasto-dynamic problem (19) set in the matrix with a com-
bination of Dirichlet and periodic boundary conditions, the
properties of hq	i are intrinsically related to the inner eigen
modes associated with the resonance of the matrix in the
period under these imposed boundary conditions. This is
detailed hereafter, where, for convenience, we introduce

fðx; yÞ ¼ �1þ f1ðx; yÞ

so that the boundary value problem (19) becomes

l0mDyðfÞ ¼ �qmx2ð1þ fÞ in Sm

f ¼ 0 on C; f S-periodic in y

(

Similarly to Auriault and Bonnet (1985), let us consider the
associated eigenvalue problem:

l0mDyð/Þ ¼ �k/ in Sm

/ ¼ 0 onC; / S-periodic in y

�
By following Courant and Hilbert (1970), this problem has
a discrete and positive spectrum

0 6 k1 6 k2 6 k3 6 � � �

Each eigenvalue kJ is associated with an eigenfunction /J

and they correspond respectively to the resonance fre-
quency of the matrix with the imposed boundary condi-
tions, and to the associated modes shapes (here and in
the sequel, capital indices are related to inner eigen mode
of the matrix in the period). The series f/Jg constitute an
orthogonal basis on which f can be decomposed. With this
aim in view, note that from the divergence theorem, the
periodicity condition and the zero motion condition on C
we have:Z

Sm

Dyð/JÞfds ¼
Z

Sm

DyðfÞ/Jds

This equality, re-expressed with the balance equation of
both fields f and /J , reads (no summation on J on the left
hand side)

kJ

Z
Sm

/Jfds ¼ x2qm

Z
Sm

ð1þ fÞ/Jds

Then, the orthogonality of the eigenfunctions enables us to
write f in the form

f ¼ f1 � 1 ¼
X1
J¼1

R
Sm

/J dsR
Sm
ð/JÞ2ds

/J

kJ
x2qm

�1

Therefore, a solution f1 exists when x – xJ ¼
ffiffiffiffiffi
kJ

qm

q
,

J ¼ 1;2 . . .. If x ¼ xJ , the solution exists if
R

Sm
/Jds ¼ 0.

When this condition is not met, f1 - then the apparent
density hq	i - is not bounded in the vicinity of xJ and
changes its sign if kJ is a single eigenvalue.

Note also the limit behavior f1ðx; yÞ ! 1 when x! 0,
indicating that the apparent density tends to the real
�1 6 hq	iðxÞ 6 þ1 for xJ 6 x 6 xJþ1 ð23Þ

Furthermore, in the low frequency range, namely
x=x1 � 1, expanding f1 in the form

f1ðx; yÞ ¼ 1þ ðx=x1Þ2gðyÞ þ � � � ;

we derive that in first approximation gðyÞ is governed by:

l0mDyðgÞ ¼ �qmx2
1 in Sm

g ¼ 0 on C; g S� periodic in y

(
Multiplying the balance equation by g and integrating
on Sm leads, with the usual integral transformations
and the boundary conditions, to: qmx2

1

R
Sm

gdS¼
l0m
R

Sm
jgradyðgÞj

2ds>0. Thus,

hf1im ¼
1
jSmj

Z
Sm

f1dS P 1

then hq	i 
 hqi 1þ a
x
x1

� 	2
 !

with a > 0 when x=x1 � 1

Consequently, the axial dynamics is governed by the
following differential equation:

cEp
@2U0

1

@2x1

 �hqix2 1þ a

x
x1

� 	2
 !

U0
1

meaning that the Newtonian inertia is corrected by a term
proportional to the time second derivative of the
acceleration.

The unusual features of hq	i are illustrated here below
in two particular cases.

4.3.1. Circular inclusion in square period
As an example, let us consider a square period of side l

containing a circular inclusion of radius R. Numerical
calculations through finite element method have been
performed for a surface concentration of inclusion
c ¼ 15% (i.e. R ¼ 0:22l). Functions f1ðx; yÞ corresponding
to different frequencies (f ¼ 0:2f 0, f ¼ f0, f ¼ 1:4f 0 and
f ¼ 2f 0, with f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0m=qm

p
=l) are illustrated in Fig. 4. For

f ¼ 0:2f 0, the matrix motion is not uniform, the vibrations
are amplified (up to about 18 %) and in phase with the
inclusion. This is consistent with the low frequency regime
associated with an apparent density higher than the real
density. Conversely, for f ¼ f0 motions in phase opposition
occur with a magnification of about 1.7. In that caseR

Sm
f1 ds < 0. When the frequency increases, the spatial

oscillations of motion in the matrix become richer (see
cases f ¼ 1:4f 0 and f ¼ 2f 0) and the mean value decreases
(except at eigen frequencies).

4.3.2. Approximated apparent density: circular inclusion in
circular section

An exact knowledge of f1ðx; yÞ, and then of hq	i, re-
quires the precise description of the period geometry. Con-



sequently, no general expression can be proposed even for
simple geometry (e.g. square or hexagonal symmetry).
However, by replacing such a period geometry by a simpler
idealized geometry, it becomes possible to determine, a

taining acentered circular inclusion (of radius Rp) of area
equal to the inclusion one. This implies the following
relations:

With this geometry, it is convenient to use polar coordi-

Fig. 4. Finite elements bi-dimensionnal solutions f1ðx; yÞ of a square period section containing a centered circular inclusion (c ¼ 15%) for different
frequency values.
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field governed by the same physics as expressed in (19).
One may expect that the approximated solution presents
similar features to the exact solution. It could also be of
interest for practical purposes, e.g. identifying trends as
the influence of the inclusion concentration.

The idealized geometry for square or hexagonal periods
of section S containing a centered inclusion of section Sp

(e.g. circular, hexagonal or square), is a circular section
(of external radius Rm) of area equal to the period one con-
Rm ¼
ffiffiffiffiffiffiffiffiffi
S=p

p
; Rp ¼

ffiffiffiffiffiffiffiffiffiffiffi
Sp=p

q
¼

ffiffiffi
c
p

Rm; c ¼ jSpj
jSj
nates (r; h) originated at the center of the inclusion. The
approximated field fa defined in the matrix domain
(Rp < r < Rm) is governed by the same balance equation
and Dirichlet boundary condition on r ¼ Rp as f1. However,
the periodic boundary condition does not apply to the cir-



cular external periphery r ¼ Rm and other conditions guar-
anteeing the same physics have to be formulated. In this
aim, instead of the periodicity itself, we use the conse-
quence of the periodic assumption in terms of equilibrium

hfaim ¼
1
jSmj

Z
Sm

fads

¼ 2
ffiffiffi
c
p

ð1� cÞ
1
x	

J1 x	ð ÞY1
ffiffiffi
c
p

x	
� �

� J1

ffiffiffi
c
p

x	
� �

Y1 x	ð Þffiffiffip� � ffiffiffip� �

This section investigates the consequences of the spe-
cific dynamic behavior, which is non-local in space for
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and energy. Indeed, the periodic condition imposes that
both mean force and mean energy flux on the boundary
of the period vanish:Z
@S

l0mgradyðf1Þ:nds¼0 and
Z
@S

l0mðgradyðf1Þ:nÞf1ds¼0

By considering the approximated problem, as fa only de-
pends on r (and not on h) and n ¼ er , the gradient normal
component reduces to gradyðf1Þ:n ¼ @fa

@r . Then both integrals
yield:

2pRml0m
@fa

@r
ðr ¼ RmÞ ¼ 0

and 2pRml0m
@fa

@r
ðr ¼ RmÞ � faðr ¼ RmÞ ¼ 0

Consequently, the ’’ersatz’’ problem governing fa reads

DyðfaÞþ qm
l0m

x2fa¼ @2fa

@r2 þ 1
r
@fa

@r þ
qm
l0m

x2fa¼0 for Rp6 r6Rm

faðr¼RpÞ¼1; @fa

@r ðr¼RmÞ¼0

8<:
The Helmoltz equation is the canonical form of Bessel dif-
ferential equations of order zero. Thus, fa is a linear combi-
nation of the Bessel functions of the first and second kind J0

and Y0. Posing a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qm=l0m

p
, and recalling that J00 ¼ �J1 and

Y 00 ¼ �Y1, gives:

faðx; rÞ ¼ J0 axrð Þ � AY0 axrð Þ
J0 axRp
� �

� AY0 axRp
� �

with Aðx;RmÞ ¼
J1 axRmð Þ
Y1 axRmð Þ

The mean value of fa is derived by integrating the Helmoltz
equation and by using the boundary conditions:

qm

l0m
x2
Z

Sm

fads ¼ �
Z

Sm

DyðfaÞds ¼ �
Z
@Sm

gradyðfaÞ:nd@Sm

¼ 2pRp
@fa

@r
ðr ¼ RpÞ

Thus, the dimensionless apparent density of the matrix in
the idealized geometry reads (with x	 ¼ axRm):
Fig. 5. Dimensionless matrix inertial factor hfaim versus the dimensionle
J0 cx	 Y1 x	ð Þ � J1 x	ð ÞY0 cx	

At low frequency, by expanding Bessel functions, it yields

hfaim 
 1þ lnðcÞ
4ðc � 1Þ þ

c � 3
8

� 	
ðaxRmÞ2 when x! 0

which matches the trends established previously for peri-
odic solutions.

The effects of the inner dynamics – in a frequency range
involving several modes of the idealized geometry – are
depicted in Fig. 5 which displays the dimensionless inertial
factor hfaim versus the dimensionless frequency x	 for
inclusion concentrations of c ¼ 15% and c ¼ 5%. Note the
sign inversion of hfaim in the vicinity of the poles. As ex-
plained for periodic solutions, the infinite values are
reached at the eigen frequencies (of the idealized system).
Around each of them, the mean motion of the matrix – rel-
atively to the beam motion – switches from an in-phase re-
gime (positive apparent density) to an out-of-phase regime
(negative apparent density). Hence, the observed mono-
tonic variations of hfaim in each frequency band ½xJ;xJþ1�
are in accordance with the analysis of the periodic case
(see (23)):

1 6 hfaim 6 þ1 for 0 6 x 6 x1;

�1 6 hfaim 6 þ1 for xJ 6 x 6 xJþ1;

5. Modal analysis
transverse motions and non-local in time for axial motions.
The study is performed by analyzing the modes of a rein-
forced layer of finite thickness H in the direction of the
beams (0 6 x1 6 H), and of infinite or finite lateral exten-
sion D. This latter dimension will be assumed sufficiently
large compared to the period size (D� l) to apply the
homogenized modelling and to disregard the effect of the
boundary layer on the medium border. Furthermore, we
assume the matrix/beam period to be bi-symmetric so that
ss frequency x	 for inclusion concentrations c ¼ 15% and c ¼ 5%.



the elastic tensor C is transverse isotropic (hence
C23

11 ¼ C23
aa ¼ C1b

1a ¼ 0).

5.1. Transverse modes

The modal analysis is performed for four pairs of
boundary conditions (the first and second conditions cor-
respond respectively to the bottom (x ¼ 0) and top
(x ¼ H)) : clamped-free (CF), clamped-sliding (CS), articu-
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As seen in Section 3.4, the kinematics of transverse
modes that involves a non-local in space (namely second
gradient) effect is either in the form U0

aðx1Þaa correspond-
ing to a uniform in-plane macroscopic displacement, hence
named ’’homogeneous’’ modes, or in the form U0

aðxÞaa cor-
responding to ’’inhomogeneous’’ modes. Both cases are
analyzed hereafter.

5.1.1. Boundary conditions
Boundary conditions must be specified at the lower end

and at the top of the layer to determine the transverse
modal characteristics of the system. Due to the second gra-
dient effect, the conditions involve the motion U0

aaa, the

mean stress her2
t i, and also the beam rotation @U0

a=@x1

and the beam momentum EpIpa@
2U0

a=@x2
1. Hence, four types

of simple boundary conditions are identified:

� FreeðFÞ : her2
t i ¼ 0 and EpIpa@

2U0
a=@x2

1 ¼ 0

� ClampedðCÞ : U0
aaa ¼ 0 and @U0

a=@x1 ¼ 0

� ArticulatedðAÞ : U0
aaa ¼ 0 and EpIpa@

2U0
a=@x2

1 ¼ 0

� SlidingðSÞ : her2
t i ¼ 0 and @U0

a=@x1 ¼ 0

5.1.2. Homogeneous transverse modes
The study of homogeneous transverse modes U0

aðx1Þaa

is based on the following equations obtained from the gen-

eral model (18):

in the homogenized model (18) a transverse motion field
d
dx1
her2

t i ¼ �hqix2U0
aaa;

her2
t i ¼ C1b

1a
1
2

dU0
b

dx1
� EpIpa

Sj j
d3U0

a

dx3
1

 !
aa

By considering, for simplicity, motions polarized in the
direction a2 and by using the following lightened notations
U0

2 ¼ U; x1 ¼ x; Ip2 ¼ Ip; C12
12 ¼ 2G, the equilibrium condi-

tion verified by the mean displacement U reduces to the
scalar equation:

� EpIp

Sj j
d4U

dx4 þ G
d2U

dx2 þ hqix
2U ¼ 0 ð24Þ

The general solution of this fourth order differential equa-
tion (of the same nature as the governing equation of sand-
wich beams) is in the form:

UðxÞ ¼ ach d2
x
H

� �
þ bsh d2

x
H

� �
þ c cos d1

x
H

� �
þ d sin d1

x
H

� �
with

d2
1d

2
2 ¼

x2 Sj jhqiH4

EpIp

d2
2 � d2

1 ¼
G Sj jH2

EpIp
¼ K

8<: ð25Þ

where the dimensionless parameter K ¼ ðG Sj jH2Þ=ðEpIpÞ
‘‘weighs’’ the bending effects compared to shear effects.
Bending predominates when K is small, shear when K is
large.
lated-sliding (AS) and articulated-free (AF). Each of these
conditions is expressed in terms of displacements (0 stands
for derivative):

- Free condition imposes: GU0 � EpIp= Sj jU000 ¼ 0 and U00 ¼ 0,
- Clamped condition: U ¼ 0 and U0 ¼ 0,
- Articulated condition: U ¼ 0 and U00 ¼ 0,
- Sliding condition: GU0 � EpIp= Sj jU000 ¼ 0 and U0 ¼ 0.

Thus, the top and bottom conditions lead to a set of four
linear equations. The modes correspond to the non trivial
solutions which are obtained when the determinant van-
ishes. The null-determinant condition results in the modal
equations given hereafter for each case:

- Clamped-Free: K
d2

1d2
2
þ thðd2Þ tanðd1Þ

d1d2
þ 2

K 1þ 1
cosðd1Þchðd2Þ

� �
¼ 0

- Clamped-Sliding: tanðd1Þ þ
d2

1þKð Þ
d1d2

thðd2Þ ¼ 0

- Articulated-Sliding: cosðd1Þ ¼ 0

- Articulated-Free: K þ d2
1

� �
thðd2Þ �

d3
1

d2
tanðd1Þ ¼ 0

For each case, the modal equation can be solved numer-
ically as a function of K to derive the solutions d1i and d2i

corresponding to the ith mode. Eigen frequencies and
mode shapes of the reinforced layer can then be derived.
As an example, Figs. 6 and 7 respectively depict the varia-
tion, according to K , of eigen frequencies ratios
fi=f1 ¼ ðd1id2iÞ=ðd11d21Þ and of mode shapes for the first
three modes under the clamped-free boundary conditions.
As expected, it appears in Fig. 6 that for small values of K
(dominating bending) the reinforced medium has the same
frequency distribution as a clamped-free bending beam
(namely fi=f1 ¼ 1; 6:27; 17:55; . . .), and for large values of
K (dominating shear) fi=f1 ratios are close to those of a
clamped-free shear layer (i.e. 1; 3; 5; . . .). Logically, mode
shapes depicted in Fig. 7 vary from bending to shear mode
shapes as K increases. Similar trends are observed with the
others boundary conditions.

5.1.3. Inhomogeneous transverse modes
To study inhomogeneous transverse modes (of motion

polarized for example in the direction a2) we introduce
at the leading order of the form U0
2ðxÞa2. By accounting

for the transverse isotropy of the elastic tensor, the
in-plane macro-equilibrium at the leading order gives the
set:

�EpIp
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1
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2
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2

@x2
1
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@2U0

2

@x2
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þC23
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2
@2U0

2

@x2
3

þhqix2U0
2 ¼ 0 ð26Þ

C22
33þ

C23
23

2

 !
@2U0

2

@x2@x3
¼0 ð27Þ

Equation (27) imposes an affine dependance according
either to x2 or to x3, and the general solution is split in
two fields (aa and ba are constant coefficients):



U0 ¼ ðAðx1; x2Þða3x3 þ b3Þ þ Bðx1; x3Þða2x2 þ b2ÞÞa2

Both kind of fields (related to A and B) can be studied inde-
pendently, and in each case the linear dependence simpli-

gðx3Þ lead to same equations (28) except that C22
22 is

replaced by C23
23=2.

As an example, consider a slot of reinforced medium of
height H, of infinite lateral extension along x3 (hence there
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Fig. 6. Variation of the eigen frequencies ratios versus K for clamped-free boundary conditions.

Fig. 7. Mode shapes evolution versus K for clamped-free boundary conditions.
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fies. It leads to focusing on generic solutions in the form
(disregarding the linear dependence on the ‘‘third’’
variable):

U0 ¼ U0
2ðx1; x2Þa2 or U0 ¼ U0

2ðx1; x3Þa2

Fields U0
2ðx1; x2Þ are investigated as variables separated

functions, i.e. U0
2ðx1; x2Þ ¼ hðx1Þ � gðx2Þ. Introducing this

expression in (26) and dividing by hðx1Þ � gðx2Þ, leads to
the two following equations governing hðx1Þ and gðx2Þ:

� EpIp

Sj j h0000 þ C12
12

2
h0 þ hqix2ð1� bÞh ¼ 0

and C22
22g00 þ hqix2bg ¼ 0 ð28Þ

where b is a constant to be determined according to the
boundary conditions. Note that fields U0

2ðx1; x3Þ ¼ hðx1Þ�
is no x3 dependence in the modes) and of finite lateral
extension D along x2 (�D=2 6 x2 6 D=2). By assuming that
the lateral surfaces x2 ¼ �D=2 are free of stress, we have:

er22ðx1;�D=2Þ ¼ C22
22
@U0

2

@x2
ðx1;�D=2Þ ¼ 0

therefore
dg
dx2
ð�D=2Þ ¼ 0

For b < 0, g takes the form gðx2Þ ¼ achðdx2Þ þ bshðdx2Þ,

with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hqix2jbj=C22

22

q
, and the boundary conditions on

lateral faces cannot be satisfied. Thus b must be positive,
and g is in the form gðx2Þ ¼ a cosðdx2Þ þ b sinðdx2Þ. Conse-
quently, the boundary conditions can be fulfilled provided
that b takes positive discrete values bn, each of these values
associated with a function gnðx2Þ characterizing compres-
sion modes in the direction a2 :



hqix2bn ¼ C22
22

np
D

� �2
n 2 N

and gnðx2Þ ¼ an cos
2npx2

D

� 	
þ bn sin

ð2nþ 1Þpx2

D

� 	 of homogeneous modes derived in paragraph 5.1.2 except
that d1 and d2 have to be replaced by d1n and d2n for

0 < bn < 1 or by id1n (with i2 ¼ �1) and d2n for bn > 1.
The modal frequencies fn=j are now characterized by the or-
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Equation (28) which governs h and equation (24) which
defines homogeneous modes simply differ by the inertial
coefficient ð1� bnÞ which may either be positive (e. g.
homogeneous modes reached when n ¼ 0, i.e. bn ¼ 0) or
negative (e.g. for large transverse compression modes or-
ders n). By introducing the index n to specify the solution,
the roots of the characteristic equation of the hn function
(associated with bn) deduced from (28) read:

d2
1nd

2
2n ¼ x2hqið1�bnÞ Sj jH4

EpIp
¼ Sj jH4

EpIp
x2hqi � C22

22
np
D

� �2
� �

d2
2n � d2

1n ¼ C12
12 Sj jH2

2EpIp
¼ K

8><>:
Thus, if 1� bn > 0, then d2

1nd
2
2n > 0 and we have, similarly

to homogeneous modes (25), an oscillating solution of
the form:

hnðx1Þ ¼ ach d2n
x1

H

� �
þ bsh d2n

x1

H

� �
þ c cos d1n

x1

H

� �
þ d sin d1n

x1

H

� �
Whereas, if 1� bn < 0, then d2

1nd
2
2n < 0 and we obtain a

combination of exponential solutions that correspond to
modes confined in the vicinity of the top and bottom
boundaries:

hnðx1Þ ¼ ach d2n
x1

H

� �
þ bsh d2n

x1

H

� �
þ cch d1n

x1

H

� �
þ dsh d1n

x1

H

� �
Nevertheless, in both cases, top and bottom boundary con-
ditions expressed through UðxÞ for homogeneous modes
can be directly transposed to hnðx1Þ. Therefore, modal
equations of inhomogeneous modes are identical to those
Fig. 8. Inhomogeneous mode shapes (j ¼ 1, n ¼ 1; 2; 3) of a reinforced me
der n of the compression modes (along x2) and the order j
of the associated transverse modes (along x1):

fn=j ¼
1

2pH2

ffiffiffiffiffiffiffiffiffiffiffiffi
EpIp

hqi Sj j

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1n=jd
2
2n=j þ

np
D

� �2 C22
22jSjH

4

EpIp

s

and the corresponding mode shapes read:

inhomU0
n=jðx1; x2Þ ¼ hn=jðx1Þ � gnðx2Þ

In Fig. 8, an illustration of mode shapes inhomU0
n=1ðx1; x2Þ

coupling the first transverse mode (j ¼ 1) for each of the
first three lateral compression modes (n = 1, 2, 3), is pre-
sented for a reinforced medium of parameter K ¼ 10 with
clamped-free boundary conditions.

Remark: As mentioned in Section 3.4, an axial correctoreU2
1 arises from the axial balance. In the present case

(U0
2ðx1; x2Þ), this latter simplifies into:

�Ep
Sp

�� ��
Sj j

@2 eU2
1

@x2
1

¼ C22
11 þ

C12
12

2

 !
@2U0

2

@x1@x2

¼ C22
11 þ

C12
12

2

 !
h0ðx1Þg0ðx2Þ

which enables, with the axial boundary condition, the
determination of eU2

1.

5.2. Axial modes

As seen in Section 4.2, the kinematics of axial modes
that involves non-local in time effect is in the form U0

1ðxÞa1.
Here again, boundary conditions must be specified at

the lower end and at the top of the layer to determine
the axial modal characteristics of the system. At the lead-
dium of parameter K ¼ 10 with clamped-free boundary conditions.



ing order, only the scalar normal stress and strain are in-
volved. Consequently, only two types of boundary condi-
tions apply (note that for the axial kinematics, bending
disappears, thus clamped and sliding conditions are

- as hq	iðxÞ continuously varies between hqi and þ1
for x < x1, all mode shapes at the global scale
(1 6 n < þ1) are reached in the finite frequency band
½0;x1� (x1 being the first inner eigen mode of the

The effective dynamic behavior of elastic materials peri-
odically reinforced by linear slender elastic inclusions of
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respectively equivalent to articulated and free conditions):

� FreeðFÞ : hr0
ni ¼ 0

� ClampedðCÞ : U0
1 ¼ 0

The scalar nature of these conditions departs from the
usual vectorial conditions. This specificity results from
high contrast and high anisotropy; however, it does not in-
duce any indetermination. Indeed, the complementary
vectorial conditions arise at the second order and read
(accounting for the leading order kinematics):

�FreeðFÞ : her2
nia1þher2

t i¼0; her2
t i¼

C1a
1a

2
@U0

1

@xa
�Ep

Ipa

jSj
@3U0

1

@x2
1@xa

 !
aa

�ClampedðCÞ : eU2
¼0 ð29Þ

By associating the axial macroscopic equilibrium and con-
stitutive law (22) derived in paragraph 4.2 in the frequency
range x ¼ OðxpÞ, the second order differential equation
verified by U0

1 reads:

cEp
@2U0

1

@x2
1

þ hq	iðxÞx2U0
1 ¼ 0 ð30Þ

This equation is formally identical to the classic compres-
sion dynamic equilibrium, while the apparent density var-
ies with the frequency. The general solution takes the
form:

U0
1ðx1; x2; x3Þ ¼ aðx2; x3Þ cos d

x1

H

� �
þ bðx2; x3Þ sin d

x1

H

� �
with d ¼ xH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq	iðxÞ

cEp

s
ð31Þ

To go further in the determination of U0
1, we have to specify

the boundary conditions. Consider for instance a reinforced
layer clamped at the bottom and free at the top. Then:

U0
1ð0; x2; x3Þ ¼ 0; cEp

@U0
1

@x1
ðH; x2; x3Þ ¼ 0

and therefore:
U0

1ðx1; x2; x3Þ ¼ bðx2; x3Þ sin dn
x1
H

� �
with dn ¼ p

2 ð2n� 1Þ.
Expressing now the free boundary condition on the top at
the second order (29), gives for both tangential stress:

@bðx2; x3Þ
@xa

C1a
1a

2
þ d2

nEp
Ipa

jSjH2

 !
¼ 0 then bðx2; x3Þ ¼ b

Consequently, U0
1 ¼ b sin dn

x1
H

� �
, and the mode shapes are

identical to those prevailing in classic media in absence
of inner resonance. Thus, the orthogonality of eigen modes
remains valid. However, both situations differ drastically
because of the frequency dependence of hq	i as described
in (23). The essential differences with the usual modal
analysis concern the relation between eigen modes and ei-
gen frequencies at the macroscopic scale, as underlined
below:
matrix in the period),
- since hq	iðxÞ varies between �1 and þ1 for
xJ 6 x 6 xJþ1, the same phenomenon occurs in each
frequency band ½xJ;xJþ1� defined by the series of eigen
frequencies of the periodic inner modes,
- as a consequence, the nth mode shape at the global
scale is reached for an infinite discrete spectrum fre-
quency xnJ , each value xnJ lying between the Jth and
the (J+1)th eigen frequencies of the periodic inner
modes,
- moreover, since hq	i ! þ1, when x! xJ , in the
vicinity of each inner eigen frequency, an infinite num-
ber of mode shapes is possible. This implies a concentra-
tion of macroscopic modes in an infinite series of
narrow bands around each xJ of the periodic inner
modes.
- finally, recall that dn are real whatever the thickness H
of the layer. Consequently, the medium presents band
gaps in the sense that, independently of H, the eigen
frequency of the layer necessarily excludes the frequen-
cies belonging to the series of frequency bands in which
hq	i < 0.

Note, however, that these theoretical conclusions must be
tempered in practice. First, because real cases necessarily
involve damping, implying that hq	iðxÞ does not reach
infinite values. Second, because the description becomes
irrelevant when the scale separation is absent.

6. Conclusion
high stiffness has been derived through the asymptotic
homogenization method of periodic media considering dif-
ferent frequency ranges. The behavior of such media with a
stiffness contrast of order two significantly departs from
the behavior of usual composites.

Two distinct non-local effects, both significant at the
leading order, are present concurrently: spatial non-locality
traduced by a generalized inner bending behavior, and time
non-locality corresponding to a metamaterial behavior. The
high stiffness contrast associated with the oriented fiber
geometry also implies a high level of anisotropy. Conse-
quently, the motions are strongly oriented according to the
anisotropy directions. This imposes to split the kinematics
in ’’transverse and axial’’ categories, a specific non-local ef-
fect being relevant for each of them. Furthermore, the fre-
quency range associated with dynamics in presence of
inner bending (e.g. transverse mode) is one order smaller
than that associated with dynamics in presence of inner res-
onance (axial compression mode). Hence, the order of mag-
nitude of diffraction frequencies depends on the
propagation mode.

Axial and transverse (homogeneous and inhomoge-
neous) modes properties of such system differ signifi-



cantly from those of usual composites. In presence of in-
ner bending, the modes shapes and frequency distribu-
tions are modified. Nevertheless, the classic general
framework of modal analysis remains valid. In presence

c011
11 ¼ k0mð1þ mpdivyðw11ÞÞ þ 2l0m;

c011
23 ¼ 2l0mmpey23ðw11Þ

0aa 0 aa

 !
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of inner resonance, the modes shapes are usual.
However, the basic principle of the modal analysis, stat-
ing that a mode is associated with a single frequency, is
lost.

All the constitutive parameters can either be com-
puted rigorously, or be simply estimated from the self
consistent approach, with an excellent approximation
for weak concentrations of fibers. Such atypical proper-
ties can be of interest, either to improve the understand-
ing of the actual behavior of this kind of media
(encountered e.g. at large scale in civil engineering) or
to design new types of materials (for instance nano-
materials) with tuned dynamic response. Indeed, recent
experiments on foam-matrix/steel-fiber evidence the in-
ner bending effect on the fundamental mode shape in
accordance with theoretical results (Soubestre et al.,
2011).

The extension of the homogenized model to visco-
elastic constituents is straightforward when complex
modulus (in the Fourier domain) are introduced. Simi-
larly, the global behavior of elastic fibers embedded in
a viscous matrix can also be addressed. The influence
of damping, on the inner resonance effect, remains to
be studied. The perfect contact condition between con-
stituents could also be modified by introducing elastic
or visco-elastic interface laws. Further, note that 3-D
cells with unconnected fibers (to keep inner bending) ori-
ented in the three orthogonal directions, could be ad-
dressed similarly. This morphology would lead to the
same type of inner bending and inner resonance general-
ized media, highly anisotropic by construction, present-
ing nevertheless identical properties in the three
directions.

Appendix A. Appendix

By linearity, the solution mu1 of the problem (8) is in the

form
mu1 ¼ w1a extðU0Þ

 �

a
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a1 þ wab exsðU0Þ

h i
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þ mpw

11 @U0
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where wij functions are solutions of elementary problems
with exðU0Þ

h i
ij
¼ 1. Consequently, the stress tensor mr2

reads:
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where (without summation on repeated indices)
c11 ¼ kmð1þ divyðw ÞÞ;

c0aa
23 ¼ 2l0mey23ðwaaÞ

c023
11 ¼ 2k0mdivyðw23Þ;

c023
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aa ¼ k0mð1þ divyðwbbÞÞ þ 2l0mðdab þ eyaaðwbbÞÞ;

c012
13 ¼ l0m@w

12=@y3

c023
aa ¼ 2ðk0mdivyðw23Þ þ 2l0meyaaðw23ÞÞ;
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The expressions of the fields pu2, pe1 and pr1 solutions
of the Neumann problem (9) are detailed hereafter:
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where na ¼ yay� 1
2 y
��� ���2

aa and Wðy2; y3Þ, the wrapping
function of the beam section, verifies the following limit
problem defined on Sp:



DyðWÞ ¼ 0 in Sp

gradyðWÞ:n ¼ �ða1 ^ yÞ:n on CR
Sp

Wds ¼ 0 ðuniquenessÞ
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The macroscopic elastic tensor C and the scalar J pa in-
volved in the macroscopic description (14) have the fol-
lowing expressions:

Cij
11 ¼ e2C 0ij11; Cij

ab ¼ e2C 0ijab; C1b
1a ¼ e2C 01b

1a ;

J pa ¼ e4J 0pa with ijf g ¼ 11;22;33;23f g

where C 0ij11 ¼
1
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�� ��
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c0ij11dsþ mp
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� 	
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